md.c 145 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870
  1. /*
  2. md.c : Multiple Devices driver for Linux
  3. Copyright (C) 1998, 1999, 2000 Ingo Molnar
  4. completely rewritten, based on the MD driver code from Marc Zyngier
  5. Changes:
  6. - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
  7. - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
  8. - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
  9. - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
  10. - kmod support by: Cyrus Durgin
  11. - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
  12. - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
  13. - lots of fixes and improvements to the RAID1/RAID5 and generic
  14. RAID code (such as request based resynchronization):
  15. Neil Brown <neilb@cse.unsw.edu.au>.
  16. - persistent bitmap code
  17. Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
  18. This program is free software; you can redistribute it and/or modify
  19. it under the terms of the GNU General Public License as published by
  20. the Free Software Foundation; either version 2, or (at your option)
  21. any later version.
  22. You should have received a copy of the GNU General Public License
  23. (for example /usr/src/linux/COPYING); if not, write to the Free
  24. Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  25. */
  26. #include <linux/module.h>
  27. #include <linux/kernel.h>
  28. #include <linux/kthread.h>
  29. #include <linux/linkage.h>
  30. #include <linux/raid/md.h>
  31. #include <linux/raid/bitmap.h>
  32. #include <linux/sysctl.h>
  33. #include <linux/buffer_head.h> /* for invalidate_bdev */
  34. #include <linux/poll.h>
  35. #include <linux/mutex.h>
  36. #include <linux/ctype.h>
  37. #include <linux/freezer.h>
  38. #include <linux/init.h>
  39. #include <linux/file.h>
  40. #ifdef CONFIG_KMOD
  41. #include <linux/kmod.h>
  42. #endif
  43. #include <asm/unaligned.h>
  44. #define MAJOR_NR MD_MAJOR
  45. #define MD_DRIVER
  46. /* 63 partitions with the alternate major number (mdp) */
  47. #define MdpMinorShift 6
  48. #define DEBUG 0
  49. #define dprintk(x...) ((void)(DEBUG && printk(x)))
  50. #ifndef MODULE
  51. static void autostart_arrays (int part);
  52. #endif
  53. static LIST_HEAD(pers_list);
  54. static DEFINE_SPINLOCK(pers_lock);
  55. static void md_print_devices(void);
  56. #define MD_BUG(x...) { printk("md: bug in file %s, line %d\n", __FILE__, __LINE__); md_print_devices(); }
  57. /*
  58. * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
  59. * is 1000 KB/sec, so the extra system load does not show up that much.
  60. * Increase it if you want to have more _guaranteed_ speed. Note that
  61. * the RAID driver will use the maximum available bandwidth if the IO
  62. * subsystem is idle. There is also an 'absolute maximum' reconstruction
  63. * speed limit - in case reconstruction slows down your system despite
  64. * idle IO detection.
  65. *
  66. * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
  67. * or /sys/block/mdX/md/sync_speed_{min,max}
  68. */
  69. static int sysctl_speed_limit_min = 1000;
  70. static int sysctl_speed_limit_max = 200000;
  71. static inline int speed_min(mddev_t *mddev)
  72. {
  73. return mddev->sync_speed_min ?
  74. mddev->sync_speed_min : sysctl_speed_limit_min;
  75. }
  76. static inline int speed_max(mddev_t *mddev)
  77. {
  78. return mddev->sync_speed_max ?
  79. mddev->sync_speed_max : sysctl_speed_limit_max;
  80. }
  81. static struct ctl_table_header *raid_table_header;
  82. static ctl_table raid_table[] = {
  83. {
  84. .ctl_name = DEV_RAID_SPEED_LIMIT_MIN,
  85. .procname = "speed_limit_min",
  86. .data = &sysctl_speed_limit_min,
  87. .maxlen = sizeof(int),
  88. .mode = S_IRUGO|S_IWUSR,
  89. .proc_handler = &proc_dointvec,
  90. },
  91. {
  92. .ctl_name = DEV_RAID_SPEED_LIMIT_MAX,
  93. .procname = "speed_limit_max",
  94. .data = &sysctl_speed_limit_max,
  95. .maxlen = sizeof(int),
  96. .mode = S_IRUGO|S_IWUSR,
  97. .proc_handler = &proc_dointvec,
  98. },
  99. { .ctl_name = 0 }
  100. };
  101. static ctl_table raid_dir_table[] = {
  102. {
  103. .ctl_name = DEV_RAID,
  104. .procname = "raid",
  105. .maxlen = 0,
  106. .mode = S_IRUGO|S_IXUGO,
  107. .child = raid_table,
  108. },
  109. { .ctl_name = 0 }
  110. };
  111. static ctl_table raid_root_table[] = {
  112. {
  113. .ctl_name = CTL_DEV,
  114. .procname = "dev",
  115. .maxlen = 0,
  116. .mode = 0555,
  117. .child = raid_dir_table,
  118. },
  119. { .ctl_name = 0 }
  120. };
  121. static struct block_device_operations md_fops;
  122. static int start_readonly;
  123. /*
  124. * We have a system wide 'event count' that is incremented
  125. * on any 'interesting' event, and readers of /proc/mdstat
  126. * can use 'poll' or 'select' to find out when the event
  127. * count increases.
  128. *
  129. * Events are:
  130. * start array, stop array, error, add device, remove device,
  131. * start build, activate spare
  132. */
  133. static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
  134. static atomic_t md_event_count;
  135. void md_new_event(mddev_t *mddev)
  136. {
  137. atomic_inc(&md_event_count);
  138. wake_up(&md_event_waiters);
  139. sysfs_notify(&mddev->kobj, NULL, "sync_action");
  140. }
  141. EXPORT_SYMBOL_GPL(md_new_event);
  142. /* Alternate version that can be called from interrupts
  143. * when calling sysfs_notify isn't needed.
  144. */
  145. static void md_new_event_inintr(mddev_t *mddev)
  146. {
  147. atomic_inc(&md_event_count);
  148. wake_up(&md_event_waiters);
  149. }
  150. /*
  151. * Enables to iterate over all existing md arrays
  152. * all_mddevs_lock protects this list.
  153. */
  154. static LIST_HEAD(all_mddevs);
  155. static DEFINE_SPINLOCK(all_mddevs_lock);
  156. /*
  157. * iterates through all used mddevs in the system.
  158. * We take care to grab the all_mddevs_lock whenever navigating
  159. * the list, and to always hold a refcount when unlocked.
  160. * Any code which breaks out of this loop while own
  161. * a reference to the current mddev and must mddev_put it.
  162. */
  163. #define ITERATE_MDDEV(mddev,tmp) \
  164. \
  165. for (({ spin_lock(&all_mddevs_lock); \
  166. tmp = all_mddevs.next; \
  167. mddev = NULL;}); \
  168. ({ if (tmp != &all_mddevs) \
  169. mddev_get(list_entry(tmp, mddev_t, all_mddevs));\
  170. spin_unlock(&all_mddevs_lock); \
  171. if (mddev) mddev_put(mddev); \
  172. mddev = list_entry(tmp, mddev_t, all_mddevs); \
  173. tmp != &all_mddevs;}); \
  174. ({ spin_lock(&all_mddevs_lock); \
  175. tmp = tmp->next;}) \
  176. )
  177. static int md_fail_request (struct request_queue *q, struct bio *bio)
  178. {
  179. bio_io_error(bio);
  180. return 0;
  181. }
  182. static inline mddev_t *mddev_get(mddev_t *mddev)
  183. {
  184. atomic_inc(&mddev->active);
  185. return mddev;
  186. }
  187. static void mddev_put(mddev_t *mddev)
  188. {
  189. if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
  190. return;
  191. if (!mddev->raid_disks && list_empty(&mddev->disks)) {
  192. list_del(&mddev->all_mddevs);
  193. spin_unlock(&all_mddevs_lock);
  194. blk_cleanup_queue(mddev->queue);
  195. kobject_unregister(&mddev->kobj);
  196. } else
  197. spin_unlock(&all_mddevs_lock);
  198. }
  199. static mddev_t * mddev_find(dev_t unit)
  200. {
  201. mddev_t *mddev, *new = NULL;
  202. retry:
  203. spin_lock(&all_mddevs_lock);
  204. list_for_each_entry(mddev, &all_mddevs, all_mddevs)
  205. if (mddev->unit == unit) {
  206. mddev_get(mddev);
  207. spin_unlock(&all_mddevs_lock);
  208. kfree(new);
  209. return mddev;
  210. }
  211. if (new) {
  212. list_add(&new->all_mddevs, &all_mddevs);
  213. spin_unlock(&all_mddevs_lock);
  214. return new;
  215. }
  216. spin_unlock(&all_mddevs_lock);
  217. new = kzalloc(sizeof(*new), GFP_KERNEL);
  218. if (!new)
  219. return NULL;
  220. new->unit = unit;
  221. if (MAJOR(unit) == MD_MAJOR)
  222. new->md_minor = MINOR(unit);
  223. else
  224. new->md_minor = MINOR(unit) >> MdpMinorShift;
  225. mutex_init(&new->reconfig_mutex);
  226. INIT_LIST_HEAD(&new->disks);
  227. INIT_LIST_HEAD(&new->all_mddevs);
  228. init_timer(&new->safemode_timer);
  229. atomic_set(&new->active, 1);
  230. spin_lock_init(&new->write_lock);
  231. init_waitqueue_head(&new->sb_wait);
  232. new->reshape_position = MaxSector;
  233. new->queue = blk_alloc_queue(GFP_KERNEL);
  234. if (!new->queue) {
  235. kfree(new);
  236. return NULL;
  237. }
  238. set_bit(QUEUE_FLAG_CLUSTER, &new->queue->queue_flags);
  239. blk_queue_make_request(new->queue, md_fail_request);
  240. goto retry;
  241. }
  242. static inline int mddev_lock(mddev_t * mddev)
  243. {
  244. return mutex_lock_interruptible(&mddev->reconfig_mutex);
  245. }
  246. static inline int mddev_trylock(mddev_t * mddev)
  247. {
  248. return mutex_trylock(&mddev->reconfig_mutex);
  249. }
  250. static inline void mddev_unlock(mddev_t * mddev)
  251. {
  252. mutex_unlock(&mddev->reconfig_mutex);
  253. md_wakeup_thread(mddev->thread);
  254. }
  255. static mdk_rdev_t * find_rdev_nr(mddev_t *mddev, int nr)
  256. {
  257. mdk_rdev_t * rdev;
  258. struct list_head *tmp;
  259. ITERATE_RDEV(mddev,rdev,tmp) {
  260. if (rdev->desc_nr == nr)
  261. return rdev;
  262. }
  263. return NULL;
  264. }
  265. static mdk_rdev_t * find_rdev(mddev_t * mddev, dev_t dev)
  266. {
  267. struct list_head *tmp;
  268. mdk_rdev_t *rdev;
  269. ITERATE_RDEV(mddev,rdev,tmp) {
  270. if (rdev->bdev->bd_dev == dev)
  271. return rdev;
  272. }
  273. return NULL;
  274. }
  275. static struct mdk_personality *find_pers(int level, char *clevel)
  276. {
  277. struct mdk_personality *pers;
  278. list_for_each_entry(pers, &pers_list, list) {
  279. if (level != LEVEL_NONE && pers->level == level)
  280. return pers;
  281. if (strcmp(pers->name, clevel)==0)
  282. return pers;
  283. }
  284. return NULL;
  285. }
  286. static inline sector_t calc_dev_sboffset(struct block_device *bdev)
  287. {
  288. sector_t size = bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
  289. return MD_NEW_SIZE_BLOCKS(size);
  290. }
  291. static sector_t calc_dev_size(mdk_rdev_t *rdev, unsigned chunk_size)
  292. {
  293. sector_t size;
  294. size = rdev->sb_offset;
  295. if (chunk_size)
  296. size &= ~((sector_t)chunk_size/1024 - 1);
  297. return size;
  298. }
  299. static int alloc_disk_sb(mdk_rdev_t * rdev)
  300. {
  301. if (rdev->sb_page)
  302. MD_BUG();
  303. rdev->sb_page = alloc_page(GFP_KERNEL);
  304. if (!rdev->sb_page) {
  305. printk(KERN_ALERT "md: out of memory.\n");
  306. return -EINVAL;
  307. }
  308. return 0;
  309. }
  310. static void free_disk_sb(mdk_rdev_t * rdev)
  311. {
  312. if (rdev->sb_page) {
  313. put_page(rdev->sb_page);
  314. rdev->sb_loaded = 0;
  315. rdev->sb_page = NULL;
  316. rdev->sb_offset = 0;
  317. rdev->size = 0;
  318. }
  319. }
  320. static void super_written(struct bio *bio, int error)
  321. {
  322. mdk_rdev_t *rdev = bio->bi_private;
  323. mddev_t *mddev = rdev->mddev;
  324. if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
  325. printk("md: super_written gets error=%d, uptodate=%d\n",
  326. error, test_bit(BIO_UPTODATE, &bio->bi_flags));
  327. WARN_ON(test_bit(BIO_UPTODATE, &bio->bi_flags));
  328. md_error(mddev, rdev);
  329. }
  330. if (atomic_dec_and_test(&mddev->pending_writes))
  331. wake_up(&mddev->sb_wait);
  332. bio_put(bio);
  333. }
  334. static void super_written_barrier(struct bio *bio, int error)
  335. {
  336. struct bio *bio2 = bio->bi_private;
  337. mdk_rdev_t *rdev = bio2->bi_private;
  338. mddev_t *mddev = rdev->mddev;
  339. if (!test_bit(BIO_UPTODATE, &bio->bi_flags) &&
  340. error == -EOPNOTSUPP) {
  341. unsigned long flags;
  342. /* barriers don't appear to be supported :-( */
  343. set_bit(BarriersNotsupp, &rdev->flags);
  344. mddev->barriers_work = 0;
  345. spin_lock_irqsave(&mddev->write_lock, flags);
  346. bio2->bi_next = mddev->biolist;
  347. mddev->biolist = bio2;
  348. spin_unlock_irqrestore(&mddev->write_lock, flags);
  349. wake_up(&mddev->sb_wait);
  350. bio_put(bio);
  351. } else {
  352. bio_put(bio2);
  353. bio->bi_private = rdev;
  354. super_written(bio, error);
  355. }
  356. }
  357. void md_super_write(mddev_t *mddev, mdk_rdev_t *rdev,
  358. sector_t sector, int size, struct page *page)
  359. {
  360. /* write first size bytes of page to sector of rdev
  361. * Increment mddev->pending_writes before returning
  362. * and decrement it on completion, waking up sb_wait
  363. * if zero is reached.
  364. * If an error occurred, call md_error
  365. *
  366. * As we might need to resubmit the request if BIO_RW_BARRIER
  367. * causes ENOTSUPP, we allocate a spare bio...
  368. */
  369. struct bio *bio = bio_alloc(GFP_NOIO, 1);
  370. int rw = (1<<BIO_RW) | (1<<BIO_RW_SYNC);
  371. bio->bi_bdev = rdev->bdev;
  372. bio->bi_sector = sector;
  373. bio_add_page(bio, page, size, 0);
  374. bio->bi_private = rdev;
  375. bio->bi_end_io = super_written;
  376. bio->bi_rw = rw;
  377. atomic_inc(&mddev->pending_writes);
  378. if (!test_bit(BarriersNotsupp, &rdev->flags)) {
  379. struct bio *rbio;
  380. rw |= (1<<BIO_RW_BARRIER);
  381. rbio = bio_clone(bio, GFP_NOIO);
  382. rbio->bi_private = bio;
  383. rbio->bi_end_io = super_written_barrier;
  384. submit_bio(rw, rbio);
  385. } else
  386. submit_bio(rw, bio);
  387. }
  388. void md_super_wait(mddev_t *mddev)
  389. {
  390. /* wait for all superblock writes that were scheduled to complete.
  391. * if any had to be retried (due to BARRIER problems), retry them
  392. */
  393. DEFINE_WAIT(wq);
  394. for(;;) {
  395. prepare_to_wait(&mddev->sb_wait, &wq, TASK_UNINTERRUPTIBLE);
  396. if (atomic_read(&mddev->pending_writes)==0)
  397. break;
  398. while (mddev->biolist) {
  399. struct bio *bio;
  400. spin_lock_irq(&mddev->write_lock);
  401. bio = mddev->biolist;
  402. mddev->biolist = bio->bi_next ;
  403. bio->bi_next = NULL;
  404. spin_unlock_irq(&mddev->write_lock);
  405. submit_bio(bio->bi_rw, bio);
  406. }
  407. schedule();
  408. }
  409. finish_wait(&mddev->sb_wait, &wq);
  410. }
  411. static void bi_complete(struct bio *bio, int error)
  412. {
  413. complete((struct completion*)bio->bi_private);
  414. }
  415. int sync_page_io(struct block_device *bdev, sector_t sector, int size,
  416. struct page *page, int rw)
  417. {
  418. struct bio *bio = bio_alloc(GFP_NOIO, 1);
  419. struct completion event;
  420. int ret;
  421. rw |= (1 << BIO_RW_SYNC);
  422. bio->bi_bdev = bdev;
  423. bio->bi_sector = sector;
  424. bio_add_page(bio, page, size, 0);
  425. init_completion(&event);
  426. bio->bi_private = &event;
  427. bio->bi_end_io = bi_complete;
  428. submit_bio(rw, bio);
  429. wait_for_completion(&event);
  430. ret = test_bit(BIO_UPTODATE, &bio->bi_flags);
  431. bio_put(bio);
  432. return ret;
  433. }
  434. EXPORT_SYMBOL_GPL(sync_page_io);
  435. static int read_disk_sb(mdk_rdev_t * rdev, int size)
  436. {
  437. char b[BDEVNAME_SIZE];
  438. if (!rdev->sb_page) {
  439. MD_BUG();
  440. return -EINVAL;
  441. }
  442. if (rdev->sb_loaded)
  443. return 0;
  444. if (!sync_page_io(rdev->bdev, rdev->sb_offset<<1, size, rdev->sb_page, READ))
  445. goto fail;
  446. rdev->sb_loaded = 1;
  447. return 0;
  448. fail:
  449. printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
  450. bdevname(rdev->bdev,b));
  451. return -EINVAL;
  452. }
  453. static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
  454. {
  455. if ( (sb1->set_uuid0 == sb2->set_uuid0) &&
  456. (sb1->set_uuid1 == sb2->set_uuid1) &&
  457. (sb1->set_uuid2 == sb2->set_uuid2) &&
  458. (sb1->set_uuid3 == sb2->set_uuid3))
  459. return 1;
  460. return 0;
  461. }
  462. static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
  463. {
  464. int ret;
  465. mdp_super_t *tmp1, *tmp2;
  466. tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
  467. tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
  468. if (!tmp1 || !tmp2) {
  469. ret = 0;
  470. printk(KERN_INFO "md.c: sb1 is not equal to sb2!\n");
  471. goto abort;
  472. }
  473. *tmp1 = *sb1;
  474. *tmp2 = *sb2;
  475. /*
  476. * nr_disks is not constant
  477. */
  478. tmp1->nr_disks = 0;
  479. tmp2->nr_disks = 0;
  480. if (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4))
  481. ret = 0;
  482. else
  483. ret = 1;
  484. abort:
  485. kfree(tmp1);
  486. kfree(tmp2);
  487. return ret;
  488. }
  489. static u32 md_csum_fold(u32 csum)
  490. {
  491. csum = (csum & 0xffff) + (csum >> 16);
  492. return (csum & 0xffff) + (csum >> 16);
  493. }
  494. static unsigned int calc_sb_csum(mdp_super_t * sb)
  495. {
  496. u64 newcsum = 0;
  497. u32 *sb32 = (u32*)sb;
  498. int i;
  499. unsigned int disk_csum, csum;
  500. disk_csum = sb->sb_csum;
  501. sb->sb_csum = 0;
  502. for (i = 0; i < MD_SB_BYTES/4 ; i++)
  503. newcsum += sb32[i];
  504. csum = (newcsum & 0xffffffff) + (newcsum>>32);
  505. #ifdef CONFIG_ALPHA
  506. /* This used to use csum_partial, which was wrong for several
  507. * reasons including that different results are returned on
  508. * different architectures. It isn't critical that we get exactly
  509. * the same return value as before (we always csum_fold before
  510. * testing, and that removes any differences). However as we
  511. * know that csum_partial always returned a 16bit value on
  512. * alphas, do a fold to maximise conformity to previous behaviour.
  513. */
  514. sb->sb_csum = md_csum_fold(disk_csum);
  515. #else
  516. sb->sb_csum = disk_csum;
  517. #endif
  518. return csum;
  519. }
  520. /*
  521. * Handle superblock details.
  522. * We want to be able to handle multiple superblock formats
  523. * so we have a common interface to them all, and an array of
  524. * different handlers.
  525. * We rely on user-space to write the initial superblock, and support
  526. * reading and updating of superblocks.
  527. * Interface methods are:
  528. * int load_super(mdk_rdev_t *dev, mdk_rdev_t *refdev, int minor_version)
  529. * loads and validates a superblock on dev.
  530. * if refdev != NULL, compare superblocks on both devices
  531. * Return:
  532. * 0 - dev has a superblock that is compatible with refdev
  533. * 1 - dev has a superblock that is compatible and newer than refdev
  534. * so dev should be used as the refdev in future
  535. * -EINVAL superblock incompatible or invalid
  536. * -othererror e.g. -EIO
  537. *
  538. * int validate_super(mddev_t *mddev, mdk_rdev_t *dev)
  539. * Verify that dev is acceptable into mddev.
  540. * The first time, mddev->raid_disks will be 0, and data from
  541. * dev should be merged in. Subsequent calls check that dev
  542. * is new enough. Return 0 or -EINVAL
  543. *
  544. * void sync_super(mddev_t *mddev, mdk_rdev_t *dev)
  545. * Update the superblock for rdev with data in mddev
  546. * This does not write to disc.
  547. *
  548. */
  549. struct super_type {
  550. char *name;
  551. struct module *owner;
  552. int (*load_super)(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version);
  553. int (*validate_super)(mddev_t *mddev, mdk_rdev_t *rdev);
  554. void (*sync_super)(mddev_t *mddev, mdk_rdev_t *rdev);
  555. };
  556. /*
  557. * load_super for 0.90.0
  558. */
  559. static int super_90_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version)
  560. {
  561. char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
  562. mdp_super_t *sb;
  563. int ret;
  564. sector_t sb_offset;
  565. /*
  566. * Calculate the position of the superblock,
  567. * it's at the end of the disk.
  568. *
  569. * It also happens to be a multiple of 4Kb.
  570. */
  571. sb_offset = calc_dev_sboffset(rdev->bdev);
  572. rdev->sb_offset = sb_offset;
  573. ret = read_disk_sb(rdev, MD_SB_BYTES);
  574. if (ret) return ret;
  575. ret = -EINVAL;
  576. bdevname(rdev->bdev, b);
  577. sb = (mdp_super_t*)page_address(rdev->sb_page);
  578. if (sb->md_magic != MD_SB_MAGIC) {
  579. printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
  580. b);
  581. goto abort;
  582. }
  583. if (sb->major_version != 0 ||
  584. sb->minor_version < 90 ||
  585. sb->minor_version > 91) {
  586. printk(KERN_WARNING "Bad version number %d.%d on %s\n",
  587. sb->major_version, sb->minor_version,
  588. b);
  589. goto abort;
  590. }
  591. if (sb->raid_disks <= 0)
  592. goto abort;
  593. if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) {
  594. printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
  595. b);
  596. goto abort;
  597. }
  598. rdev->preferred_minor = sb->md_minor;
  599. rdev->data_offset = 0;
  600. rdev->sb_size = MD_SB_BYTES;
  601. if (sb->state & (1<<MD_SB_BITMAP_PRESENT)) {
  602. if (sb->level != 1 && sb->level != 4
  603. && sb->level != 5 && sb->level != 6
  604. && sb->level != 10) {
  605. /* FIXME use a better test */
  606. printk(KERN_WARNING
  607. "md: bitmaps not supported for this level.\n");
  608. goto abort;
  609. }
  610. }
  611. if (sb->level == LEVEL_MULTIPATH)
  612. rdev->desc_nr = -1;
  613. else
  614. rdev->desc_nr = sb->this_disk.number;
  615. if (refdev == 0)
  616. ret = 1;
  617. else {
  618. __u64 ev1, ev2;
  619. mdp_super_t *refsb = (mdp_super_t*)page_address(refdev->sb_page);
  620. if (!uuid_equal(refsb, sb)) {
  621. printk(KERN_WARNING "md: %s has different UUID to %s\n",
  622. b, bdevname(refdev->bdev,b2));
  623. goto abort;
  624. }
  625. if (!sb_equal(refsb, sb)) {
  626. printk(KERN_WARNING "md: %s has same UUID"
  627. " but different superblock to %s\n",
  628. b, bdevname(refdev->bdev, b2));
  629. goto abort;
  630. }
  631. ev1 = md_event(sb);
  632. ev2 = md_event(refsb);
  633. if (ev1 > ev2)
  634. ret = 1;
  635. else
  636. ret = 0;
  637. }
  638. rdev->size = calc_dev_size(rdev, sb->chunk_size);
  639. if (rdev->size < sb->size && sb->level > 1)
  640. /* "this cannot possibly happen" ... */
  641. ret = -EINVAL;
  642. abort:
  643. return ret;
  644. }
  645. /*
  646. * validate_super for 0.90.0
  647. */
  648. static int super_90_validate(mddev_t *mddev, mdk_rdev_t *rdev)
  649. {
  650. mdp_disk_t *desc;
  651. mdp_super_t *sb = (mdp_super_t *)page_address(rdev->sb_page);
  652. __u64 ev1 = md_event(sb);
  653. rdev->raid_disk = -1;
  654. rdev->flags = 0;
  655. if (mddev->raid_disks == 0) {
  656. mddev->major_version = 0;
  657. mddev->minor_version = sb->minor_version;
  658. mddev->patch_version = sb->patch_version;
  659. mddev->persistent = ! sb->not_persistent;
  660. mddev->chunk_size = sb->chunk_size;
  661. mddev->ctime = sb->ctime;
  662. mddev->utime = sb->utime;
  663. mddev->level = sb->level;
  664. mddev->clevel[0] = 0;
  665. mddev->layout = sb->layout;
  666. mddev->raid_disks = sb->raid_disks;
  667. mddev->size = sb->size;
  668. mddev->events = ev1;
  669. mddev->bitmap_offset = 0;
  670. mddev->default_bitmap_offset = MD_SB_BYTES >> 9;
  671. if (mddev->minor_version >= 91) {
  672. mddev->reshape_position = sb->reshape_position;
  673. mddev->delta_disks = sb->delta_disks;
  674. mddev->new_level = sb->new_level;
  675. mddev->new_layout = sb->new_layout;
  676. mddev->new_chunk = sb->new_chunk;
  677. } else {
  678. mddev->reshape_position = MaxSector;
  679. mddev->delta_disks = 0;
  680. mddev->new_level = mddev->level;
  681. mddev->new_layout = mddev->layout;
  682. mddev->new_chunk = mddev->chunk_size;
  683. }
  684. if (sb->state & (1<<MD_SB_CLEAN))
  685. mddev->recovery_cp = MaxSector;
  686. else {
  687. if (sb->events_hi == sb->cp_events_hi &&
  688. sb->events_lo == sb->cp_events_lo) {
  689. mddev->recovery_cp = sb->recovery_cp;
  690. } else
  691. mddev->recovery_cp = 0;
  692. }
  693. memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
  694. memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
  695. memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
  696. memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
  697. mddev->max_disks = MD_SB_DISKS;
  698. if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
  699. mddev->bitmap_file == NULL)
  700. mddev->bitmap_offset = mddev->default_bitmap_offset;
  701. } else if (mddev->pers == NULL) {
  702. /* Insist on good event counter while assembling */
  703. ++ev1;
  704. if (ev1 < mddev->events)
  705. return -EINVAL;
  706. } else if (mddev->bitmap) {
  707. /* if adding to array with a bitmap, then we can accept an
  708. * older device ... but not too old.
  709. */
  710. if (ev1 < mddev->bitmap->events_cleared)
  711. return 0;
  712. } else {
  713. if (ev1 < mddev->events)
  714. /* just a hot-add of a new device, leave raid_disk at -1 */
  715. return 0;
  716. }
  717. if (mddev->level != LEVEL_MULTIPATH) {
  718. desc = sb->disks + rdev->desc_nr;
  719. if (desc->state & (1<<MD_DISK_FAULTY))
  720. set_bit(Faulty, &rdev->flags);
  721. else if (desc->state & (1<<MD_DISK_SYNC) /* &&
  722. desc->raid_disk < mddev->raid_disks */) {
  723. set_bit(In_sync, &rdev->flags);
  724. rdev->raid_disk = desc->raid_disk;
  725. }
  726. if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
  727. set_bit(WriteMostly, &rdev->flags);
  728. } else /* MULTIPATH are always insync */
  729. set_bit(In_sync, &rdev->flags);
  730. return 0;
  731. }
  732. /*
  733. * sync_super for 0.90.0
  734. */
  735. static void super_90_sync(mddev_t *mddev, mdk_rdev_t *rdev)
  736. {
  737. mdp_super_t *sb;
  738. struct list_head *tmp;
  739. mdk_rdev_t *rdev2;
  740. int next_spare = mddev->raid_disks;
  741. /* make rdev->sb match mddev data..
  742. *
  743. * 1/ zero out disks
  744. * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
  745. * 3/ any empty disks < next_spare become removed
  746. *
  747. * disks[0] gets initialised to REMOVED because
  748. * we cannot be sure from other fields if it has
  749. * been initialised or not.
  750. */
  751. int i;
  752. int active=0, working=0,failed=0,spare=0,nr_disks=0;
  753. rdev->sb_size = MD_SB_BYTES;
  754. sb = (mdp_super_t*)page_address(rdev->sb_page);
  755. memset(sb, 0, sizeof(*sb));
  756. sb->md_magic = MD_SB_MAGIC;
  757. sb->major_version = mddev->major_version;
  758. sb->patch_version = mddev->patch_version;
  759. sb->gvalid_words = 0; /* ignored */
  760. memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
  761. memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
  762. memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
  763. memcpy(&sb->set_uuid3, mddev->uuid+12,4);
  764. sb->ctime = mddev->ctime;
  765. sb->level = mddev->level;
  766. sb->size = mddev->size;
  767. sb->raid_disks = mddev->raid_disks;
  768. sb->md_minor = mddev->md_minor;
  769. sb->not_persistent = !mddev->persistent;
  770. sb->utime = mddev->utime;
  771. sb->state = 0;
  772. sb->events_hi = (mddev->events>>32);
  773. sb->events_lo = (u32)mddev->events;
  774. if (mddev->reshape_position == MaxSector)
  775. sb->minor_version = 90;
  776. else {
  777. sb->minor_version = 91;
  778. sb->reshape_position = mddev->reshape_position;
  779. sb->new_level = mddev->new_level;
  780. sb->delta_disks = mddev->delta_disks;
  781. sb->new_layout = mddev->new_layout;
  782. sb->new_chunk = mddev->new_chunk;
  783. }
  784. mddev->minor_version = sb->minor_version;
  785. if (mddev->in_sync)
  786. {
  787. sb->recovery_cp = mddev->recovery_cp;
  788. sb->cp_events_hi = (mddev->events>>32);
  789. sb->cp_events_lo = (u32)mddev->events;
  790. if (mddev->recovery_cp == MaxSector)
  791. sb->state = (1<< MD_SB_CLEAN);
  792. } else
  793. sb->recovery_cp = 0;
  794. sb->layout = mddev->layout;
  795. sb->chunk_size = mddev->chunk_size;
  796. if (mddev->bitmap && mddev->bitmap_file == NULL)
  797. sb->state |= (1<<MD_SB_BITMAP_PRESENT);
  798. sb->disks[0].state = (1<<MD_DISK_REMOVED);
  799. ITERATE_RDEV(mddev,rdev2,tmp) {
  800. mdp_disk_t *d;
  801. int desc_nr;
  802. if (rdev2->raid_disk >= 0 && test_bit(In_sync, &rdev2->flags)
  803. && !test_bit(Faulty, &rdev2->flags))
  804. desc_nr = rdev2->raid_disk;
  805. else
  806. desc_nr = next_spare++;
  807. rdev2->desc_nr = desc_nr;
  808. d = &sb->disks[rdev2->desc_nr];
  809. nr_disks++;
  810. d->number = rdev2->desc_nr;
  811. d->major = MAJOR(rdev2->bdev->bd_dev);
  812. d->minor = MINOR(rdev2->bdev->bd_dev);
  813. if (rdev2->raid_disk >= 0 && test_bit(In_sync, &rdev2->flags)
  814. && !test_bit(Faulty, &rdev2->flags))
  815. d->raid_disk = rdev2->raid_disk;
  816. else
  817. d->raid_disk = rdev2->desc_nr; /* compatibility */
  818. if (test_bit(Faulty, &rdev2->flags))
  819. d->state = (1<<MD_DISK_FAULTY);
  820. else if (test_bit(In_sync, &rdev2->flags)) {
  821. d->state = (1<<MD_DISK_ACTIVE);
  822. d->state |= (1<<MD_DISK_SYNC);
  823. active++;
  824. working++;
  825. } else {
  826. d->state = 0;
  827. spare++;
  828. working++;
  829. }
  830. if (test_bit(WriteMostly, &rdev2->flags))
  831. d->state |= (1<<MD_DISK_WRITEMOSTLY);
  832. }
  833. /* now set the "removed" and "faulty" bits on any missing devices */
  834. for (i=0 ; i < mddev->raid_disks ; i++) {
  835. mdp_disk_t *d = &sb->disks[i];
  836. if (d->state == 0 && d->number == 0) {
  837. d->number = i;
  838. d->raid_disk = i;
  839. d->state = (1<<MD_DISK_REMOVED);
  840. d->state |= (1<<MD_DISK_FAULTY);
  841. failed++;
  842. }
  843. }
  844. sb->nr_disks = nr_disks;
  845. sb->active_disks = active;
  846. sb->working_disks = working;
  847. sb->failed_disks = failed;
  848. sb->spare_disks = spare;
  849. sb->this_disk = sb->disks[rdev->desc_nr];
  850. sb->sb_csum = calc_sb_csum(sb);
  851. }
  852. /*
  853. * version 1 superblock
  854. */
  855. static __le32 calc_sb_1_csum(struct mdp_superblock_1 * sb)
  856. {
  857. __le32 disk_csum;
  858. u32 csum;
  859. unsigned long long newcsum;
  860. int size = 256 + le32_to_cpu(sb->max_dev)*2;
  861. __le32 *isuper = (__le32*)sb;
  862. int i;
  863. disk_csum = sb->sb_csum;
  864. sb->sb_csum = 0;
  865. newcsum = 0;
  866. for (i=0; size>=4; size -= 4 )
  867. newcsum += le32_to_cpu(*isuper++);
  868. if (size == 2)
  869. newcsum += le16_to_cpu(*(__le16*) isuper);
  870. csum = (newcsum & 0xffffffff) + (newcsum >> 32);
  871. sb->sb_csum = disk_csum;
  872. return cpu_to_le32(csum);
  873. }
  874. static int super_1_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version)
  875. {
  876. struct mdp_superblock_1 *sb;
  877. int ret;
  878. sector_t sb_offset;
  879. char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
  880. int bmask;
  881. /*
  882. * Calculate the position of the superblock.
  883. * It is always aligned to a 4K boundary and
  884. * depeding on minor_version, it can be:
  885. * 0: At least 8K, but less than 12K, from end of device
  886. * 1: At start of device
  887. * 2: 4K from start of device.
  888. */
  889. switch(minor_version) {
  890. case 0:
  891. sb_offset = rdev->bdev->bd_inode->i_size >> 9;
  892. sb_offset -= 8*2;
  893. sb_offset &= ~(sector_t)(4*2-1);
  894. /* convert from sectors to K */
  895. sb_offset /= 2;
  896. break;
  897. case 1:
  898. sb_offset = 0;
  899. break;
  900. case 2:
  901. sb_offset = 4;
  902. break;
  903. default:
  904. return -EINVAL;
  905. }
  906. rdev->sb_offset = sb_offset;
  907. /* superblock is rarely larger than 1K, but it can be larger,
  908. * and it is safe to read 4k, so we do that
  909. */
  910. ret = read_disk_sb(rdev, 4096);
  911. if (ret) return ret;
  912. sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
  913. if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
  914. sb->major_version != cpu_to_le32(1) ||
  915. le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
  916. le64_to_cpu(sb->super_offset) != (rdev->sb_offset<<1) ||
  917. (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
  918. return -EINVAL;
  919. if (calc_sb_1_csum(sb) != sb->sb_csum) {
  920. printk("md: invalid superblock checksum on %s\n",
  921. bdevname(rdev->bdev,b));
  922. return -EINVAL;
  923. }
  924. if (le64_to_cpu(sb->data_size) < 10) {
  925. printk("md: data_size too small on %s\n",
  926. bdevname(rdev->bdev,b));
  927. return -EINVAL;
  928. }
  929. if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET)) {
  930. if (sb->level != cpu_to_le32(1) &&
  931. sb->level != cpu_to_le32(4) &&
  932. sb->level != cpu_to_le32(5) &&
  933. sb->level != cpu_to_le32(6) &&
  934. sb->level != cpu_to_le32(10)) {
  935. printk(KERN_WARNING
  936. "md: bitmaps not supported for this level.\n");
  937. return -EINVAL;
  938. }
  939. }
  940. rdev->preferred_minor = 0xffff;
  941. rdev->data_offset = le64_to_cpu(sb->data_offset);
  942. atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read));
  943. rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
  944. bmask = queue_hardsect_size(rdev->bdev->bd_disk->queue)-1;
  945. if (rdev->sb_size & bmask)
  946. rdev-> sb_size = (rdev->sb_size | bmask)+1;
  947. if (sb->level == cpu_to_le32(LEVEL_MULTIPATH))
  948. rdev->desc_nr = -1;
  949. else
  950. rdev->desc_nr = le32_to_cpu(sb->dev_number);
  951. if (refdev == 0)
  952. ret = 1;
  953. else {
  954. __u64 ev1, ev2;
  955. struct mdp_superblock_1 *refsb =
  956. (struct mdp_superblock_1*)page_address(refdev->sb_page);
  957. if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
  958. sb->level != refsb->level ||
  959. sb->layout != refsb->layout ||
  960. sb->chunksize != refsb->chunksize) {
  961. printk(KERN_WARNING "md: %s has strangely different"
  962. " superblock to %s\n",
  963. bdevname(rdev->bdev,b),
  964. bdevname(refdev->bdev,b2));
  965. return -EINVAL;
  966. }
  967. ev1 = le64_to_cpu(sb->events);
  968. ev2 = le64_to_cpu(refsb->events);
  969. if (ev1 > ev2)
  970. ret = 1;
  971. else
  972. ret = 0;
  973. }
  974. if (minor_version)
  975. rdev->size = ((rdev->bdev->bd_inode->i_size>>9) - le64_to_cpu(sb->data_offset)) / 2;
  976. else
  977. rdev->size = rdev->sb_offset;
  978. if (rdev->size < le64_to_cpu(sb->data_size)/2)
  979. return -EINVAL;
  980. rdev->size = le64_to_cpu(sb->data_size)/2;
  981. if (le32_to_cpu(sb->chunksize))
  982. rdev->size &= ~((sector_t)le32_to_cpu(sb->chunksize)/2 - 1);
  983. if (le64_to_cpu(sb->size) > rdev->size*2)
  984. return -EINVAL;
  985. return ret;
  986. }
  987. static int super_1_validate(mddev_t *mddev, mdk_rdev_t *rdev)
  988. {
  989. struct mdp_superblock_1 *sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
  990. __u64 ev1 = le64_to_cpu(sb->events);
  991. rdev->raid_disk = -1;
  992. rdev->flags = 0;
  993. if (mddev->raid_disks == 0) {
  994. mddev->major_version = 1;
  995. mddev->patch_version = 0;
  996. mddev->persistent = 1;
  997. mddev->chunk_size = le32_to_cpu(sb->chunksize) << 9;
  998. mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
  999. mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
  1000. mddev->level = le32_to_cpu(sb->level);
  1001. mddev->clevel[0] = 0;
  1002. mddev->layout = le32_to_cpu(sb->layout);
  1003. mddev->raid_disks = le32_to_cpu(sb->raid_disks);
  1004. mddev->size = le64_to_cpu(sb->size)/2;
  1005. mddev->events = ev1;
  1006. mddev->bitmap_offset = 0;
  1007. mddev->default_bitmap_offset = 1024 >> 9;
  1008. mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
  1009. memcpy(mddev->uuid, sb->set_uuid, 16);
  1010. mddev->max_disks = (4096-256)/2;
  1011. if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
  1012. mddev->bitmap_file == NULL )
  1013. mddev->bitmap_offset = (__s32)le32_to_cpu(sb->bitmap_offset);
  1014. if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
  1015. mddev->reshape_position = le64_to_cpu(sb->reshape_position);
  1016. mddev->delta_disks = le32_to_cpu(sb->delta_disks);
  1017. mddev->new_level = le32_to_cpu(sb->new_level);
  1018. mddev->new_layout = le32_to_cpu(sb->new_layout);
  1019. mddev->new_chunk = le32_to_cpu(sb->new_chunk)<<9;
  1020. } else {
  1021. mddev->reshape_position = MaxSector;
  1022. mddev->delta_disks = 0;
  1023. mddev->new_level = mddev->level;
  1024. mddev->new_layout = mddev->layout;
  1025. mddev->new_chunk = mddev->chunk_size;
  1026. }
  1027. } else if (mddev->pers == NULL) {
  1028. /* Insist of good event counter while assembling */
  1029. ++ev1;
  1030. if (ev1 < mddev->events)
  1031. return -EINVAL;
  1032. } else if (mddev->bitmap) {
  1033. /* If adding to array with a bitmap, then we can accept an
  1034. * older device, but not too old.
  1035. */
  1036. if (ev1 < mddev->bitmap->events_cleared)
  1037. return 0;
  1038. } else {
  1039. if (ev1 < mddev->events)
  1040. /* just a hot-add of a new device, leave raid_disk at -1 */
  1041. return 0;
  1042. }
  1043. if (mddev->level != LEVEL_MULTIPATH) {
  1044. int role;
  1045. role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
  1046. switch(role) {
  1047. case 0xffff: /* spare */
  1048. break;
  1049. case 0xfffe: /* faulty */
  1050. set_bit(Faulty, &rdev->flags);
  1051. break;
  1052. default:
  1053. if ((le32_to_cpu(sb->feature_map) &
  1054. MD_FEATURE_RECOVERY_OFFSET))
  1055. rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
  1056. else
  1057. set_bit(In_sync, &rdev->flags);
  1058. rdev->raid_disk = role;
  1059. break;
  1060. }
  1061. if (sb->devflags & WriteMostly1)
  1062. set_bit(WriteMostly, &rdev->flags);
  1063. } else /* MULTIPATH are always insync */
  1064. set_bit(In_sync, &rdev->flags);
  1065. return 0;
  1066. }
  1067. static void super_1_sync(mddev_t *mddev, mdk_rdev_t *rdev)
  1068. {
  1069. struct mdp_superblock_1 *sb;
  1070. struct list_head *tmp;
  1071. mdk_rdev_t *rdev2;
  1072. int max_dev, i;
  1073. /* make rdev->sb match mddev and rdev data. */
  1074. sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
  1075. sb->feature_map = 0;
  1076. sb->pad0 = 0;
  1077. sb->recovery_offset = cpu_to_le64(0);
  1078. memset(sb->pad1, 0, sizeof(sb->pad1));
  1079. memset(sb->pad2, 0, sizeof(sb->pad2));
  1080. memset(sb->pad3, 0, sizeof(sb->pad3));
  1081. sb->utime = cpu_to_le64((__u64)mddev->utime);
  1082. sb->events = cpu_to_le64(mddev->events);
  1083. if (mddev->in_sync)
  1084. sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
  1085. else
  1086. sb->resync_offset = cpu_to_le64(0);
  1087. sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors));
  1088. sb->raid_disks = cpu_to_le32(mddev->raid_disks);
  1089. sb->size = cpu_to_le64(mddev->size<<1);
  1090. if (mddev->bitmap && mddev->bitmap_file == NULL) {
  1091. sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_offset);
  1092. sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
  1093. }
  1094. if (rdev->raid_disk >= 0 &&
  1095. !test_bit(In_sync, &rdev->flags) &&
  1096. rdev->recovery_offset > 0) {
  1097. sb->feature_map |= cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET);
  1098. sb->recovery_offset = cpu_to_le64(rdev->recovery_offset);
  1099. }
  1100. if (mddev->reshape_position != MaxSector) {
  1101. sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE);
  1102. sb->reshape_position = cpu_to_le64(mddev->reshape_position);
  1103. sb->new_layout = cpu_to_le32(mddev->new_layout);
  1104. sb->delta_disks = cpu_to_le32(mddev->delta_disks);
  1105. sb->new_level = cpu_to_le32(mddev->new_level);
  1106. sb->new_chunk = cpu_to_le32(mddev->new_chunk>>9);
  1107. }
  1108. max_dev = 0;
  1109. ITERATE_RDEV(mddev,rdev2,tmp)
  1110. if (rdev2->desc_nr+1 > max_dev)
  1111. max_dev = rdev2->desc_nr+1;
  1112. if (max_dev > le32_to_cpu(sb->max_dev))
  1113. sb->max_dev = cpu_to_le32(max_dev);
  1114. for (i=0; i<max_dev;i++)
  1115. sb->dev_roles[i] = cpu_to_le16(0xfffe);
  1116. ITERATE_RDEV(mddev,rdev2,tmp) {
  1117. i = rdev2->desc_nr;
  1118. if (test_bit(Faulty, &rdev2->flags))
  1119. sb->dev_roles[i] = cpu_to_le16(0xfffe);
  1120. else if (test_bit(In_sync, &rdev2->flags))
  1121. sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
  1122. else if (rdev2->raid_disk >= 0 && rdev2->recovery_offset > 0)
  1123. sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
  1124. else
  1125. sb->dev_roles[i] = cpu_to_le16(0xffff);
  1126. }
  1127. sb->sb_csum = calc_sb_1_csum(sb);
  1128. }
  1129. static struct super_type super_types[] = {
  1130. [0] = {
  1131. .name = "0.90.0",
  1132. .owner = THIS_MODULE,
  1133. .load_super = super_90_load,
  1134. .validate_super = super_90_validate,
  1135. .sync_super = super_90_sync,
  1136. },
  1137. [1] = {
  1138. .name = "md-1",
  1139. .owner = THIS_MODULE,
  1140. .load_super = super_1_load,
  1141. .validate_super = super_1_validate,
  1142. .sync_super = super_1_sync,
  1143. },
  1144. };
  1145. static int match_mddev_units(mddev_t *mddev1, mddev_t *mddev2)
  1146. {
  1147. struct list_head *tmp, *tmp2;
  1148. mdk_rdev_t *rdev, *rdev2;
  1149. ITERATE_RDEV(mddev1,rdev,tmp)
  1150. ITERATE_RDEV(mddev2, rdev2, tmp2)
  1151. if (rdev->bdev->bd_contains ==
  1152. rdev2->bdev->bd_contains)
  1153. return 1;
  1154. return 0;
  1155. }
  1156. static LIST_HEAD(pending_raid_disks);
  1157. static int bind_rdev_to_array(mdk_rdev_t * rdev, mddev_t * mddev)
  1158. {
  1159. char b[BDEVNAME_SIZE];
  1160. struct kobject *ko;
  1161. char *s;
  1162. int err;
  1163. if (rdev->mddev) {
  1164. MD_BUG();
  1165. return -EINVAL;
  1166. }
  1167. /* make sure rdev->size exceeds mddev->size */
  1168. if (rdev->size && (mddev->size == 0 || rdev->size < mddev->size)) {
  1169. if (mddev->pers) {
  1170. /* Cannot change size, so fail
  1171. * If mddev->level <= 0, then we don't care
  1172. * about aligning sizes (e.g. linear)
  1173. */
  1174. if (mddev->level > 0)
  1175. return -ENOSPC;
  1176. } else
  1177. mddev->size = rdev->size;
  1178. }
  1179. /* Verify rdev->desc_nr is unique.
  1180. * If it is -1, assign a free number, else
  1181. * check number is not in use
  1182. */
  1183. if (rdev->desc_nr < 0) {
  1184. int choice = 0;
  1185. if (mddev->pers) choice = mddev->raid_disks;
  1186. while (find_rdev_nr(mddev, choice))
  1187. choice++;
  1188. rdev->desc_nr = choice;
  1189. } else {
  1190. if (find_rdev_nr(mddev, rdev->desc_nr))
  1191. return -EBUSY;
  1192. }
  1193. bdevname(rdev->bdev,b);
  1194. if (kobject_set_name(&rdev->kobj, "dev-%s", b) < 0)
  1195. return -ENOMEM;
  1196. while ( (s=strchr(rdev->kobj.k_name, '/')) != NULL)
  1197. *s = '!';
  1198. rdev->mddev = mddev;
  1199. printk(KERN_INFO "md: bind<%s>\n", b);
  1200. rdev->kobj.parent = &mddev->kobj;
  1201. if ((err = kobject_add(&rdev->kobj)))
  1202. goto fail;
  1203. if (rdev->bdev->bd_part)
  1204. ko = &rdev->bdev->bd_part->kobj;
  1205. else
  1206. ko = &rdev->bdev->bd_disk->kobj;
  1207. if ((err = sysfs_create_link(&rdev->kobj, ko, "block"))) {
  1208. kobject_del(&rdev->kobj);
  1209. goto fail;
  1210. }
  1211. list_add(&rdev->same_set, &mddev->disks);
  1212. bd_claim_by_disk(rdev->bdev, rdev, mddev->gendisk);
  1213. return 0;
  1214. fail:
  1215. printk(KERN_WARNING "md: failed to register dev-%s for %s\n",
  1216. b, mdname(mddev));
  1217. return err;
  1218. }
  1219. static void delayed_delete(struct work_struct *ws)
  1220. {
  1221. mdk_rdev_t *rdev = container_of(ws, mdk_rdev_t, del_work);
  1222. kobject_del(&rdev->kobj);
  1223. }
  1224. static void unbind_rdev_from_array(mdk_rdev_t * rdev)
  1225. {
  1226. char b[BDEVNAME_SIZE];
  1227. if (!rdev->mddev) {
  1228. MD_BUG();
  1229. return;
  1230. }
  1231. bd_release_from_disk(rdev->bdev, rdev->mddev->gendisk);
  1232. list_del_init(&rdev->same_set);
  1233. printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
  1234. rdev->mddev = NULL;
  1235. sysfs_remove_link(&rdev->kobj, "block");
  1236. /* We need to delay this, otherwise we can deadlock when
  1237. * writing to 'remove' to "dev/state"
  1238. */
  1239. INIT_WORK(&rdev->del_work, delayed_delete);
  1240. schedule_work(&rdev->del_work);
  1241. }
  1242. /*
  1243. * prevent the device from being mounted, repartitioned or
  1244. * otherwise reused by a RAID array (or any other kernel
  1245. * subsystem), by bd_claiming the device.
  1246. */
  1247. static int lock_rdev(mdk_rdev_t *rdev, dev_t dev)
  1248. {
  1249. int err = 0;
  1250. struct block_device *bdev;
  1251. char b[BDEVNAME_SIZE];
  1252. bdev = open_by_devnum(dev, FMODE_READ|FMODE_WRITE);
  1253. if (IS_ERR(bdev)) {
  1254. printk(KERN_ERR "md: could not open %s.\n",
  1255. __bdevname(dev, b));
  1256. return PTR_ERR(bdev);
  1257. }
  1258. err = bd_claim(bdev, rdev);
  1259. if (err) {
  1260. printk(KERN_ERR "md: could not bd_claim %s.\n",
  1261. bdevname(bdev, b));
  1262. blkdev_put(bdev);
  1263. return err;
  1264. }
  1265. rdev->bdev = bdev;
  1266. return err;
  1267. }
  1268. static void unlock_rdev(mdk_rdev_t *rdev)
  1269. {
  1270. struct block_device *bdev = rdev->bdev;
  1271. rdev->bdev = NULL;
  1272. if (!bdev)
  1273. MD_BUG();
  1274. bd_release(bdev);
  1275. blkdev_put(bdev);
  1276. }
  1277. void md_autodetect_dev(dev_t dev);
  1278. static void export_rdev(mdk_rdev_t * rdev)
  1279. {
  1280. char b[BDEVNAME_SIZE];
  1281. printk(KERN_INFO "md: export_rdev(%s)\n",
  1282. bdevname(rdev->bdev,b));
  1283. if (rdev->mddev)
  1284. MD_BUG();
  1285. free_disk_sb(rdev);
  1286. list_del_init(&rdev->same_set);
  1287. #ifndef MODULE
  1288. md_autodetect_dev(rdev->bdev->bd_dev);
  1289. #endif
  1290. unlock_rdev(rdev);
  1291. kobject_put(&rdev->kobj);
  1292. }
  1293. static void kick_rdev_from_array(mdk_rdev_t * rdev)
  1294. {
  1295. unbind_rdev_from_array(rdev);
  1296. export_rdev(rdev);
  1297. }
  1298. static void export_array(mddev_t *mddev)
  1299. {
  1300. struct list_head *tmp;
  1301. mdk_rdev_t *rdev;
  1302. ITERATE_RDEV(mddev,rdev,tmp) {
  1303. if (!rdev->mddev) {
  1304. MD_BUG();
  1305. continue;
  1306. }
  1307. kick_rdev_from_array(rdev);
  1308. }
  1309. if (!list_empty(&mddev->disks))
  1310. MD_BUG();
  1311. mddev->raid_disks = 0;
  1312. mddev->major_version = 0;
  1313. }
  1314. static void print_desc(mdp_disk_t *desc)
  1315. {
  1316. printk(" DISK<N:%d,(%d,%d),R:%d,S:%d>\n", desc->number,
  1317. desc->major,desc->minor,desc->raid_disk,desc->state);
  1318. }
  1319. static void print_sb(mdp_super_t *sb)
  1320. {
  1321. int i;
  1322. printk(KERN_INFO
  1323. "md: SB: (V:%d.%d.%d) ID:<%08x.%08x.%08x.%08x> CT:%08x\n",
  1324. sb->major_version, sb->minor_version, sb->patch_version,
  1325. sb->set_uuid0, sb->set_uuid1, sb->set_uuid2, sb->set_uuid3,
  1326. sb->ctime);
  1327. printk(KERN_INFO "md: L%d S%08d ND:%d RD:%d md%d LO:%d CS:%d\n",
  1328. sb->level, sb->size, sb->nr_disks, sb->raid_disks,
  1329. sb->md_minor, sb->layout, sb->chunk_size);
  1330. printk(KERN_INFO "md: UT:%08x ST:%d AD:%d WD:%d"
  1331. " FD:%d SD:%d CSUM:%08x E:%08lx\n",
  1332. sb->utime, sb->state, sb->active_disks, sb->working_disks,
  1333. sb->failed_disks, sb->spare_disks,
  1334. sb->sb_csum, (unsigned long)sb->events_lo);
  1335. printk(KERN_INFO);
  1336. for (i = 0; i < MD_SB_DISKS; i++) {
  1337. mdp_disk_t *desc;
  1338. desc = sb->disks + i;
  1339. if (desc->number || desc->major || desc->minor ||
  1340. desc->raid_disk || (desc->state && (desc->state != 4))) {
  1341. printk(" D %2d: ", i);
  1342. print_desc(desc);
  1343. }
  1344. }
  1345. printk(KERN_INFO "md: THIS: ");
  1346. print_desc(&sb->this_disk);
  1347. }
  1348. static void print_rdev(mdk_rdev_t *rdev)
  1349. {
  1350. char b[BDEVNAME_SIZE];
  1351. printk(KERN_INFO "md: rdev %s, SZ:%08llu F:%d S:%d DN:%u\n",
  1352. bdevname(rdev->bdev,b), (unsigned long long)rdev->size,
  1353. test_bit(Faulty, &rdev->flags), test_bit(In_sync, &rdev->flags),
  1354. rdev->desc_nr);
  1355. if (rdev->sb_loaded) {
  1356. printk(KERN_INFO "md: rdev superblock:\n");
  1357. print_sb((mdp_super_t*)page_address(rdev->sb_page));
  1358. } else
  1359. printk(KERN_INFO "md: no rdev superblock!\n");
  1360. }
  1361. static void md_print_devices(void)
  1362. {
  1363. struct list_head *tmp, *tmp2;
  1364. mdk_rdev_t *rdev;
  1365. mddev_t *mddev;
  1366. char b[BDEVNAME_SIZE];
  1367. printk("\n");
  1368. printk("md: **********************************\n");
  1369. printk("md: * <COMPLETE RAID STATE PRINTOUT> *\n");
  1370. printk("md: **********************************\n");
  1371. ITERATE_MDDEV(mddev,tmp) {
  1372. if (mddev->bitmap)
  1373. bitmap_print_sb(mddev->bitmap);
  1374. else
  1375. printk("%s: ", mdname(mddev));
  1376. ITERATE_RDEV(mddev,rdev,tmp2)
  1377. printk("<%s>", bdevname(rdev->bdev,b));
  1378. printk("\n");
  1379. ITERATE_RDEV(mddev,rdev,tmp2)
  1380. print_rdev(rdev);
  1381. }
  1382. printk("md: **********************************\n");
  1383. printk("\n");
  1384. }
  1385. static void sync_sbs(mddev_t * mddev, int nospares)
  1386. {
  1387. /* Update each superblock (in-memory image), but
  1388. * if we are allowed to, skip spares which already
  1389. * have the right event counter, or have one earlier
  1390. * (which would mean they aren't being marked as dirty
  1391. * with the rest of the array)
  1392. */
  1393. mdk_rdev_t *rdev;
  1394. struct list_head *tmp;
  1395. ITERATE_RDEV(mddev,rdev,tmp) {
  1396. if (rdev->sb_events == mddev->events ||
  1397. (nospares &&
  1398. rdev->raid_disk < 0 &&
  1399. (rdev->sb_events&1)==0 &&
  1400. rdev->sb_events+1 == mddev->events)) {
  1401. /* Don't update this superblock */
  1402. rdev->sb_loaded = 2;
  1403. } else {
  1404. super_types[mddev->major_version].
  1405. sync_super(mddev, rdev);
  1406. rdev->sb_loaded = 1;
  1407. }
  1408. }
  1409. }
  1410. static void md_update_sb(mddev_t * mddev, int force_change)
  1411. {
  1412. struct list_head *tmp;
  1413. mdk_rdev_t *rdev;
  1414. int sync_req;
  1415. int nospares = 0;
  1416. repeat:
  1417. spin_lock_irq(&mddev->write_lock);
  1418. set_bit(MD_CHANGE_PENDING, &mddev->flags);
  1419. if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags))
  1420. force_change = 1;
  1421. if (test_and_clear_bit(MD_CHANGE_CLEAN, &mddev->flags))
  1422. /* just a clean<-> dirty transition, possibly leave spares alone,
  1423. * though if events isn't the right even/odd, we will have to do
  1424. * spares after all
  1425. */
  1426. nospares = 1;
  1427. if (force_change)
  1428. nospares = 0;
  1429. if (mddev->degraded)
  1430. /* If the array is degraded, then skipping spares is both
  1431. * dangerous and fairly pointless.
  1432. * Dangerous because a device that was removed from the array
  1433. * might have a event_count that still looks up-to-date,
  1434. * so it can be re-added without a resync.
  1435. * Pointless because if there are any spares to skip,
  1436. * then a recovery will happen and soon that array won't
  1437. * be degraded any more and the spare can go back to sleep then.
  1438. */
  1439. nospares = 0;
  1440. sync_req = mddev->in_sync;
  1441. mddev->utime = get_seconds();
  1442. /* If this is just a dirty<->clean transition, and the array is clean
  1443. * and 'events' is odd, we can roll back to the previous clean state */
  1444. if (nospares
  1445. && (mddev->in_sync && mddev->recovery_cp == MaxSector)
  1446. && (mddev->events & 1)
  1447. && mddev->events != 1)
  1448. mddev->events--;
  1449. else {
  1450. /* otherwise we have to go forward and ... */
  1451. mddev->events ++;
  1452. if (!mddev->in_sync || mddev->recovery_cp != MaxSector) { /* not clean */
  1453. /* .. if the array isn't clean, insist on an odd 'events' */
  1454. if ((mddev->events&1)==0) {
  1455. mddev->events++;
  1456. nospares = 0;
  1457. }
  1458. } else {
  1459. /* otherwise insist on an even 'events' (for clean states) */
  1460. if ((mddev->events&1)) {
  1461. mddev->events++;
  1462. nospares = 0;
  1463. }
  1464. }
  1465. }
  1466. if (!mddev->events) {
  1467. /*
  1468. * oops, this 64-bit counter should never wrap.
  1469. * Either we are in around ~1 trillion A.C., assuming
  1470. * 1 reboot per second, or we have a bug:
  1471. */
  1472. MD_BUG();
  1473. mddev->events --;
  1474. }
  1475. sync_sbs(mddev, nospares);
  1476. /*
  1477. * do not write anything to disk if using
  1478. * nonpersistent superblocks
  1479. */
  1480. if (!mddev->persistent) {
  1481. clear_bit(MD_CHANGE_PENDING, &mddev->flags);
  1482. spin_unlock_irq(&mddev->write_lock);
  1483. wake_up(&mddev->sb_wait);
  1484. return;
  1485. }
  1486. spin_unlock_irq(&mddev->write_lock);
  1487. dprintk(KERN_INFO
  1488. "md: updating %s RAID superblock on device (in sync %d)\n",
  1489. mdname(mddev),mddev->in_sync);
  1490. bitmap_update_sb(mddev->bitmap);
  1491. ITERATE_RDEV(mddev,rdev,tmp) {
  1492. char b[BDEVNAME_SIZE];
  1493. dprintk(KERN_INFO "md: ");
  1494. if (rdev->sb_loaded != 1)
  1495. continue; /* no noise on spare devices */
  1496. if (test_bit(Faulty, &rdev->flags))
  1497. dprintk("(skipping faulty ");
  1498. dprintk("%s ", bdevname(rdev->bdev,b));
  1499. if (!test_bit(Faulty, &rdev->flags)) {
  1500. md_super_write(mddev,rdev,
  1501. rdev->sb_offset<<1, rdev->sb_size,
  1502. rdev->sb_page);
  1503. dprintk(KERN_INFO "(write) %s's sb offset: %llu\n",
  1504. bdevname(rdev->bdev,b),
  1505. (unsigned long long)rdev->sb_offset);
  1506. rdev->sb_events = mddev->events;
  1507. } else
  1508. dprintk(")\n");
  1509. if (mddev->level == LEVEL_MULTIPATH)
  1510. /* only need to write one superblock... */
  1511. break;
  1512. }
  1513. md_super_wait(mddev);
  1514. /* if there was a failure, MD_CHANGE_DEVS was set, and we re-write super */
  1515. spin_lock_irq(&mddev->write_lock);
  1516. if (mddev->in_sync != sync_req ||
  1517. test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
  1518. /* have to write it out again */
  1519. spin_unlock_irq(&mddev->write_lock);
  1520. goto repeat;
  1521. }
  1522. clear_bit(MD_CHANGE_PENDING, &mddev->flags);
  1523. spin_unlock_irq(&mddev->write_lock);
  1524. wake_up(&mddev->sb_wait);
  1525. }
  1526. /* words written to sysfs files may, or my not, be \n terminated.
  1527. * We want to accept with case. For this we use cmd_match.
  1528. */
  1529. static int cmd_match(const char *cmd, const char *str)
  1530. {
  1531. /* See if cmd, written into a sysfs file, matches
  1532. * str. They must either be the same, or cmd can
  1533. * have a trailing newline
  1534. */
  1535. while (*cmd && *str && *cmd == *str) {
  1536. cmd++;
  1537. str++;
  1538. }
  1539. if (*cmd == '\n')
  1540. cmd++;
  1541. if (*str || *cmd)
  1542. return 0;
  1543. return 1;
  1544. }
  1545. struct rdev_sysfs_entry {
  1546. struct attribute attr;
  1547. ssize_t (*show)(mdk_rdev_t *, char *);
  1548. ssize_t (*store)(mdk_rdev_t *, const char *, size_t);
  1549. };
  1550. static ssize_t
  1551. state_show(mdk_rdev_t *rdev, char *page)
  1552. {
  1553. char *sep = "";
  1554. int len=0;
  1555. if (test_bit(Faulty, &rdev->flags)) {
  1556. len+= sprintf(page+len, "%sfaulty",sep);
  1557. sep = ",";
  1558. }
  1559. if (test_bit(In_sync, &rdev->flags)) {
  1560. len += sprintf(page+len, "%sin_sync",sep);
  1561. sep = ",";
  1562. }
  1563. if (test_bit(WriteMostly, &rdev->flags)) {
  1564. len += sprintf(page+len, "%swrite_mostly",sep);
  1565. sep = ",";
  1566. }
  1567. if (!test_bit(Faulty, &rdev->flags) &&
  1568. !test_bit(In_sync, &rdev->flags)) {
  1569. len += sprintf(page+len, "%sspare", sep);
  1570. sep = ",";
  1571. }
  1572. return len+sprintf(page+len, "\n");
  1573. }
  1574. static ssize_t
  1575. state_store(mdk_rdev_t *rdev, const char *buf, size_t len)
  1576. {
  1577. /* can write
  1578. * faulty - simulates and error
  1579. * remove - disconnects the device
  1580. * writemostly - sets write_mostly
  1581. * -writemostly - clears write_mostly
  1582. */
  1583. int err = -EINVAL;
  1584. if (cmd_match(buf, "faulty") && rdev->mddev->pers) {
  1585. md_error(rdev->mddev, rdev);
  1586. err = 0;
  1587. } else if (cmd_match(buf, "remove")) {
  1588. if (rdev->raid_disk >= 0)
  1589. err = -EBUSY;
  1590. else {
  1591. mddev_t *mddev = rdev->mddev;
  1592. kick_rdev_from_array(rdev);
  1593. if (mddev->pers)
  1594. md_update_sb(mddev, 1);
  1595. md_new_event(mddev);
  1596. err = 0;
  1597. }
  1598. } else if (cmd_match(buf, "writemostly")) {
  1599. set_bit(WriteMostly, &rdev->flags);
  1600. err = 0;
  1601. } else if (cmd_match(buf, "-writemostly")) {
  1602. clear_bit(WriteMostly, &rdev->flags);
  1603. err = 0;
  1604. }
  1605. return err ? err : len;
  1606. }
  1607. static struct rdev_sysfs_entry rdev_state =
  1608. __ATTR(state, S_IRUGO|S_IWUSR, state_show, state_store);
  1609. static ssize_t
  1610. super_show(mdk_rdev_t *rdev, char *page)
  1611. {
  1612. if (rdev->sb_loaded && rdev->sb_size) {
  1613. memcpy(page, page_address(rdev->sb_page), rdev->sb_size);
  1614. return rdev->sb_size;
  1615. } else
  1616. return 0;
  1617. }
  1618. static struct rdev_sysfs_entry rdev_super = __ATTR_RO(super);
  1619. static ssize_t
  1620. errors_show(mdk_rdev_t *rdev, char *page)
  1621. {
  1622. return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors));
  1623. }
  1624. static ssize_t
  1625. errors_store(mdk_rdev_t *rdev, const char *buf, size_t len)
  1626. {
  1627. char *e;
  1628. unsigned long n = simple_strtoul(buf, &e, 10);
  1629. if (*buf && (*e == 0 || *e == '\n')) {
  1630. atomic_set(&rdev->corrected_errors, n);
  1631. return len;
  1632. }
  1633. return -EINVAL;
  1634. }
  1635. static struct rdev_sysfs_entry rdev_errors =
  1636. __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store);
  1637. static ssize_t
  1638. slot_show(mdk_rdev_t *rdev, char *page)
  1639. {
  1640. if (rdev->raid_disk < 0)
  1641. return sprintf(page, "none\n");
  1642. else
  1643. return sprintf(page, "%d\n", rdev->raid_disk);
  1644. }
  1645. static ssize_t
  1646. slot_store(mdk_rdev_t *rdev, const char *buf, size_t len)
  1647. {
  1648. char *e;
  1649. int slot = simple_strtoul(buf, &e, 10);
  1650. if (strncmp(buf, "none", 4)==0)
  1651. slot = -1;
  1652. else if (e==buf || (*e && *e!= '\n'))
  1653. return -EINVAL;
  1654. if (rdev->mddev->pers)
  1655. /* Cannot set slot in active array (yet) */
  1656. return -EBUSY;
  1657. if (slot >= rdev->mddev->raid_disks)
  1658. return -ENOSPC;
  1659. rdev->raid_disk = slot;
  1660. /* assume it is working */
  1661. rdev->flags = 0;
  1662. set_bit(In_sync, &rdev->flags);
  1663. return len;
  1664. }
  1665. static struct rdev_sysfs_entry rdev_slot =
  1666. __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store);
  1667. static ssize_t
  1668. offset_show(mdk_rdev_t *rdev, char *page)
  1669. {
  1670. return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset);
  1671. }
  1672. static ssize_t
  1673. offset_store(mdk_rdev_t *rdev, const char *buf, size_t len)
  1674. {
  1675. char *e;
  1676. unsigned long long offset = simple_strtoull(buf, &e, 10);
  1677. if (e==buf || (*e && *e != '\n'))
  1678. return -EINVAL;
  1679. if (rdev->mddev->pers)
  1680. return -EBUSY;
  1681. rdev->data_offset = offset;
  1682. return len;
  1683. }
  1684. static struct rdev_sysfs_entry rdev_offset =
  1685. __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store);
  1686. static ssize_t
  1687. rdev_size_show(mdk_rdev_t *rdev, char *page)
  1688. {
  1689. return sprintf(page, "%llu\n", (unsigned long long)rdev->size);
  1690. }
  1691. static ssize_t
  1692. rdev_size_store(mdk_rdev_t *rdev, const char *buf, size_t len)
  1693. {
  1694. char *e;
  1695. unsigned long long size = simple_strtoull(buf, &e, 10);
  1696. if (e==buf || (*e && *e != '\n'))
  1697. return -EINVAL;
  1698. if (rdev->mddev->pers)
  1699. return -EBUSY;
  1700. rdev->size = size;
  1701. if (size < rdev->mddev->size || rdev->mddev->size == 0)
  1702. rdev->mddev->size = size;
  1703. return len;
  1704. }
  1705. static struct rdev_sysfs_entry rdev_size =
  1706. __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store);
  1707. static struct attribute *rdev_default_attrs[] = {
  1708. &rdev_state.attr,
  1709. &rdev_super.attr,
  1710. &rdev_errors.attr,
  1711. &rdev_slot.attr,
  1712. &rdev_offset.attr,
  1713. &rdev_size.attr,
  1714. NULL,
  1715. };
  1716. static ssize_t
  1717. rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
  1718. {
  1719. struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
  1720. mdk_rdev_t *rdev = container_of(kobj, mdk_rdev_t, kobj);
  1721. if (!entry->show)
  1722. return -EIO;
  1723. return entry->show(rdev, page);
  1724. }
  1725. static ssize_t
  1726. rdev_attr_store(struct kobject *kobj, struct attribute *attr,
  1727. const char *page, size_t length)
  1728. {
  1729. struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
  1730. mdk_rdev_t *rdev = container_of(kobj, mdk_rdev_t, kobj);
  1731. if (!entry->store)
  1732. return -EIO;
  1733. if (!capable(CAP_SYS_ADMIN))
  1734. return -EACCES;
  1735. return entry->store(rdev, page, length);
  1736. }
  1737. static void rdev_free(struct kobject *ko)
  1738. {
  1739. mdk_rdev_t *rdev = container_of(ko, mdk_rdev_t, kobj);
  1740. kfree(rdev);
  1741. }
  1742. static struct sysfs_ops rdev_sysfs_ops = {
  1743. .show = rdev_attr_show,
  1744. .store = rdev_attr_store,
  1745. };
  1746. static struct kobj_type rdev_ktype = {
  1747. .release = rdev_free,
  1748. .sysfs_ops = &rdev_sysfs_ops,
  1749. .default_attrs = rdev_default_attrs,
  1750. };
  1751. /*
  1752. * Import a device. If 'super_format' >= 0, then sanity check the superblock
  1753. *
  1754. * mark the device faulty if:
  1755. *
  1756. * - the device is nonexistent (zero size)
  1757. * - the device has no valid superblock
  1758. *
  1759. * a faulty rdev _never_ has rdev->sb set.
  1760. */
  1761. static mdk_rdev_t *md_import_device(dev_t newdev, int super_format, int super_minor)
  1762. {
  1763. char b[BDEVNAME_SIZE];
  1764. int err;
  1765. mdk_rdev_t *rdev;
  1766. sector_t size;
  1767. rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
  1768. if (!rdev) {
  1769. printk(KERN_ERR "md: could not alloc mem for new device!\n");
  1770. return ERR_PTR(-ENOMEM);
  1771. }
  1772. if ((err = alloc_disk_sb(rdev)))
  1773. goto abort_free;
  1774. err = lock_rdev(rdev, newdev);
  1775. if (err)
  1776. goto abort_free;
  1777. rdev->kobj.parent = NULL;
  1778. rdev->kobj.ktype = &rdev_ktype;
  1779. kobject_init(&rdev->kobj);
  1780. rdev->desc_nr = -1;
  1781. rdev->saved_raid_disk = -1;
  1782. rdev->raid_disk = -1;
  1783. rdev->flags = 0;
  1784. rdev->data_offset = 0;
  1785. rdev->sb_events = 0;
  1786. atomic_set(&rdev->nr_pending, 0);
  1787. atomic_set(&rdev->read_errors, 0);
  1788. atomic_set(&rdev->corrected_errors, 0);
  1789. size = rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
  1790. if (!size) {
  1791. printk(KERN_WARNING
  1792. "md: %s has zero or unknown size, marking faulty!\n",
  1793. bdevname(rdev->bdev,b));
  1794. err = -EINVAL;
  1795. goto abort_free;
  1796. }
  1797. if (super_format >= 0) {
  1798. err = super_types[super_format].
  1799. load_super(rdev, NULL, super_minor);
  1800. if (err == -EINVAL) {
  1801. printk(KERN_WARNING
  1802. "md: %s does not have a valid v%d.%d "
  1803. "superblock, not importing!\n",
  1804. bdevname(rdev->bdev,b),
  1805. super_format, super_minor);
  1806. goto abort_free;
  1807. }
  1808. if (err < 0) {
  1809. printk(KERN_WARNING
  1810. "md: could not read %s's sb, not importing!\n",
  1811. bdevname(rdev->bdev,b));
  1812. goto abort_free;
  1813. }
  1814. }
  1815. INIT_LIST_HEAD(&rdev->same_set);
  1816. return rdev;
  1817. abort_free:
  1818. if (rdev->sb_page) {
  1819. if (rdev->bdev)
  1820. unlock_rdev(rdev);
  1821. free_disk_sb(rdev);
  1822. }
  1823. kfree(rdev);
  1824. return ERR_PTR(err);
  1825. }
  1826. /*
  1827. * Check a full RAID array for plausibility
  1828. */
  1829. static void analyze_sbs(mddev_t * mddev)
  1830. {
  1831. int i;
  1832. struct list_head *tmp;
  1833. mdk_rdev_t *rdev, *freshest;
  1834. char b[BDEVNAME_SIZE];
  1835. freshest = NULL;
  1836. ITERATE_RDEV(mddev,rdev,tmp)
  1837. switch (super_types[mddev->major_version].
  1838. load_super(rdev, freshest, mddev->minor_version)) {
  1839. case 1:
  1840. freshest = rdev;
  1841. break;
  1842. case 0:
  1843. break;
  1844. default:
  1845. printk( KERN_ERR \
  1846. "md: fatal superblock inconsistency in %s"
  1847. " -- removing from array\n",
  1848. bdevname(rdev->bdev,b));
  1849. kick_rdev_from_array(rdev);
  1850. }
  1851. super_types[mddev->major_version].
  1852. validate_super(mddev, freshest);
  1853. i = 0;
  1854. ITERATE_RDEV(mddev,rdev,tmp) {
  1855. if (rdev != freshest)
  1856. if (super_types[mddev->major_version].
  1857. validate_super(mddev, rdev)) {
  1858. printk(KERN_WARNING "md: kicking non-fresh %s"
  1859. " from array!\n",
  1860. bdevname(rdev->bdev,b));
  1861. kick_rdev_from_array(rdev);
  1862. continue;
  1863. }
  1864. if (mddev->level == LEVEL_MULTIPATH) {
  1865. rdev->desc_nr = i++;
  1866. rdev->raid_disk = rdev->desc_nr;
  1867. set_bit(In_sync, &rdev->flags);
  1868. } else if (rdev->raid_disk >= mddev->raid_disks) {
  1869. rdev->raid_disk = -1;
  1870. clear_bit(In_sync, &rdev->flags);
  1871. }
  1872. }
  1873. if (mddev->recovery_cp != MaxSector &&
  1874. mddev->level >= 1)
  1875. printk(KERN_ERR "md: %s: raid array is not clean"
  1876. " -- starting background reconstruction\n",
  1877. mdname(mddev));
  1878. }
  1879. static ssize_t
  1880. safe_delay_show(mddev_t *mddev, char *page)
  1881. {
  1882. int msec = (mddev->safemode_delay*1000)/HZ;
  1883. return sprintf(page, "%d.%03d\n", msec/1000, msec%1000);
  1884. }
  1885. static ssize_t
  1886. safe_delay_store(mddev_t *mddev, const char *cbuf, size_t len)
  1887. {
  1888. int scale=1;
  1889. int dot=0;
  1890. int i;
  1891. unsigned long msec;
  1892. char buf[30];
  1893. char *e;
  1894. /* remove a period, and count digits after it */
  1895. if (len >= sizeof(buf))
  1896. return -EINVAL;
  1897. strlcpy(buf, cbuf, len);
  1898. buf[len] = 0;
  1899. for (i=0; i<len; i++) {
  1900. if (dot) {
  1901. if (isdigit(buf[i])) {
  1902. buf[i-1] = buf[i];
  1903. scale *= 10;
  1904. }
  1905. buf[i] = 0;
  1906. } else if (buf[i] == '.') {
  1907. dot=1;
  1908. buf[i] = 0;
  1909. }
  1910. }
  1911. msec = simple_strtoul(buf, &e, 10);
  1912. if (e == buf || (*e && *e != '\n'))
  1913. return -EINVAL;
  1914. msec = (msec * 1000) / scale;
  1915. if (msec == 0)
  1916. mddev->safemode_delay = 0;
  1917. else {
  1918. mddev->safemode_delay = (msec*HZ)/1000;
  1919. if (mddev->safemode_delay == 0)
  1920. mddev->safemode_delay = 1;
  1921. }
  1922. return len;
  1923. }
  1924. static struct md_sysfs_entry md_safe_delay =
  1925. __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store);
  1926. static ssize_t
  1927. level_show(mddev_t *mddev, char *page)
  1928. {
  1929. struct mdk_personality *p = mddev->pers;
  1930. if (p)
  1931. return sprintf(page, "%s\n", p->name);
  1932. else if (mddev->clevel[0])
  1933. return sprintf(page, "%s\n", mddev->clevel);
  1934. else if (mddev->level != LEVEL_NONE)
  1935. return sprintf(page, "%d\n", mddev->level);
  1936. else
  1937. return 0;
  1938. }
  1939. static ssize_t
  1940. level_store(mddev_t *mddev, const char *buf, size_t len)
  1941. {
  1942. int rv = len;
  1943. if (mddev->pers)
  1944. return -EBUSY;
  1945. if (len == 0)
  1946. return 0;
  1947. if (len >= sizeof(mddev->clevel))
  1948. return -ENOSPC;
  1949. strncpy(mddev->clevel, buf, len);
  1950. if (mddev->clevel[len-1] == '\n')
  1951. len--;
  1952. mddev->clevel[len] = 0;
  1953. mddev->level = LEVEL_NONE;
  1954. return rv;
  1955. }
  1956. static struct md_sysfs_entry md_level =
  1957. __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store);
  1958. static ssize_t
  1959. layout_show(mddev_t *mddev, char *page)
  1960. {
  1961. /* just a number, not meaningful for all levels */
  1962. if (mddev->reshape_position != MaxSector &&
  1963. mddev->layout != mddev->new_layout)
  1964. return sprintf(page, "%d (%d)\n",
  1965. mddev->new_layout, mddev->layout);
  1966. return sprintf(page, "%d\n", mddev->layout);
  1967. }
  1968. static ssize_t
  1969. layout_store(mddev_t *mddev, const char *buf, size_t len)
  1970. {
  1971. char *e;
  1972. unsigned long n = simple_strtoul(buf, &e, 10);
  1973. if (!*buf || (*e && *e != '\n'))
  1974. return -EINVAL;
  1975. if (mddev->pers)
  1976. return -EBUSY;
  1977. if (mddev->reshape_position != MaxSector)
  1978. mddev->new_layout = n;
  1979. else
  1980. mddev->layout = n;
  1981. return len;
  1982. }
  1983. static struct md_sysfs_entry md_layout =
  1984. __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store);
  1985. static ssize_t
  1986. raid_disks_show(mddev_t *mddev, char *page)
  1987. {
  1988. if (mddev->raid_disks == 0)
  1989. return 0;
  1990. if (mddev->reshape_position != MaxSector &&
  1991. mddev->delta_disks != 0)
  1992. return sprintf(page, "%d (%d)\n", mddev->raid_disks,
  1993. mddev->raid_disks - mddev->delta_disks);
  1994. return sprintf(page, "%d\n", mddev->raid_disks);
  1995. }
  1996. static int update_raid_disks(mddev_t *mddev, int raid_disks);
  1997. static ssize_t
  1998. raid_disks_store(mddev_t *mddev, const char *buf, size_t len)
  1999. {
  2000. char *e;
  2001. int rv = 0;
  2002. unsigned long n = simple_strtoul(buf, &e, 10);
  2003. if (!*buf || (*e && *e != '\n'))
  2004. return -EINVAL;
  2005. if (mddev->pers)
  2006. rv = update_raid_disks(mddev, n);
  2007. else if (mddev->reshape_position != MaxSector) {
  2008. int olddisks = mddev->raid_disks - mddev->delta_disks;
  2009. mddev->delta_disks = n - olddisks;
  2010. mddev->raid_disks = n;
  2011. } else
  2012. mddev->raid_disks = n;
  2013. return rv ? rv : len;
  2014. }
  2015. static struct md_sysfs_entry md_raid_disks =
  2016. __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store);
  2017. static ssize_t
  2018. chunk_size_show(mddev_t *mddev, char *page)
  2019. {
  2020. if (mddev->reshape_position != MaxSector &&
  2021. mddev->chunk_size != mddev->new_chunk)
  2022. return sprintf(page, "%d (%d)\n", mddev->new_chunk,
  2023. mddev->chunk_size);
  2024. return sprintf(page, "%d\n", mddev->chunk_size);
  2025. }
  2026. static ssize_t
  2027. chunk_size_store(mddev_t *mddev, const char *buf, size_t len)
  2028. {
  2029. /* can only set chunk_size if array is not yet active */
  2030. char *e;
  2031. unsigned long n = simple_strtoul(buf, &e, 10);
  2032. if (!*buf || (*e && *e != '\n'))
  2033. return -EINVAL;
  2034. if (mddev->pers)
  2035. return -EBUSY;
  2036. else if (mddev->reshape_position != MaxSector)
  2037. mddev->new_chunk = n;
  2038. else
  2039. mddev->chunk_size = n;
  2040. return len;
  2041. }
  2042. static struct md_sysfs_entry md_chunk_size =
  2043. __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store);
  2044. static ssize_t
  2045. resync_start_show(mddev_t *mddev, char *page)
  2046. {
  2047. return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp);
  2048. }
  2049. static ssize_t
  2050. resync_start_store(mddev_t *mddev, const char *buf, size_t len)
  2051. {
  2052. /* can only set chunk_size if array is not yet active */
  2053. char *e;
  2054. unsigned long long n = simple_strtoull(buf, &e, 10);
  2055. if (mddev->pers)
  2056. return -EBUSY;
  2057. if (!*buf || (*e && *e != '\n'))
  2058. return -EINVAL;
  2059. mddev->recovery_cp = n;
  2060. return len;
  2061. }
  2062. static struct md_sysfs_entry md_resync_start =
  2063. __ATTR(resync_start, S_IRUGO|S_IWUSR, resync_start_show, resync_start_store);
  2064. /*
  2065. * The array state can be:
  2066. *
  2067. * clear
  2068. * No devices, no size, no level
  2069. * Equivalent to STOP_ARRAY ioctl
  2070. * inactive
  2071. * May have some settings, but array is not active
  2072. * all IO results in error
  2073. * When written, doesn't tear down array, but just stops it
  2074. * suspended (not supported yet)
  2075. * All IO requests will block. The array can be reconfigured.
  2076. * Writing this, if accepted, will block until array is quiessent
  2077. * readonly
  2078. * no resync can happen. no superblocks get written.
  2079. * write requests fail
  2080. * read-auto
  2081. * like readonly, but behaves like 'clean' on a write request.
  2082. *
  2083. * clean - no pending writes, but otherwise active.
  2084. * When written to inactive array, starts without resync
  2085. * If a write request arrives then
  2086. * if metadata is known, mark 'dirty' and switch to 'active'.
  2087. * if not known, block and switch to write-pending
  2088. * If written to an active array that has pending writes, then fails.
  2089. * active
  2090. * fully active: IO and resync can be happening.
  2091. * When written to inactive array, starts with resync
  2092. *
  2093. * write-pending
  2094. * clean, but writes are blocked waiting for 'active' to be written.
  2095. *
  2096. * active-idle
  2097. * like active, but no writes have been seen for a while (100msec).
  2098. *
  2099. */
  2100. enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active,
  2101. write_pending, active_idle, bad_word};
  2102. static char *array_states[] = {
  2103. "clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active",
  2104. "write-pending", "active-idle", NULL };
  2105. static int match_word(const char *word, char **list)
  2106. {
  2107. int n;
  2108. for (n=0; list[n]; n++)
  2109. if (cmd_match(word, list[n]))
  2110. break;
  2111. return n;
  2112. }
  2113. static ssize_t
  2114. array_state_show(mddev_t *mddev, char *page)
  2115. {
  2116. enum array_state st = inactive;
  2117. if (mddev->pers)
  2118. switch(mddev->ro) {
  2119. case 1:
  2120. st = readonly;
  2121. break;
  2122. case 2:
  2123. st = read_auto;
  2124. break;
  2125. case 0:
  2126. if (mddev->in_sync)
  2127. st = clean;
  2128. else if (mddev->safemode)
  2129. st = active_idle;
  2130. else
  2131. st = active;
  2132. }
  2133. else {
  2134. if (list_empty(&mddev->disks) &&
  2135. mddev->raid_disks == 0 &&
  2136. mddev->size == 0)
  2137. st = clear;
  2138. else
  2139. st = inactive;
  2140. }
  2141. return sprintf(page, "%s\n", array_states[st]);
  2142. }
  2143. static int do_md_stop(mddev_t * mddev, int ro);
  2144. static int do_md_run(mddev_t * mddev);
  2145. static int restart_array(mddev_t *mddev);
  2146. static ssize_t
  2147. array_state_store(mddev_t *mddev, const char *buf, size_t len)
  2148. {
  2149. int err = -EINVAL;
  2150. enum array_state st = match_word(buf, array_states);
  2151. switch(st) {
  2152. case bad_word:
  2153. break;
  2154. case clear:
  2155. /* stopping an active array */
  2156. if (mddev->pers) {
  2157. if (atomic_read(&mddev->active) > 1)
  2158. return -EBUSY;
  2159. err = do_md_stop(mddev, 0);
  2160. }
  2161. break;
  2162. case inactive:
  2163. /* stopping an active array */
  2164. if (mddev->pers) {
  2165. if (atomic_read(&mddev->active) > 1)
  2166. return -EBUSY;
  2167. err = do_md_stop(mddev, 2);
  2168. }
  2169. break;
  2170. case suspended:
  2171. break; /* not supported yet */
  2172. case readonly:
  2173. if (mddev->pers)
  2174. err = do_md_stop(mddev, 1);
  2175. else {
  2176. mddev->ro = 1;
  2177. err = do_md_run(mddev);
  2178. }
  2179. break;
  2180. case read_auto:
  2181. /* stopping an active array */
  2182. if (mddev->pers) {
  2183. err = do_md_stop(mddev, 1);
  2184. if (err == 0)
  2185. mddev->ro = 2; /* FIXME mark devices writable */
  2186. } else {
  2187. mddev->ro = 2;
  2188. err = do_md_run(mddev);
  2189. }
  2190. break;
  2191. case clean:
  2192. if (mddev->pers) {
  2193. restart_array(mddev);
  2194. spin_lock_irq(&mddev->write_lock);
  2195. if (atomic_read(&mddev->writes_pending) == 0) {
  2196. mddev->in_sync = 1;
  2197. set_bit(MD_CHANGE_CLEAN, &mddev->flags);
  2198. }
  2199. spin_unlock_irq(&mddev->write_lock);
  2200. } else {
  2201. mddev->ro = 0;
  2202. mddev->recovery_cp = MaxSector;
  2203. err = do_md_run(mddev);
  2204. }
  2205. break;
  2206. case active:
  2207. if (mddev->pers) {
  2208. restart_array(mddev);
  2209. clear_bit(MD_CHANGE_CLEAN, &mddev->flags);
  2210. wake_up(&mddev->sb_wait);
  2211. err = 0;
  2212. } else {
  2213. mddev->ro = 0;
  2214. err = do_md_run(mddev);
  2215. }
  2216. break;
  2217. case write_pending:
  2218. case active_idle:
  2219. /* these cannot be set */
  2220. break;
  2221. }
  2222. if (err)
  2223. return err;
  2224. else
  2225. return len;
  2226. }
  2227. static struct md_sysfs_entry md_array_state =
  2228. __ATTR(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store);
  2229. static ssize_t
  2230. null_show(mddev_t *mddev, char *page)
  2231. {
  2232. return -EINVAL;
  2233. }
  2234. static ssize_t
  2235. new_dev_store(mddev_t *mddev, const char *buf, size_t len)
  2236. {
  2237. /* buf must be %d:%d\n? giving major and minor numbers */
  2238. /* The new device is added to the array.
  2239. * If the array has a persistent superblock, we read the
  2240. * superblock to initialise info and check validity.
  2241. * Otherwise, only checking done is that in bind_rdev_to_array,
  2242. * which mainly checks size.
  2243. */
  2244. char *e;
  2245. int major = simple_strtoul(buf, &e, 10);
  2246. int minor;
  2247. dev_t dev;
  2248. mdk_rdev_t *rdev;
  2249. int err;
  2250. if (!*buf || *e != ':' || !e[1] || e[1] == '\n')
  2251. return -EINVAL;
  2252. minor = simple_strtoul(e+1, &e, 10);
  2253. if (*e && *e != '\n')
  2254. return -EINVAL;
  2255. dev = MKDEV(major, minor);
  2256. if (major != MAJOR(dev) ||
  2257. minor != MINOR(dev))
  2258. return -EOVERFLOW;
  2259. if (mddev->persistent) {
  2260. rdev = md_import_device(dev, mddev->major_version,
  2261. mddev->minor_version);
  2262. if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) {
  2263. mdk_rdev_t *rdev0 = list_entry(mddev->disks.next,
  2264. mdk_rdev_t, same_set);
  2265. err = super_types[mddev->major_version]
  2266. .load_super(rdev, rdev0, mddev->minor_version);
  2267. if (err < 0)
  2268. goto out;
  2269. }
  2270. } else
  2271. rdev = md_import_device(dev, -1, -1);
  2272. if (IS_ERR(rdev))
  2273. return PTR_ERR(rdev);
  2274. err = bind_rdev_to_array(rdev, mddev);
  2275. out:
  2276. if (err)
  2277. export_rdev(rdev);
  2278. return err ? err : len;
  2279. }
  2280. static struct md_sysfs_entry md_new_device =
  2281. __ATTR(new_dev, S_IWUSR, null_show, new_dev_store);
  2282. static ssize_t
  2283. bitmap_store(mddev_t *mddev, const char *buf, size_t len)
  2284. {
  2285. char *end;
  2286. unsigned long chunk, end_chunk;
  2287. if (!mddev->bitmap)
  2288. goto out;
  2289. /* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */
  2290. while (*buf) {
  2291. chunk = end_chunk = simple_strtoul(buf, &end, 0);
  2292. if (buf == end) break;
  2293. if (*end == '-') { /* range */
  2294. buf = end + 1;
  2295. end_chunk = simple_strtoul(buf, &end, 0);
  2296. if (buf == end) break;
  2297. }
  2298. if (*end && !isspace(*end)) break;
  2299. bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk);
  2300. buf = end;
  2301. while (isspace(*buf)) buf++;
  2302. }
  2303. bitmap_unplug(mddev->bitmap); /* flush the bits to disk */
  2304. out:
  2305. return len;
  2306. }
  2307. static struct md_sysfs_entry md_bitmap =
  2308. __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store);
  2309. static ssize_t
  2310. size_show(mddev_t *mddev, char *page)
  2311. {
  2312. return sprintf(page, "%llu\n", (unsigned long long)mddev->size);
  2313. }
  2314. static int update_size(mddev_t *mddev, unsigned long size);
  2315. static ssize_t
  2316. size_store(mddev_t *mddev, const char *buf, size_t len)
  2317. {
  2318. /* If array is inactive, we can reduce the component size, but
  2319. * not increase it (except from 0).
  2320. * If array is active, we can try an on-line resize
  2321. */
  2322. char *e;
  2323. int err = 0;
  2324. unsigned long long size = simple_strtoull(buf, &e, 10);
  2325. if (!*buf || *buf == '\n' ||
  2326. (*e && *e != '\n'))
  2327. return -EINVAL;
  2328. if (mddev->pers) {
  2329. err = update_size(mddev, size);
  2330. md_update_sb(mddev, 1);
  2331. } else {
  2332. if (mddev->size == 0 ||
  2333. mddev->size > size)
  2334. mddev->size = size;
  2335. else
  2336. err = -ENOSPC;
  2337. }
  2338. return err ? err : len;
  2339. }
  2340. static struct md_sysfs_entry md_size =
  2341. __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store);
  2342. /* Metdata version.
  2343. * This is either 'none' for arrays with externally managed metadata,
  2344. * or N.M for internally known formats
  2345. */
  2346. static ssize_t
  2347. metadata_show(mddev_t *mddev, char *page)
  2348. {
  2349. if (mddev->persistent)
  2350. return sprintf(page, "%d.%d\n",
  2351. mddev->major_version, mddev->minor_version);
  2352. else
  2353. return sprintf(page, "none\n");
  2354. }
  2355. static ssize_t
  2356. metadata_store(mddev_t *mddev, const char *buf, size_t len)
  2357. {
  2358. int major, minor;
  2359. char *e;
  2360. if (!list_empty(&mddev->disks))
  2361. return -EBUSY;
  2362. if (cmd_match(buf, "none")) {
  2363. mddev->persistent = 0;
  2364. mddev->major_version = 0;
  2365. mddev->minor_version = 90;
  2366. return len;
  2367. }
  2368. major = simple_strtoul(buf, &e, 10);
  2369. if (e==buf || *e != '.')
  2370. return -EINVAL;
  2371. buf = e+1;
  2372. minor = simple_strtoul(buf, &e, 10);
  2373. if (e==buf || (*e && *e != '\n') )
  2374. return -EINVAL;
  2375. if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL)
  2376. return -ENOENT;
  2377. mddev->major_version = major;
  2378. mddev->minor_version = minor;
  2379. mddev->persistent = 1;
  2380. return len;
  2381. }
  2382. static struct md_sysfs_entry md_metadata =
  2383. __ATTR(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store);
  2384. static ssize_t
  2385. action_show(mddev_t *mddev, char *page)
  2386. {
  2387. char *type = "idle";
  2388. if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
  2389. test_bit(MD_RECOVERY_NEEDED, &mddev->recovery)) {
  2390. if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
  2391. type = "reshape";
  2392. else if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
  2393. if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
  2394. type = "resync";
  2395. else if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
  2396. type = "check";
  2397. else
  2398. type = "repair";
  2399. } else
  2400. type = "recover";
  2401. }
  2402. return sprintf(page, "%s\n", type);
  2403. }
  2404. static ssize_t
  2405. action_store(mddev_t *mddev, const char *page, size_t len)
  2406. {
  2407. if (!mddev->pers || !mddev->pers->sync_request)
  2408. return -EINVAL;
  2409. if (cmd_match(page, "idle")) {
  2410. if (mddev->sync_thread) {
  2411. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  2412. md_unregister_thread(mddev->sync_thread);
  2413. mddev->sync_thread = NULL;
  2414. mddev->recovery = 0;
  2415. }
  2416. } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
  2417. test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
  2418. return -EBUSY;
  2419. else if (cmd_match(page, "resync") || cmd_match(page, "recover"))
  2420. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  2421. else if (cmd_match(page, "reshape")) {
  2422. int err;
  2423. if (mddev->pers->start_reshape == NULL)
  2424. return -EINVAL;
  2425. err = mddev->pers->start_reshape(mddev);
  2426. if (err)
  2427. return err;
  2428. } else {
  2429. if (cmd_match(page, "check"))
  2430. set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
  2431. else if (!cmd_match(page, "repair"))
  2432. return -EINVAL;
  2433. set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
  2434. set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
  2435. }
  2436. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  2437. md_wakeup_thread(mddev->thread);
  2438. return len;
  2439. }
  2440. static ssize_t
  2441. mismatch_cnt_show(mddev_t *mddev, char *page)
  2442. {
  2443. return sprintf(page, "%llu\n",
  2444. (unsigned long long) mddev->resync_mismatches);
  2445. }
  2446. static struct md_sysfs_entry md_scan_mode =
  2447. __ATTR(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
  2448. static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt);
  2449. static ssize_t
  2450. sync_min_show(mddev_t *mddev, char *page)
  2451. {
  2452. return sprintf(page, "%d (%s)\n", speed_min(mddev),
  2453. mddev->sync_speed_min ? "local": "system");
  2454. }
  2455. static ssize_t
  2456. sync_min_store(mddev_t *mddev, const char *buf, size_t len)
  2457. {
  2458. int min;
  2459. char *e;
  2460. if (strncmp(buf, "system", 6)==0) {
  2461. mddev->sync_speed_min = 0;
  2462. return len;
  2463. }
  2464. min = simple_strtoul(buf, &e, 10);
  2465. if (buf == e || (*e && *e != '\n') || min <= 0)
  2466. return -EINVAL;
  2467. mddev->sync_speed_min = min;
  2468. return len;
  2469. }
  2470. static struct md_sysfs_entry md_sync_min =
  2471. __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store);
  2472. static ssize_t
  2473. sync_max_show(mddev_t *mddev, char *page)
  2474. {
  2475. return sprintf(page, "%d (%s)\n", speed_max(mddev),
  2476. mddev->sync_speed_max ? "local": "system");
  2477. }
  2478. static ssize_t
  2479. sync_max_store(mddev_t *mddev, const char *buf, size_t len)
  2480. {
  2481. int max;
  2482. char *e;
  2483. if (strncmp(buf, "system", 6)==0) {
  2484. mddev->sync_speed_max = 0;
  2485. return len;
  2486. }
  2487. max = simple_strtoul(buf, &e, 10);
  2488. if (buf == e || (*e && *e != '\n') || max <= 0)
  2489. return -EINVAL;
  2490. mddev->sync_speed_max = max;
  2491. return len;
  2492. }
  2493. static struct md_sysfs_entry md_sync_max =
  2494. __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store);
  2495. static ssize_t
  2496. sync_speed_show(mddev_t *mddev, char *page)
  2497. {
  2498. unsigned long resync, dt, db;
  2499. resync = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active));
  2500. dt = ((jiffies - mddev->resync_mark) / HZ);
  2501. if (!dt) dt++;
  2502. db = resync - (mddev->resync_mark_cnt);
  2503. return sprintf(page, "%ld\n", db/dt/2); /* K/sec */
  2504. }
  2505. static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed);
  2506. static ssize_t
  2507. sync_completed_show(mddev_t *mddev, char *page)
  2508. {
  2509. unsigned long max_blocks, resync;
  2510. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
  2511. max_blocks = mddev->resync_max_sectors;
  2512. else
  2513. max_blocks = mddev->size << 1;
  2514. resync = (mddev->curr_resync - atomic_read(&mddev->recovery_active));
  2515. return sprintf(page, "%lu / %lu\n", resync, max_blocks);
  2516. }
  2517. static struct md_sysfs_entry md_sync_completed = __ATTR_RO(sync_completed);
  2518. static ssize_t
  2519. suspend_lo_show(mddev_t *mddev, char *page)
  2520. {
  2521. return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo);
  2522. }
  2523. static ssize_t
  2524. suspend_lo_store(mddev_t *mddev, const char *buf, size_t len)
  2525. {
  2526. char *e;
  2527. unsigned long long new = simple_strtoull(buf, &e, 10);
  2528. if (mddev->pers->quiesce == NULL)
  2529. return -EINVAL;
  2530. if (buf == e || (*e && *e != '\n'))
  2531. return -EINVAL;
  2532. if (new >= mddev->suspend_hi ||
  2533. (new > mddev->suspend_lo && new < mddev->suspend_hi)) {
  2534. mddev->suspend_lo = new;
  2535. mddev->pers->quiesce(mddev, 2);
  2536. return len;
  2537. } else
  2538. return -EINVAL;
  2539. }
  2540. static struct md_sysfs_entry md_suspend_lo =
  2541. __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store);
  2542. static ssize_t
  2543. suspend_hi_show(mddev_t *mddev, char *page)
  2544. {
  2545. return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi);
  2546. }
  2547. static ssize_t
  2548. suspend_hi_store(mddev_t *mddev, const char *buf, size_t len)
  2549. {
  2550. char *e;
  2551. unsigned long long new = simple_strtoull(buf, &e, 10);
  2552. if (mddev->pers->quiesce == NULL)
  2553. return -EINVAL;
  2554. if (buf == e || (*e && *e != '\n'))
  2555. return -EINVAL;
  2556. if ((new <= mddev->suspend_lo && mddev->suspend_lo >= mddev->suspend_hi) ||
  2557. (new > mddev->suspend_lo && new > mddev->suspend_hi)) {
  2558. mddev->suspend_hi = new;
  2559. mddev->pers->quiesce(mddev, 1);
  2560. mddev->pers->quiesce(mddev, 0);
  2561. return len;
  2562. } else
  2563. return -EINVAL;
  2564. }
  2565. static struct md_sysfs_entry md_suspend_hi =
  2566. __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store);
  2567. static ssize_t
  2568. reshape_position_show(mddev_t *mddev, char *page)
  2569. {
  2570. if (mddev->reshape_position != MaxSector)
  2571. return sprintf(page, "%llu\n",
  2572. (unsigned long long)mddev->reshape_position);
  2573. strcpy(page, "none\n");
  2574. return 5;
  2575. }
  2576. static ssize_t
  2577. reshape_position_store(mddev_t *mddev, const char *buf, size_t len)
  2578. {
  2579. char *e;
  2580. unsigned long long new = simple_strtoull(buf, &e, 10);
  2581. if (mddev->pers)
  2582. return -EBUSY;
  2583. if (buf == e || (*e && *e != '\n'))
  2584. return -EINVAL;
  2585. mddev->reshape_position = new;
  2586. mddev->delta_disks = 0;
  2587. mddev->new_level = mddev->level;
  2588. mddev->new_layout = mddev->layout;
  2589. mddev->new_chunk = mddev->chunk_size;
  2590. return len;
  2591. }
  2592. static struct md_sysfs_entry md_reshape_position =
  2593. __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show,
  2594. reshape_position_store);
  2595. static struct attribute *md_default_attrs[] = {
  2596. &md_level.attr,
  2597. &md_layout.attr,
  2598. &md_raid_disks.attr,
  2599. &md_chunk_size.attr,
  2600. &md_size.attr,
  2601. &md_resync_start.attr,
  2602. &md_metadata.attr,
  2603. &md_new_device.attr,
  2604. &md_safe_delay.attr,
  2605. &md_array_state.attr,
  2606. &md_reshape_position.attr,
  2607. NULL,
  2608. };
  2609. static struct attribute *md_redundancy_attrs[] = {
  2610. &md_scan_mode.attr,
  2611. &md_mismatches.attr,
  2612. &md_sync_min.attr,
  2613. &md_sync_max.attr,
  2614. &md_sync_speed.attr,
  2615. &md_sync_completed.attr,
  2616. &md_suspend_lo.attr,
  2617. &md_suspend_hi.attr,
  2618. &md_bitmap.attr,
  2619. NULL,
  2620. };
  2621. static struct attribute_group md_redundancy_group = {
  2622. .name = NULL,
  2623. .attrs = md_redundancy_attrs,
  2624. };
  2625. static ssize_t
  2626. md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
  2627. {
  2628. struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
  2629. mddev_t *mddev = container_of(kobj, struct mddev_s, kobj);
  2630. ssize_t rv;
  2631. if (!entry->show)
  2632. return -EIO;
  2633. rv = mddev_lock(mddev);
  2634. if (!rv) {
  2635. rv = entry->show(mddev, page);
  2636. mddev_unlock(mddev);
  2637. }
  2638. return rv;
  2639. }
  2640. static ssize_t
  2641. md_attr_store(struct kobject *kobj, struct attribute *attr,
  2642. const char *page, size_t length)
  2643. {
  2644. struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
  2645. mddev_t *mddev = container_of(kobj, struct mddev_s, kobj);
  2646. ssize_t rv;
  2647. if (!entry->store)
  2648. return -EIO;
  2649. if (!capable(CAP_SYS_ADMIN))
  2650. return -EACCES;
  2651. rv = mddev_lock(mddev);
  2652. if (!rv) {
  2653. rv = entry->store(mddev, page, length);
  2654. mddev_unlock(mddev);
  2655. }
  2656. return rv;
  2657. }
  2658. static void md_free(struct kobject *ko)
  2659. {
  2660. mddev_t *mddev = container_of(ko, mddev_t, kobj);
  2661. kfree(mddev);
  2662. }
  2663. static struct sysfs_ops md_sysfs_ops = {
  2664. .show = md_attr_show,
  2665. .store = md_attr_store,
  2666. };
  2667. static struct kobj_type md_ktype = {
  2668. .release = md_free,
  2669. .sysfs_ops = &md_sysfs_ops,
  2670. .default_attrs = md_default_attrs,
  2671. };
  2672. int mdp_major = 0;
  2673. static struct kobject *md_probe(dev_t dev, int *part, void *data)
  2674. {
  2675. static DEFINE_MUTEX(disks_mutex);
  2676. mddev_t *mddev = mddev_find(dev);
  2677. struct gendisk *disk;
  2678. int partitioned = (MAJOR(dev) != MD_MAJOR);
  2679. int shift = partitioned ? MdpMinorShift : 0;
  2680. int unit = MINOR(dev) >> shift;
  2681. if (!mddev)
  2682. return NULL;
  2683. mutex_lock(&disks_mutex);
  2684. if (mddev->gendisk) {
  2685. mutex_unlock(&disks_mutex);
  2686. mddev_put(mddev);
  2687. return NULL;
  2688. }
  2689. disk = alloc_disk(1 << shift);
  2690. if (!disk) {
  2691. mutex_unlock(&disks_mutex);
  2692. mddev_put(mddev);
  2693. return NULL;
  2694. }
  2695. disk->major = MAJOR(dev);
  2696. disk->first_minor = unit << shift;
  2697. if (partitioned)
  2698. sprintf(disk->disk_name, "md_d%d", unit);
  2699. else
  2700. sprintf(disk->disk_name, "md%d", unit);
  2701. disk->fops = &md_fops;
  2702. disk->private_data = mddev;
  2703. disk->queue = mddev->queue;
  2704. add_disk(disk);
  2705. mddev->gendisk = disk;
  2706. mutex_unlock(&disks_mutex);
  2707. mddev->kobj.parent = &disk->kobj;
  2708. kobject_set_name(&mddev->kobj, "%s", "md");
  2709. mddev->kobj.ktype = &md_ktype;
  2710. if (kobject_register(&mddev->kobj))
  2711. printk(KERN_WARNING "md: cannot register %s/md - name in use\n",
  2712. disk->disk_name);
  2713. return NULL;
  2714. }
  2715. static void md_safemode_timeout(unsigned long data)
  2716. {
  2717. mddev_t *mddev = (mddev_t *) data;
  2718. mddev->safemode = 1;
  2719. md_wakeup_thread(mddev->thread);
  2720. }
  2721. static int start_dirty_degraded;
  2722. static int do_md_run(mddev_t * mddev)
  2723. {
  2724. int err;
  2725. int chunk_size;
  2726. struct list_head *tmp;
  2727. mdk_rdev_t *rdev;
  2728. struct gendisk *disk;
  2729. struct mdk_personality *pers;
  2730. char b[BDEVNAME_SIZE];
  2731. if (list_empty(&mddev->disks))
  2732. /* cannot run an array with no devices.. */
  2733. return -EINVAL;
  2734. if (mddev->pers)
  2735. return -EBUSY;
  2736. /*
  2737. * Analyze all RAID superblock(s)
  2738. */
  2739. if (!mddev->raid_disks)
  2740. analyze_sbs(mddev);
  2741. chunk_size = mddev->chunk_size;
  2742. if (chunk_size) {
  2743. if (chunk_size > MAX_CHUNK_SIZE) {
  2744. printk(KERN_ERR "too big chunk_size: %d > %d\n",
  2745. chunk_size, MAX_CHUNK_SIZE);
  2746. return -EINVAL;
  2747. }
  2748. /*
  2749. * chunk-size has to be a power of 2 and multiples of PAGE_SIZE
  2750. */
  2751. if ( (1 << ffz(~chunk_size)) != chunk_size) {
  2752. printk(KERN_ERR "chunk_size of %d not valid\n", chunk_size);
  2753. return -EINVAL;
  2754. }
  2755. if (chunk_size < PAGE_SIZE) {
  2756. printk(KERN_ERR "too small chunk_size: %d < %ld\n",
  2757. chunk_size, PAGE_SIZE);
  2758. return -EINVAL;
  2759. }
  2760. /* devices must have minimum size of one chunk */
  2761. ITERATE_RDEV(mddev,rdev,tmp) {
  2762. if (test_bit(Faulty, &rdev->flags))
  2763. continue;
  2764. if (rdev->size < chunk_size / 1024) {
  2765. printk(KERN_WARNING
  2766. "md: Dev %s smaller than chunk_size:"
  2767. " %lluk < %dk\n",
  2768. bdevname(rdev->bdev,b),
  2769. (unsigned long long)rdev->size,
  2770. chunk_size / 1024);
  2771. return -EINVAL;
  2772. }
  2773. }
  2774. }
  2775. #ifdef CONFIG_KMOD
  2776. if (mddev->level != LEVEL_NONE)
  2777. request_module("md-level-%d", mddev->level);
  2778. else if (mddev->clevel[0])
  2779. request_module("md-%s", mddev->clevel);
  2780. #endif
  2781. /*
  2782. * Drop all container device buffers, from now on
  2783. * the only valid external interface is through the md
  2784. * device.
  2785. */
  2786. ITERATE_RDEV(mddev,rdev,tmp) {
  2787. if (test_bit(Faulty, &rdev->flags))
  2788. continue;
  2789. sync_blockdev(rdev->bdev);
  2790. invalidate_bdev(rdev->bdev);
  2791. /* perform some consistency tests on the device.
  2792. * We don't want the data to overlap the metadata,
  2793. * Internal Bitmap issues has handled elsewhere.
  2794. */
  2795. if (rdev->data_offset < rdev->sb_offset) {
  2796. if (mddev->size &&
  2797. rdev->data_offset + mddev->size*2
  2798. > rdev->sb_offset*2) {
  2799. printk("md: %s: data overlaps metadata\n",
  2800. mdname(mddev));
  2801. return -EINVAL;
  2802. }
  2803. } else {
  2804. if (rdev->sb_offset*2 + rdev->sb_size/512
  2805. > rdev->data_offset) {
  2806. printk("md: %s: metadata overlaps data\n",
  2807. mdname(mddev));
  2808. return -EINVAL;
  2809. }
  2810. }
  2811. }
  2812. md_probe(mddev->unit, NULL, NULL);
  2813. disk = mddev->gendisk;
  2814. if (!disk)
  2815. return -ENOMEM;
  2816. spin_lock(&pers_lock);
  2817. pers = find_pers(mddev->level, mddev->clevel);
  2818. if (!pers || !try_module_get(pers->owner)) {
  2819. spin_unlock(&pers_lock);
  2820. if (mddev->level != LEVEL_NONE)
  2821. printk(KERN_WARNING "md: personality for level %d is not loaded!\n",
  2822. mddev->level);
  2823. else
  2824. printk(KERN_WARNING "md: personality for level %s is not loaded!\n",
  2825. mddev->clevel);
  2826. return -EINVAL;
  2827. }
  2828. mddev->pers = pers;
  2829. spin_unlock(&pers_lock);
  2830. mddev->level = pers->level;
  2831. strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
  2832. if (mddev->reshape_position != MaxSector &&
  2833. pers->start_reshape == NULL) {
  2834. /* This personality cannot handle reshaping... */
  2835. mddev->pers = NULL;
  2836. module_put(pers->owner);
  2837. return -EINVAL;
  2838. }
  2839. if (pers->sync_request) {
  2840. /* Warn if this is a potentially silly
  2841. * configuration.
  2842. */
  2843. char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
  2844. mdk_rdev_t *rdev2;
  2845. struct list_head *tmp2;
  2846. int warned = 0;
  2847. ITERATE_RDEV(mddev, rdev, tmp) {
  2848. ITERATE_RDEV(mddev, rdev2, tmp2) {
  2849. if (rdev < rdev2 &&
  2850. rdev->bdev->bd_contains ==
  2851. rdev2->bdev->bd_contains) {
  2852. printk(KERN_WARNING
  2853. "%s: WARNING: %s appears to be"
  2854. " on the same physical disk as"
  2855. " %s.\n",
  2856. mdname(mddev),
  2857. bdevname(rdev->bdev,b),
  2858. bdevname(rdev2->bdev,b2));
  2859. warned = 1;
  2860. }
  2861. }
  2862. }
  2863. if (warned)
  2864. printk(KERN_WARNING
  2865. "True protection against single-disk"
  2866. " failure might be compromised.\n");
  2867. }
  2868. mddev->recovery = 0;
  2869. mddev->resync_max_sectors = mddev->size << 1; /* may be over-ridden by personality */
  2870. mddev->barriers_work = 1;
  2871. mddev->ok_start_degraded = start_dirty_degraded;
  2872. if (start_readonly)
  2873. mddev->ro = 2; /* read-only, but switch on first write */
  2874. err = mddev->pers->run(mddev);
  2875. if (!err && mddev->pers->sync_request) {
  2876. err = bitmap_create(mddev);
  2877. if (err) {
  2878. printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
  2879. mdname(mddev), err);
  2880. mddev->pers->stop(mddev);
  2881. }
  2882. }
  2883. if (err) {
  2884. printk(KERN_ERR "md: pers->run() failed ...\n");
  2885. module_put(mddev->pers->owner);
  2886. mddev->pers = NULL;
  2887. bitmap_destroy(mddev);
  2888. return err;
  2889. }
  2890. if (mddev->pers->sync_request) {
  2891. if (sysfs_create_group(&mddev->kobj, &md_redundancy_group))
  2892. printk(KERN_WARNING
  2893. "md: cannot register extra attributes for %s\n",
  2894. mdname(mddev));
  2895. } else if (mddev->ro == 2) /* auto-readonly not meaningful */
  2896. mddev->ro = 0;
  2897. atomic_set(&mddev->writes_pending,0);
  2898. mddev->safemode = 0;
  2899. mddev->safemode_timer.function = md_safemode_timeout;
  2900. mddev->safemode_timer.data = (unsigned long) mddev;
  2901. mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */
  2902. mddev->in_sync = 1;
  2903. ITERATE_RDEV(mddev,rdev,tmp)
  2904. if (rdev->raid_disk >= 0) {
  2905. char nm[20];
  2906. sprintf(nm, "rd%d", rdev->raid_disk);
  2907. if (sysfs_create_link(&mddev->kobj, &rdev->kobj, nm))
  2908. printk("md: cannot register %s for %s\n",
  2909. nm, mdname(mddev));
  2910. }
  2911. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  2912. if (mddev->flags)
  2913. md_update_sb(mddev, 0);
  2914. set_capacity(disk, mddev->array_size<<1);
  2915. /* If we call blk_queue_make_request here, it will
  2916. * re-initialise max_sectors etc which may have been
  2917. * refined inside -> run. So just set the bits we need to set.
  2918. * Most initialisation happended when we called
  2919. * blk_queue_make_request(..., md_fail_request)
  2920. * earlier.
  2921. */
  2922. mddev->queue->queuedata = mddev;
  2923. mddev->queue->make_request_fn = mddev->pers->make_request;
  2924. /* If there is a partially-recovered drive we need to
  2925. * start recovery here. If we leave it to md_check_recovery,
  2926. * it will remove the drives and not do the right thing
  2927. */
  2928. if (mddev->degraded && !mddev->sync_thread) {
  2929. struct list_head *rtmp;
  2930. int spares = 0;
  2931. ITERATE_RDEV(mddev,rdev,rtmp)
  2932. if (rdev->raid_disk >= 0 &&
  2933. !test_bit(In_sync, &rdev->flags) &&
  2934. !test_bit(Faulty, &rdev->flags))
  2935. /* complete an interrupted recovery */
  2936. spares++;
  2937. if (spares && mddev->pers->sync_request) {
  2938. mddev->recovery = 0;
  2939. set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
  2940. mddev->sync_thread = md_register_thread(md_do_sync,
  2941. mddev,
  2942. "%s_resync");
  2943. if (!mddev->sync_thread) {
  2944. printk(KERN_ERR "%s: could not start resync"
  2945. " thread...\n",
  2946. mdname(mddev));
  2947. /* leave the spares where they are, it shouldn't hurt */
  2948. mddev->recovery = 0;
  2949. }
  2950. }
  2951. }
  2952. md_wakeup_thread(mddev->thread);
  2953. md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
  2954. mddev->changed = 1;
  2955. md_new_event(mddev);
  2956. kobject_uevent(&mddev->gendisk->kobj, KOBJ_CHANGE);
  2957. return 0;
  2958. }
  2959. static int restart_array(mddev_t *mddev)
  2960. {
  2961. struct gendisk *disk = mddev->gendisk;
  2962. int err;
  2963. /*
  2964. * Complain if it has no devices
  2965. */
  2966. err = -ENXIO;
  2967. if (list_empty(&mddev->disks))
  2968. goto out;
  2969. if (mddev->pers) {
  2970. err = -EBUSY;
  2971. if (!mddev->ro)
  2972. goto out;
  2973. mddev->safemode = 0;
  2974. mddev->ro = 0;
  2975. set_disk_ro(disk, 0);
  2976. printk(KERN_INFO "md: %s switched to read-write mode.\n",
  2977. mdname(mddev));
  2978. /*
  2979. * Kick recovery or resync if necessary
  2980. */
  2981. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  2982. md_wakeup_thread(mddev->thread);
  2983. md_wakeup_thread(mddev->sync_thread);
  2984. err = 0;
  2985. } else
  2986. err = -EINVAL;
  2987. out:
  2988. return err;
  2989. }
  2990. /* similar to deny_write_access, but accounts for our holding a reference
  2991. * to the file ourselves */
  2992. static int deny_bitmap_write_access(struct file * file)
  2993. {
  2994. struct inode *inode = file->f_mapping->host;
  2995. spin_lock(&inode->i_lock);
  2996. if (atomic_read(&inode->i_writecount) > 1) {
  2997. spin_unlock(&inode->i_lock);
  2998. return -ETXTBSY;
  2999. }
  3000. atomic_set(&inode->i_writecount, -1);
  3001. spin_unlock(&inode->i_lock);
  3002. return 0;
  3003. }
  3004. static void restore_bitmap_write_access(struct file *file)
  3005. {
  3006. struct inode *inode = file->f_mapping->host;
  3007. spin_lock(&inode->i_lock);
  3008. atomic_set(&inode->i_writecount, 1);
  3009. spin_unlock(&inode->i_lock);
  3010. }
  3011. /* mode:
  3012. * 0 - completely stop and dis-assemble array
  3013. * 1 - switch to readonly
  3014. * 2 - stop but do not disassemble array
  3015. */
  3016. static int do_md_stop(mddev_t * mddev, int mode)
  3017. {
  3018. int err = 0;
  3019. struct gendisk *disk = mddev->gendisk;
  3020. if (mddev->pers) {
  3021. if (atomic_read(&mddev->active)>2) {
  3022. printk("md: %s still in use.\n",mdname(mddev));
  3023. return -EBUSY;
  3024. }
  3025. if (mddev->sync_thread) {
  3026. set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
  3027. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  3028. md_unregister_thread(mddev->sync_thread);
  3029. mddev->sync_thread = NULL;
  3030. }
  3031. del_timer_sync(&mddev->safemode_timer);
  3032. invalidate_partition(disk, 0);
  3033. switch(mode) {
  3034. case 1: /* readonly */
  3035. err = -ENXIO;
  3036. if (mddev->ro==1)
  3037. goto out;
  3038. mddev->ro = 1;
  3039. break;
  3040. case 0: /* disassemble */
  3041. case 2: /* stop */
  3042. bitmap_flush(mddev);
  3043. md_super_wait(mddev);
  3044. if (mddev->ro)
  3045. set_disk_ro(disk, 0);
  3046. blk_queue_make_request(mddev->queue, md_fail_request);
  3047. mddev->pers->stop(mddev);
  3048. mddev->queue->merge_bvec_fn = NULL;
  3049. mddev->queue->unplug_fn = NULL;
  3050. mddev->queue->issue_flush_fn = NULL;
  3051. mddev->queue->backing_dev_info.congested_fn = NULL;
  3052. if (mddev->pers->sync_request)
  3053. sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
  3054. module_put(mddev->pers->owner);
  3055. mddev->pers = NULL;
  3056. set_capacity(disk, 0);
  3057. mddev->changed = 1;
  3058. if (mddev->ro)
  3059. mddev->ro = 0;
  3060. }
  3061. if (!mddev->in_sync || mddev->flags) {
  3062. /* mark array as shutdown cleanly */
  3063. mddev->in_sync = 1;
  3064. md_update_sb(mddev, 1);
  3065. }
  3066. if (mode == 1)
  3067. set_disk_ro(disk, 1);
  3068. clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
  3069. }
  3070. /*
  3071. * Free resources if final stop
  3072. */
  3073. if (mode == 0) {
  3074. mdk_rdev_t *rdev;
  3075. struct list_head *tmp;
  3076. printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
  3077. bitmap_destroy(mddev);
  3078. if (mddev->bitmap_file) {
  3079. restore_bitmap_write_access(mddev->bitmap_file);
  3080. fput(mddev->bitmap_file);
  3081. mddev->bitmap_file = NULL;
  3082. }
  3083. mddev->bitmap_offset = 0;
  3084. ITERATE_RDEV(mddev,rdev,tmp)
  3085. if (rdev->raid_disk >= 0) {
  3086. char nm[20];
  3087. sprintf(nm, "rd%d", rdev->raid_disk);
  3088. sysfs_remove_link(&mddev->kobj, nm);
  3089. }
  3090. /* make sure all delayed_delete calls have finished */
  3091. flush_scheduled_work();
  3092. export_array(mddev);
  3093. mddev->array_size = 0;
  3094. mddev->size = 0;
  3095. mddev->raid_disks = 0;
  3096. mddev->recovery_cp = 0;
  3097. mddev->reshape_position = MaxSector;
  3098. } else if (mddev->pers)
  3099. printk(KERN_INFO "md: %s switched to read-only mode.\n",
  3100. mdname(mddev));
  3101. err = 0;
  3102. md_new_event(mddev);
  3103. out:
  3104. return err;
  3105. }
  3106. #ifndef MODULE
  3107. static void autorun_array(mddev_t *mddev)
  3108. {
  3109. mdk_rdev_t *rdev;
  3110. struct list_head *tmp;
  3111. int err;
  3112. if (list_empty(&mddev->disks))
  3113. return;
  3114. printk(KERN_INFO "md: running: ");
  3115. ITERATE_RDEV(mddev,rdev,tmp) {
  3116. char b[BDEVNAME_SIZE];
  3117. printk("<%s>", bdevname(rdev->bdev,b));
  3118. }
  3119. printk("\n");
  3120. err = do_md_run (mddev);
  3121. if (err) {
  3122. printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
  3123. do_md_stop (mddev, 0);
  3124. }
  3125. }
  3126. /*
  3127. * lets try to run arrays based on all disks that have arrived
  3128. * until now. (those are in pending_raid_disks)
  3129. *
  3130. * the method: pick the first pending disk, collect all disks with
  3131. * the same UUID, remove all from the pending list and put them into
  3132. * the 'same_array' list. Then order this list based on superblock
  3133. * update time (freshest comes first), kick out 'old' disks and
  3134. * compare superblocks. If everything's fine then run it.
  3135. *
  3136. * If "unit" is allocated, then bump its reference count
  3137. */
  3138. static void autorun_devices(int part)
  3139. {
  3140. struct list_head *tmp;
  3141. mdk_rdev_t *rdev0, *rdev;
  3142. mddev_t *mddev;
  3143. char b[BDEVNAME_SIZE];
  3144. printk(KERN_INFO "md: autorun ...\n");
  3145. while (!list_empty(&pending_raid_disks)) {
  3146. int unit;
  3147. dev_t dev;
  3148. LIST_HEAD(candidates);
  3149. rdev0 = list_entry(pending_raid_disks.next,
  3150. mdk_rdev_t, same_set);
  3151. printk(KERN_INFO "md: considering %s ...\n",
  3152. bdevname(rdev0->bdev,b));
  3153. INIT_LIST_HEAD(&candidates);
  3154. ITERATE_RDEV_PENDING(rdev,tmp)
  3155. if (super_90_load(rdev, rdev0, 0) >= 0) {
  3156. printk(KERN_INFO "md: adding %s ...\n",
  3157. bdevname(rdev->bdev,b));
  3158. list_move(&rdev->same_set, &candidates);
  3159. }
  3160. /*
  3161. * now we have a set of devices, with all of them having
  3162. * mostly sane superblocks. It's time to allocate the
  3163. * mddev.
  3164. */
  3165. if (part) {
  3166. dev = MKDEV(mdp_major,
  3167. rdev0->preferred_minor << MdpMinorShift);
  3168. unit = MINOR(dev) >> MdpMinorShift;
  3169. } else {
  3170. dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
  3171. unit = MINOR(dev);
  3172. }
  3173. if (rdev0->preferred_minor != unit) {
  3174. printk(KERN_INFO "md: unit number in %s is bad: %d\n",
  3175. bdevname(rdev0->bdev, b), rdev0->preferred_minor);
  3176. break;
  3177. }
  3178. md_probe(dev, NULL, NULL);
  3179. mddev = mddev_find(dev);
  3180. if (!mddev) {
  3181. printk(KERN_ERR
  3182. "md: cannot allocate memory for md drive.\n");
  3183. break;
  3184. }
  3185. if (mddev_lock(mddev))
  3186. printk(KERN_WARNING "md: %s locked, cannot run\n",
  3187. mdname(mddev));
  3188. else if (mddev->raid_disks || mddev->major_version
  3189. || !list_empty(&mddev->disks)) {
  3190. printk(KERN_WARNING
  3191. "md: %s already running, cannot run %s\n",
  3192. mdname(mddev), bdevname(rdev0->bdev,b));
  3193. mddev_unlock(mddev);
  3194. } else {
  3195. printk(KERN_INFO "md: created %s\n", mdname(mddev));
  3196. ITERATE_RDEV_GENERIC(candidates,rdev,tmp) {
  3197. list_del_init(&rdev->same_set);
  3198. if (bind_rdev_to_array(rdev, mddev))
  3199. export_rdev(rdev);
  3200. }
  3201. autorun_array(mddev);
  3202. mddev_unlock(mddev);
  3203. }
  3204. /* on success, candidates will be empty, on error
  3205. * it won't...
  3206. */
  3207. ITERATE_RDEV_GENERIC(candidates,rdev,tmp)
  3208. export_rdev(rdev);
  3209. mddev_put(mddev);
  3210. }
  3211. printk(KERN_INFO "md: ... autorun DONE.\n");
  3212. }
  3213. #endif /* !MODULE */
  3214. static int get_version(void __user * arg)
  3215. {
  3216. mdu_version_t ver;
  3217. ver.major = MD_MAJOR_VERSION;
  3218. ver.minor = MD_MINOR_VERSION;
  3219. ver.patchlevel = MD_PATCHLEVEL_VERSION;
  3220. if (copy_to_user(arg, &ver, sizeof(ver)))
  3221. return -EFAULT;
  3222. return 0;
  3223. }
  3224. static int get_array_info(mddev_t * mddev, void __user * arg)
  3225. {
  3226. mdu_array_info_t info;
  3227. int nr,working,active,failed,spare;
  3228. mdk_rdev_t *rdev;
  3229. struct list_head *tmp;
  3230. nr=working=active=failed=spare=0;
  3231. ITERATE_RDEV(mddev,rdev,tmp) {
  3232. nr++;
  3233. if (test_bit(Faulty, &rdev->flags))
  3234. failed++;
  3235. else {
  3236. working++;
  3237. if (test_bit(In_sync, &rdev->flags))
  3238. active++;
  3239. else
  3240. spare++;
  3241. }
  3242. }
  3243. info.major_version = mddev->major_version;
  3244. info.minor_version = mddev->minor_version;
  3245. info.patch_version = MD_PATCHLEVEL_VERSION;
  3246. info.ctime = mddev->ctime;
  3247. info.level = mddev->level;
  3248. info.size = mddev->size;
  3249. if (info.size != mddev->size) /* overflow */
  3250. info.size = -1;
  3251. info.nr_disks = nr;
  3252. info.raid_disks = mddev->raid_disks;
  3253. info.md_minor = mddev->md_minor;
  3254. info.not_persistent= !mddev->persistent;
  3255. info.utime = mddev->utime;
  3256. info.state = 0;
  3257. if (mddev->in_sync)
  3258. info.state = (1<<MD_SB_CLEAN);
  3259. if (mddev->bitmap && mddev->bitmap_offset)
  3260. info.state = (1<<MD_SB_BITMAP_PRESENT);
  3261. info.active_disks = active;
  3262. info.working_disks = working;
  3263. info.failed_disks = failed;
  3264. info.spare_disks = spare;
  3265. info.layout = mddev->layout;
  3266. info.chunk_size = mddev->chunk_size;
  3267. if (copy_to_user(arg, &info, sizeof(info)))
  3268. return -EFAULT;
  3269. return 0;
  3270. }
  3271. static int get_bitmap_file(mddev_t * mddev, void __user * arg)
  3272. {
  3273. mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
  3274. char *ptr, *buf = NULL;
  3275. int err = -ENOMEM;
  3276. md_allow_write(mddev);
  3277. file = kmalloc(sizeof(*file), GFP_KERNEL);
  3278. if (!file)
  3279. goto out;
  3280. /* bitmap disabled, zero the first byte and copy out */
  3281. if (!mddev->bitmap || !mddev->bitmap->file) {
  3282. file->pathname[0] = '\0';
  3283. goto copy_out;
  3284. }
  3285. buf = kmalloc(sizeof(file->pathname), GFP_KERNEL);
  3286. if (!buf)
  3287. goto out;
  3288. ptr = file_path(mddev->bitmap->file, buf, sizeof(file->pathname));
  3289. if (!ptr)
  3290. goto out;
  3291. strcpy(file->pathname, ptr);
  3292. copy_out:
  3293. err = 0;
  3294. if (copy_to_user(arg, file, sizeof(*file)))
  3295. err = -EFAULT;
  3296. out:
  3297. kfree(buf);
  3298. kfree(file);
  3299. return err;
  3300. }
  3301. static int get_disk_info(mddev_t * mddev, void __user * arg)
  3302. {
  3303. mdu_disk_info_t info;
  3304. unsigned int nr;
  3305. mdk_rdev_t *rdev;
  3306. if (copy_from_user(&info, arg, sizeof(info)))
  3307. return -EFAULT;
  3308. nr = info.number;
  3309. rdev = find_rdev_nr(mddev, nr);
  3310. if (rdev) {
  3311. info.major = MAJOR(rdev->bdev->bd_dev);
  3312. info.minor = MINOR(rdev->bdev->bd_dev);
  3313. info.raid_disk = rdev->raid_disk;
  3314. info.state = 0;
  3315. if (test_bit(Faulty, &rdev->flags))
  3316. info.state |= (1<<MD_DISK_FAULTY);
  3317. else if (test_bit(In_sync, &rdev->flags)) {
  3318. info.state |= (1<<MD_DISK_ACTIVE);
  3319. info.state |= (1<<MD_DISK_SYNC);
  3320. }
  3321. if (test_bit(WriteMostly, &rdev->flags))
  3322. info.state |= (1<<MD_DISK_WRITEMOSTLY);
  3323. } else {
  3324. info.major = info.minor = 0;
  3325. info.raid_disk = -1;
  3326. info.state = (1<<MD_DISK_REMOVED);
  3327. }
  3328. if (copy_to_user(arg, &info, sizeof(info)))
  3329. return -EFAULT;
  3330. return 0;
  3331. }
  3332. static int add_new_disk(mddev_t * mddev, mdu_disk_info_t *info)
  3333. {
  3334. char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
  3335. mdk_rdev_t *rdev;
  3336. dev_t dev = MKDEV(info->major,info->minor);
  3337. if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
  3338. return -EOVERFLOW;
  3339. if (!mddev->raid_disks) {
  3340. int err;
  3341. /* expecting a device which has a superblock */
  3342. rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
  3343. if (IS_ERR(rdev)) {
  3344. printk(KERN_WARNING
  3345. "md: md_import_device returned %ld\n",
  3346. PTR_ERR(rdev));
  3347. return PTR_ERR(rdev);
  3348. }
  3349. if (!list_empty(&mddev->disks)) {
  3350. mdk_rdev_t *rdev0 = list_entry(mddev->disks.next,
  3351. mdk_rdev_t, same_set);
  3352. int err = super_types[mddev->major_version]
  3353. .load_super(rdev, rdev0, mddev->minor_version);
  3354. if (err < 0) {
  3355. printk(KERN_WARNING
  3356. "md: %s has different UUID to %s\n",
  3357. bdevname(rdev->bdev,b),
  3358. bdevname(rdev0->bdev,b2));
  3359. export_rdev(rdev);
  3360. return -EINVAL;
  3361. }
  3362. }
  3363. err = bind_rdev_to_array(rdev, mddev);
  3364. if (err)
  3365. export_rdev(rdev);
  3366. return err;
  3367. }
  3368. /*
  3369. * add_new_disk can be used once the array is assembled
  3370. * to add "hot spares". They must already have a superblock
  3371. * written
  3372. */
  3373. if (mddev->pers) {
  3374. int err;
  3375. if (!mddev->pers->hot_add_disk) {
  3376. printk(KERN_WARNING
  3377. "%s: personality does not support diskops!\n",
  3378. mdname(mddev));
  3379. return -EINVAL;
  3380. }
  3381. if (mddev->persistent)
  3382. rdev = md_import_device(dev, mddev->major_version,
  3383. mddev->minor_version);
  3384. else
  3385. rdev = md_import_device(dev, -1, -1);
  3386. if (IS_ERR(rdev)) {
  3387. printk(KERN_WARNING
  3388. "md: md_import_device returned %ld\n",
  3389. PTR_ERR(rdev));
  3390. return PTR_ERR(rdev);
  3391. }
  3392. /* set save_raid_disk if appropriate */
  3393. if (!mddev->persistent) {
  3394. if (info->state & (1<<MD_DISK_SYNC) &&
  3395. info->raid_disk < mddev->raid_disks)
  3396. rdev->raid_disk = info->raid_disk;
  3397. else
  3398. rdev->raid_disk = -1;
  3399. } else
  3400. super_types[mddev->major_version].
  3401. validate_super(mddev, rdev);
  3402. rdev->saved_raid_disk = rdev->raid_disk;
  3403. clear_bit(In_sync, &rdev->flags); /* just to be sure */
  3404. if (info->state & (1<<MD_DISK_WRITEMOSTLY))
  3405. set_bit(WriteMostly, &rdev->flags);
  3406. rdev->raid_disk = -1;
  3407. err = bind_rdev_to_array(rdev, mddev);
  3408. if (!err && !mddev->pers->hot_remove_disk) {
  3409. /* If there is hot_add_disk but no hot_remove_disk
  3410. * then added disks for geometry changes,
  3411. * and should be added immediately.
  3412. */
  3413. super_types[mddev->major_version].
  3414. validate_super(mddev, rdev);
  3415. err = mddev->pers->hot_add_disk(mddev, rdev);
  3416. if (err)
  3417. unbind_rdev_from_array(rdev);
  3418. }
  3419. if (err)
  3420. export_rdev(rdev);
  3421. md_update_sb(mddev, 1);
  3422. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  3423. md_wakeup_thread(mddev->thread);
  3424. return err;
  3425. }
  3426. /* otherwise, add_new_disk is only allowed
  3427. * for major_version==0 superblocks
  3428. */
  3429. if (mddev->major_version != 0) {
  3430. printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
  3431. mdname(mddev));
  3432. return -EINVAL;
  3433. }
  3434. if (!(info->state & (1<<MD_DISK_FAULTY))) {
  3435. int err;
  3436. rdev = md_import_device (dev, -1, 0);
  3437. if (IS_ERR(rdev)) {
  3438. printk(KERN_WARNING
  3439. "md: error, md_import_device() returned %ld\n",
  3440. PTR_ERR(rdev));
  3441. return PTR_ERR(rdev);
  3442. }
  3443. rdev->desc_nr = info->number;
  3444. if (info->raid_disk < mddev->raid_disks)
  3445. rdev->raid_disk = info->raid_disk;
  3446. else
  3447. rdev->raid_disk = -1;
  3448. rdev->flags = 0;
  3449. if (rdev->raid_disk < mddev->raid_disks)
  3450. if (info->state & (1<<MD_DISK_SYNC))
  3451. set_bit(In_sync, &rdev->flags);
  3452. if (info->state & (1<<MD_DISK_WRITEMOSTLY))
  3453. set_bit(WriteMostly, &rdev->flags);
  3454. if (!mddev->persistent) {
  3455. printk(KERN_INFO "md: nonpersistent superblock ...\n");
  3456. rdev->sb_offset = rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
  3457. } else
  3458. rdev->sb_offset = calc_dev_sboffset(rdev->bdev);
  3459. rdev->size = calc_dev_size(rdev, mddev->chunk_size);
  3460. err = bind_rdev_to_array(rdev, mddev);
  3461. if (err) {
  3462. export_rdev(rdev);
  3463. return err;
  3464. }
  3465. }
  3466. return 0;
  3467. }
  3468. static int hot_remove_disk(mddev_t * mddev, dev_t dev)
  3469. {
  3470. char b[BDEVNAME_SIZE];
  3471. mdk_rdev_t *rdev;
  3472. if (!mddev->pers)
  3473. return -ENODEV;
  3474. rdev = find_rdev(mddev, dev);
  3475. if (!rdev)
  3476. return -ENXIO;
  3477. if (rdev->raid_disk >= 0)
  3478. goto busy;
  3479. kick_rdev_from_array(rdev);
  3480. md_update_sb(mddev, 1);
  3481. md_new_event(mddev);
  3482. return 0;
  3483. busy:
  3484. printk(KERN_WARNING "md: cannot remove active disk %s from %s ... \n",
  3485. bdevname(rdev->bdev,b), mdname(mddev));
  3486. return -EBUSY;
  3487. }
  3488. static int hot_add_disk(mddev_t * mddev, dev_t dev)
  3489. {
  3490. char b[BDEVNAME_SIZE];
  3491. int err;
  3492. unsigned int size;
  3493. mdk_rdev_t *rdev;
  3494. if (!mddev->pers)
  3495. return -ENODEV;
  3496. if (mddev->major_version != 0) {
  3497. printk(KERN_WARNING "%s: HOT_ADD may only be used with"
  3498. " version-0 superblocks.\n",
  3499. mdname(mddev));
  3500. return -EINVAL;
  3501. }
  3502. if (!mddev->pers->hot_add_disk) {
  3503. printk(KERN_WARNING
  3504. "%s: personality does not support diskops!\n",
  3505. mdname(mddev));
  3506. return -EINVAL;
  3507. }
  3508. rdev = md_import_device (dev, -1, 0);
  3509. if (IS_ERR(rdev)) {
  3510. printk(KERN_WARNING
  3511. "md: error, md_import_device() returned %ld\n",
  3512. PTR_ERR(rdev));
  3513. return -EINVAL;
  3514. }
  3515. if (mddev->persistent)
  3516. rdev->sb_offset = calc_dev_sboffset(rdev->bdev);
  3517. else
  3518. rdev->sb_offset =
  3519. rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
  3520. size = calc_dev_size(rdev, mddev->chunk_size);
  3521. rdev->size = size;
  3522. if (test_bit(Faulty, &rdev->flags)) {
  3523. printk(KERN_WARNING
  3524. "md: can not hot-add faulty %s disk to %s!\n",
  3525. bdevname(rdev->bdev,b), mdname(mddev));
  3526. err = -EINVAL;
  3527. goto abort_export;
  3528. }
  3529. clear_bit(In_sync, &rdev->flags);
  3530. rdev->desc_nr = -1;
  3531. rdev->saved_raid_disk = -1;
  3532. err = bind_rdev_to_array(rdev, mddev);
  3533. if (err)
  3534. goto abort_export;
  3535. /*
  3536. * The rest should better be atomic, we can have disk failures
  3537. * noticed in interrupt contexts ...
  3538. */
  3539. if (rdev->desc_nr == mddev->max_disks) {
  3540. printk(KERN_WARNING "%s: can not hot-add to full array!\n",
  3541. mdname(mddev));
  3542. err = -EBUSY;
  3543. goto abort_unbind_export;
  3544. }
  3545. rdev->raid_disk = -1;
  3546. md_update_sb(mddev, 1);
  3547. /*
  3548. * Kick recovery, maybe this spare has to be added to the
  3549. * array immediately.
  3550. */
  3551. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  3552. md_wakeup_thread(mddev->thread);
  3553. md_new_event(mddev);
  3554. return 0;
  3555. abort_unbind_export:
  3556. unbind_rdev_from_array(rdev);
  3557. abort_export:
  3558. export_rdev(rdev);
  3559. return err;
  3560. }
  3561. static int set_bitmap_file(mddev_t *mddev, int fd)
  3562. {
  3563. int err;
  3564. if (mddev->pers) {
  3565. if (!mddev->pers->quiesce)
  3566. return -EBUSY;
  3567. if (mddev->recovery || mddev->sync_thread)
  3568. return -EBUSY;
  3569. /* we should be able to change the bitmap.. */
  3570. }
  3571. if (fd >= 0) {
  3572. if (mddev->bitmap)
  3573. return -EEXIST; /* cannot add when bitmap is present */
  3574. mddev->bitmap_file = fget(fd);
  3575. if (mddev->bitmap_file == NULL) {
  3576. printk(KERN_ERR "%s: error: failed to get bitmap file\n",
  3577. mdname(mddev));
  3578. return -EBADF;
  3579. }
  3580. err = deny_bitmap_write_access(mddev->bitmap_file);
  3581. if (err) {
  3582. printk(KERN_ERR "%s: error: bitmap file is already in use\n",
  3583. mdname(mddev));
  3584. fput(mddev->bitmap_file);
  3585. mddev->bitmap_file = NULL;
  3586. return err;
  3587. }
  3588. mddev->bitmap_offset = 0; /* file overrides offset */
  3589. } else if (mddev->bitmap == NULL)
  3590. return -ENOENT; /* cannot remove what isn't there */
  3591. err = 0;
  3592. if (mddev->pers) {
  3593. mddev->pers->quiesce(mddev, 1);
  3594. if (fd >= 0)
  3595. err = bitmap_create(mddev);
  3596. if (fd < 0 || err) {
  3597. bitmap_destroy(mddev);
  3598. fd = -1; /* make sure to put the file */
  3599. }
  3600. mddev->pers->quiesce(mddev, 0);
  3601. }
  3602. if (fd < 0) {
  3603. if (mddev->bitmap_file) {
  3604. restore_bitmap_write_access(mddev->bitmap_file);
  3605. fput(mddev->bitmap_file);
  3606. }
  3607. mddev->bitmap_file = NULL;
  3608. }
  3609. return err;
  3610. }
  3611. /*
  3612. * set_array_info is used two different ways
  3613. * The original usage is when creating a new array.
  3614. * In this usage, raid_disks is > 0 and it together with
  3615. * level, size, not_persistent,layout,chunksize determine the
  3616. * shape of the array.
  3617. * This will always create an array with a type-0.90.0 superblock.
  3618. * The newer usage is when assembling an array.
  3619. * In this case raid_disks will be 0, and the major_version field is
  3620. * use to determine which style super-blocks are to be found on the devices.
  3621. * The minor and patch _version numbers are also kept incase the
  3622. * super_block handler wishes to interpret them.
  3623. */
  3624. static int set_array_info(mddev_t * mddev, mdu_array_info_t *info)
  3625. {
  3626. if (info->raid_disks == 0) {
  3627. /* just setting version number for superblock loading */
  3628. if (info->major_version < 0 ||
  3629. info->major_version >= ARRAY_SIZE(super_types) ||
  3630. super_types[info->major_version].name == NULL) {
  3631. /* maybe try to auto-load a module? */
  3632. printk(KERN_INFO
  3633. "md: superblock version %d not known\n",
  3634. info->major_version);
  3635. return -EINVAL;
  3636. }
  3637. mddev->major_version = info->major_version;
  3638. mddev->minor_version = info->minor_version;
  3639. mddev->patch_version = info->patch_version;
  3640. mddev->persistent = !info->not_persistent;
  3641. return 0;
  3642. }
  3643. mddev->major_version = MD_MAJOR_VERSION;
  3644. mddev->minor_version = MD_MINOR_VERSION;
  3645. mddev->patch_version = MD_PATCHLEVEL_VERSION;
  3646. mddev->ctime = get_seconds();
  3647. mddev->level = info->level;
  3648. mddev->clevel[0] = 0;
  3649. mddev->size = info->size;
  3650. mddev->raid_disks = info->raid_disks;
  3651. /* don't set md_minor, it is determined by which /dev/md* was
  3652. * openned
  3653. */
  3654. if (info->state & (1<<MD_SB_CLEAN))
  3655. mddev->recovery_cp = MaxSector;
  3656. else
  3657. mddev->recovery_cp = 0;
  3658. mddev->persistent = ! info->not_persistent;
  3659. mddev->layout = info->layout;
  3660. mddev->chunk_size = info->chunk_size;
  3661. mddev->max_disks = MD_SB_DISKS;
  3662. mddev->flags = 0;
  3663. set_bit(MD_CHANGE_DEVS, &mddev->flags);
  3664. mddev->default_bitmap_offset = MD_SB_BYTES >> 9;
  3665. mddev->bitmap_offset = 0;
  3666. mddev->reshape_position = MaxSector;
  3667. /*
  3668. * Generate a 128 bit UUID
  3669. */
  3670. get_random_bytes(mddev->uuid, 16);
  3671. mddev->new_level = mddev->level;
  3672. mddev->new_chunk = mddev->chunk_size;
  3673. mddev->new_layout = mddev->layout;
  3674. mddev->delta_disks = 0;
  3675. return 0;
  3676. }
  3677. static int update_size(mddev_t *mddev, unsigned long size)
  3678. {
  3679. mdk_rdev_t * rdev;
  3680. int rv;
  3681. struct list_head *tmp;
  3682. int fit = (size == 0);
  3683. if (mddev->pers->resize == NULL)
  3684. return -EINVAL;
  3685. /* The "size" is the amount of each device that is used.
  3686. * This can only make sense for arrays with redundancy.
  3687. * linear and raid0 always use whatever space is available
  3688. * We can only consider changing the size if no resync
  3689. * or reconstruction is happening, and if the new size
  3690. * is acceptable. It must fit before the sb_offset or,
  3691. * if that is <data_offset, it must fit before the
  3692. * size of each device.
  3693. * If size is zero, we find the largest size that fits.
  3694. */
  3695. if (mddev->sync_thread)
  3696. return -EBUSY;
  3697. ITERATE_RDEV(mddev,rdev,tmp) {
  3698. sector_t avail;
  3699. avail = rdev->size * 2;
  3700. if (fit && (size == 0 || size > avail/2))
  3701. size = avail/2;
  3702. if (avail < ((sector_t)size << 1))
  3703. return -ENOSPC;
  3704. }
  3705. rv = mddev->pers->resize(mddev, (sector_t)size *2);
  3706. if (!rv) {
  3707. struct block_device *bdev;
  3708. bdev = bdget_disk(mddev->gendisk, 0);
  3709. if (bdev) {
  3710. mutex_lock(&bdev->bd_inode->i_mutex);
  3711. i_size_write(bdev->bd_inode, (loff_t)mddev->array_size << 10);
  3712. mutex_unlock(&bdev->bd_inode->i_mutex);
  3713. bdput(bdev);
  3714. }
  3715. }
  3716. return rv;
  3717. }
  3718. static int update_raid_disks(mddev_t *mddev, int raid_disks)
  3719. {
  3720. int rv;
  3721. /* change the number of raid disks */
  3722. if (mddev->pers->check_reshape == NULL)
  3723. return -EINVAL;
  3724. if (raid_disks <= 0 ||
  3725. raid_disks >= mddev->max_disks)
  3726. return -EINVAL;
  3727. if (mddev->sync_thread || mddev->reshape_position != MaxSector)
  3728. return -EBUSY;
  3729. mddev->delta_disks = raid_disks - mddev->raid_disks;
  3730. rv = mddev->pers->check_reshape(mddev);
  3731. return rv;
  3732. }
  3733. /*
  3734. * update_array_info is used to change the configuration of an
  3735. * on-line array.
  3736. * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
  3737. * fields in the info are checked against the array.
  3738. * Any differences that cannot be handled will cause an error.
  3739. * Normally, only one change can be managed at a time.
  3740. */
  3741. static int update_array_info(mddev_t *mddev, mdu_array_info_t *info)
  3742. {
  3743. int rv = 0;
  3744. int cnt = 0;
  3745. int state = 0;
  3746. /* calculate expected state,ignoring low bits */
  3747. if (mddev->bitmap && mddev->bitmap_offset)
  3748. state |= (1 << MD_SB_BITMAP_PRESENT);
  3749. if (mddev->major_version != info->major_version ||
  3750. mddev->minor_version != info->minor_version ||
  3751. /* mddev->patch_version != info->patch_version || */
  3752. mddev->ctime != info->ctime ||
  3753. mddev->level != info->level ||
  3754. /* mddev->layout != info->layout || */
  3755. !mddev->persistent != info->not_persistent||
  3756. mddev->chunk_size != info->chunk_size ||
  3757. /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
  3758. ((state^info->state) & 0xfffffe00)
  3759. )
  3760. return -EINVAL;
  3761. /* Check there is only one change */
  3762. if (info->size >= 0 && mddev->size != info->size) cnt++;
  3763. if (mddev->raid_disks != info->raid_disks) cnt++;
  3764. if (mddev->layout != info->layout) cnt++;
  3765. if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) cnt++;
  3766. if (cnt == 0) return 0;
  3767. if (cnt > 1) return -EINVAL;
  3768. if (mddev->layout != info->layout) {
  3769. /* Change layout
  3770. * we don't need to do anything at the md level, the
  3771. * personality will take care of it all.
  3772. */
  3773. if (mddev->pers->reconfig == NULL)
  3774. return -EINVAL;
  3775. else
  3776. return mddev->pers->reconfig(mddev, info->layout, -1);
  3777. }
  3778. if (info->size >= 0 && mddev->size != info->size)
  3779. rv = update_size(mddev, info->size);
  3780. if (mddev->raid_disks != info->raid_disks)
  3781. rv = update_raid_disks(mddev, info->raid_disks);
  3782. if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
  3783. if (mddev->pers->quiesce == NULL)
  3784. return -EINVAL;
  3785. if (mddev->recovery || mddev->sync_thread)
  3786. return -EBUSY;
  3787. if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
  3788. /* add the bitmap */
  3789. if (mddev->bitmap)
  3790. return -EEXIST;
  3791. if (mddev->default_bitmap_offset == 0)
  3792. return -EINVAL;
  3793. mddev->bitmap_offset = mddev->default_bitmap_offset;
  3794. mddev->pers->quiesce(mddev, 1);
  3795. rv = bitmap_create(mddev);
  3796. if (rv)
  3797. bitmap_destroy(mddev);
  3798. mddev->pers->quiesce(mddev, 0);
  3799. } else {
  3800. /* remove the bitmap */
  3801. if (!mddev->bitmap)
  3802. return -ENOENT;
  3803. if (mddev->bitmap->file)
  3804. return -EINVAL;
  3805. mddev->pers->quiesce(mddev, 1);
  3806. bitmap_destroy(mddev);
  3807. mddev->pers->quiesce(mddev, 0);
  3808. mddev->bitmap_offset = 0;
  3809. }
  3810. }
  3811. md_update_sb(mddev, 1);
  3812. return rv;
  3813. }
  3814. static int set_disk_faulty(mddev_t *mddev, dev_t dev)
  3815. {
  3816. mdk_rdev_t *rdev;
  3817. if (mddev->pers == NULL)
  3818. return -ENODEV;
  3819. rdev = find_rdev(mddev, dev);
  3820. if (!rdev)
  3821. return -ENODEV;
  3822. md_error(mddev, rdev);
  3823. return 0;
  3824. }
  3825. static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo)
  3826. {
  3827. mddev_t *mddev = bdev->bd_disk->private_data;
  3828. geo->heads = 2;
  3829. geo->sectors = 4;
  3830. geo->cylinders = get_capacity(mddev->gendisk) / 8;
  3831. return 0;
  3832. }
  3833. static int md_ioctl(struct inode *inode, struct file *file,
  3834. unsigned int cmd, unsigned long arg)
  3835. {
  3836. int err = 0;
  3837. void __user *argp = (void __user *)arg;
  3838. mddev_t *mddev = NULL;
  3839. if (!capable(CAP_SYS_ADMIN))
  3840. return -EACCES;
  3841. /*
  3842. * Commands dealing with the RAID driver but not any
  3843. * particular array:
  3844. */
  3845. switch (cmd)
  3846. {
  3847. case RAID_VERSION:
  3848. err = get_version(argp);
  3849. goto done;
  3850. case PRINT_RAID_DEBUG:
  3851. err = 0;
  3852. md_print_devices();
  3853. goto done;
  3854. #ifndef MODULE
  3855. case RAID_AUTORUN:
  3856. err = 0;
  3857. autostart_arrays(arg);
  3858. goto done;
  3859. #endif
  3860. default:;
  3861. }
  3862. /*
  3863. * Commands creating/starting a new array:
  3864. */
  3865. mddev = inode->i_bdev->bd_disk->private_data;
  3866. if (!mddev) {
  3867. BUG();
  3868. goto abort;
  3869. }
  3870. err = mddev_lock(mddev);
  3871. if (err) {
  3872. printk(KERN_INFO
  3873. "md: ioctl lock interrupted, reason %d, cmd %d\n",
  3874. err, cmd);
  3875. goto abort;
  3876. }
  3877. switch (cmd)
  3878. {
  3879. case SET_ARRAY_INFO:
  3880. {
  3881. mdu_array_info_t info;
  3882. if (!arg)
  3883. memset(&info, 0, sizeof(info));
  3884. else if (copy_from_user(&info, argp, sizeof(info))) {
  3885. err = -EFAULT;
  3886. goto abort_unlock;
  3887. }
  3888. if (mddev->pers) {
  3889. err = update_array_info(mddev, &info);
  3890. if (err) {
  3891. printk(KERN_WARNING "md: couldn't update"
  3892. " array info. %d\n", err);
  3893. goto abort_unlock;
  3894. }
  3895. goto done_unlock;
  3896. }
  3897. if (!list_empty(&mddev->disks)) {
  3898. printk(KERN_WARNING
  3899. "md: array %s already has disks!\n",
  3900. mdname(mddev));
  3901. err = -EBUSY;
  3902. goto abort_unlock;
  3903. }
  3904. if (mddev->raid_disks) {
  3905. printk(KERN_WARNING
  3906. "md: array %s already initialised!\n",
  3907. mdname(mddev));
  3908. err = -EBUSY;
  3909. goto abort_unlock;
  3910. }
  3911. err = set_array_info(mddev, &info);
  3912. if (err) {
  3913. printk(KERN_WARNING "md: couldn't set"
  3914. " array info. %d\n", err);
  3915. goto abort_unlock;
  3916. }
  3917. }
  3918. goto done_unlock;
  3919. default:;
  3920. }
  3921. /*
  3922. * Commands querying/configuring an existing array:
  3923. */
  3924. /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
  3925. * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */
  3926. if (!mddev->raid_disks && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
  3927. && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE
  3928. && cmd != GET_BITMAP_FILE) {
  3929. err = -ENODEV;
  3930. goto abort_unlock;
  3931. }
  3932. /*
  3933. * Commands even a read-only array can execute:
  3934. */
  3935. switch (cmd)
  3936. {
  3937. case GET_ARRAY_INFO:
  3938. err = get_array_info(mddev, argp);
  3939. goto done_unlock;
  3940. case GET_BITMAP_FILE:
  3941. err = get_bitmap_file(mddev, argp);
  3942. goto done_unlock;
  3943. case GET_DISK_INFO:
  3944. err = get_disk_info(mddev, argp);
  3945. goto done_unlock;
  3946. case RESTART_ARRAY_RW:
  3947. err = restart_array(mddev);
  3948. goto done_unlock;
  3949. case STOP_ARRAY:
  3950. err = do_md_stop (mddev, 0);
  3951. goto done_unlock;
  3952. case STOP_ARRAY_RO:
  3953. err = do_md_stop (mddev, 1);
  3954. goto done_unlock;
  3955. /*
  3956. * We have a problem here : there is no easy way to give a CHS
  3957. * virtual geometry. We currently pretend that we have a 2 heads
  3958. * 4 sectors (with a BIG number of cylinders...). This drives
  3959. * dosfs just mad... ;-)
  3960. */
  3961. }
  3962. /*
  3963. * The remaining ioctls are changing the state of the
  3964. * superblock, so we do not allow them on read-only arrays.
  3965. * However non-MD ioctls (e.g. get-size) will still come through
  3966. * here and hit the 'default' below, so only disallow
  3967. * 'md' ioctls, and switch to rw mode if started auto-readonly.
  3968. */
  3969. if (_IOC_TYPE(cmd) == MD_MAJOR &&
  3970. mddev->ro && mddev->pers) {
  3971. if (mddev->ro == 2) {
  3972. mddev->ro = 0;
  3973. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  3974. md_wakeup_thread(mddev->thread);
  3975. } else {
  3976. err = -EROFS;
  3977. goto abort_unlock;
  3978. }
  3979. }
  3980. switch (cmd)
  3981. {
  3982. case ADD_NEW_DISK:
  3983. {
  3984. mdu_disk_info_t info;
  3985. if (copy_from_user(&info, argp, sizeof(info)))
  3986. err = -EFAULT;
  3987. else
  3988. err = add_new_disk(mddev, &info);
  3989. goto done_unlock;
  3990. }
  3991. case HOT_REMOVE_DISK:
  3992. err = hot_remove_disk(mddev, new_decode_dev(arg));
  3993. goto done_unlock;
  3994. case HOT_ADD_DISK:
  3995. err = hot_add_disk(mddev, new_decode_dev(arg));
  3996. goto done_unlock;
  3997. case SET_DISK_FAULTY:
  3998. err = set_disk_faulty(mddev, new_decode_dev(arg));
  3999. goto done_unlock;
  4000. case RUN_ARRAY:
  4001. err = do_md_run (mddev);
  4002. goto done_unlock;
  4003. case SET_BITMAP_FILE:
  4004. err = set_bitmap_file(mddev, (int)arg);
  4005. goto done_unlock;
  4006. default:
  4007. err = -EINVAL;
  4008. goto abort_unlock;
  4009. }
  4010. done_unlock:
  4011. abort_unlock:
  4012. mddev_unlock(mddev);
  4013. return err;
  4014. done:
  4015. if (err)
  4016. MD_BUG();
  4017. abort:
  4018. return err;
  4019. }
  4020. static int md_open(struct inode *inode, struct file *file)
  4021. {
  4022. /*
  4023. * Succeed if we can lock the mddev, which confirms that
  4024. * it isn't being stopped right now.
  4025. */
  4026. mddev_t *mddev = inode->i_bdev->bd_disk->private_data;
  4027. int err;
  4028. if ((err = mutex_lock_interruptible_nested(&mddev->reconfig_mutex, 1)))
  4029. goto out;
  4030. err = 0;
  4031. mddev_get(mddev);
  4032. mddev_unlock(mddev);
  4033. check_disk_change(inode->i_bdev);
  4034. out:
  4035. return err;
  4036. }
  4037. static int md_release(struct inode *inode, struct file * file)
  4038. {
  4039. mddev_t *mddev = inode->i_bdev->bd_disk->private_data;
  4040. BUG_ON(!mddev);
  4041. mddev_put(mddev);
  4042. return 0;
  4043. }
  4044. static int md_media_changed(struct gendisk *disk)
  4045. {
  4046. mddev_t *mddev = disk->private_data;
  4047. return mddev->changed;
  4048. }
  4049. static int md_revalidate(struct gendisk *disk)
  4050. {
  4051. mddev_t *mddev = disk->private_data;
  4052. mddev->changed = 0;
  4053. return 0;
  4054. }
  4055. static struct block_device_operations md_fops =
  4056. {
  4057. .owner = THIS_MODULE,
  4058. .open = md_open,
  4059. .release = md_release,
  4060. .ioctl = md_ioctl,
  4061. .getgeo = md_getgeo,
  4062. .media_changed = md_media_changed,
  4063. .revalidate_disk= md_revalidate,
  4064. };
  4065. static int md_thread(void * arg)
  4066. {
  4067. mdk_thread_t *thread = arg;
  4068. /*
  4069. * md_thread is a 'system-thread', it's priority should be very
  4070. * high. We avoid resource deadlocks individually in each
  4071. * raid personality. (RAID5 does preallocation) We also use RR and
  4072. * the very same RT priority as kswapd, thus we will never get
  4073. * into a priority inversion deadlock.
  4074. *
  4075. * we definitely have to have equal or higher priority than
  4076. * bdflush, otherwise bdflush will deadlock if there are too
  4077. * many dirty RAID5 blocks.
  4078. */
  4079. allow_signal(SIGKILL);
  4080. while (!kthread_should_stop()) {
  4081. /* We need to wait INTERRUPTIBLE so that
  4082. * we don't add to the load-average.
  4083. * That means we need to be sure no signals are
  4084. * pending
  4085. */
  4086. if (signal_pending(current))
  4087. flush_signals(current);
  4088. wait_event_interruptible_timeout
  4089. (thread->wqueue,
  4090. test_bit(THREAD_WAKEUP, &thread->flags)
  4091. || kthread_should_stop(),
  4092. thread->timeout);
  4093. clear_bit(THREAD_WAKEUP, &thread->flags);
  4094. thread->run(thread->mddev);
  4095. }
  4096. return 0;
  4097. }
  4098. void md_wakeup_thread(mdk_thread_t *thread)
  4099. {
  4100. if (thread) {
  4101. dprintk("md: waking up MD thread %s.\n", thread->tsk->comm);
  4102. set_bit(THREAD_WAKEUP, &thread->flags);
  4103. wake_up(&thread->wqueue);
  4104. }
  4105. }
  4106. mdk_thread_t *md_register_thread(void (*run) (mddev_t *), mddev_t *mddev,
  4107. const char *name)
  4108. {
  4109. mdk_thread_t *thread;
  4110. thread = kzalloc(sizeof(mdk_thread_t), GFP_KERNEL);
  4111. if (!thread)
  4112. return NULL;
  4113. init_waitqueue_head(&thread->wqueue);
  4114. thread->run = run;
  4115. thread->mddev = mddev;
  4116. thread->timeout = MAX_SCHEDULE_TIMEOUT;
  4117. thread->tsk = kthread_run(md_thread, thread, name, mdname(thread->mddev));
  4118. if (IS_ERR(thread->tsk)) {
  4119. kfree(thread);
  4120. return NULL;
  4121. }
  4122. return thread;
  4123. }
  4124. void md_unregister_thread(mdk_thread_t *thread)
  4125. {
  4126. dprintk("interrupting MD-thread pid %d\n", thread->tsk->pid);
  4127. kthread_stop(thread->tsk);
  4128. kfree(thread);
  4129. }
  4130. void md_error(mddev_t *mddev, mdk_rdev_t *rdev)
  4131. {
  4132. if (!mddev) {
  4133. MD_BUG();
  4134. return;
  4135. }
  4136. if (!rdev || test_bit(Faulty, &rdev->flags))
  4137. return;
  4138. /*
  4139. dprintk("md_error dev:%s, rdev:(%d:%d), (caller: %p,%p,%p,%p).\n",
  4140. mdname(mddev),
  4141. MAJOR(rdev->bdev->bd_dev), MINOR(rdev->bdev->bd_dev),
  4142. __builtin_return_address(0),__builtin_return_address(1),
  4143. __builtin_return_address(2),__builtin_return_address(3));
  4144. */
  4145. if (!mddev->pers)
  4146. return;
  4147. if (!mddev->pers->error_handler)
  4148. return;
  4149. mddev->pers->error_handler(mddev,rdev);
  4150. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  4151. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  4152. md_wakeup_thread(mddev->thread);
  4153. md_new_event_inintr(mddev);
  4154. }
  4155. /* seq_file implementation /proc/mdstat */
  4156. static void status_unused(struct seq_file *seq)
  4157. {
  4158. int i = 0;
  4159. mdk_rdev_t *rdev;
  4160. struct list_head *tmp;
  4161. seq_printf(seq, "unused devices: ");
  4162. ITERATE_RDEV_PENDING(rdev,tmp) {
  4163. char b[BDEVNAME_SIZE];
  4164. i++;
  4165. seq_printf(seq, "%s ",
  4166. bdevname(rdev->bdev,b));
  4167. }
  4168. if (!i)
  4169. seq_printf(seq, "<none>");
  4170. seq_printf(seq, "\n");
  4171. }
  4172. static void status_resync(struct seq_file *seq, mddev_t * mddev)
  4173. {
  4174. sector_t max_blocks, resync, res;
  4175. unsigned long dt, db, rt;
  4176. int scale;
  4177. unsigned int per_milli;
  4178. resync = (mddev->curr_resync - atomic_read(&mddev->recovery_active))/2;
  4179. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
  4180. max_blocks = mddev->resync_max_sectors >> 1;
  4181. else
  4182. max_blocks = mddev->size;
  4183. /*
  4184. * Should not happen.
  4185. */
  4186. if (!max_blocks) {
  4187. MD_BUG();
  4188. return;
  4189. }
  4190. /* Pick 'scale' such that (resync>>scale)*1000 will fit
  4191. * in a sector_t, and (max_blocks>>scale) will fit in a
  4192. * u32, as those are the requirements for sector_div.
  4193. * Thus 'scale' must be at least 10
  4194. */
  4195. scale = 10;
  4196. if (sizeof(sector_t) > sizeof(unsigned long)) {
  4197. while ( max_blocks/2 > (1ULL<<(scale+32)))
  4198. scale++;
  4199. }
  4200. res = (resync>>scale)*1000;
  4201. sector_div(res, (u32)((max_blocks>>scale)+1));
  4202. per_milli = res;
  4203. {
  4204. int i, x = per_milli/50, y = 20-x;
  4205. seq_printf(seq, "[");
  4206. for (i = 0; i < x; i++)
  4207. seq_printf(seq, "=");
  4208. seq_printf(seq, ">");
  4209. for (i = 0; i < y; i++)
  4210. seq_printf(seq, ".");
  4211. seq_printf(seq, "] ");
  4212. }
  4213. seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)",
  4214. (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)?
  4215. "reshape" :
  4216. (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)?
  4217. "check" :
  4218. (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
  4219. "resync" : "recovery"))),
  4220. per_milli/10, per_milli % 10,
  4221. (unsigned long long) resync,
  4222. (unsigned long long) max_blocks);
  4223. /*
  4224. * We do not want to overflow, so the order of operands and
  4225. * the * 100 / 100 trick are important. We do a +1 to be
  4226. * safe against division by zero. We only estimate anyway.
  4227. *
  4228. * dt: time from mark until now
  4229. * db: blocks written from mark until now
  4230. * rt: remaining time
  4231. */
  4232. dt = ((jiffies - mddev->resync_mark) / HZ);
  4233. if (!dt) dt++;
  4234. db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active))
  4235. - mddev->resync_mark_cnt;
  4236. rt = (dt * ((unsigned long)(max_blocks-resync) / (db/2/100+1)))/100;
  4237. seq_printf(seq, " finish=%lu.%lumin", rt / 60, (rt % 60)/6);
  4238. seq_printf(seq, " speed=%ldK/sec", db/2/dt);
  4239. }
  4240. static void *md_seq_start(struct seq_file *seq, loff_t *pos)
  4241. {
  4242. struct list_head *tmp;
  4243. loff_t l = *pos;
  4244. mddev_t *mddev;
  4245. if (l >= 0x10000)
  4246. return NULL;
  4247. if (!l--)
  4248. /* header */
  4249. return (void*)1;
  4250. spin_lock(&all_mddevs_lock);
  4251. list_for_each(tmp,&all_mddevs)
  4252. if (!l--) {
  4253. mddev = list_entry(tmp, mddev_t, all_mddevs);
  4254. mddev_get(mddev);
  4255. spin_unlock(&all_mddevs_lock);
  4256. return mddev;
  4257. }
  4258. spin_unlock(&all_mddevs_lock);
  4259. if (!l--)
  4260. return (void*)2;/* tail */
  4261. return NULL;
  4262. }
  4263. static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
  4264. {
  4265. struct list_head *tmp;
  4266. mddev_t *next_mddev, *mddev = v;
  4267. ++*pos;
  4268. if (v == (void*)2)
  4269. return NULL;
  4270. spin_lock(&all_mddevs_lock);
  4271. if (v == (void*)1)
  4272. tmp = all_mddevs.next;
  4273. else
  4274. tmp = mddev->all_mddevs.next;
  4275. if (tmp != &all_mddevs)
  4276. next_mddev = mddev_get(list_entry(tmp,mddev_t,all_mddevs));
  4277. else {
  4278. next_mddev = (void*)2;
  4279. *pos = 0x10000;
  4280. }
  4281. spin_unlock(&all_mddevs_lock);
  4282. if (v != (void*)1)
  4283. mddev_put(mddev);
  4284. return next_mddev;
  4285. }
  4286. static void md_seq_stop(struct seq_file *seq, void *v)
  4287. {
  4288. mddev_t *mddev = v;
  4289. if (mddev && v != (void*)1 && v != (void*)2)
  4290. mddev_put(mddev);
  4291. }
  4292. struct mdstat_info {
  4293. int event;
  4294. };
  4295. static int md_seq_show(struct seq_file *seq, void *v)
  4296. {
  4297. mddev_t *mddev = v;
  4298. sector_t size;
  4299. struct list_head *tmp2;
  4300. mdk_rdev_t *rdev;
  4301. struct mdstat_info *mi = seq->private;
  4302. struct bitmap *bitmap;
  4303. if (v == (void*)1) {
  4304. struct mdk_personality *pers;
  4305. seq_printf(seq, "Personalities : ");
  4306. spin_lock(&pers_lock);
  4307. list_for_each_entry(pers, &pers_list, list)
  4308. seq_printf(seq, "[%s] ", pers->name);
  4309. spin_unlock(&pers_lock);
  4310. seq_printf(seq, "\n");
  4311. mi->event = atomic_read(&md_event_count);
  4312. return 0;
  4313. }
  4314. if (v == (void*)2) {
  4315. status_unused(seq);
  4316. return 0;
  4317. }
  4318. if (mddev_lock(mddev) < 0)
  4319. return -EINTR;
  4320. if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
  4321. seq_printf(seq, "%s : %sactive", mdname(mddev),
  4322. mddev->pers ? "" : "in");
  4323. if (mddev->pers) {
  4324. if (mddev->ro==1)
  4325. seq_printf(seq, " (read-only)");
  4326. if (mddev->ro==2)
  4327. seq_printf(seq, "(auto-read-only)");
  4328. seq_printf(seq, " %s", mddev->pers->name);
  4329. }
  4330. size = 0;
  4331. ITERATE_RDEV(mddev,rdev,tmp2) {
  4332. char b[BDEVNAME_SIZE];
  4333. seq_printf(seq, " %s[%d]",
  4334. bdevname(rdev->bdev,b), rdev->desc_nr);
  4335. if (test_bit(WriteMostly, &rdev->flags))
  4336. seq_printf(seq, "(W)");
  4337. if (test_bit(Faulty, &rdev->flags)) {
  4338. seq_printf(seq, "(F)");
  4339. continue;
  4340. } else if (rdev->raid_disk < 0)
  4341. seq_printf(seq, "(S)"); /* spare */
  4342. size += rdev->size;
  4343. }
  4344. if (!list_empty(&mddev->disks)) {
  4345. if (mddev->pers)
  4346. seq_printf(seq, "\n %llu blocks",
  4347. (unsigned long long)mddev->array_size);
  4348. else
  4349. seq_printf(seq, "\n %llu blocks",
  4350. (unsigned long long)size);
  4351. }
  4352. if (mddev->persistent) {
  4353. if (mddev->major_version != 0 ||
  4354. mddev->minor_version != 90) {
  4355. seq_printf(seq," super %d.%d",
  4356. mddev->major_version,
  4357. mddev->minor_version);
  4358. }
  4359. } else
  4360. seq_printf(seq, " super non-persistent");
  4361. if (mddev->pers) {
  4362. mddev->pers->status (seq, mddev);
  4363. seq_printf(seq, "\n ");
  4364. if (mddev->pers->sync_request) {
  4365. if (mddev->curr_resync > 2) {
  4366. status_resync (seq, mddev);
  4367. seq_printf(seq, "\n ");
  4368. } else if (mddev->curr_resync == 1 || mddev->curr_resync == 2)
  4369. seq_printf(seq, "\tresync=DELAYED\n ");
  4370. else if (mddev->recovery_cp < MaxSector)
  4371. seq_printf(seq, "\tresync=PENDING\n ");
  4372. }
  4373. } else
  4374. seq_printf(seq, "\n ");
  4375. if ((bitmap = mddev->bitmap)) {
  4376. unsigned long chunk_kb;
  4377. unsigned long flags;
  4378. spin_lock_irqsave(&bitmap->lock, flags);
  4379. chunk_kb = bitmap->chunksize >> 10;
  4380. seq_printf(seq, "bitmap: %lu/%lu pages [%luKB], "
  4381. "%lu%s chunk",
  4382. bitmap->pages - bitmap->missing_pages,
  4383. bitmap->pages,
  4384. (bitmap->pages - bitmap->missing_pages)
  4385. << (PAGE_SHIFT - 10),
  4386. chunk_kb ? chunk_kb : bitmap->chunksize,
  4387. chunk_kb ? "KB" : "B");
  4388. if (bitmap->file) {
  4389. seq_printf(seq, ", file: ");
  4390. seq_path(seq, bitmap->file->f_path.mnt,
  4391. bitmap->file->f_path.dentry," \t\n");
  4392. }
  4393. seq_printf(seq, "\n");
  4394. spin_unlock_irqrestore(&bitmap->lock, flags);
  4395. }
  4396. seq_printf(seq, "\n");
  4397. }
  4398. mddev_unlock(mddev);
  4399. return 0;
  4400. }
  4401. static struct seq_operations md_seq_ops = {
  4402. .start = md_seq_start,
  4403. .next = md_seq_next,
  4404. .stop = md_seq_stop,
  4405. .show = md_seq_show,
  4406. };
  4407. static int md_seq_open(struct inode *inode, struct file *file)
  4408. {
  4409. int error;
  4410. struct mdstat_info *mi = kmalloc(sizeof(*mi), GFP_KERNEL);
  4411. if (mi == NULL)
  4412. return -ENOMEM;
  4413. error = seq_open(file, &md_seq_ops);
  4414. if (error)
  4415. kfree(mi);
  4416. else {
  4417. struct seq_file *p = file->private_data;
  4418. p->private = mi;
  4419. mi->event = atomic_read(&md_event_count);
  4420. }
  4421. return error;
  4422. }
  4423. static unsigned int mdstat_poll(struct file *filp, poll_table *wait)
  4424. {
  4425. struct seq_file *m = filp->private_data;
  4426. struct mdstat_info *mi = m->private;
  4427. int mask;
  4428. poll_wait(filp, &md_event_waiters, wait);
  4429. /* always allow read */
  4430. mask = POLLIN | POLLRDNORM;
  4431. if (mi->event != atomic_read(&md_event_count))
  4432. mask |= POLLERR | POLLPRI;
  4433. return mask;
  4434. }
  4435. static const struct file_operations md_seq_fops = {
  4436. .owner = THIS_MODULE,
  4437. .open = md_seq_open,
  4438. .read = seq_read,
  4439. .llseek = seq_lseek,
  4440. .release = seq_release_private,
  4441. .poll = mdstat_poll,
  4442. };
  4443. int register_md_personality(struct mdk_personality *p)
  4444. {
  4445. spin_lock(&pers_lock);
  4446. list_add_tail(&p->list, &pers_list);
  4447. printk(KERN_INFO "md: %s personality registered for level %d\n", p->name, p->level);
  4448. spin_unlock(&pers_lock);
  4449. return 0;
  4450. }
  4451. int unregister_md_personality(struct mdk_personality *p)
  4452. {
  4453. printk(KERN_INFO "md: %s personality unregistered\n", p->name);
  4454. spin_lock(&pers_lock);
  4455. list_del_init(&p->list);
  4456. spin_unlock(&pers_lock);
  4457. return 0;
  4458. }
  4459. static int is_mddev_idle(mddev_t *mddev)
  4460. {
  4461. mdk_rdev_t * rdev;
  4462. struct list_head *tmp;
  4463. int idle;
  4464. long curr_events;
  4465. idle = 1;
  4466. ITERATE_RDEV(mddev,rdev,tmp) {
  4467. struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
  4468. curr_events = disk_stat_read(disk, sectors[0]) +
  4469. disk_stat_read(disk, sectors[1]) -
  4470. atomic_read(&disk->sync_io);
  4471. /* sync IO will cause sync_io to increase before the disk_stats
  4472. * as sync_io is counted when a request starts, and
  4473. * disk_stats is counted when it completes.
  4474. * So resync activity will cause curr_events to be smaller than
  4475. * when there was no such activity.
  4476. * non-sync IO will cause disk_stat to increase without
  4477. * increasing sync_io so curr_events will (eventually)
  4478. * be larger than it was before. Once it becomes
  4479. * substantially larger, the test below will cause
  4480. * the array to appear non-idle, and resync will slow
  4481. * down.
  4482. * If there is a lot of outstanding resync activity when
  4483. * we set last_event to curr_events, then all that activity
  4484. * completing might cause the array to appear non-idle
  4485. * and resync will be slowed down even though there might
  4486. * not have been non-resync activity. This will only
  4487. * happen once though. 'last_events' will soon reflect
  4488. * the state where there is little or no outstanding
  4489. * resync requests, and further resync activity will
  4490. * always make curr_events less than last_events.
  4491. *
  4492. */
  4493. if (curr_events - rdev->last_events > 4096) {
  4494. rdev->last_events = curr_events;
  4495. idle = 0;
  4496. }
  4497. }
  4498. return idle;
  4499. }
  4500. void md_done_sync(mddev_t *mddev, int blocks, int ok)
  4501. {
  4502. /* another "blocks" (512byte) blocks have been synced */
  4503. atomic_sub(blocks, &mddev->recovery_active);
  4504. wake_up(&mddev->recovery_wait);
  4505. if (!ok) {
  4506. set_bit(MD_RECOVERY_ERR, &mddev->recovery);
  4507. md_wakeup_thread(mddev->thread);
  4508. // stop recovery, signal do_sync ....
  4509. }
  4510. }
  4511. /* md_write_start(mddev, bi)
  4512. * If we need to update some array metadata (e.g. 'active' flag
  4513. * in superblock) before writing, schedule a superblock update
  4514. * and wait for it to complete.
  4515. */
  4516. void md_write_start(mddev_t *mddev, struct bio *bi)
  4517. {
  4518. if (bio_data_dir(bi) != WRITE)
  4519. return;
  4520. BUG_ON(mddev->ro == 1);
  4521. if (mddev->ro == 2) {
  4522. /* need to switch to read/write */
  4523. mddev->ro = 0;
  4524. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  4525. md_wakeup_thread(mddev->thread);
  4526. }
  4527. atomic_inc(&mddev->writes_pending);
  4528. if (mddev->in_sync) {
  4529. spin_lock_irq(&mddev->write_lock);
  4530. if (mddev->in_sync) {
  4531. mddev->in_sync = 0;
  4532. set_bit(MD_CHANGE_CLEAN, &mddev->flags);
  4533. md_wakeup_thread(mddev->thread);
  4534. }
  4535. spin_unlock_irq(&mddev->write_lock);
  4536. }
  4537. wait_event(mddev->sb_wait, mddev->flags==0);
  4538. }
  4539. void md_write_end(mddev_t *mddev)
  4540. {
  4541. if (atomic_dec_and_test(&mddev->writes_pending)) {
  4542. if (mddev->safemode == 2)
  4543. md_wakeup_thread(mddev->thread);
  4544. else if (mddev->safemode_delay)
  4545. mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
  4546. }
  4547. }
  4548. /* md_allow_write(mddev)
  4549. * Calling this ensures that the array is marked 'active' so that writes
  4550. * may proceed without blocking. It is important to call this before
  4551. * attempting a GFP_KERNEL allocation while holding the mddev lock.
  4552. * Must be called with mddev_lock held.
  4553. */
  4554. void md_allow_write(mddev_t *mddev)
  4555. {
  4556. if (!mddev->pers)
  4557. return;
  4558. if (mddev->ro)
  4559. return;
  4560. spin_lock_irq(&mddev->write_lock);
  4561. if (mddev->in_sync) {
  4562. mddev->in_sync = 0;
  4563. set_bit(MD_CHANGE_CLEAN, &mddev->flags);
  4564. if (mddev->safemode_delay &&
  4565. mddev->safemode == 0)
  4566. mddev->safemode = 1;
  4567. spin_unlock_irq(&mddev->write_lock);
  4568. md_update_sb(mddev, 0);
  4569. } else
  4570. spin_unlock_irq(&mddev->write_lock);
  4571. }
  4572. EXPORT_SYMBOL_GPL(md_allow_write);
  4573. static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
  4574. #define SYNC_MARKS 10
  4575. #define SYNC_MARK_STEP (3*HZ)
  4576. void md_do_sync(mddev_t *mddev)
  4577. {
  4578. mddev_t *mddev2;
  4579. unsigned int currspeed = 0,
  4580. window;
  4581. sector_t max_sectors,j, io_sectors;
  4582. unsigned long mark[SYNC_MARKS];
  4583. sector_t mark_cnt[SYNC_MARKS];
  4584. int last_mark,m;
  4585. struct list_head *tmp;
  4586. sector_t last_check;
  4587. int skipped = 0;
  4588. struct list_head *rtmp;
  4589. mdk_rdev_t *rdev;
  4590. char *desc;
  4591. /* just incase thread restarts... */
  4592. if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
  4593. return;
  4594. if (mddev->ro) /* never try to sync a read-only array */
  4595. return;
  4596. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
  4597. if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
  4598. desc = "data-check";
  4599. else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
  4600. desc = "requested-resync";
  4601. else
  4602. desc = "resync";
  4603. } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
  4604. desc = "reshape";
  4605. else
  4606. desc = "recovery";
  4607. /* we overload curr_resync somewhat here.
  4608. * 0 == not engaged in resync at all
  4609. * 2 == checking that there is no conflict with another sync
  4610. * 1 == like 2, but have yielded to allow conflicting resync to
  4611. * commense
  4612. * other == active in resync - this many blocks
  4613. *
  4614. * Before starting a resync we must have set curr_resync to
  4615. * 2, and then checked that every "conflicting" array has curr_resync
  4616. * less than ours. When we find one that is the same or higher
  4617. * we wait on resync_wait. To avoid deadlock, we reduce curr_resync
  4618. * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
  4619. * This will mean we have to start checking from the beginning again.
  4620. *
  4621. */
  4622. do {
  4623. mddev->curr_resync = 2;
  4624. try_again:
  4625. if (kthread_should_stop()) {
  4626. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  4627. goto skip;
  4628. }
  4629. ITERATE_MDDEV(mddev2,tmp) {
  4630. if (mddev2 == mddev)
  4631. continue;
  4632. if (mddev2->curr_resync &&
  4633. match_mddev_units(mddev,mddev2)) {
  4634. DEFINE_WAIT(wq);
  4635. if (mddev < mddev2 && mddev->curr_resync == 2) {
  4636. /* arbitrarily yield */
  4637. mddev->curr_resync = 1;
  4638. wake_up(&resync_wait);
  4639. }
  4640. if (mddev > mddev2 && mddev->curr_resync == 1)
  4641. /* no need to wait here, we can wait the next
  4642. * time 'round when curr_resync == 2
  4643. */
  4644. continue;
  4645. prepare_to_wait(&resync_wait, &wq, TASK_UNINTERRUPTIBLE);
  4646. if (!kthread_should_stop() &&
  4647. mddev2->curr_resync >= mddev->curr_resync) {
  4648. printk(KERN_INFO "md: delaying %s of %s"
  4649. " until %s has finished (they"
  4650. " share one or more physical units)\n",
  4651. desc, mdname(mddev), mdname(mddev2));
  4652. mddev_put(mddev2);
  4653. schedule();
  4654. finish_wait(&resync_wait, &wq);
  4655. goto try_again;
  4656. }
  4657. finish_wait(&resync_wait, &wq);
  4658. }
  4659. }
  4660. } while (mddev->curr_resync < 2);
  4661. j = 0;
  4662. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
  4663. /* resync follows the size requested by the personality,
  4664. * which defaults to physical size, but can be virtual size
  4665. */
  4666. max_sectors = mddev->resync_max_sectors;
  4667. mddev->resync_mismatches = 0;
  4668. /* we don't use the checkpoint if there's a bitmap */
  4669. if (!mddev->bitmap &&
  4670. !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
  4671. j = mddev->recovery_cp;
  4672. } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
  4673. max_sectors = mddev->size << 1;
  4674. else {
  4675. /* recovery follows the physical size of devices */
  4676. max_sectors = mddev->size << 1;
  4677. j = MaxSector;
  4678. ITERATE_RDEV(mddev,rdev,rtmp)
  4679. if (rdev->raid_disk >= 0 &&
  4680. !test_bit(Faulty, &rdev->flags) &&
  4681. !test_bit(In_sync, &rdev->flags) &&
  4682. rdev->recovery_offset < j)
  4683. j = rdev->recovery_offset;
  4684. }
  4685. printk(KERN_INFO "md: %s of RAID array %s\n", desc, mdname(mddev));
  4686. printk(KERN_INFO "md: minimum _guaranteed_ speed:"
  4687. " %d KB/sec/disk.\n", speed_min(mddev));
  4688. printk(KERN_INFO "md: using maximum available idle IO bandwidth "
  4689. "(but not more than %d KB/sec) for %s.\n",
  4690. speed_max(mddev), desc);
  4691. is_mddev_idle(mddev); /* this also initializes IO event counters */
  4692. io_sectors = 0;
  4693. for (m = 0; m < SYNC_MARKS; m++) {
  4694. mark[m] = jiffies;
  4695. mark_cnt[m] = io_sectors;
  4696. }
  4697. last_mark = 0;
  4698. mddev->resync_mark = mark[last_mark];
  4699. mddev->resync_mark_cnt = mark_cnt[last_mark];
  4700. /*
  4701. * Tune reconstruction:
  4702. */
  4703. window = 32*(PAGE_SIZE/512);
  4704. printk(KERN_INFO "md: using %dk window, over a total of %llu blocks.\n",
  4705. window/2,(unsigned long long) max_sectors/2);
  4706. atomic_set(&mddev->recovery_active, 0);
  4707. init_waitqueue_head(&mddev->recovery_wait);
  4708. last_check = 0;
  4709. if (j>2) {
  4710. printk(KERN_INFO
  4711. "md: resuming %s of %s from checkpoint.\n",
  4712. desc, mdname(mddev));
  4713. mddev->curr_resync = j;
  4714. }
  4715. while (j < max_sectors) {
  4716. sector_t sectors;
  4717. skipped = 0;
  4718. sectors = mddev->pers->sync_request(mddev, j, &skipped,
  4719. currspeed < speed_min(mddev));
  4720. if (sectors == 0) {
  4721. set_bit(MD_RECOVERY_ERR, &mddev->recovery);
  4722. goto out;
  4723. }
  4724. if (!skipped) { /* actual IO requested */
  4725. io_sectors += sectors;
  4726. atomic_add(sectors, &mddev->recovery_active);
  4727. }
  4728. j += sectors;
  4729. if (j>1) mddev->curr_resync = j;
  4730. mddev->curr_mark_cnt = io_sectors;
  4731. if (last_check == 0)
  4732. /* this is the earliers that rebuilt will be
  4733. * visible in /proc/mdstat
  4734. */
  4735. md_new_event(mddev);
  4736. if (last_check + window > io_sectors || j == max_sectors)
  4737. continue;
  4738. last_check = io_sectors;
  4739. if (test_bit(MD_RECOVERY_INTR, &mddev->recovery) ||
  4740. test_bit(MD_RECOVERY_ERR, &mddev->recovery))
  4741. break;
  4742. repeat:
  4743. if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
  4744. /* step marks */
  4745. int next = (last_mark+1) % SYNC_MARKS;
  4746. mddev->resync_mark = mark[next];
  4747. mddev->resync_mark_cnt = mark_cnt[next];
  4748. mark[next] = jiffies;
  4749. mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
  4750. last_mark = next;
  4751. }
  4752. if (kthread_should_stop()) {
  4753. /*
  4754. * got a signal, exit.
  4755. */
  4756. printk(KERN_INFO
  4757. "md: md_do_sync() got signal ... exiting\n");
  4758. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  4759. goto out;
  4760. }
  4761. /*
  4762. * this loop exits only if either when we are slower than
  4763. * the 'hard' speed limit, or the system was IO-idle for
  4764. * a jiffy.
  4765. * the system might be non-idle CPU-wise, but we only care
  4766. * about not overloading the IO subsystem. (things like an
  4767. * e2fsck being done on the RAID array should execute fast)
  4768. */
  4769. mddev->queue->unplug_fn(mddev->queue);
  4770. cond_resched();
  4771. currspeed = ((unsigned long)(io_sectors-mddev->resync_mark_cnt))/2
  4772. /((jiffies-mddev->resync_mark)/HZ +1) +1;
  4773. if (currspeed > speed_min(mddev)) {
  4774. if ((currspeed > speed_max(mddev)) ||
  4775. !is_mddev_idle(mddev)) {
  4776. msleep(500);
  4777. goto repeat;
  4778. }
  4779. }
  4780. }
  4781. printk(KERN_INFO "md: %s: %s done.\n",mdname(mddev), desc);
  4782. /*
  4783. * this also signals 'finished resyncing' to md_stop
  4784. */
  4785. out:
  4786. mddev->queue->unplug_fn(mddev->queue);
  4787. wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
  4788. /* tell personality that we are finished */
  4789. mddev->pers->sync_request(mddev, max_sectors, &skipped, 1);
  4790. if (!test_bit(MD_RECOVERY_ERR, &mddev->recovery) &&
  4791. !test_bit(MD_RECOVERY_CHECK, &mddev->recovery) &&
  4792. mddev->curr_resync > 2) {
  4793. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
  4794. if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
  4795. if (mddev->curr_resync >= mddev->recovery_cp) {
  4796. printk(KERN_INFO
  4797. "md: checkpointing %s of %s.\n",
  4798. desc, mdname(mddev));
  4799. mddev->recovery_cp = mddev->curr_resync;
  4800. }
  4801. } else
  4802. mddev->recovery_cp = MaxSector;
  4803. } else {
  4804. if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
  4805. mddev->curr_resync = MaxSector;
  4806. ITERATE_RDEV(mddev,rdev,rtmp)
  4807. if (rdev->raid_disk >= 0 &&
  4808. !test_bit(Faulty, &rdev->flags) &&
  4809. !test_bit(In_sync, &rdev->flags) &&
  4810. rdev->recovery_offset < mddev->curr_resync)
  4811. rdev->recovery_offset = mddev->curr_resync;
  4812. }
  4813. }
  4814. set_bit(MD_CHANGE_DEVS, &mddev->flags);
  4815. skip:
  4816. mddev->curr_resync = 0;
  4817. wake_up(&resync_wait);
  4818. set_bit(MD_RECOVERY_DONE, &mddev->recovery);
  4819. md_wakeup_thread(mddev->thread);
  4820. }
  4821. EXPORT_SYMBOL_GPL(md_do_sync);
  4822. static int remove_and_add_spares(mddev_t *mddev)
  4823. {
  4824. mdk_rdev_t *rdev;
  4825. struct list_head *rtmp;
  4826. int spares = 0;
  4827. ITERATE_RDEV(mddev,rdev,rtmp)
  4828. if (rdev->raid_disk >= 0 &&
  4829. (test_bit(Faulty, &rdev->flags) ||
  4830. ! test_bit(In_sync, &rdev->flags)) &&
  4831. atomic_read(&rdev->nr_pending)==0) {
  4832. if (mddev->pers->hot_remove_disk(
  4833. mddev, rdev->raid_disk)==0) {
  4834. char nm[20];
  4835. sprintf(nm,"rd%d", rdev->raid_disk);
  4836. sysfs_remove_link(&mddev->kobj, nm);
  4837. rdev->raid_disk = -1;
  4838. }
  4839. }
  4840. if (mddev->degraded) {
  4841. ITERATE_RDEV(mddev,rdev,rtmp)
  4842. if (rdev->raid_disk < 0
  4843. && !test_bit(Faulty, &rdev->flags)) {
  4844. rdev->recovery_offset = 0;
  4845. if (mddev->pers->hot_add_disk(mddev,rdev)) {
  4846. char nm[20];
  4847. sprintf(nm, "rd%d", rdev->raid_disk);
  4848. if (sysfs_create_link(&mddev->kobj,
  4849. &rdev->kobj, nm))
  4850. printk(KERN_WARNING
  4851. "md: cannot register "
  4852. "%s for %s\n",
  4853. nm, mdname(mddev));
  4854. spares++;
  4855. md_new_event(mddev);
  4856. } else
  4857. break;
  4858. }
  4859. }
  4860. return spares;
  4861. }
  4862. /*
  4863. * This routine is regularly called by all per-raid-array threads to
  4864. * deal with generic issues like resync and super-block update.
  4865. * Raid personalities that don't have a thread (linear/raid0) do not
  4866. * need this as they never do any recovery or update the superblock.
  4867. *
  4868. * It does not do any resync itself, but rather "forks" off other threads
  4869. * to do that as needed.
  4870. * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
  4871. * "->recovery" and create a thread at ->sync_thread.
  4872. * When the thread finishes it sets MD_RECOVERY_DONE (and might set MD_RECOVERY_ERR)
  4873. * and wakeups up this thread which will reap the thread and finish up.
  4874. * This thread also removes any faulty devices (with nr_pending == 0).
  4875. *
  4876. * The overall approach is:
  4877. * 1/ if the superblock needs updating, update it.
  4878. * 2/ If a recovery thread is running, don't do anything else.
  4879. * 3/ If recovery has finished, clean up, possibly marking spares active.
  4880. * 4/ If there are any faulty devices, remove them.
  4881. * 5/ If array is degraded, try to add spares devices
  4882. * 6/ If array has spares or is not in-sync, start a resync thread.
  4883. */
  4884. void md_check_recovery(mddev_t *mddev)
  4885. {
  4886. mdk_rdev_t *rdev;
  4887. struct list_head *rtmp;
  4888. if (mddev->bitmap)
  4889. bitmap_daemon_work(mddev->bitmap);
  4890. if (mddev->ro)
  4891. return;
  4892. if (signal_pending(current)) {
  4893. if (mddev->pers->sync_request) {
  4894. printk(KERN_INFO "md: %s in immediate safe mode\n",
  4895. mdname(mddev));
  4896. mddev->safemode = 2;
  4897. }
  4898. flush_signals(current);
  4899. }
  4900. if ( ! (
  4901. mddev->flags ||
  4902. test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
  4903. test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
  4904. (mddev->safemode == 1) ||
  4905. (mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
  4906. && !mddev->in_sync && mddev->recovery_cp == MaxSector)
  4907. ))
  4908. return;
  4909. if (mddev_trylock(mddev)) {
  4910. int spares = 0;
  4911. spin_lock_irq(&mddev->write_lock);
  4912. if (mddev->safemode && !atomic_read(&mddev->writes_pending) &&
  4913. !mddev->in_sync && mddev->recovery_cp == MaxSector) {
  4914. mddev->in_sync = 1;
  4915. set_bit(MD_CHANGE_CLEAN, &mddev->flags);
  4916. }
  4917. if (mddev->safemode == 1)
  4918. mddev->safemode = 0;
  4919. spin_unlock_irq(&mddev->write_lock);
  4920. if (mddev->flags)
  4921. md_update_sb(mddev, 0);
  4922. if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
  4923. !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
  4924. /* resync/recovery still happening */
  4925. clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  4926. goto unlock;
  4927. }
  4928. if (mddev->sync_thread) {
  4929. /* resync has finished, collect result */
  4930. md_unregister_thread(mddev->sync_thread);
  4931. mddev->sync_thread = NULL;
  4932. if (!test_bit(MD_RECOVERY_ERR, &mddev->recovery) &&
  4933. !test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
  4934. /* success...*/
  4935. /* activate any spares */
  4936. mddev->pers->spare_active(mddev);
  4937. }
  4938. md_update_sb(mddev, 1);
  4939. /* if array is no-longer degraded, then any saved_raid_disk
  4940. * information must be scrapped
  4941. */
  4942. if (!mddev->degraded)
  4943. ITERATE_RDEV(mddev,rdev,rtmp)
  4944. rdev->saved_raid_disk = -1;
  4945. mddev->recovery = 0;
  4946. /* flag recovery needed just to double check */
  4947. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  4948. md_new_event(mddev);
  4949. goto unlock;
  4950. }
  4951. /* Clear some bits that don't mean anything, but
  4952. * might be left set
  4953. */
  4954. clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  4955. clear_bit(MD_RECOVERY_ERR, &mddev->recovery);
  4956. clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
  4957. clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
  4958. if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
  4959. goto unlock;
  4960. /* no recovery is running.
  4961. * remove any failed drives, then
  4962. * add spares if possible.
  4963. * Spare are also removed and re-added, to allow
  4964. * the personality to fail the re-add.
  4965. */
  4966. if (mddev->reshape_position != MaxSector) {
  4967. if (mddev->pers->check_reshape(mddev) != 0)
  4968. /* Cannot proceed */
  4969. goto unlock;
  4970. set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
  4971. } else if ((spares = remove_and_add_spares(mddev))) {
  4972. clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
  4973. clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
  4974. } else if (mddev->recovery_cp < MaxSector) {
  4975. set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
  4976. } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
  4977. /* nothing to be done ... */
  4978. goto unlock;
  4979. if (mddev->pers->sync_request) {
  4980. set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
  4981. if (spares && mddev->bitmap && ! mddev->bitmap->file) {
  4982. /* We are adding a device or devices to an array
  4983. * which has the bitmap stored on all devices.
  4984. * So make sure all bitmap pages get written
  4985. */
  4986. bitmap_write_all(mddev->bitmap);
  4987. }
  4988. mddev->sync_thread = md_register_thread(md_do_sync,
  4989. mddev,
  4990. "%s_resync");
  4991. if (!mddev->sync_thread) {
  4992. printk(KERN_ERR "%s: could not start resync"
  4993. " thread...\n",
  4994. mdname(mddev));
  4995. /* leave the spares where they are, it shouldn't hurt */
  4996. mddev->recovery = 0;
  4997. } else
  4998. md_wakeup_thread(mddev->sync_thread);
  4999. md_new_event(mddev);
  5000. }
  5001. unlock:
  5002. mddev_unlock(mddev);
  5003. }
  5004. }
  5005. static int md_notify_reboot(struct notifier_block *this,
  5006. unsigned long code, void *x)
  5007. {
  5008. struct list_head *tmp;
  5009. mddev_t *mddev;
  5010. if ((code == SYS_DOWN) || (code == SYS_HALT) || (code == SYS_POWER_OFF)) {
  5011. printk(KERN_INFO "md: stopping all md devices.\n");
  5012. ITERATE_MDDEV(mddev,tmp)
  5013. if (mddev_trylock(mddev)) {
  5014. do_md_stop (mddev, 1);
  5015. mddev_unlock(mddev);
  5016. }
  5017. /*
  5018. * certain more exotic SCSI devices are known to be
  5019. * volatile wrt too early system reboots. While the
  5020. * right place to handle this issue is the given
  5021. * driver, we do want to have a safe RAID driver ...
  5022. */
  5023. mdelay(1000*1);
  5024. }
  5025. return NOTIFY_DONE;
  5026. }
  5027. static struct notifier_block md_notifier = {
  5028. .notifier_call = md_notify_reboot,
  5029. .next = NULL,
  5030. .priority = INT_MAX, /* before any real devices */
  5031. };
  5032. static void md_geninit(void)
  5033. {
  5034. struct proc_dir_entry *p;
  5035. dprintk("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
  5036. p = create_proc_entry("mdstat", S_IRUGO, NULL);
  5037. if (p)
  5038. p->proc_fops = &md_seq_fops;
  5039. }
  5040. static int __init md_init(void)
  5041. {
  5042. if (register_blkdev(MAJOR_NR, "md"))
  5043. return -1;
  5044. if ((mdp_major=register_blkdev(0, "mdp"))<=0) {
  5045. unregister_blkdev(MAJOR_NR, "md");
  5046. return -1;
  5047. }
  5048. blk_register_region(MKDEV(MAJOR_NR, 0), 1UL<<MINORBITS, THIS_MODULE,
  5049. md_probe, NULL, NULL);
  5050. blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE,
  5051. md_probe, NULL, NULL);
  5052. register_reboot_notifier(&md_notifier);
  5053. raid_table_header = register_sysctl_table(raid_root_table);
  5054. md_geninit();
  5055. return (0);
  5056. }
  5057. #ifndef MODULE
  5058. /*
  5059. * Searches all registered partitions for autorun RAID arrays
  5060. * at boot time.
  5061. */
  5062. static dev_t detected_devices[128];
  5063. static int dev_cnt;
  5064. void md_autodetect_dev(dev_t dev)
  5065. {
  5066. if (dev_cnt >= 0 && dev_cnt < 127)
  5067. detected_devices[dev_cnt++] = dev;
  5068. }
  5069. static void autostart_arrays(int part)
  5070. {
  5071. mdk_rdev_t *rdev;
  5072. int i;
  5073. printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
  5074. for (i = 0; i < dev_cnt; i++) {
  5075. dev_t dev = detected_devices[i];
  5076. rdev = md_import_device(dev,0, 90);
  5077. if (IS_ERR(rdev))
  5078. continue;
  5079. if (test_bit(Faulty, &rdev->flags)) {
  5080. MD_BUG();
  5081. continue;
  5082. }
  5083. list_add(&rdev->same_set, &pending_raid_disks);
  5084. }
  5085. dev_cnt = 0;
  5086. autorun_devices(part);
  5087. }
  5088. #endif /* !MODULE */
  5089. static __exit void md_exit(void)
  5090. {
  5091. mddev_t *mddev;
  5092. struct list_head *tmp;
  5093. blk_unregister_region(MKDEV(MAJOR_NR,0), 1U << MINORBITS);
  5094. blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS);
  5095. unregister_blkdev(MAJOR_NR,"md");
  5096. unregister_blkdev(mdp_major, "mdp");
  5097. unregister_reboot_notifier(&md_notifier);
  5098. unregister_sysctl_table(raid_table_header);
  5099. remove_proc_entry("mdstat", NULL);
  5100. ITERATE_MDDEV(mddev,tmp) {
  5101. struct gendisk *disk = mddev->gendisk;
  5102. if (!disk)
  5103. continue;
  5104. export_array(mddev);
  5105. del_gendisk(disk);
  5106. put_disk(disk);
  5107. mddev->gendisk = NULL;
  5108. mddev_put(mddev);
  5109. }
  5110. }
  5111. subsys_initcall(md_init);
  5112. module_exit(md_exit)
  5113. static int get_ro(char *buffer, struct kernel_param *kp)
  5114. {
  5115. return sprintf(buffer, "%d", start_readonly);
  5116. }
  5117. static int set_ro(const char *val, struct kernel_param *kp)
  5118. {
  5119. char *e;
  5120. int num = simple_strtoul(val, &e, 10);
  5121. if (*val && (*e == '\0' || *e == '\n')) {
  5122. start_readonly = num;
  5123. return 0;
  5124. }
  5125. return -EINVAL;
  5126. }
  5127. module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR);
  5128. module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR);
  5129. EXPORT_SYMBOL(register_md_personality);
  5130. EXPORT_SYMBOL(unregister_md_personality);
  5131. EXPORT_SYMBOL(md_error);
  5132. EXPORT_SYMBOL(md_done_sync);
  5133. EXPORT_SYMBOL(md_write_start);
  5134. EXPORT_SYMBOL(md_write_end);
  5135. EXPORT_SYMBOL(md_register_thread);
  5136. EXPORT_SYMBOL(md_unregister_thread);
  5137. EXPORT_SYMBOL(md_wakeup_thread);
  5138. EXPORT_SYMBOL(md_check_recovery);
  5139. MODULE_LICENSE("GPL");
  5140. MODULE_ALIAS("md");
  5141. MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);