pmac.c 48 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831
  1. /*
  2. * linux/drivers/ide/ppc/pmac.c
  3. *
  4. * Support for IDE interfaces on PowerMacs.
  5. * These IDE interfaces are memory-mapped and have a DBDMA channel
  6. * for doing DMA.
  7. *
  8. * Copyright (C) 1998-2003 Paul Mackerras & Ben. Herrenschmidt
  9. * Copyright (C) 2007 Bartlomiej Zolnierkiewicz
  10. *
  11. * This program is free software; you can redistribute it and/or
  12. * modify it under the terms of the GNU General Public License
  13. * as published by the Free Software Foundation; either version
  14. * 2 of the License, or (at your option) any later version.
  15. *
  16. * Some code taken from drivers/ide/ide-dma.c:
  17. *
  18. * Copyright (c) 1995-1998 Mark Lord
  19. *
  20. * TODO: - Use pre-calculated (kauai) timing tables all the time and
  21. * get rid of the "rounded" tables used previously, so we have the
  22. * same table format for all controllers and can then just have one
  23. * big table
  24. *
  25. */
  26. #include <linux/types.h>
  27. #include <linux/kernel.h>
  28. #include <linux/init.h>
  29. #include <linux/delay.h>
  30. #include <linux/ide.h>
  31. #include <linux/notifier.h>
  32. #include <linux/reboot.h>
  33. #include <linux/pci.h>
  34. #include <linux/adb.h>
  35. #include <linux/pmu.h>
  36. #include <linux/scatterlist.h>
  37. #include <asm/prom.h>
  38. #include <asm/io.h>
  39. #include <asm/dbdma.h>
  40. #include <asm/ide.h>
  41. #include <asm/pci-bridge.h>
  42. #include <asm/machdep.h>
  43. #include <asm/pmac_feature.h>
  44. #include <asm/sections.h>
  45. #include <asm/irq.h>
  46. #ifndef CONFIG_PPC64
  47. #include <asm/mediabay.h>
  48. #endif
  49. #include "../ide-timing.h"
  50. #undef IDE_PMAC_DEBUG
  51. #define DMA_WAIT_TIMEOUT 50
  52. typedef struct pmac_ide_hwif {
  53. unsigned long regbase;
  54. int irq;
  55. int kind;
  56. int aapl_bus_id;
  57. unsigned cable_80 : 1;
  58. unsigned mediabay : 1;
  59. unsigned broken_dma : 1;
  60. unsigned broken_dma_warn : 1;
  61. struct device_node* node;
  62. struct macio_dev *mdev;
  63. u32 timings[4];
  64. volatile u32 __iomem * *kauai_fcr;
  65. #ifdef CONFIG_BLK_DEV_IDEDMA_PMAC
  66. /* Those fields are duplicating what is in hwif. We currently
  67. * can't use the hwif ones because of some assumptions that are
  68. * beeing done by the generic code about the kind of dma controller
  69. * and format of the dma table. This will have to be fixed though.
  70. */
  71. volatile struct dbdma_regs __iomem * dma_regs;
  72. struct dbdma_cmd* dma_table_cpu;
  73. #endif
  74. } pmac_ide_hwif_t;
  75. static pmac_ide_hwif_t pmac_ide[MAX_HWIFS];
  76. static int pmac_ide_count;
  77. enum {
  78. controller_ohare, /* OHare based */
  79. controller_heathrow, /* Heathrow/Paddington */
  80. controller_kl_ata3, /* KeyLargo ATA-3 */
  81. controller_kl_ata4, /* KeyLargo ATA-4 */
  82. controller_un_ata6, /* UniNorth2 ATA-6 */
  83. controller_k2_ata6, /* K2 ATA-6 */
  84. controller_sh_ata6, /* Shasta ATA-6 */
  85. };
  86. static const char* model_name[] = {
  87. "OHare ATA", /* OHare based */
  88. "Heathrow ATA", /* Heathrow/Paddington */
  89. "KeyLargo ATA-3", /* KeyLargo ATA-3 (MDMA only) */
  90. "KeyLargo ATA-4", /* KeyLargo ATA-4 (UDMA/66) */
  91. "UniNorth ATA-6", /* UniNorth2 ATA-6 (UDMA/100) */
  92. "K2 ATA-6", /* K2 ATA-6 (UDMA/100) */
  93. "Shasta ATA-6", /* Shasta ATA-6 (UDMA/133) */
  94. };
  95. /*
  96. * Extra registers, both 32-bit little-endian
  97. */
  98. #define IDE_TIMING_CONFIG 0x200
  99. #define IDE_INTERRUPT 0x300
  100. /* Kauai (U2) ATA has different register setup */
  101. #define IDE_KAUAI_PIO_CONFIG 0x200
  102. #define IDE_KAUAI_ULTRA_CONFIG 0x210
  103. #define IDE_KAUAI_POLL_CONFIG 0x220
  104. /*
  105. * Timing configuration register definitions
  106. */
  107. /* Number of IDE_SYSCLK_NS ticks, argument is in nanoseconds */
  108. #define SYSCLK_TICKS(t) (((t) + IDE_SYSCLK_NS - 1) / IDE_SYSCLK_NS)
  109. #define SYSCLK_TICKS_66(t) (((t) + IDE_SYSCLK_66_NS - 1) / IDE_SYSCLK_66_NS)
  110. #define IDE_SYSCLK_NS 30 /* 33Mhz cell */
  111. #define IDE_SYSCLK_66_NS 15 /* 66Mhz cell */
  112. /* 133Mhz cell, found in shasta.
  113. * See comments about 100 Mhz Uninorth 2...
  114. * Note that PIO_MASK and MDMA_MASK seem to overlap
  115. */
  116. #define TR_133_PIOREG_PIO_MASK 0xff000fff
  117. #define TR_133_PIOREG_MDMA_MASK 0x00fff800
  118. #define TR_133_UDMAREG_UDMA_MASK 0x0003ffff
  119. #define TR_133_UDMAREG_UDMA_EN 0x00000001
  120. /* 100Mhz cell, found in Uninorth 2. I don't have much infos about
  121. * this one yet, it appears as a pci device (106b/0033) on uninorth
  122. * internal PCI bus and it's clock is controlled like gem or fw. It
  123. * appears to be an evolution of keylargo ATA4 with a timing register
  124. * extended to 2 32bits registers and a similar DBDMA channel. Other
  125. * registers seem to exist but I can't tell much about them.
  126. *
  127. * So far, I'm using pre-calculated tables for this extracted from
  128. * the values used by the MacOS X driver.
  129. *
  130. * The "PIO" register controls PIO and MDMA timings, the "ULTRA"
  131. * register controls the UDMA timings. At least, it seems bit 0
  132. * of this one enables UDMA vs. MDMA, and bits 4..7 are the
  133. * cycle time in units of 10ns. Bits 8..15 are used by I don't
  134. * know their meaning yet
  135. */
  136. #define TR_100_PIOREG_PIO_MASK 0xff000fff
  137. #define TR_100_PIOREG_MDMA_MASK 0x00fff000
  138. #define TR_100_UDMAREG_UDMA_MASK 0x0000ffff
  139. #define TR_100_UDMAREG_UDMA_EN 0x00000001
  140. /* 66Mhz cell, found in KeyLargo. Can do ultra mode 0 to 2 on
  141. * 40 connector cable and to 4 on 80 connector one.
  142. * Clock unit is 15ns (66Mhz)
  143. *
  144. * 3 Values can be programmed:
  145. * - Write data setup, which appears to match the cycle time. They
  146. * also call it DIOW setup.
  147. * - Ready to pause time (from spec)
  148. * - Address setup. That one is weird. I don't see where exactly
  149. * it fits in UDMA cycles, I got it's name from an obscure piece
  150. * of commented out code in Darwin. They leave it to 0, we do as
  151. * well, despite a comment that would lead to think it has a
  152. * min value of 45ns.
  153. * Apple also add 60ns to the write data setup (or cycle time ?) on
  154. * reads.
  155. */
  156. #define TR_66_UDMA_MASK 0xfff00000
  157. #define TR_66_UDMA_EN 0x00100000 /* Enable Ultra mode for DMA */
  158. #define TR_66_UDMA_ADDRSETUP_MASK 0xe0000000 /* Address setup */
  159. #define TR_66_UDMA_ADDRSETUP_SHIFT 29
  160. #define TR_66_UDMA_RDY2PAUS_MASK 0x1e000000 /* Ready 2 pause time */
  161. #define TR_66_UDMA_RDY2PAUS_SHIFT 25
  162. #define TR_66_UDMA_WRDATASETUP_MASK 0x01e00000 /* Write data setup time */
  163. #define TR_66_UDMA_WRDATASETUP_SHIFT 21
  164. #define TR_66_MDMA_MASK 0x000ffc00
  165. #define TR_66_MDMA_RECOVERY_MASK 0x000f8000
  166. #define TR_66_MDMA_RECOVERY_SHIFT 15
  167. #define TR_66_MDMA_ACCESS_MASK 0x00007c00
  168. #define TR_66_MDMA_ACCESS_SHIFT 10
  169. #define TR_66_PIO_MASK 0x000003ff
  170. #define TR_66_PIO_RECOVERY_MASK 0x000003e0
  171. #define TR_66_PIO_RECOVERY_SHIFT 5
  172. #define TR_66_PIO_ACCESS_MASK 0x0000001f
  173. #define TR_66_PIO_ACCESS_SHIFT 0
  174. /* 33Mhz cell, found in OHare, Heathrow (& Paddington) and KeyLargo
  175. * Can do pio & mdma modes, clock unit is 30ns (33Mhz)
  176. *
  177. * The access time and recovery time can be programmed. Some older
  178. * Darwin code base limit OHare to 150ns cycle time. I decided to do
  179. * the same here fore safety against broken old hardware ;)
  180. * The HalfTick bit, when set, adds half a clock (15ns) to the access
  181. * time and removes one from recovery. It's not supported on KeyLargo
  182. * implementation afaik. The E bit appears to be set for PIO mode 0 and
  183. * is used to reach long timings used in this mode.
  184. */
  185. #define TR_33_MDMA_MASK 0x003ff800
  186. #define TR_33_MDMA_RECOVERY_MASK 0x001f0000
  187. #define TR_33_MDMA_RECOVERY_SHIFT 16
  188. #define TR_33_MDMA_ACCESS_MASK 0x0000f800
  189. #define TR_33_MDMA_ACCESS_SHIFT 11
  190. #define TR_33_MDMA_HALFTICK 0x00200000
  191. #define TR_33_PIO_MASK 0x000007ff
  192. #define TR_33_PIO_E 0x00000400
  193. #define TR_33_PIO_RECOVERY_MASK 0x000003e0
  194. #define TR_33_PIO_RECOVERY_SHIFT 5
  195. #define TR_33_PIO_ACCESS_MASK 0x0000001f
  196. #define TR_33_PIO_ACCESS_SHIFT 0
  197. /*
  198. * Interrupt register definitions
  199. */
  200. #define IDE_INTR_DMA 0x80000000
  201. #define IDE_INTR_DEVICE 0x40000000
  202. /*
  203. * FCR Register on Kauai. Not sure what bit 0x4 is ...
  204. */
  205. #define KAUAI_FCR_UATA_MAGIC 0x00000004
  206. #define KAUAI_FCR_UATA_RESET_N 0x00000002
  207. #define KAUAI_FCR_UATA_ENABLE 0x00000001
  208. #ifdef CONFIG_BLK_DEV_IDEDMA_PMAC
  209. /* Rounded Multiword DMA timings
  210. *
  211. * I gave up finding a generic formula for all controller
  212. * types and instead, built tables based on timing values
  213. * used by Apple in Darwin's implementation.
  214. */
  215. struct mdma_timings_t {
  216. int accessTime;
  217. int recoveryTime;
  218. int cycleTime;
  219. };
  220. struct mdma_timings_t mdma_timings_33[] =
  221. {
  222. { 240, 240, 480 },
  223. { 180, 180, 360 },
  224. { 135, 135, 270 },
  225. { 120, 120, 240 },
  226. { 105, 105, 210 },
  227. { 90, 90, 180 },
  228. { 75, 75, 150 },
  229. { 75, 45, 120 },
  230. { 0, 0, 0 }
  231. };
  232. struct mdma_timings_t mdma_timings_33k[] =
  233. {
  234. { 240, 240, 480 },
  235. { 180, 180, 360 },
  236. { 150, 150, 300 },
  237. { 120, 120, 240 },
  238. { 90, 120, 210 },
  239. { 90, 90, 180 },
  240. { 90, 60, 150 },
  241. { 90, 30, 120 },
  242. { 0, 0, 0 }
  243. };
  244. struct mdma_timings_t mdma_timings_66[] =
  245. {
  246. { 240, 240, 480 },
  247. { 180, 180, 360 },
  248. { 135, 135, 270 },
  249. { 120, 120, 240 },
  250. { 105, 105, 210 },
  251. { 90, 90, 180 },
  252. { 90, 75, 165 },
  253. { 75, 45, 120 },
  254. { 0, 0, 0 }
  255. };
  256. /* KeyLargo ATA-4 Ultra DMA timings (rounded) */
  257. struct {
  258. int addrSetup; /* ??? */
  259. int rdy2pause;
  260. int wrDataSetup;
  261. } kl66_udma_timings[] =
  262. {
  263. { 0, 180, 120 }, /* Mode 0 */
  264. { 0, 150, 90 }, /* 1 */
  265. { 0, 120, 60 }, /* 2 */
  266. { 0, 90, 45 }, /* 3 */
  267. { 0, 90, 30 } /* 4 */
  268. };
  269. /* UniNorth 2 ATA/100 timings */
  270. struct kauai_timing {
  271. int cycle_time;
  272. u32 timing_reg;
  273. };
  274. static struct kauai_timing kauai_pio_timings[] =
  275. {
  276. { 930 , 0x08000fff },
  277. { 600 , 0x08000a92 },
  278. { 383 , 0x0800060f },
  279. { 360 , 0x08000492 },
  280. { 330 , 0x0800048f },
  281. { 300 , 0x080003cf },
  282. { 270 , 0x080003cc },
  283. { 240 , 0x0800038b },
  284. { 239 , 0x0800030c },
  285. { 180 , 0x05000249 },
  286. { 120 , 0x04000148 },
  287. { 0 , 0 },
  288. };
  289. static struct kauai_timing kauai_mdma_timings[] =
  290. {
  291. { 1260 , 0x00fff000 },
  292. { 480 , 0x00618000 },
  293. { 360 , 0x00492000 },
  294. { 270 , 0x0038e000 },
  295. { 240 , 0x0030c000 },
  296. { 210 , 0x002cb000 },
  297. { 180 , 0x00249000 },
  298. { 150 , 0x00209000 },
  299. { 120 , 0x00148000 },
  300. { 0 , 0 },
  301. };
  302. static struct kauai_timing kauai_udma_timings[] =
  303. {
  304. { 120 , 0x000070c0 },
  305. { 90 , 0x00005d80 },
  306. { 60 , 0x00004a60 },
  307. { 45 , 0x00003a50 },
  308. { 30 , 0x00002a30 },
  309. { 20 , 0x00002921 },
  310. { 0 , 0 },
  311. };
  312. static struct kauai_timing shasta_pio_timings[] =
  313. {
  314. { 930 , 0x08000fff },
  315. { 600 , 0x0A000c97 },
  316. { 383 , 0x07000712 },
  317. { 360 , 0x040003cd },
  318. { 330 , 0x040003cd },
  319. { 300 , 0x040003cd },
  320. { 270 , 0x040003cd },
  321. { 240 , 0x040003cd },
  322. { 239 , 0x040003cd },
  323. { 180 , 0x0400028b },
  324. { 120 , 0x0400010a },
  325. { 0 , 0 },
  326. };
  327. static struct kauai_timing shasta_mdma_timings[] =
  328. {
  329. { 1260 , 0x00fff000 },
  330. { 480 , 0x00820800 },
  331. { 360 , 0x00820800 },
  332. { 270 , 0x00820800 },
  333. { 240 , 0x00820800 },
  334. { 210 , 0x00820800 },
  335. { 180 , 0x00820800 },
  336. { 150 , 0x0028b000 },
  337. { 120 , 0x001ca000 },
  338. { 0 , 0 },
  339. };
  340. static struct kauai_timing shasta_udma133_timings[] =
  341. {
  342. { 120 , 0x00035901, },
  343. { 90 , 0x000348b1, },
  344. { 60 , 0x00033881, },
  345. { 45 , 0x00033861, },
  346. { 30 , 0x00033841, },
  347. { 20 , 0x00033031, },
  348. { 15 , 0x00033021, },
  349. { 0 , 0 },
  350. };
  351. static inline u32
  352. kauai_lookup_timing(struct kauai_timing* table, int cycle_time)
  353. {
  354. int i;
  355. for (i=0; table[i].cycle_time; i++)
  356. if (cycle_time > table[i+1].cycle_time)
  357. return table[i].timing_reg;
  358. BUG();
  359. return 0;
  360. }
  361. /* allow up to 256 DBDMA commands per xfer */
  362. #define MAX_DCMDS 256
  363. /*
  364. * Wait 1s for disk to answer on IDE bus after a hard reset
  365. * of the device (via GPIO/FCR).
  366. *
  367. * Some devices seem to "pollute" the bus even after dropping
  368. * the BSY bit (typically some combo drives slave on the UDMA
  369. * bus) after a hard reset. Since we hard reset all drives on
  370. * KeyLargo ATA66, we have to keep that delay around. I may end
  371. * up not hard resetting anymore on these and keep the delay only
  372. * for older interfaces instead (we have to reset when coming
  373. * from MacOS...) --BenH.
  374. */
  375. #define IDE_WAKEUP_DELAY (1*HZ)
  376. static void pmac_ide_setup_dma(pmac_ide_hwif_t *pmif, ide_hwif_t *hwif);
  377. static int pmac_ide_build_dmatable(ide_drive_t *drive, struct request *rq);
  378. static void pmac_ide_selectproc(ide_drive_t *drive);
  379. static void pmac_ide_kauai_selectproc(ide_drive_t *drive);
  380. #endif /* CONFIG_BLK_DEV_IDEDMA_PMAC */
  381. /*
  382. * N.B. this can't be an initfunc, because the media-bay task can
  383. * call ide_[un]register at any time.
  384. */
  385. void
  386. pmac_ide_init_hwif_ports(hw_regs_t *hw,
  387. unsigned long data_port, unsigned long ctrl_port,
  388. int *irq)
  389. {
  390. int i, ix;
  391. if (data_port == 0)
  392. return;
  393. for (ix = 0; ix < MAX_HWIFS; ++ix)
  394. if (data_port == pmac_ide[ix].regbase)
  395. break;
  396. if (ix >= MAX_HWIFS) {
  397. /* Probably a PCI interface... */
  398. for (i = IDE_DATA_OFFSET; i <= IDE_STATUS_OFFSET; ++i)
  399. hw->io_ports[i] = data_port + i - IDE_DATA_OFFSET;
  400. hw->io_ports[IDE_CONTROL_OFFSET] = ctrl_port;
  401. return;
  402. }
  403. for (i = 0; i < 8; ++i)
  404. hw->io_ports[i] = data_port + i * 0x10;
  405. hw->io_ports[8] = data_port + 0x160;
  406. if (irq != NULL)
  407. *irq = pmac_ide[ix].irq;
  408. hw->dev = &pmac_ide[ix].mdev->ofdev.dev;
  409. }
  410. #define PMAC_IDE_REG(x) ((void __iomem *)(IDE_DATA_REG+(x)))
  411. /*
  412. * Apply the timings of the proper unit (master/slave) to the shared
  413. * timing register when selecting that unit. This version is for
  414. * ASICs with a single timing register
  415. */
  416. static void
  417. pmac_ide_selectproc(ide_drive_t *drive)
  418. {
  419. pmac_ide_hwif_t* pmif = (pmac_ide_hwif_t *)HWIF(drive)->hwif_data;
  420. if (pmif == NULL)
  421. return;
  422. if (drive->select.b.unit & 0x01)
  423. writel(pmif->timings[1], PMAC_IDE_REG(IDE_TIMING_CONFIG));
  424. else
  425. writel(pmif->timings[0], PMAC_IDE_REG(IDE_TIMING_CONFIG));
  426. (void)readl(PMAC_IDE_REG(IDE_TIMING_CONFIG));
  427. }
  428. /*
  429. * Apply the timings of the proper unit (master/slave) to the shared
  430. * timing register when selecting that unit. This version is for
  431. * ASICs with a dual timing register (Kauai)
  432. */
  433. static void
  434. pmac_ide_kauai_selectproc(ide_drive_t *drive)
  435. {
  436. pmac_ide_hwif_t* pmif = (pmac_ide_hwif_t *)HWIF(drive)->hwif_data;
  437. if (pmif == NULL)
  438. return;
  439. if (drive->select.b.unit & 0x01) {
  440. writel(pmif->timings[1], PMAC_IDE_REG(IDE_KAUAI_PIO_CONFIG));
  441. writel(pmif->timings[3], PMAC_IDE_REG(IDE_KAUAI_ULTRA_CONFIG));
  442. } else {
  443. writel(pmif->timings[0], PMAC_IDE_REG(IDE_KAUAI_PIO_CONFIG));
  444. writel(pmif->timings[2], PMAC_IDE_REG(IDE_KAUAI_ULTRA_CONFIG));
  445. }
  446. (void)readl(PMAC_IDE_REG(IDE_KAUAI_PIO_CONFIG));
  447. }
  448. /*
  449. * Force an update of controller timing values for a given drive
  450. */
  451. static void
  452. pmac_ide_do_update_timings(ide_drive_t *drive)
  453. {
  454. pmac_ide_hwif_t* pmif = (pmac_ide_hwif_t *)HWIF(drive)->hwif_data;
  455. if (pmif == NULL)
  456. return;
  457. if (pmif->kind == controller_sh_ata6 ||
  458. pmif->kind == controller_un_ata6 ||
  459. pmif->kind == controller_k2_ata6)
  460. pmac_ide_kauai_selectproc(drive);
  461. else
  462. pmac_ide_selectproc(drive);
  463. }
  464. static void
  465. pmac_outbsync(ide_drive_t *drive, u8 value, unsigned long port)
  466. {
  467. u32 tmp;
  468. writeb(value, (void __iomem *) port);
  469. tmp = readl(PMAC_IDE_REG(IDE_TIMING_CONFIG));
  470. }
  471. /*
  472. * Old tuning functions (called on hdparm -p), sets up drive PIO timings
  473. */
  474. static void
  475. pmac_ide_set_pio_mode(ide_drive_t *drive, const u8 pio)
  476. {
  477. u32 *timings, t;
  478. unsigned accessTicks, recTicks;
  479. unsigned accessTime, recTime;
  480. pmac_ide_hwif_t* pmif = (pmac_ide_hwif_t *)HWIF(drive)->hwif_data;
  481. unsigned int cycle_time;
  482. if (pmif == NULL)
  483. return;
  484. /* which drive is it ? */
  485. timings = &pmif->timings[drive->select.b.unit & 0x01];
  486. t = *timings;
  487. cycle_time = ide_pio_cycle_time(drive, pio);
  488. switch (pmif->kind) {
  489. case controller_sh_ata6: {
  490. /* 133Mhz cell */
  491. u32 tr = kauai_lookup_timing(shasta_pio_timings, cycle_time);
  492. t = (t & ~TR_133_PIOREG_PIO_MASK) | tr;
  493. break;
  494. }
  495. case controller_un_ata6:
  496. case controller_k2_ata6: {
  497. /* 100Mhz cell */
  498. u32 tr = kauai_lookup_timing(kauai_pio_timings, cycle_time);
  499. t = (t & ~TR_100_PIOREG_PIO_MASK) | tr;
  500. break;
  501. }
  502. case controller_kl_ata4:
  503. /* 66Mhz cell */
  504. recTime = cycle_time - ide_pio_timings[pio].active_time
  505. - ide_pio_timings[pio].setup_time;
  506. recTime = max(recTime, 150U);
  507. accessTime = ide_pio_timings[pio].active_time;
  508. accessTime = max(accessTime, 150U);
  509. accessTicks = SYSCLK_TICKS_66(accessTime);
  510. accessTicks = min(accessTicks, 0x1fU);
  511. recTicks = SYSCLK_TICKS_66(recTime);
  512. recTicks = min(recTicks, 0x1fU);
  513. t = (t & ~TR_66_PIO_MASK) |
  514. (accessTicks << TR_66_PIO_ACCESS_SHIFT) |
  515. (recTicks << TR_66_PIO_RECOVERY_SHIFT);
  516. break;
  517. default: {
  518. /* 33Mhz cell */
  519. int ebit = 0;
  520. recTime = cycle_time - ide_pio_timings[pio].active_time
  521. - ide_pio_timings[pio].setup_time;
  522. recTime = max(recTime, 150U);
  523. accessTime = ide_pio_timings[pio].active_time;
  524. accessTime = max(accessTime, 150U);
  525. accessTicks = SYSCLK_TICKS(accessTime);
  526. accessTicks = min(accessTicks, 0x1fU);
  527. accessTicks = max(accessTicks, 4U);
  528. recTicks = SYSCLK_TICKS(recTime);
  529. recTicks = min(recTicks, 0x1fU);
  530. recTicks = max(recTicks, 5U) - 4;
  531. if (recTicks > 9) {
  532. recTicks--; /* guess, but it's only for PIO0, so... */
  533. ebit = 1;
  534. }
  535. t = (t & ~TR_33_PIO_MASK) |
  536. (accessTicks << TR_33_PIO_ACCESS_SHIFT) |
  537. (recTicks << TR_33_PIO_RECOVERY_SHIFT);
  538. if (ebit)
  539. t |= TR_33_PIO_E;
  540. break;
  541. }
  542. }
  543. #ifdef IDE_PMAC_DEBUG
  544. printk(KERN_ERR "%s: Set PIO timing for mode %d, reg: 0x%08x\n",
  545. drive->name, pio, *timings);
  546. #endif
  547. *timings = t;
  548. pmac_ide_do_update_timings(drive);
  549. }
  550. #ifdef CONFIG_BLK_DEV_IDEDMA_PMAC
  551. /*
  552. * Calculate KeyLargo ATA/66 UDMA timings
  553. */
  554. static int
  555. set_timings_udma_ata4(u32 *timings, u8 speed)
  556. {
  557. unsigned rdyToPauseTicks, wrDataSetupTicks, addrTicks;
  558. if (speed > XFER_UDMA_4)
  559. return 1;
  560. rdyToPauseTicks = SYSCLK_TICKS_66(kl66_udma_timings[speed & 0xf].rdy2pause);
  561. wrDataSetupTicks = SYSCLK_TICKS_66(kl66_udma_timings[speed & 0xf].wrDataSetup);
  562. addrTicks = SYSCLK_TICKS_66(kl66_udma_timings[speed & 0xf].addrSetup);
  563. *timings = ((*timings) & ~(TR_66_UDMA_MASK | TR_66_MDMA_MASK)) |
  564. (wrDataSetupTicks << TR_66_UDMA_WRDATASETUP_SHIFT) |
  565. (rdyToPauseTicks << TR_66_UDMA_RDY2PAUS_SHIFT) |
  566. (addrTicks <<TR_66_UDMA_ADDRSETUP_SHIFT) |
  567. TR_66_UDMA_EN;
  568. #ifdef IDE_PMAC_DEBUG
  569. printk(KERN_ERR "ide_pmac: Set UDMA timing for mode %d, reg: 0x%08x\n",
  570. speed & 0xf, *timings);
  571. #endif
  572. return 0;
  573. }
  574. /*
  575. * Calculate Kauai ATA/100 UDMA timings
  576. */
  577. static int
  578. set_timings_udma_ata6(u32 *pio_timings, u32 *ultra_timings, u8 speed)
  579. {
  580. struct ide_timing *t = ide_timing_find_mode(speed);
  581. u32 tr;
  582. if (speed > XFER_UDMA_5 || t == NULL)
  583. return 1;
  584. tr = kauai_lookup_timing(kauai_udma_timings, (int)t->udma);
  585. *ultra_timings = ((*ultra_timings) & ~TR_100_UDMAREG_UDMA_MASK) | tr;
  586. *ultra_timings = (*ultra_timings) | TR_100_UDMAREG_UDMA_EN;
  587. return 0;
  588. }
  589. /*
  590. * Calculate Shasta ATA/133 UDMA timings
  591. */
  592. static int
  593. set_timings_udma_shasta(u32 *pio_timings, u32 *ultra_timings, u8 speed)
  594. {
  595. struct ide_timing *t = ide_timing_find_mode(speed);
  596. u32 tr;
  597. if (speed > XFER_UDMA_6 || t == NULL)
  598. return 1;
  599. tr = kauai_lookup_timing(shasta_udma133_timings, (int)t->udma);
  600. *ultra_timings = ((*ultra_timings) & ~TR_133_UDMAREG_UDMA_MASK) | tr;
  601. *ultra_timings = (*ultra_timings) | TR_133_UDMAREG_UDMA_EN;
  602. return 0;
  603. }
  604. /*
  605. * Calculate MDMA timings for all cells
  606. */
  607. static void
  608. set_timings_mdma(ide_drive_t *drive, int intf_type, u32 *timings, u32 *timings2,
  609. u8 speed)
  610. {
  611. int cycleTime, accessTime = 0, recTime = 0;
  612. unsigned accessTicks, recTicks;
  613. struct hd_driveid *id = drive->id;
  614. struct mdma_timings_t* tm = NULL;
  615. int i;
  616. /* Get default cycle time for mode */
  617. switch(speed & 0xf) {
  618. case 0: cycleTime = 480; break;
  619. case 1: cycleTime = 150; break;
  620. case 2: cycleTime = 120; break;
  621. default:
  622. BUG();
  623. break;
  624. }
  625. /* Check if drive provides explicit DMA cycle time */
  626. if ((id->field_valid & 2) && id->eide_dma_time)
  627. cycleTime = max_t(int, id->eide_dma_time, cycleTime);
  628. /* OHare limits according to some old Apple sources */
  629. if ((intf_type == controller_ohare) && (cycleTime < 150))
  630. cycleTime = 150;
  631. /* Get the proper timing array for this controller */
  632. switch(intf_type) {
  633. case controller_sh_ata6:
  634. case controller_un_ata6:
  635. case controller_k2_ata6:
  636. break;
  637. case controller_kl_ata4:
  638. tm = mdma_timings_66;
  639. break;
  640. case controller_kl_ata3:
  641. tm = mdma_timings_33k;
  642. break;
  643. default:
  644. tm = mdma_timings_33;
  645. break;
  646. }
  647. if (tm != NULL) {
  648. /* Lookup matching access & recovery times */
  649. i = -1;
  650. for (;;) {
  651. if (tm[i+1].cycleTime < cycleTime)
  652. break;
  653. i++;
  654. }
  655. cycleTime = tm[i].cycleTime;
  656. accessTime = tm[i].accessTime;
  657. recTime = tm[i].recoveryTime;
  658. #ifdef IDE_PMAC_DEBUG
  659. printk(KERN_ERR "%s: MDMA, cycleTime: %d, accessTime: %d, recTime: %d\n",
  660. drive->name, cycleTime, accessTime, recTime);
  661. #endif
  662. }
  663. switch(intf_type) {
  664. case controller_sh_ata6: {
  665. /* 133Mhz cell */
  666. u32 tr = kauai_lookup_timing(shasta_mdma_timings, cycleTime);
  667. *timings = ((*timings) & ~TR_133_PIOREG_MDMA_MASK) | tr;
  668. *timings2 = (*timings2) & ~TR_133_UDMAREG_UDMA_EN;
  669. }
  670. case controller_un_ata6:
  671. case controller_k2_ata6: {
  672. /* 100Mhz cell */
  673. u32 tr = kauai_lookup_timing(kauai_mdma_timings, cycleTime);
  674. *timings = ((*timings) & ~TR_100_PIOREG_MDMA_MASK) | tr;
  675. *timings2 = (*timings2) & ~TR_100_UDMAREG_UDMA_EN;
  676. }
  677. break;
  678. case controller_kl_ata4:
  679. /* 66Mhz cell */
  680. accessTicks = SYSCLK_TICKS_66(accessTime);
  681. accessTicks = min(accessTicks, 0x1fU);
  682. accessTicks = max(accessTicks, 0x1U);
  683. recTicks = SYSCLK_TICKS_66(recTime);
  684. recTicks = min(recTicks, 0x1fU);
  685. recTicks = max(recTicks, 0x3U);
  686. /* Clear out mdma bits and disable udma */
  687. *timings = ((*timings) & ~(TR_66_MDMA_MASK | TR_66_UDMA_MASK)) |
  688. (accessTicks << TR_66_MDMA_ACCESS_SHIFT) |
  689. (recTicks << TR_66_MDMA_RECOVERY_SHIFT);
  690. break;
  691. case controller_kl_ata3:
  692. /* 33Mhz cell on KeyLargo */
  693. accessTicks = SYSCLK_TICKS(accessTime);
  694. accessTicks = max(accessTicks, 1U);
  695. accessTicks = min(accessTicks, 0x1fU);
  696. accessTime = accessTicks * IDE_SYSCLK_NS;
  697. recTicks = SYSCLK_TICKS(recTime);
  698. recTicks = max(recTicks, 1U);
  699. recTicks = min(recTicks, 0x1fU);
  700. *timings = ((*timings) & ~TR_33_MDMA_MASK) |
  701. (accessTicks << TR_33_MDMA_ACCESS_SHIFT) |
  702. (recTicks << TR_33_MDMA_RECOVERY_SHIFT);
  703. break;
  704. default: {
  705. /* 33Mhz cell on others */
  706. int halfTick = 0;
  707. int origAccessTime = accessTime;
  708. int origRecTime = recTime;
  709. accessTicks = SYSCLK_TICKS(accessTime);
  710. accessTicks = max(accessTicks, 1U);
  711. accessTicks = min(accessTicks, 0x1fU);
  712. accessTime = accessTicks * IDE_SYSCLK_NS;
  713. recTicks = SYSCLK_TICKS(recTime);
  714. recTicks = max(recTicks, 2U) - 1;
  715. recTicks = min(recTicks, 0x1fU);
  716. recTime = (recTicks + 1) * IDE_SYSCLK_NS;
  717. if ((accessTicks > 1) &&
  718. ((accessTime - IDE_SYSCLK_NS/2) >= origAccessTime) &&
  719. ((recTime - IDE_SYSCLK_NS/2) >= origRecTime)) {
  720. halfTick = 1;
  721. accessTicks--;
  722. }
  723. *timings = ((*timings) & ~TR_33_MDMA_MASK) |
  724. (accessTicks << TR_33_MDMA_ACCESS_SHIFT) |
  725. (recTicks << TR_33_MDMA_RECOVERY_SHIFT);
  726. if (halfTick)
  727. *timings |= TR_33_MDMA_HALFTICK;
  728. }
  729. }
  730. #ifdef IDE_PMAC_DEBUG
  731. printk(KERN_ERR "%s: Set MDMA timing for mode %d, reg: 0x%08x\n",
  732. drive->name, speed & 0xf, *timings);
  733. #endif
  734. }
  735. #endif /* #ifdef CONFIG_BLK_DEV_IDEDMA_PMAC */
  736. static void pmac_ide_set_dma_mode(ide_drive_t *drive, const u8 speed)
  737. {
  738. int unit = (drive->select.b.unit & 0x01);
  739. int ret = 0;
  740. pmac_ide_hwif_t* pmif = (pmac_ide_hwif_t *)HWIF(drive)->hwif_data;
  741. u32 *timings, *timings2, tl[2];
  742. timings = &pmif->timings[unit];
  743. timings2 = &pmif->timings[unit+2];
  744. /* Copy timings to local image */
  745. tl[0] = *timings;
  746. tl[1] = *timings2;
  747. switch(speed) {
  748. #ifdef CONFIG_BLK_DEV_IDEDMA_PMAC
  749. case XFER_UDMA_6:
  750. case XFER_UDMA_5:
  751. case XFER_UDMA_4:
  752. case XFER_UDMA_3:
  753. case XFER_UDMA_2:
  754. case XFER_UDMA_1:
  755. case XFER_UDMA_0:
  756. if (pmif->kind == controller_kl_ata4)
  757. ret = set_timings_udma_ata4(&tl[0], speed);
  758. else if (pmif->kind == controller_un_ata6
  759. || pmif->kind == controller_k2_ata6)
  760. ret = set_timings_udma_ata6(&tl[0], &tl[1], speed);
  761. else if (pmif->kind == controller_sh_ata6)
  762. ret = set_timings_udma_shasta(&tl[0], &tl[1], speed);
  763. else
  764. ret = 1;
  765. break;
  766. case XFER_MW_DMA_2:
  767. case XFER_MW_DMA_1:
  768. case XFER_MW_DMA_0:
  769. set_timings_mdma(drive, pmif->kind, &tl[0], &tl[1], speed);
  770. break;
  771. case XFER_SW_DMA_2:
  772. case XFER_SW_DMA_1:
  773. case XFER_SW_DMA_0:
  774. return;
  775. #endif /* CONFIG_BLK_DEV_IDEDMA_PMAC */
  776. default:
  777. ret = 1;
  778. }
  779. if (ret)
  780. return;
  781. /* Apply timings to controller */
  782. *timings = tl[0];
  783. *timings2 = tl[1];
  784. pmac_ide_do_update_timings(drive);
  785. }
  786. /*
  787. * Blast some well known "safe" values to the timing registers at init or
  788. * wakeup from sleep time, before we do real calculation
  789. */
  790. static void
  791. sanitize_timings(pmac_ide_hwif_t *pmif)
  792. {
  793. unsigned int value, value2 = 0;
  794. switch(pmif->kind) {
  795. case controller_sh_ata6:
  796. value = 0x0a820c97;
  797. value2 = 0x00033031;
  798. break;
  799. case controller_un_ata6:
  800. case controller_k2_ata6:
  801. value = 0x08618a92;
  802. value2 = 0x00002921;
  803. break;
  804. case controller_kl_ata4:
  805. value = 0x0008438c;
  806. break;
  807. case controller_kl_ata3:
  808. value = 0x00084526;
  809. break;
  810. case controller_heathrow:
  811. case controller_ohare:
  812. default:
  813. value = 0x00074526;
  814. break;
  815. }
  816. pmif->timings[0] = pmif->timings[1] = value;
  817. pmif->timings[2] = pmif->timings[3] = value2;
  818. }
  819. unsigned long
  820. pmac_ide_get_base(int index)
  821. {
  822. return pmac_ide[index].regbase;
  823. }
  824. int
  825. pmac_ide_check_base(unsigned long base)
  826. {
  827. int ix;
  828. for (ix = 0; ix < MAX_HWIFS; ++ix)
  829. if (base == pmac_ide[ix].regbase)
  830. return ix;
  831. return -1;
  832. }
  833. int
  834. pmac_ide_get_irq(unsigned long base)
  835. {
  836. int ix;
  837. for (ix = 0; ix < MAX_HWIFS; ++ix)
  838. if (base == pmac_ide[ix].regbase)
  839. return pmac_ide[ix].irq;
  840. return 0;
  841. }
  842. static int ide_majors[] = { 3, 22, 33, 34, 56, 57 };
  843. dev_t __init
  844. pmac_find_ide_boot(char *bootdevice, int n)
  845. {
  846. int i;
  847. /*
  848. * Look through the list of IDE interfaces for this one.
  849. */
  850. for (i = 0; i < pmac_ide_count; ++i) {
  851. char *name;
  852. if (!pmac_ide[i].node || !pmac_ide[i].node->full_name)
  853. continue;
  854. name = pmac_ide[i].node->full_name;
  855. if (memcmp(name, bootdevice, n) == 0 && name[n] == 0) {
  856. /* XXX should cope with the 2nd drive as well... */
  857. return MKDEV(ide_majors[i], 0);
  858. }
  859. }
  860. return 0;
  861. }
  862. /* Suspend call back, should be called after the child devices
  863. * have actually been suspended
  864. */
  865. static int
  866. pmac_ide_do_suspend(ide_hwif_t *hwif)
  867. {
  868. pmac_ide_hwif_t *pmif = (pmac_ide_hwif_t *)hwif->hwif_data;
  869. /* We clear the timings */
  870. pmif->timings[0] = 0;
  871. pmif->timings[1] = 0;
  872. disable_irq(pmif->irq);
  873. /* The media bay will handle itself just fine */
  874. if (pmif->mediabay)
  875. return 0;
  876. /* Kauai has bus control FCRs directly here */
  877. if (pmif->kauai_fcr) {
  878. u32 fcr = readl(pmif->kauai_fcr);
  879. fcr &= ~(KAUAI_FCR_UATA_RESET_N | KAUAI_FCR_UATA_ENABLE);
  880. writel(fcr, pmif->kauai_fcr);
  881. }
  882. /* Disable the bus on older machines and the cell on kauai */
  883. ppc_md.feature_call(PMAC_FTR_IDE_ENABLE, pmif->node, pmif->aapl_bus_id,
  884. 0);
  885. return 0;
  886. }
  887. /* Resume call back, should be called before the child devices
  888. * are resumed
  889. */
  890. static int
  891. pmac_ide_do_resume(ide_hwif_t *hwif)
  892. {
  893. pmac_ide_hwif_t *pmif = (pmac_ide_hwif_t *)hwif->hwif_data;
  894. /* Hard reset & re-enable controller (do we really need to reset ? -BenH) */
  895. if (!pmif->mediabay) {
  896. ppc_md.feature_call(PMAC_FTR_IDE_RESET, pmif->node, pmif->aapl_bus_id, 1);
  897. ppc_md.feature_call(PMAC_FTR_IDE_ENABLE, pmif->node, pmif->aapl_bus_id, 1);
  898. msleep(10);
  899. ppc_md.feature_call(PMAC_FTR_IDE_RESET, pmif->node, pmif->aapl_bus_id, 0);
  900. /* Kauai has it different */
  901. if (pmif->kauai_fcr) {
  902. u32 fcr = readl(pmif->kauai_fcr);
  903. fcr |= KAUAI_FCR_UATA_RESET_N | KAUAI_FCR_UATA_ENABLE;
  904. writel(fcr, pmif->kauai_fcr);
  905. }
  906. msleep(jiffies_to_msecs(IDE_WAKEUP_DELAY));
  907. }
  908. /* Sanitize drive timings */
  909. sanitize_timings(pmif);
  910. enable_irq(pmif->irq);
  911. return 0;
  912. }
  913. /*
  914. * Setup, register & probe an IDE channel driven by this driver, this is
  915. * called by one of the 2 probe functions (macio or PCI). Note that a channel
  916. * that ends up beeing free of any device is not kept around by this driver
  917. * (it is kept in 2.4). This introduce an interface numbering change on some
  918. * rare machines unfortunately, but it's better this way.
  919. */
  920. static int
  921. pmac_ide_setup_device(pmac_ide_hwif_t *pmif, ide_hwif_t *hwif)
  922. {
  923. struct device_node *np = pmif->node;
  924. const int *bidp;
  925. pmif->cable_80 = 0;
  926. pmif->broken_dma = pmif->broken_dma_warn = 0;
  927. if (of_device_is_compatible(np, "shasta-ata"))
  928. pmif->kind = controller_sh_ata6;
  929. else if (of_device_is_compatible(np, "kauai-ata"))
  930. pmif->kind = controller_un_ata6;
  931. else if (of_device_is_compatible(np, "K2-UATA"))
  932. pmif->kind = controller_k2_ata6;
  933. else if (of_device_is_compatible(np, "keylargo-ata")) {
  934. if (strcmp(np->name, "ata-4") == 0)
  935. pmif->kind = controller_kl_ata4;
  936. else
  937. pmif->kind = controller_kl_ata3;
  938. } else if (of_device_is_compatible(np, "heathrow-ata"))
  939. pmif->kind = controller_heathrow;
  940. else {
  941. pmif->kind = controller_ohare;
  942. pmif->broken_dma = 1;
  943. }
  944. bidp = of_get_property(np, "AAPL,bus-id", NULL);
  945. pmif->aapl_bus_id = bidp ? *bidp : 0;
  946. /* Get cable type from device-tree */
  947. if (pmif->kind == controller_kl_ata4 || pmif->kind == controller_un_ata6
  948. || pmif->kind == controller_k2_ata6
  949. || pmif->kind == controller_sh_ata6) {
  950. const char* cable = of_get_property(np, "cable-type", NULL);
  951. if (cable && !strncmp(cable, "80-", 3))
  952. pmif->cable_80 = 1;
  953. }
  954. /* G5's seem to have incorrect cable type in device-tree. Let's assume
  955. * they have a 80 conductor cable, this seem to be always the case unless
  956. * the user mucked around
  957. */
  958. if (of_device_is_compatible(np, "K2-UATA") ||
  959. of_device_is_compatible(np, "shasta-ata"))
  960. pmif->cable_80 = 1;
  961. /* On Kauai-type controllers, we make sure the FCR is correct */
  962. if (pmif->kauai_fcr)
  963. writel(KAUAI_FCR_UATA_MAGIC |
  964. KAUAI_FCR_UATA_RESET_N |
  965. KAUAI_FCR_UATA_ENABLE, pmif->kauai_fcr);
  966. pmif->mediabay = 0;
  967. /* Make sure we have sane timings */
  968. sanitize_timings(pmif);
  969. #ifndef CONFIG_PPC64
  970. /* XXX FIXME: Media bay stuff need re-organizing */
  971. if (np->parent && np->parent->name
  972. && strcasecmp(np->parent->name, "media-bay") == 0) {
  973. #ifdef CONFIG_PMAC_MEDIABAY
  974. media_bay_set_ide_infos(np->parent, pmif->regbase, pmif->irq, hwif->index);
  975. #endif /* CONFIG_PMAC_MEDIABAY */
  976. pmif->mediabay = 1;
  977. if (!bidp)
  978. pmif->aapl_bus_id = 1;
  979. } else if (pmif->kind == controller_ohare) {
  980. /* The code below is having trouble on some ohare machines
  981. * (timing related ?). Until I can put my hand on one of these
  982. * units, I keep the old way
  983. */
  984. ppc_md.feature_call(PMAC_FTR_IDE_ENABLE, np, 0, 1);
  985. } else
  986. #endif
  987. {
  988. /* This is necessary to enable IDE when net-booting */
  989. ppc_md.feature_call(PMAC_FTR_IDE_RESET, np, pmif->aapl_bus_id, 1);
  990. ppc_md.feature_call(PMAC_FTR_IDE_ENABLE, np, pmif->aapl_bus_id, 1);
  991. msleep(10);
  992. ppc_md.feature_call(PMAC_FTR_IDE_RESET, np, pmif->aapl_bus_id, 0);
  993. msleep(jiffies_to_msecs(IDE_WAKEUP_DELAY));
  994. }
  995. /* Setup MMIO ops */
  996. default_hwif_mmiops(hwif);
  997. hwif->OUTBSYNC = pmac_outbsync;
  998. /* Tell common code _not_ to mess with resources */
  999. hwif->mmio = 1;
  1000. hwif->hwif_data = pmif;
  1001. pmac_ide_init_hwif_ports(&hwif->hw, pmif->regbase, 0, &hwif->irq);
  1002. memcpy(hwif->io_ports, hwif->hw.io_ports, sizeof(hwif->io_ports));
  1003. hwif->chipset = ide_pmac;
  1004. hwif->noprobe = !hwif->io_ports[IDE_DATA_OFFSET] || pmif->mediabay;
  1005. hwif->hold = pmif->mediabay;
  1006. hwif->cbl = pmif->cable_80 ? ATA_CBL_PATA80 : ATA_CBL_PATA40;
  1007. hwif->drives[0].unmask = 1;
  1008. hwif->drives[1].unmask = 1;
  1009. hwif->drives[0].autotune = IDE_TUNE_AUTO;
  1010. hwif->drives[1].autotune = IDE_TUNE_AUTO;
  1011. hwif->host_flags = IDE_HFLAG_SET_PIO_MODE_KEEP_DMA |
  1012. IDE_HFLAG_POST_SET_MODE;
  1013. hwif->pio_mask = ATA_PIO4;
  1014. hwif->set_pio_mode = pmac_ide_set_pio_mode;
  1015. if (pmif->kind == controller_un_ata6
  1016. || pmif->kind == controller_k2_ata6
  1017. || pmif->kind == controller_sh_ata6)
  1018. hwif->selectproc = pmac_ide_kauai_selectproc;
  1019. else
  1020. hwif->selectproc = pmac_ide_selectproc;
  1021. hwif->set_dma_mode = pmac_ide_set_dma_mode;
  1022. printk(KERN_INFO "ide%d: Found Apple %s controller, bus ID %d%s, irq %d\n",
  1023. hwif->index, model_name[pmif->kind], pmif->aapl_bus_id,
  1024. pmif->mediabay ? " (mediabay)" : "", hwif->irq);
  1025. #ifdef CONFIG_PMAC_MEDIABAY
  1026. if (pmif->mediabay && check_media_bay_by_base(pmif->regbase, MB_CD) == 0)
  1027. hwif->noprobe = 0;
  1028. #endif /* CONFIG_PMAC_MEDIABAY */
  1029. hwif->sg_max_nents = MAX_DCMDS;
  1030. #ifdef CONFIG_BLK_DEV_IDEDMA_PMAC
  1031. /* has a DBDMA controller channel */
  1032. if (pmif->dma_regs)
  1033. pmac_ide_setup_dma(pmif, hwif);
  1034. #endif /* CONFIG_BLK_DEV_IDEDMA_PMAC */
  1035. /* We probe the hwif now */
  1036. probe_hwif_init(hwif);
  1037. ide_proc_register_port(hwif);
  1038. return 0;
  1039. }
  1040. /*
  1041. * Attach to a macio probed interface
  1042. */
  1043. static int __devinit
  1044. pmac_ide_macio_attach(struct macio_dev *mdev, const struct of_device_id *match)
  1045. {
  1046. void __iomem *base;
  1047. unsigned long regbase;
  1048. int irq;
  1049. ide_hwif_t *hwif;
  1050. pmac_ide_hwif_t *pmif;
  1051. int i, rc;
  1052. i = 0;
  1053. while (i < MAX_HWIFS && (ide_hwifs[i].io_ports[IDE_DATA_OFFSET] != 0
  1054. || pmac_ide[i].node != NULL))
  1055. ++i;
  1056. if (i >= MAX_HWIFS) {
  1057. printk(KERN_ERR "ide-pmac: MacIO interface attach with no slot\n");
  1058. printk(KERN_ERR " %s\n", mdev->ofdev.node->full_name);
  1059. return -ENODEV;
  1060. }
  1061. pmif = &pmac_ide[i];
  1062. hwif = &ide_hwifs[i];
  1063. if (macio_resource_count(mdev) == 0) {
  1064. printk(KERN_WARNING "ide%d: no address for %s\n",
  1065. i, mdev->ofdev.node->full_name);
  1066. return -ENXIO;
  1067. }
  1068. /* Request memory resource for IO ports */
  1069. if (macio_request_resource(mdev, 0, "ide-pmac (ports)")) {
  1070. printk(KERN_ERR "ide%d: can't request mmio resource !\n", i);
  1071. return -EBUSY;
  1072. }
  1073. /* XXX This is bogus. Should be fixed in the registry by checking
  1074. * the kind of host interrupt controller, a bit like gatwick
  1075. * fixes in irq.c. That works well enough for the single case
  1076. * where that happens though...
  1077. */
  1078. if (macio_irq_count(mdev) == 0) {
  1079. printk(KERN_WARNING "ide%d: no intrs for device %s, using 13\n",
  1080. i, mdev->ofdev.node->full_name);
  1081. irq = irq_create_mapping(NULL, 13);
  1082. } else
  1083. irq = macio_irq(mdev, 0);
  1084. base = ioremap(macio_resource_start(mdev, 0), 0x400);
  1085. regbase = (unsigned long) base;
  1086. hwif->pci_dev = mdev->bus->pdev;
  1087. hwif->gendev.parent = &mdev->ofdev.dev;
  1088. pmif->mdev = mdev;
  1089. pmif->node = mdev->ofdev.node;
  1090. pmif->regbase = regbase;
  1091. pmif->irq = irq;
  1092. pmif->kauai_fcr = NULL;
  1093. #ifdef CONFIG_BLK_DEV_IDEDMA_PMAC
  1094. if (macio_resource_count(mdev) >= 2) {
  1095. if (macio_request_resource(mdev, 1, "ide-pmac (dma)"))
  1096. printk(KERN_WARNING "ide%d: can't request DMA resource !\n", i);
  1097. else
  1098. pmif->dma_regs = ioremap(macio_resource_start(mdev, 1), 0x1000);
  1099. } else
  1100. pmif->dma_regs = NULL;
  1101. #endif /* CONFIG_BLK_DEV_IDEDMA_PMAC */
  1102. dev_set_drvdata(&mdev->ofdev.dev, hwif);
  1103. rc = pmac_ide_setup_device(pmif, hwif);
  1104. if (rc != 0) {
  1105. /* The inteface is released to the common IDE layer */
  1106. dev_set_drvdata(&mdev->ofdev.dev, NULL);
  1107. iounmap(base);
  1108. if (pmif->dma_regs)
  1109. iounmap(pmif->dma_regs);
  1110. memset(pmif, 0, sizeof(*pmif));
  1111. macio_release_resource(mdev, 0);
  1112. if (pmif->dma_regs)
  1113. macio_release_resource(mdev, 1);
  1114. }
  1115. return rc;
  1116. }
  1117. static int
  1118. pmac_ide_macio_suspend(struct macio_dev *mdev, pm_message_t mesg)
  1119. {
  1120. ide_hwif_t *hwif = (ide_hwif_t *)dev_get_drvdata(&mdev->ofdev.dev);
  1121. int rc = 0;
  1122. if (mesg.event != mdev->ofdev.dev.power.power_state.event
  1123. && mesg.event == PM_EVENT_SUSPEND) {
  1124. rc = pmac_ide_do_suspend(hwif);
  1125. if (rc == 0)
  1126. mdev->ofdev.dev.power.power_state = mesg;
  1127. }
  1128. return rc;
  1129. }
  1130. static int
  1131. pmac_ide_macio_resume(struct macio_dev *mdev)
  1132. {
  1133. ide_hwif_t *hwif = (ide_hwif_t *)dev_get_drvdata(&mdev->ofdev.dev);
  1134. int rc = 0;
  1135. if (mdev->ofdev.dev.power.power_state.event != PM_EVENT_ON) {
  1136. rc = pmac_ide_do_resume(hwif);
  1137. if (rc == 0)
  1138. mdev->ofdev.dev.power.power_state = PMSG_ON;
  1139. }
  1140. return rc;
  1141. }
  1142. /*
  1143. * Attach to a PCI probed interface
  1144. */
  1145. static int __devinit
  1146. pmac_ide_pci_attach(struct pci_dev *pdev, const struct pci_device_id *id)
  1147. {
  1148. ide_hwif_t *hwif;
  1149. struct device_node *np;
  1150. pmac_ide_hwif_t *pmif;
  1151. void __iomem *base;
  1152. unsigned long rbase, rlen;
  1153. int i, rc;
  1154. np = pci_device_to_OF_node(pdev);
  1155. if (np == NULL) {
  1156. printk(KERN_ERR "ide-pmac: cannot find MacIO node for Kauai ATA interface\n");
  1157. return -ENODEV;
  1158. }
  1159. i = 0;
  1160. while (i < MAX_HWIFS && (ide_hwifs[i].io_ports[IDE_DATA_OFFSET] != 0
  1161. || pmac_ide[i].node != NULL))
  1162. ++i;
  1163. if (i >= MAX_HWIFS) {
  1164. printk(KERN_ERR "ide-pmac: PCI interface attach with no slot\n");
  1165. printk(KERN_ERR " %s\n", np->full_name);
  1166. return -ENODEV;
  1167. }
  1168. pmif = &pmac_ide[i];
  1169. hwif = &ide_hwifs[i];
  1170. if (pci_enable_device(pdev)) {
  1171. printk(KERN_WARNING "ide%i: Can't enable PCI device for %s\n",
  1172. i, np->full_name);
  1173. return -ENXIO;
  1174. }
  1175. pci_set_master(pdev);
  1176. if (pci_request_regions(pdev, "Kauai ATA")) {
  1177. printk(KERN_ERR "ide%d: Cannot obtain PCI resources for %s\n",
  1178. i, np->full_name);
  1179. return -ENXIO;
  1180. }
  1181. hwif->pci_dev = pdev;
  1182. hwif->gendev.parent = &pdev->dev;
  1183. pmif->mdev = NULL;
  1184. pmif->node = np;
  1185. rbase = pci_resource_start(pdev, 0);
  1186. rlen = pci_resource_len(pdev, 0);
  1187. base = ioremap(rbase, rlen);
  1188. pmif->regbase = (unsigned long) base + 0x2000;
  1189. #ifdef CONFIG_BLK_DEV_IDEDMA_PMAC
  1190. pmif->dma_regs = base + 0x1000;
  1191. #endif /* CONFIG_BLK_DEV_IDEDMA_PMAC */
  1192. pmif->kauai_fcr = base;
  1193. pmif->irq = pdev->irq;
  1194. pci_set_drvdata(pdev, hwif);
  1195. rc = pmac_ide_setup_device(pmif, hwif);
  1196. if (rc != 0) {
  1197. /* The inteface is released to the common IDE layer */
  1198. pci_set_drvdata(pdev, NULL);
  1199. iounmap(base);
  1200. memset(pmif, 0, sizeof(*pmif));
  1201. pci_release_regions(pdev);
  1202. }
  1203. return rc;
  1204. }
  1205. static int
  1206. pmac_ide_pci_suspend(struct pci_dev *pdev, pm_message_t mesg)
  1207. {
  1208. ide_hwif_t *hwif = (ide_hwif_t *)pci_get_drvdata(pdev);
  1209. int rc = 0;
  1210. if (mesg.event != pdev->dev.power.power_state.event
  1211. && mesg.event == PM_EVENT_SUSPEND) {
  1212. rc = pmac_ide_do_suspend(hwif);
  1213. if (rc == 0)
  1214. pdev->dev.power.power_state = mesg;
  1215. }
  1216. return rc;
  1217. }
  1218. static int
  1219. pmac_ide_pci_resume(struct pci_dev *pdev)
  1220. {
  1221. ide_hwif_t *hwif = (ide_hwif_t *)pci_get_drvdata(pdev);
  1222. int rc = 0;
  1223. if (pdev->dev.power.power_state.event != PM_EVENT_ON) {
  1224. rc = pmac_ide_do_resume(hwif);
  1225. if (rc == 0)
  1226. pdev->dev.power.power_state = PMSG_ON;
  1227. }
  1228. return rc;
  1229. }
  1230. static struct of_device_id pmac_ide_macio_match[] =
  1231. {
  1232. {
  1233. .name = "IDE",
  1234. },
  1235. {
  1236. .name = "ATA",
  1237. },
  1238. {
  1239. .type = "ide",
  1240. },
  1241. {
  1242. .type = "ata",
  1243. },
  1244. {},
  1245. };
  1246. static struct macio_driver pmac_ide_macio_driver =
  1247. {
  1248. .name = "ide-pmac",
  1249. .match_table = pmac_ide_macio_match,
  1250. .probe = pmac_ide_macio_attach,
  1251. .suspend = pmac_ide_macio_suspend,
  1252. .resume = pmac_ide_macio_resume,
  1253. };
  1254. static struct pci_device_id pmac_ide_pci_match[] = {
  1255. { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_ATA,
  1256. PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
  1257. { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_IPID_ATA100,
  1258. PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
  1259. { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_K2_ATA100,
  1260. PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
  1261. { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_SH_ATA,
  1262. PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
  1263. { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_IPID2_ATA,
  1264. PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
  1265. {},
  1266. };
  1267. static struct pci_driver pmac_ide_pci_driver = {
  1268. .name = "ide-pmac",
  1269. .id_table = pmac_ide_pci_match,
  1270. .probe = pmac_ide_pci_attach,
  1271. .suspend = pmac_ide_pci_suspend,
  1272. .resume = pmac_ide_pci_resume,
  1273. };
  1274. MODULE_DEVICE_TABLE(pci, pmac_ide_pci_match);
  1275. int __init pmac_ide_probe(void)
  1276. {
  1277. int error;
  1278. if (!machine_is(powermac))
  1279. return -ENODEV;
  1280. #ifdef CONFIG_BLK_DEV_IDE_PMAC_ATA100FIRST
  1281. error = pci_register_driver(&pmac_ide_pci_driver);
  1282. if (error)
  1283. goto out;
  1284. error = macio_register_driver(&pmac_ide_macio_driver);
  1285. if (error) {
  1286. pci_unregister_driver(&pmac_ide_pci_driver);
  1287. goto out;
  1288. }
  1289. #else
  1290. error = macio_register_driver(&pmac_ide_macio_driver);
  1291. if (error)
  1292. goto out;
  1293. error = pci_register_driver(&pmac_ide_pci_driver);
  1294. if (error) {
  1295. macio_unregister_driver(&pmac_ide_macio_driver);
  1296. goto out;
  1297. }
  1298. #endif
  1299. out:
  1300. return error;
  1301. }
  1302. #ifdef CONFIG_BLK_DEV_IDEDMA_PMAC
  1303. /*
  1304. * pmac_ide_build_dmatable builds the DBDMA command list
  1305. * for a transfer and sets the DBDMA channel to point to it.
  1306. */
  1307. static int
  1308. pmac_ide_build_dmatable(ide_drive_t *drive, struct request *rq)
  1309. {
  1310. struct dbdma_cmd *table;
  1311. int i, count = 0;
  1312. ide_hwif_t *hwif = HWIF(drive);
  1313. pmac_ide_hwif_t* pmif = (pmac_ide_hwif_t *)hwif->hwif_data;
  1314. volatile struct dbdma_regs __iomem *dma = pmif->dma_regs;
  1315. struct scatterlist *sg;
  1316. int wr = (rq_data_dir(rq) == WRITE);
  1317. /* DMA table is already aligned */
  1318. table = (struct dbdma_cmd *) pmif->dma_table_cpu;
  1319. /* Make sure DMA controller is stopped (necessary ?) */
  1320. writel((RUN|PAUSE|FLUSH|WAKE|DEAD) << 16, &dma->control);
  1321. while (readl(&dma->status) & RUN)
  1322. udelay(1);
  1323. hwif->sg_nents = i = ide_build_sglist(drive, rq);
  1324. if (!i)
  1325. return 0;
  1326. /* Build DBDMA commands list */
  1327. sg = hwif->sg_table;
  1328. while (i && sg_dma_len(sg)) {
  1329. u32 cur_addr;
  1330. u32 cur_len;
  1331. cur_addr = sg_dma_address(sg);
  1332. cur_len = sg_dma_len(sg);
  1333. if (pmif->broken_dma && cur_addr & (L1_CACHE_BYTES - 1)) {
  1334. if (pmif->broken_dma_warn == 0) {
  1335. printk(KERN_WARNING "%s: DMA on non aligned address,"
  1336. "switching to PIO on Ohare chipset\n", drive->name);
  1337. pmif->broken_dma_warn = 1;
  1338. }
  1339. goto use_pio_instead;
  1340. }
  1341. while (cur_len) {
  1342. unsigned int tc = (cur_len < 0xfe00)? cur_len: 0xfe00;
  1343. if (count++ >= MAX_DCMDS) {
  1344. printk(KERN_WARNING "%s: DMA table too small\n",
  1345. drive->name);
  1346. goto use_pio_instead;
  1347. }
  1348. st_le16(&table->command, wr? OUTPUT_MORE: INPUT_MORE);
  1349. st_le16(&table->req_count, tc);
  1350. st_le32(&table->phy_addr, cur_addr);
  1351. table->cmd_dep = 0;
  1352. table->xfer_status = 0;
  1353. table->res_count = 0;
  1354. cur_addr += tc;
  1355. cur_len -= tc;
  1356. ++table;
  1357. }
  1358. sg++;
  1359. i--;
  1360. }
  1361. /* convert the last command to an input/output last command */
  1362. if (count) {
  1363. st_le16(&table[-1].command, wr? OUTPUT_LAST: INPUT_LAST);
  1364. /* add the stop command to the end of the list */
  1365. memset(table, 0, sizeof(struct dbdma_cmd));
  1366. st_le16(&table->command, DBDMA_STOP);
  1367. mb();
  1368. writel(hwif->dmatable_dma, &dma->cmdptr);
  1369. return 1;
  1370. }
  1371. printk(KERN_DEBUG "%s: empty DMA table?\n", drive->name);
  1372. use_pio_instead:
  1373. pci_unmap_sg(hwif->pci_dev,
  1374. hwif->sg_table,
  1375. hwif->sg_nents,
  1376. hwif->sg_dma_direction);
  1377. return 0; /* revert to PIO for this request */
  1378. }
  1379. /* Teardown mappings after DMA has completed. */
  1380. static void
  1381. pmac_ide_destroy_dmatable (ide_drive_t *drive)
  1382. {
  1383. ide_hwif_t *hwif = drive->hwif;
  1384. struct pci_dev *dev = HWIF(drive)->pci_dev;
  1385. struct scatterlist *sg = hwif->sg_table;
  1386. int nents = hwif->sg_nents;
  1387. if (nents) {
  1388. pci_unmap_sg(dev, sg, nents, hwif->sg_dma_direction);
  1389. hwif->sg_nents = 0;
  1390. }
  1391. }
  1392. /*
  1393. * Check what is the best DMA timing setting for the drive and
  1394. * call appropriate functions to apply it.
  1395. */
  1396. static int
  1397. pmac_ide_dma_check(ide_drive_t *drive)
  1398. {
  1399. if (ide_tune_dma(drive))
  1400. return 0;
  1401. return -1;
  1402. }
  1403. /*
  1404. * Prepare a DMA transfer. We build the DMA table, adjust the timings for
  1405. * a read on KeyLargo ATA/66 and mark us as waiting for DMA completion
  1406. */
  1407. static int
  1408. pmac_ide_dma_setup(ide_drive_t *drive)
  1409. {
  1410. ide_hwif_t *hwif = HWIF(drive);
  1411. pmac_ide_hwif_t* pmif = (pmac_ide_hwif_t *)hwif->hwif_data;
  1412. struct request *rq = HWGROUP(drive)->rq;
  1413. u8 unit = (drive->select.b.unit & 0x01);
  1414. u8 ata4;
  1415. if (pmif == NULL)
  1416. return 1;
  1417. ata4 = (pmif->kind == controller_kl_ata4);
  1418. if (!pmac_ide_build_dmatable(drive, rq)) {
  1419. ide_map_sg(drive, rq);
  1420. return 1;
  1421. }
  1422. /* Apple adds 60ns to wrDataSetup on reads */
  1423. if (ata4 && (pmif->timings[unit] & TR_66_UDMA_EN)) {
  1424. writel(pmif->timings[unit] + (!rq_data_dir(rq) ? 0x00800000UL : 0),
  1425. PMAC_IDE_REG(IDE_TIMING_CONFIG));
  1426. (void)readl(PMAC_IDE_REG(IDE_TIMING_CONFIG));
  1427. }
  1428. drive->waiting_for_dma = 1;
  1429. return 0;
  1430. }
  1431. static void
  1432. pmac_ide_dma_exec_cmd(ide_drive_t *drive, u8 command)
  1433. {
  1434. /* issue cmd to drive */
  1435. ide_execute_command(drive, command, &ide_dma_intr, 2*WAIT_CMD, NULL);
  1436. }
  1437. /*
  1438. * Kick the DMA controller into life after the DMA command has been issued
  1439. * to the drive.
  1440. */
  1441. static void
  1442. pmac_ide_dma_start(ide_drive_t *drive)
  1443. {
  1444. pmac_ide_hwif_t* pmif = (pmac_ide_hwif_t *)HWIF(drive)->hwif_data;
  1445. volatile struct dbdma_regs __iomem *dma;
  1446. dma = pmif->dma_regs;
  1447. writel((RUN << 16) | RUN, &dma->control);
  1448. /* Make sure it gets to the controller right now */
  1449. (void)readl(&dma->control);
  1450. }
  1451. /*
  1452. * After a DMA transfer, make sure the controller is stopped
  1453. */
  1454. static int
  1455. pmac_ide_dma_end (ide_drive_t *drive)
  1456. {
  1457. pmac_ide_hwif_t* pmif = (pmac_ide_hwif_t *)HWIF(drive)->hwif_data;
  1458. volatile struct dbdma_regs __iomem *dma;
  1459. u32 dstat;
  1460. if (pmif == NULL)
  1461. return 0;
  1462. dma = pmif->dma_regs;
  1463. drive->waiting_for_dma = 0;
  1464. dstat = readl(&dma->status);
  1465. writel(((RUN|WAKE|DEAD) << 16), &dma->control);
  1466. pmac_ide_destroy_dmatable(drive);
  1467. /* verify good dma status. we don't check for ACTIVE beeing 0. We should...
  1468. * in theory, but with ATAPI decices doing buffer underruns, that would
  1469. * cause us to disable DMA, which isn't what we want
  1470. */
  1471. return (dstat & (RUN|DEAD)) != RUN;
  1472. }
  1473. /*
  1474. * Check out that the interrupt we got was for us. We can't always know this
  1475. * for sure with those Apple interfaces (well, we could on the recent ones but
  1476. * that's not implemented yet), on the other hand, we don't have shared interrupts
  1477. * so it's not really a problem
  1478. */
  1479. static int
  1480. pmac_ide_dma_test_irq (ide_drive_t *drive)
  1481. {
  1482. pmac_ide_hwif_t* pmif = (pmac_ide_hwif_t *)HWIF(drive)->hwif_data;
  1483. volatile struct dbdma_regs __iomem *dma;
  1484. unsigned long status, timeout;
  1485. if (pmif == NULL)
  1486. return 0;
  1487. dma = pmif->dma_regs;
  1488. /* We have to things to deal with here:
  1489. *
  1490. * - The dbdma won't stop if the command was started
  1491. * but completed with an error without transferring all
  1492. * datas. This happens when bad blocks are met during
  1493. * a multi-block transfer.
  1494. *
  1495. * - The dbdma fifo hasn't yet finished flushing to
  1496. * to system memory when the disk interrupt occurs.
  1497. *
  1498. */
  1499. /* If ACTIVE is cleared, the STOP command have passed and
  1500. * transfer is complete.
  1501. */
  1502. status = readl(&dma->status);
  1503. if (!(status & ACTIVE))
  1504. return 1;
  1505. if (!drive->waiting_for_dma)
  1506. printk(KERN_WARNING "ide%d, ide_dma_test_irq \
  1507. called while not waiting\n", HWIF(drive)->index);
  1508. /* If dbdma didn't execute the STOP command yet, the
  1509. * active bit is still set. We consider that we aren't
  1510. * sharing interrupts (which is hopefully the case with
  1511. * those controllers) and so we just try to flush the
  1512. * channel for pending data in the fifo
  1513. */
  1514. udelay(1);
  1515. writel((FLUSH << 16) | FLUSH, &dma->control);
  1516. timeout = 0;
  1517. for (;;) {
  1518. udelay(1);
  1519. status = readl(&dma->status);
  1520. if ((status & FLUSH) == 0)
  1521. break;
  1522. if (++timeout > 100) {
  1523. printk(KERN_WARNING "ide%d, ide_dma_test_irq \
  1524. timeout flushing channel\n", HWIF(drive)->index);
  1525. break;
  1526. }
  1527. }
  1528. return 1;
  1529. }
  1530. static void pmac_ide_dma_host_off(ide_drive_t *drive)
  1531. {
  1532. }
  1533. static void pmac_ide_dma_host_on(ide_drive_t *drive)
  1534. {
  1535. }
  1536. static void
  1537. pmac_ide_dma_lost_irq (ide_drive_t *drive)
  1538. {
  1539. pmac_ide_hwif_t* pmif = (pmac_ide_hwif_t *)HWIF(drive)->hwif_data;
  1540. volatile struct dbdma_regs __iomem *dma;
  1541. unsigned long status;
  1542. if (pmif == NULL)
  1543. return;
  1544. dma = pmif->dma_regs;
  1545. status = readl(&dma->status);
  1546. printk(KERN_ERR "ide-pmac lost interrupt, dma status: %lx\n", status);
  1547. }
  1548. /*
  1549. * Allocate the data structures needed for using DMA with an interface
  1550. * and fill the proper list of functions pointers
  1551. */
  1552. static void __init
  1553. pmac_ide_setup_dma(pmac_ide_hwif_t *pmif, ide_hwif_t *hwif)
  1554. {
  1555. /* We won't need pci_dev if we switch to generic consistent
  1556. * DMA routines ...
  1557. */
  1558. if (hwif->pci_dev == NULL)
  1559. return;
  1560. /*
  1561. * Allocate space for the DBDMA commands.
  1562. * The +2 is +1 for the stop command and +1 to allow for
  1563. * aligning the start address to a multiple of 16 bytes.
  1564. */
  1565. pmif->dma_table_cpu = (struct dbdma_cmd*)pci_alloc_consistent(
  1566. hwif->pci_dev,
  1567. (MAX_DCMDS + 2) * sizeof(struct dbdma_cmd),
  1568. &hwif->dmatable_dma);
  1569. if (pmif->dma_table_cpu == NULL) {
  1570. printk(KERN_ERR "%s: unable to allocate DMA command list\n",
  1571. hwif->name);
  1572. return;
  1573. }
  1574. hwif->dma_off_quietly = &ide_dma_off_quietly;
  1575. hwif->ide_dma_on = &__ide_dma_on;
  1576. hwif->ide_dma_check = &pmac_ide_dma_check;
  1577. hwif->dma_setup = &pmac_ide_dma_setup;
  1578. hwif->dma_exec_cmd = &pmac_ide_dma_exec_cmd;
  1579. hwif->dma_start = &pmac_ide_dma_start;
  1580. hwif->ide_dma_end = &pmac_ide_dma_end;
  1581. hwif->ide_dma_test_irq = &pmac_ide_dma_test_irq;
  1582. hwif->dma_host_off = &pmac_ide_dma_host_off;
  1583. hwif->dma_host_on = &pmac_ide_dma_host_on;
  1584. hwif->dma_timeout = &ide_dma_timeout;
  1585. hwif->dma_lost_irq = &pmac_ide_dma_lost_irq;
  1586. hwif->atapi_dma = 1;
  1587. switch(pmif->kind) {
  1588. case controller_sh_ata6:
  1589. hwif->ultra_mask = pmif->cable_80 ? 0x7f : 0x07;
  1590. hwif->mwdma_mask = 0x07;
  1591. hwif->swdma_mask = 0x00;
  1592. break;
  1593. case controller_un_ata6:
  1594. case controller_k2_ata6:
  1595. hwif->ultra_mask = pmif->cable_80 ? 0x3f : 0x07;
  1596. hwif->mwdma_mask = 0x07;
  1597. hwif->swdma_mask = 0x00;
  1598. break;
  1599. case controller_kl_ata4:
  1600. hwif->ultra_mask = pmif->cable_80 ? 0x1f : 0x07;
  1601. hwif->mwdma_mask = 0x07;
  1602. hwif->swdma_mask = 0x00;
  1603. break;
  1604. default:
  1605. hwif->ultra_mask = 0x00;
  1606. hwif->mwdma_mask = 0x07;
  1607. hwif->swdma_mask = 0x00;
  1608. break;
  1609. }
  1610. hwif->autodma = 1;
  1611. hwif->drives[1].autodma = hwif->drives[0].autodma = hwif->autodma;
  1612. }
  1613. #endif /* CONFIG_BLK_DEV_IDEDMA_PMAC */