ide-iops.c 34 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234
  1. /*
  2. * linux/drivers/ide/ide-iops.c Version 0.37 Mar 05, 2003
  3. *
  4. * Copyright (C) 2000-2002 Andre Hedrick <andre@linux-ide.org>
  5. * Copyright (C) 2003 Red Hat <alan@redhat.com>
  6. *
  7. */
  8. #include <linux/module.h>
  9. #include <linux/types.h>
  10. #include <linux/string.h>
  11. #include <linux/kernel.h>
  12. #include <linux/timer.h>
  13. #include <linux/mm.h>
  14. #include <linux/interrupt.h>
  15. #include <linux/major.h>
  16. #include <linux/errno.h>
  17. #include <linux/genhd.h>
  18. #include <linux/blkpg.h>
  19. #include <linux/slab.h>
  20. #include <linux/pci.h>
  21. #include <linux/delay.h>
  22. #include <linux/hdreg.h>
  23. #include <linux/ide.h>
  24. #include <linux/bitops.h>
  25. #include <linux/nmi.h>
  26. #include <asm/byteorder.h>
  27. #include <asm/irq.h>
  28. #include <asm/uaccess.h>
  29. #include <asm/io.h>
  30. /*
  31. * Conventional PIO operations for ATA devices
  32. */
  33. static u8 ide_inb (unsigned long port)
  34. {
  35. return (u8) inb(port);
  36. }
  37. static u16 ide_inw (unsigned long port)
  38. {
  39. return (u16) inw(port);
  40. }
  41. static void ide_insw (unsigned long port, void *addr, u32 count)
  42. {
  43. insw(port, addr, count);
  44. }
  45. static void ide_insl (unsigned long port, void *addr, u32 count)
  46. {
  47. insl(port, addr, count);
  48. }
  49. static void ide_outb (u8 val, unsigned long port)
  50. {
  51. outb(val, port);
  52. }
  53. static void ide_outbsync (ide_drive_t *drive, u8 addr, unsigned long port)
  54. {
  55. outb(addr, port);
  56. }
  57. static void ide_outw (u16 val, unsigned long port)
  58. {
  59. outw(val, port);
  60. }
  61. static void ide_outsw (unsigned long port, void *addr, u32 count)
  62. {
  63. outsw(port, addr, count);
  64. }
  65. static void ide_outsl (unsigned long port, void *addr, u32 count)
  66. {
  67. outsl(port, addr, count);
  68. }
  69. void default_hwif_iops (ide_hwif_t *hwif)
  70. {
  71. hwif->OUTB = ide_outb;
  72. hwif->OUTBSYNC = ide_outbsync;
  73. hwif->OUTW = ide_outw;
  74. hwif->OUTSW = ide_outsw;
  75. hwif->OUTSL = ide_outsl;
  76. hwif->INB = ide_inb;
  77. hwif->INW = ide_inw;
  78. hwif->INSW = ide_insw;
  79. hwif->INSL = ide_insl;
  80. }
  81. /*
  82. * MMIO operations, typically used for SATA controllers
  83. */
  84. static u8 ide_mm_inb (unsigned long port)
  85. {
  86. return (u8) readb((void __iomem *) port);
  87. }
  88. static u16 ide_mm_inw (unsigned long port)
  89. {
  90. return (u16) readw((void __iomem *) port);
  91. }
  92. static void ide_mm_insw (unsigned long port, void *addr, u32 count)
  93. {
  94. __ide_mm_insw((void __iomem *) port, addr, count);
  95. }
  96. static void ide_mm_insl (unsigned long port, void *addr, u32 count)
  97. {
  98. __ide_mm_insl((void __iomem *) port, addr, count);
  99. }
  100. static void ide_mm_outb (u8 value, unsigned long port)
  101. {
  102. writeb(value, (void __iomem *) port);
  103. }
  104. static void ide_mm_outbsync (ide_drive_t *drive, u8 value, unsigned long port)
  105. {
  106. writeb(value, (void __iomem *) port);
  107. }
  108. static void ide_mm_outw (u16 value, unsigned long port)
  109. {
  110. writew(value, (void __iomem *) port);
  111. }
  112. static void ide_mm_outsw (unsigned long port, void *addr, u32 count)
  113. {
  114. __ide_mm_outsw((void __iomem *) port, addr, count);
  115. }
  116. static void ide_mm_outsl (unsigned long port, void *addr, u32 count)
  117. {
  118. __ide_mm_outsl((void __iomem *) port, addr, count);
  119. }
  120. void default_hwif_mmiops (ide_hwif_t *hwif)
  121. {
  122. hwif->OUTB = ide_mm_outb;
  123. /* Most systems will need to override OUTBSYNC, alas however
  124. this one is controller specific! */
  125. hwif->OUTBSYNC = ide_mm_outbsync;
  126. hwif->OUTW = ide_mm_outw;
  127. hwif->OUTSW = ide_mm_outsw;
  128. hwif->OUTSL = ide_mm_outsl;
  129. hwif->INB = ide_mm_inb;
  130. hwif->INW = ide_mm_inw;
  131. hwif->INSW = ide_mm_insw;
  132. hwif->INSL = ide_mm_insl;
  133. }
  134. EXPORT_SYMBOL(default_hwif_mmiops);
  135. u32 ide_read_24 (ide_drive_t *drive)
  136. {
  137. u8 hcyl = HWIF(drive)->INB(IDE_HCYL_REG);
  138. u8 lcyl = HWIF(drive)->INB(IDE_LCYL_REG);
  139. u8 sect = HWIF(drive)->INB(IDE_SECTOR_REG);
  140. return (hcyl<<16)|(lcyl<<8)|sect;
  141. }
  142. void SELECT_DRIVE (ide_drive_t *drive)
  143. {
  144. if (HWIF(drive)->selectproc)
  145. HWIF(drive)->selectproc(drive);
  146. HWIF(drive)->OUTB(drive->select.all, IDE_SELECT_REG);
  147. }
  148. EXPORT_SYMBOL(SELECT_DRIVE);
  149. void SELECT_INTERRUPT (ide_drive_t *drive)
  150. {
  151. if (HWIF(drive)->intrproc)
  152. HWIF(drive)->intrproc(drive);
  153. else
  154. HWIF(drive)->OUTB(drive->ctl|2, IDE_CONTROL_REG);
  155. }
  156. void SELECT_MASK (ide_drive_t *drive, int mask)
  157. {
  158. if (HWIF(drive)->maskproc)
  159. HWIF(drive)->maskproc(drive, mask);
  160. }
  161. void QUIRK_LIST (ide_drive_t *drive)
  162. {
  163. if (HWIF(drive)->quirkproc)
  164. drive->quirk_list = HWIF(drive)->quirkproc(drive);
  165. }
  166. /*
  167. * Some localbus EIDE interfaces require a special access sequence
  168. * when using 32-bit I/O instructions to transfer data. We call this
  169. * the "vlb_sync" sequence, which consists of three successive reads
  170. * of the sector count register location, with interrupts disabled
  171. * to ensure that the reads all happen together.
  172. */
  173. static void ata_vlb_sync(ide_drive_t *drive, unsigned long port)
  174. {
  175. (void) HWIF(drive)->INB(port);
  176. (void) HWIF(drive)->INB(port);
  177. (void) HWIF(drive)->INB(port);
  178. }
  179. /*
  180. * This is used for most PIO data transfers *from* the IDE interface
  181. */
  182. static void ata_input_data(ide_drive_t *drive, void *buffer, u32 wcount)
  183. {
  184. ide_hwif_t *hwif = HWIF(drive);
  185. u8 io_32bit = drive->io_32bit;
  186. if (io_32bit) {
  187. if (io_32bit & 2) {
  188. unsigned long flags;
  189. local_irq_save(flags);
  190. ata_vlb_sync(drive, IDE_NSECTOR_REG);
  191. hwif->INSL(IDE_DATA_REG, buffer, wcount);
  192. local_irq_restore(flags);
  193. } else
  194. hwif->INSL(IDE_DATA_REG, buffer, wcount);
  195. } else {
  196. hwif->INSW(IDE_DATA_REG, buffer, wcount<<1);
  197. }
  198. }
  199. /*
  200. * This is used for most PIO data transfers *to* the IDE interface
  201. */
  202. static void ata_output_data(ide_drive_t *drive, void *buffer, u32 wcount)
  203. {
  204. ide_hwif_t *hwif = HWIF(drive);
  205. u8 io_32bit = drive->io_32bit;
  206. if (io_32bit) {
  207. if (io_32bit & 2) {
  208. unsigned long flags;
  209. local_irq_save(flags);
  210. ata_vlb_sync(drive, IDE_NSECTOR_REG);
  211. hwif->OUTSL(IDE_DATA_REG, buffer, wcount);
  212. local_irq_restore(flags);
  213. } else
  214. hwif->OUTSL(IDE_DATA_REG, buffer, wcount);
  215. } else {
  216. hwif->OUTSW(IDE_DATA_REG, buffer, wcount<<1);
  217. }
  218. }
  219. /*
  220. * The following routines are mainly used by the ATAPI drivers.
  221. *
  222. * These routines will round up any request for an odd number of bytes,
  223. * so if an odd bytecount is specified, be sure that there's at least one
  224. * extra byte allocated for the buffer.
  225. */
  226. static void atapi_input_bytes(ide_drive_t *drive, void *buffer, u32 bytecount)
  227. {
  228. ide_hwif_t *hwif = HWIF(drive);
  229. ++bytecount;
  230. #if defined(CONFIG_ATARI) || defined(CONFIG_Q40)
  231. if (MACH_IS_ATARI || MACH_IS_Q40) {
  232. /* Atari has a byte-swapped IDE interface */
  233. insw_swapw(IDE_DATA_REG, buffer, bytecount / 2);
  234. return;
  235. }
  236. #endif /* CONFIG_ATARI || CONFIG_Q40 */
  237. hwif->ata_input_data(drive, buffer, bytecount / 4);
  238. if ((bytecount & 0x03) >= 2)
  239. hwif->INSW(IDE_DATA_REG, ((u8 *)buffer)+(bytecount & ~0x03), 1);
  240. }
  241. static void atapi_output_bytes(ide_drive_t *drive, void *buffer, u32 bytecount)
  242. {
  243. ide_hwif_t *hwif = HWIF(drive);
  244. ++bytecount;
  245. #if defined(CONFIG_ATARI) || defined(CONFIG_Q40)
  246. if (MACH_IS_ATARI || MACH_IS_Q40) {
  247. /* Atari has a byte-swapped IDE interface */
  248. outsw_swapw(IDE_DATA_REG, buffer, bytecount / 2);
  249. return;
  250. }
  251. #endif /* CONFIG_ATARI || CONFIG_Q40 */
  252. hwif->ata_output_data(drive, buffer, bytecount / 4);
  253. if ((bytecount & 0x03) >= 2)
  254. hwif->OUTSW(IDE_DATA_REG, ((u8*)buffer)+(bytecount & ~0x03), 1);
  255. }
  256. void default_hwif_transport(ide_hwif_t *hwif)
  257. {
  258. hwif->ata_input_data = ata_input_data;
  259. hwif->ata_output_data = ata_output_data;
  260. hwif->atapi_input_bytes = atapi_input_bytes;
  261. hwif->atapi_output_bytes = atapi_output_bytes;
  262. }
  263. /*
  264. * Beginning of Taskfile OPCODE Library and feature sets.
  265. */
  266. void ide_fix_driveid (struct hd_driveid *id)
  267. {
  268. #ifndef __LITTLE_ENDIAN
  269. # ifdef __BIG_ENDIAN
  270. int i;
  271. u16 *stringcast;
  272. id->config = __le16_to_cpu(id->config);
  273. id->cyls = __le16_to_cpu(id->cyls);
  274. id->reserved2 = __le16_to_cpu(id->reserved2);
  275. id->heads = __le16_to_cpu(id->heads);
  276. id->track_bytes = __le16_to_cpu(id->track_bytes);
  277. id->sector_bytes = __le16_to_cpu(id->sector_bytes);
  278. id->sectors = __le16_to_cpu(id->sectors);
  279. id->vendor0 = __le16_to_cpu(id->vendor0);
  280. id->vendor1 = __le16_to_cpu(id->vendor1);
  281. id->vendor2 = __le16_to_cpu(id->vendor2);
  282. stringcast = (u16 *)&id->serial_no[0];
  283. for (i = 0; i < (20/2); i++)
  284. stringcast[i] = __le16_to_cpu(stringcast[i]);
  285. id->buf_type = __le16_to_cpu(id->buf_type);
  286. id->buf_size = __le16_to_cpu(id->buf_size);
  287. id->ecc_bytes = __le16_to_cpu(id->ecc_bytes);
  288. stringcast = (u16 *)&id->fw_rev[0];
  289. for (i = 0; i < (8/2); i++)
  290. stringcast[i] = __le16_to_cpu(stringcast[i]);
  291. stringcast = (u16 *)&id->model[0];
  292. for (i = 0; i < (40/2); i++)
  293. stringcast[i] = __le16_to_cpu(stringcast[i]);
  294. id->dword_io = __le16_to_cpu(id->dword_io);
  295. id->reserved50 = __le16_to_cpu(id->reserved50);
  296. id->field_valid = __le16_to_cpu(id->field_valid);
  297. id->cur_cyls = __le16_to_cpu(id->cur_cyls);
  298. id->cur_heads = __le16_to_cpu(id->cur_heads);
  299. id->cur_sectors = __le16_to_cpu(id->cur_sectors);
  300. id->cur_capacity0 = __le16_to_cpu(id->cur_capacity0);
  301. id->cur_capacity1 = __le16_to_cpu(id->cur_capacity1);
  302. id->lba_capacity = __le32_to_cpu(id->lba_capacity);
  303. id->dma_1word = __le16_to_cpu(id->dma_1word);
  304. id->dma_mword = __le16_to_cpu(id->dma_mword);
  305. id->eide_pio_modes = __le16_to_cpu(id->eide_pio_modes);
  306. id->eide_dma_min = __le16_to_cpu(id->eide_dma_min);
  307. id->eide_dma_time = __le16_to_cpu(id->eide_dma_time);
  308. id->eide_pio = __le16_to_cpu(id->eide_pio);
  309. id->eide_pio_iordy = __le16_to_cpu(id->eide_pio_iordy);
  310. for (i = 0; i < 2; ++i)
  311. id->words69_70[i] = __le16_to_cpu(id->words69_70[i]);
  312. for (i = 0; i < 4; ++i)
  313. id->words71_74[i] = __le16_to_cpu(id->words71_74[i]);
  314. id->queue_depth = __le16_to_cpu(id->queue_depth);
  315. for (i = 0; i < 4; ++i)
  316. id->words76_79[i] = __le16_to_cpu(id->words76_79[i]);
  317. id->major_rev_num = __le16_to_cpu(id->major_rev_num);
  318. id->minor_rev_num = __le16_to_cpu(id->minor_rev_num);
  319. id->command_set_1 = __le16_to_cpu(id->command_set_1);
  320. id->command_set_2 = __le16_to_cpu(id->command_set_2);
  321. id->cfsse = __le16_to_cpu(id->cfsse);
  322. id->cfs_enable_1 = __le16_to_cpu(id->cfs_enable_1);
  323. id->cfs_enable_2 = __le16_to_cpu(id->cfs_enable_2);
  324. id->csf_default = __le16_to_cpu(id->csf_default);
  325. id->dma_ultra = __le16_to_cpu(id->dma_ultra);
  326. id->trseuc = __le16_to_cpu(id->trseuc);
  327. id->trsEuc = __le16_to_cpu(id->trsEuc);
  328. id->CurAPMvalues = __le16_to_cpu(id->CurAPMvalues);
  329. id->mprc = __le16_to_cpu(id->mprc);
  330. id->hw_config = __le16_to_cpu(id->hw_config);
  331. id->acoustic = __le16_to_cpu(id->acoustic);
  332. id->msrqs = __le16_to_cpu(id->msrqs);
  333. id->sxfert = __le16_to_cpu(id->sxfert);
  334. id->sal = __le16_to_cpu(id->sal);
  335. id->spg = __le32_to_cpu(id->spg);
  336. id->lba_capacity_2 = __le64_to_cpu(id->lba_capacity_2);
  337. for (i = 0; i < 22; i++)
  338. id->words104_125[i] = __le16_to_cpu(id->words104_125[i]);
  339. id->last_lun = __le16_to_cpu(id->last_lun);
  340. id->word127 = __le16_to_cpu(id->word127);
  341. id->dlf = __le16_to_cpu(id->dlf);
  342. id->csfo = __le16_to_cpu(id->csfo);
  343. for (i = 0; i < 26; i++)
  344. id->words130_155[i] = __le16_to_cpu(id->words130_155[i]);
  345. id->word156 = __le16_to_cpu(id->word156);
  346. for (i = 0; i < 3; i++)
  347. id->words157_159[i] = __le16_to_cpu(id->words157_159[i]);
  348. id->cfa_power = __le16_to_cpu(id->cfa_power);
  349. for (i = 0; i < 14; i++)
  350. id->words161_175[i] = __le16_to_cpu(id->words161_175[i]);
  351. for (i = 0; i < 31; i++)
  352. id->words176_205[i] = __le16_to_cpu(id->words176_205[i]);
  353. for (i = 0; i < 48; i++)
  354. id->words206_254[i] = __le16_to_cpu(id->words206_254[i]);
  355. id->integrity_word = __le16_to_cpu(id->integrity_word);
  356. # else
  357. # error "Please fix <asm/byteorder.h>"
  358. # endif
  359. #endif
  360. }
  361. /* FIXME: exported for use by the USB storage (isd200.c) code only */
  362. EXPORT_SYMBOL(ide_fix_driveid);
  363. void ide_fixstring (u8 *s, const int bytecount, const int byteswap)
  364. {
  365. u8 *p = s, *end = &s[bytecount & ~1]; /* bytecount must be even */
  366. if (byteswap) {
  367. /* convert from big-endian to host byte order */
  368. for (p = end ; p != s;) {
  369. unsigned short *pp = (unsigned short *) (p -= 2);
  370. *pp = ntohs(*pp);
  371. }
  372. }
  373. /* strip leading blanks */
  374. while (s != end && *s == ' ')
  375. ++s;
  376. /* compress internal blanks and strip trailing blanks */
  377. while (s != end && *s) {
  378. if (*s++ != ' ' || (s != end && *s && *s != ' '))
  379. *p++ = *(s-1);
  380. }
  381. /* wipe out trailing garbage */
  382. while (p != end)
  383. *p++ = '\0';
  384. }
  385. EXPORT_SYMBOL(ide_fixstring);
  386. /*
  387. * Needed for PCI irq sharing
  388. */
  389. int drive_is_ready (ide_drive_t *drive)
  390. {
  391. ide_hwif_t *hwif = HWIF(drive);
  392. u8 stat = 0;
  393. if (drive->waiting_for_dma)
  394. return hwif->ide_dma_test_irq(drive);
  395. #if 0
  396. /* need to guarantee 400ns since last command was issued */
  397. udelay(1);
  398. #endif
  399. #ifdef CONFIG_IDEPCI_SHARE_IRQ
  400. /*
  401. * We do a passive status test under shared PCI interrupts on
  402. * cards that truly share the ATA side interrupt, but may also share
  403. * an interrupt with another pci card/device. We make no assumptions
  404. * about possible isa-pnp and pci-pnp issues yet.
  405. */
  406. if (IDE_CONTROL_REG)
  407. stat = hwif->INB(IDE_ALTSTATUS_REG);
  408. else
  409. #endif /* CONFIG_IDEPCI_SHARE_IRQ */
  410. /* Note: this may clear a pending IRQ!! */
  411. stat = hwif->INB(IDE_STATUS_REG);
  412. if (stat & BUSY_STAT)
  413. /* drive busy: definitely not interrupting */
  414. return 0;
  415. /* drive ready: *might* be interrupting */
  416. return 1;
  417. }
  418. EXPORT_SYMBOL(drive_is_ready);
  419. /*
  420. * This routine busy-waits for the drive status to be not "busy".
  421. * It then checks the status for all of the "good" bits and none
  422. * of the "bad" bits, and if all is okay it returns 0. All other
  423. * cases return error -- caller may then invoke ide_error().
  424. *
  425. * This routine should get fixed to not hog the cpu during extra long waits..
  426. * That could be done by busy-waiting for the first jiffy or two, and then
  427. * setting a timer to wake up at half second intervals thereafter,
  428. * until timeout is achieved, before timing out.
  429. */
  430. static int __ide_wait_stat(ide_drive_t *drive, u8 good, u8 bad, unsigned long timeout, u8 *rstat)
  431. {
  432. ide_hwif_t *hwif = drive->hwif;
  433. unsigned long flags;
  434. int i;
  435. u8 stat;
  436. udelay(1); /* spec allows drive 400ns to assert "BUSY" */
  437. if ((stat = hwif->INB(IDE_STATUS_REG)) & BUSY_STAT) {
  438. local_irq_set(flags);
  439. timeout += jiffies;
  440. while ((stat = hwif->INB(IDE_STATUS_REG)) & BUSY_STAT) {
  441. if (time_after(jiffies, timeout)) {
  442. /*
  443. * One last read after the timeout in case
  444. * heavy interrupt load made us not make any
  445. * progress during the timeout..
  446. */
  447. stat = hwif->INB(IDE_STATUS_REG);
  448. if (!(stat & BUSY_STAT))
  449. break;
  450. local_irq_restore(flags);
  451. *rstat = stat;
  452. return -EBUSY;
  453. }
  454. }
  455. local_irq_restore(flags);
  456. }
  457. /*
  458. * Allow status to settle, then read it again.
  459. * A few rare drives vastly violate the 400ns spec here,
  460. * so we'll wait up to 10usec for a "good" status
  461. * rather than expensively fail things immediately.
  462. * This fix courtesy of Matthew Faupel & Niccolo Rigacci.
  463. */
  464. for (i = 0; i < 10; i++) {
  465. udelay(1);
  466. if (OK_STAT((stat = hwif->INB(IDE_STATUS_REG)), good, bad)) {
  467. *rstat = stat;
  468. return 0;
  469. }
  470. }
  471. *rstat = stat;
  472. return -EFAULT;
  473. }
  474. /*
  475. * In case of error returns error value after doing "*startstop = ide_error()".
  476. * The caller should return the updated value of "startstop" in this case,
  477. * "startstop" is unchanged when the function returns 0.
  478. */
  479. int ide_wait_stat(ide_startstop_t *startstop, ide_drive_t *drive, u8 good, u8 bad, unsigned long timeout)
  480. {
  481. int err;
  482. u8 stat;
  483. /* bail early if we've exceeded max_failures */
  484. if (drive->max_failures && (drive->failures > drive->max_failures)) {
  485. *startstop = ide_stopped;
  486. return 1;
  487. }
  488. err = __ide_wait_stat(drive, good, bad, timeout, &stat);
  489. if (err) {
  490. char *s = (err == -EBUSY) ? "status timeout" : "status error";
  491. *startstop = ide_error(drive, s, stat);
  492. }
  493. return err;
  494. }
  495. EXPORT_SYMBOL(ide_wait_stat);
  496. /**
  497. * ide_in_drive_list - look for drive in black/white list
  498. * @id: drive identifier
  499. * @drive_table: list to inspect
  500. *
  501. * Look for a drive in the blacklist and the whitelist tables
  502. * Returns 1 if the drive is found in the table.
  503. */
  504. int ide_in_drive_list(struct hd_driveid *id, const struct drive_list_entry *drive_table)
  505. {
  506. for ( ; drive_table->id_model; drive_table++)
  507. if ((!strcmp(drive_table->id_model, id->model)) &&
  508. (!drive_table->id_firmware ||
  509. strstr(id->fw_rev, drive_table->id_firmware)))
  510. return 1;
  511. return 0;
  512. }
  513. EXPORT_SYMBOL_GPL(ide_in_drive_list);
  514. /*
  515. * Early UDMA66 devices don't set bit14 to 1, only bit13 is valid.
  516. * We list them here and depend on the device side cable detection for them.
  517. */
  518. static const struct drive_list_entry ivb_list[] = {
  519. { "QUANTUM FIREBALLlct10 05" , "A03.0900" },
  520. { NULL , NULL }
  521. };
  522. /*
  523. * All hosts that use the 80c ribbon must use!
  524. * The name is derived from upper byte of word 93 and the 80c ribbon.
  525. */
  526. u8 eighty_ninty_three (ide_drive_t *drive)
  527. {
  528. ide_hwif_t *hwif = drive->hwif;
  529. struct hd_driveid *id = drive->id;
  530. int ivb = ide_in_drive_list(id, ivb_list);
  531. if (hwif->cbl == ATA_CBL_PATA40_SHORT)
  532. return 1;
  533. if (ivb)
  534. printk(KERN_DEBUG "%s: skipping word 93 validity check\n",
  535. drive->name);
  536. if (hwif->cbl != ATA_CBL_PATA80 && !ivb)
  537. goto no_80w;
  538. if (ide_dev_is_sata(id))
  539. return 1;
  540. /*
  541. * FIXME:
  542. * - force bit13 (80c cable present) check also for !ivb devices
  543. * (unless the slave device is pre-ATA3)
  544. */
  545. if ((id->hw_config & 0x4000) || (ivb && (id->hw_config & 0x2000)))
  546. return 1;
  547. no_80w:
  548. if (drive->udma33_warned == 1)
  549. return 0;
  550. printk(KERN_WARNING "%s: %s side 80-wire cable detection failed, "
  551. "limiting max speed to UDMA33\n",
  552. drive->name,
  553. hwif->cbl == ATA_CBL_PATA80 ? "drive" : "host");
  554. drive->udma33_warned = 1;
  555. return 0;
  556. }
  557. int ide_ata66_check (ide_drive_t *drive, ide_task_t *args)
  558. {
  559. if ((args->tfRegister[IDE_COMMAND_OFFSET] == WIN_SETFEATURES) &&
  560. (args->tfRegister[IDE_SECTOR_OFFSET] > XFER_UDMA_2) &&
  561. (args->tfRegister[IDE_FEATURE_OFFSET] == SETFEATURES_XFER)) {
  562. if (eighty_ninty_three(drive) == 0) {
  563. printk(KERN_WARNING "%s: UDMA speeds >UDMA33 cannot "
  564. "be set\n", drive->name);
  565. return 1;
  566. }
  567. }
  568. return 0;
  569. }
  570. /*
  571. * Backside of HDIO_DRIVE_CMD call of SETFEATURES_XFER.
  572. * 1 : Safe to update drive->id DMA registers.
  573. * 0 : OOPs not allowed.
  574. */
  575. int set_transfer (ide_drive_t *drive, ide_task_t *args)
  576. {
  577. if ((args->tfRegister[IDE_COMMAND_OFFSET] == WIN_SETFEATURES) &&
  578. (args->tfRegister[IDE_SECTOR_OFFSET] >= XFER_SW_DMA_0) &&
  579. (args->tfRegister[IDE_FEATURE_OFFSET] == SETFEATURES_XFER) &&
  580. (drive->id->dma_ultra ||
  581. drive->id->dma_mword ||
  582. drive->id->dma_1word))
  583. return 1;
  584. return 0;
  585. }
  586. #ifdef CONFIG_BLK_DEV_IDEDMA
  587. static u8 ide_auto_reduce_xfer (ide_drive_t *drive)
  588. {
  589. if (!drive->crc_count)
  590. return drive->current_speed;
  591. drive->crc_count = 0;
  592. switch(drive->current_speed) {
  593. case XFER_UDMA_7: return XFER_UDMA_6;
  594. case XFER_UDMA_6: return XFER_UDMA_5;
  595. case XFER_UDMA_5: return XFER_UDMA_4;
  596. case XFER_UDMA_4: return XFER_UDMA_3;
  597. case XFER_UDMA_3: return XFER_UDMA_2;
  598. case XFER_UDMA_2: return XFER_UDMA_1;
  599. case XFER_UDMA_1: return XFER_UDMA_0;
  600. /*
  601. * OOPS we do not goto non Ultra DMA modes
  602. * without iCRC's available we force
  603. * the system to PIO and make the user
  604. * invoke the ATA-1 ATA-2 DMA modes.
  605. */
  606. case XFER_UDMA_0:
  607. default: return XFER_PIO_4;
  608. }
  609. }
  610. #endif /* CONFIG_BLK_DEV_IDEDMA */
  611. /*
  612. * Update the
  613. */
  614. int ide_driveid_update (ide_drive_t *drive)
  615. {
  616. ide_hwif_t *hwif = HWIF(drive);
  617. struct hd_driveid *id;
  618. #if 0
  619. id = kmalloc(SECTOR_WORDS*4, GFP_ATOMIC);
  620. if (!id)
  621. return 0;
  622. taskfile_lib_get_identify(drive, (char *)&id);
  623. ide_fix_driveid(id);
  624. if (id) {
  625. drive->id->dma_ultra = id->dma_ultra;
  626. drive->id->dma_mword = id->dma_mword;
  627. drive->id->dma_1word = id->dma_1word;
  628. /* anything more ? */
  629. kfree(id);
  630. }
  631. return 1;
  632. #else
  633. /*
  634. * Re-read drive->id for possible DMA mode
  635. * change (copied from ide-probe.c)
  636. */
  637. unsigned long timeout, flags;
  638. SELECT_MASK(drive, 1);
  639. if (IDE_CONTROL_REG)
  640. hwif->OUTB(drive->ctl,IDE_CONTROL_REG);
  641. msleep(50);
  642. hwif->OUTB(WIN_IDENTIFY, IDE_COMMAND_REG);
  643. timeout = jiffies + WAIT_WORSTCASE;
  644. do {
  645. if (time_after(jiffies, timeout)) {
  646. SELECT_MASK(drive, 0);
  647. return 0; /* drive timed-out */
  648. }
  649. msleep(50); /* give drive a breather */
  650. } while (hwif->INB(IDE_ALTSTATUS_REG) & BUSY_STAT);
  651. msleep(50); /* wait for IRQ and DRQ_STAT */
  652. if (!OK_STAT(hwif->INB(IDE_STATUS_REG),DRQ_STAT,BAD_R_STAT)) {
  653. SELECT_MASK(drive, 0);
  654. printk("%s: CHECK for good STATUS\n", drive->name);
  655. return 0;
  656. }
  657. local_irq_save(flags);
  658. SELECT_MASK(drive, 0);
  659. id = kmalloc(SECTOR_WORDS*4, GFP_ATOMIC);
  660. if (!id) {
  661. local_irq_restore(flags);
  662. return 0;
  663. }
  664. ata_input_data(drive, id, SECTOR_WORDS);
  665. (void) hwif->INB(IDE_STATUS_REG); /* clear drive IRQ */
  666. local_irq_enable();
  667. local_irq_restore(flags);
  668. ide_fix_driveid(id);
  669. if (id) {
  670. drive->id->dma_ultra = id->dma_ultra;
  671. drive->id->dma_mword = id->dma_mword;
  672. drive->id->dma_1word = id->dma_1word;
  673. /* anything more ? */
  674. kfree(id);
  675. }
  676. return 1;
  677. #endif
  678. }
  679. int ide_config_drive_speed(ide_drive_t *drive, u8 speed)
  680. {
  681. ide_hwif_t *hwif = drive->hwif;
  682. int error;
  683. u8 stat;
  684. // while (HWGROUP(drive)->busy)
  685. // msleep(50);
  686. #ifdef CONFIG_BLK_DEV_IDEDMA
  687. if (hwif->ide_dma_check) /* check if host supports DMA */
  688. hwif->dma_host_off(drive);
  689. #endif
  690. /*
  691. * Don't use ide_wait_cmd here - it will
  692. * attempt to set_geometry and recalibrate,
  693. * but for some reason these don't work at
  694. * this point (lost interrupt).
  695. */
  696. /*
  697. * Select the drive, and issue the SETFEATURES command
  698. */
  699. disable_irq_nosync(hwif->irq);
  700. /*
  701. * FIXME: we race against the running IRQ here if
  702. * this is called from non IRQ context. If we use
  703. * disable_irq() we hang on the error path. Work
  704. * is needed.
  705. */
  706. udelay(1);
  707. SELECT_DRIVE(drive);
  708. SELECT_MASK(drive, 0);
  709. udelay(1);
  710. if (IDE_CONTROL_REG)
  711. hwif->OUTB(drive->ctl | 2, IDE_CONTROL_REG);
  712. hwif->OUTB(speed, IDE_NSECTOR_REG);
  713. hwif->OUTB(SETFEATURES_XFER, IDE_FEATURE_REG);
  714. hwif->OUTBSYNC(drive, WIN_SETFEATURES, IDE_COMMAND_REG);
  715. if ((IDE_CONTROL_REG) && (drive->quirk_list == 2))
  716. hwif->OUTB(drive->ctl, IDE_CONTROL_REG);
  717. error = __ide_wait_stat(drive, drive->ready_stat,
  718. BUSY_STAT|DRQ_STAT|ERR_STAT,
  719. WAIT_CMD, &stat);
  720. SELECT_MASK(drive, 0);
  721. enable_irq(hwif->irq);
  722. if (error) {
  723. (void) ide_dump_status(drive, "set_drive_speed_status", stat);
  724. return error;
  725. }
  726. drive->id->dma_ultra &= ~0xFF00;
  727. drive->id->dma_mword &= ~0x0F00;
  728. drive->id->dma_1word &= ~0x0F00;
  729. #ifdef CONFIG_BLK_DEV_IDEDMA
  730. if (speed >= XFER_SW_DMA_0)
  731. hwif->dma_host_on(drive);
  732. else if (hwif->ide_dma_check) /* check if host supports DMA */
  733. hwif->dma_off_quietly(drive);
  734. #endif
  735. switch(speed) {
  736. case XFER_UDMA_7: drive->id->dma_ultra |= 0x8080; break;
  737. case XFER_UDMA_6: drive->id->dma_ultra |= 0x4040; break;
  738. case XFER_UDMA_5: drive->id->dma_ultra |= 0x2020; break;
  739. case XFER_UDMA_4: drive->id->dma_ultra |= 0x1010; break;
  740. case XFER_UDMA_3: drive->id->dma_ultra |= 0x0808; break;
  741. case XFER_UDMA_2: drive->id->dma_ultra |= 0x0404; break;
  742. case XFER_UDMA_1: drive->id->dma_ultra |= 0x0202; break;
  743. case XFER_UDMA_0: drive->id->dma_ultra |= 0x0101; break;
  744. case XFER_MW_DMA_2: drive->id->dma_mword |= 0x0404; break;
  745. case XFER_MW_DMA_1: drive->id->dma_mword |= 0x0202; break;
  746. case XFER_MW_DMA_0: drive->id->dma_mword |= 0x0101; break;
  747. case XFER_SW_DMA_2: drive->id->dma_1word |= 0x0404; break;
  748. case XFER_SW_DMA_1: drive->id->dma_1word |= 0x0202; break;
  749. case XFER_SW_DMA_0: drive->id->dma_1word |= 0x0101; break;
  750. default: break;
  751. }
  752. if (!drive->init_speed)
  753. drive->init_speed = speed;
  754. drive->current_speed = speed;
  755. return error;
  756. }
  757. /*
  758. * This should get invoked any time we exit the driver to
  759. * wait for an interrupt response from a drive. handler() points
  760. * at the appropriate code to handle the next interrupt, and a
  761. * timer is started to prevent us from waiting forever in case
  762. * something goes wrong (see the ide_timer_expiry() handler later on).
  763. *
  764. * See also ide_execute_command
  765. */
  766. static void __ide_set_handler (ide_drive_t *drive, ide_handler_t *handler,
  767. unsigned int timeout, ide_expiry_t *expiry)
  768. {
  769. ide_hwgroup_t *hwgroup = HWGROUP(drive);
  770. if (hwgroup->handler != NULL) {
  771. printk(KERN_CRIT "%s: ide_set_handler: handler not null; "
  772. "old=%p, new=%p\n",
  773. drive->name, hwgroup->handler, handler);
  774. }
  775. hwgroup->handler = handler;
  776. hwgroup->expiry = expiry;
  777. hwgroup->timer.expires = jiffies + timeout;
  778. hwgroup->req_gen_timer = hwgroup->req_gen;
  779. add_timer(&hwgroup->timer);
  780. }
  781. void ide_set_handler (ide_drive_t *drive, ide_handler_t *handler,
  782. unsigned int timeout, ide_expiry_t *expiry)
  783. {
  784. unsigned long flags;
  785. spin_lock_irqsave(&ide_lock, flags);
  786. __ide_set_handler(drive, handler, timeout, expiry);
  787. spin_unlock_irqrestore(&ide_lock, flags);
  788. }
  789. EXPORT_SYMBOL(ide_set_handler);
  790. /**
  791. * ide_execute_command - execute an IDE command
  792. * @drive: IDE drive to issue the command against
  793. * @command: command byte to write
  794. * @handler: handler for next phase
  795. * @timeout: timeout for command
  796. * @expiry: handler to run on timeout
  797. *
  798. * Helper function to issue an IDE command. This handles the
  799. * atomicity requirements, command timing and ensures that the
  800. * handler and IRQ setup do not race. All IDE command kick off
  801. * should go via this function or do equivalent locking.
  802. */
  803. void ide_execute_command(ide_drive_t *drive, task_ioreg_t cmd, ide_handler_t *handler, unsigned timeout, ide_expiry_t *expiry)
  804. {
  805. unsigned long flags;
  806. ide_hwgroup_t *hwgroup = HWGROUP(drive);
  807. ide_hwif_t *hwif = HWIF(drive);
  808. spin_lock_irqsave(&ide_lock, flags);
  809. BUG_ON(hwgroup->handler);
  810. hwgroup->handler = handler;
  811. hwgroup->expiry = expiry;
  812. hwgroup->timer.expires = jiffies + timeout;
  813. hwgroup->req_gen_timer = hwgroup->req_gen;
  814. add_timer(&hwgroup->timer);
  815. hwif->OUTBSYNC(drive, cmd, IDE_COMMAND_REG);
  816. /* Drive takes 400nS to respond, we must avoid the IRQ being
  817. serviced before that.
  818. FIXME: we could skip this delay with care on non shared
  819. devices
  820. */
  821. ndelay(400);
  822. spin_unlock_irqrestore(&ide_lock, flags);
  823. }
  824. EXPORT_SYMBOL(ide_execute_command);
  825. /* needed below */
  826. static ide_startstop_t do_reset1 (ide_drive_t *, int);
  827. /*
  828. * atapi_reset_pollfunc() gets invoked to poll the interface for completion every 50ms
  829. * during an atapi drive reset operation. If the drive has not yet responded,
  830. * and we have not yet hit our maximum waiting time, then the timer is restarted
  831. * for another 50ms.
  832. */
  833. static ide_startstop_t atapi_reset_pollfunc (ide_drive_t *drive)
  834. {
  835. ide_hwgroup_t *hwgroup = HWGROUP(drive);
  836. ide_hwif_t *hwif = HWIF(drive);
  837. u8 stat;
  838. SELECT_DRIVE(drive);
  839. udelay (10);
  840. if (OK_STAT(stat = hwif->INB(IDE_STATUS_REG), 0, BUSY_STAT)) {
  841. printk("%s: ATAPI reset complete\n", drive->name);
  842. } else {
  843. if (time_before(jiffies, hwgroup->poll_timeout)) {
  844. BUG_ON(HWGROUP(drive)->handler != NULL);
  845. ide_set_handler(drive, &atapi_reset_pollfunc, HZ/20, NULL);
  846. /* continue polling */
  847. return ide_started;
  848. }
  849. /* end of polling */
  850. hwgroup->polling = 0;
  851. printk("%s: ATAPI reset timed-out, status=0x%02x\n",
  852. drive->name, stat);
  853. /* do it the old fashioned way */
  854. return do_reset1(drive, 1);
  855. }
  856. /* done polling */
  857. hwgroup->polling = 0;
  858. hwgroup->resetting = 0;
  859. return ide_stopped;
  860. }
  861. /*
  862. * reset_pollfunc() gets invoked to poll the interface for completion every 50ms
  863. * during an ide reset operation. If the drives have not yet responded,
  864. * and we have not yet hit our maximum waiting time, then the timer is restarted
  865. * for another 50ms.
  866. */
  867. static ide_startstop_t reset_pollfunc (ide_drive_t *drive)
  868. {
  869. ide_hwgroup_t *hwgroup = HWGROUP(drive);
  870. ide_hwif_t *hwif = HWIF(drive);
  871. u8 tmp;
  872. if (hwif->reset_poll != NULL) {
  873. if (hwif->reset_poll(drive)) {
  874. printk(KERN_ERR "%s: host reset_poll failure for %s.\n",
  875. hwif->name, drive->name);
  876. return ide_stopped;
  877. }
  878. }
  879. if (!OK_STAT(tmp = hwif->INB(IDE_STATUS_REG), 0, BUSY_STAT)) {
  880. if (time_before(jiffies, hwgroup->poll_timeout)) {
  881. BUG_ON(HWGROUP(drive)->handler != NULL);
  882. ide_set_handler(drive, &reset_pollfunc, HZ/20, NULL);
  883. /* continue polling */
  884. return ide_started;
  885. }
  886. printk("%s: reset timed-out, status=0x%02x\n", hwif->name, tmp);
  887. drive->failures++;
  888. } else {
  889. printk("%s: reset: ", hwif->name);
  890. if ((tmp = hwif->INB(IDE_ERROR_REG)) == 1) {
  891. printk("success\n");
  892. drive->failures = 0;
  893. } else {
  894. drive->failures++;
  895. printk("master: ");
  896. switch (tmp & 0x7f) {
  897. case 1: printk("passed");
  898. break;
  899. case 2: printk("formatter device error");
  900. break;
  901. case 3: printk("sector buffer error");
  902. break;
  903. case 4: printk("ECC circuitry error");
  904. break;
  905. case 5: printk("controlling MPU error");
  906. break;
  907. default:printk("error (0x%02x?)", tmp);
  908. }
  909. if (tmp & 0x80)
  910. printk("; slave: failed");
  911. printk("\n");
  912. }
  913. }
  914. hwgroup->polling = 0; /* done polling */
  915. hwgroup->resetting = 0; /* done reset attempt */
  916. return ide_stopped;
  917. }
  918. static void check_dma_crc(ide_drive_t *drive)
  919. {
  920. #ifdef CONFIG_BLK_DEV_IDEDMA
  921. if (drive->crc_count) {
  922. drive->hwif->dma_off_quietly(drive);
  923. ide_set_xfer_rate(drive, ide_auto_reduce_xfer(drive));
  924. if (drive->current_speed >= XFER_SW_DMA_0)
  925. (void) HWIF(drive)->ide_dma_on(drive);
  926. } else
  927. ide_dma_off(drive);
  928. #endif
  929. }
  930. static void ide_disk_pre_reset(ide_drive_t *drive)
  931. {
  932. int legacy = (drive->id->cfs_enable_2 & 0x0400) ? 0 : 1;
  933. drive->special.all = 0;
  934. drive->special.b.set_geometry = legacy;
  935. drive->special.b.recalibrate = legacy;
  936. if (OK_TO_RESET_CONTROLLER)
  937. drive->mult_count = 0;
  938. if (!drive->keep_settings && !drive->using_dma)
  939. drive->mult_req = 0;
  940. if (drive->mult_req != drive->mult_count)
  941. drive->special.b.set_multmode = 1;
  942. }
  943. static void pre_reset(ide_drive_t *drive)
  944. {
  945. if (drive->media == ide_disk)
  946. ide_disk_pre_reset(drive);
  947. else
  948. drive->post_reset = 1;
  949. if (!drive->keep_settings) {
  950. if (drive->using_dma) {
  951. check_dma_crc(drive);
  952. } else {
  953. drive->unmask = 0;
  954. drive->io_32bit = 0;
  955. }
  956. return;
  957. }
  958. if (drive->using_dma)
  959. check_dma_crc(drive);
  960. if (HWIF(drive)->pre_reset != NULL)
  961. HWIF(drive)->pre_reset(drive);
  962. if (drive->current_speed != 0xff)
  963. drive->desired_speed = drive->current_speed;
  964. drive->current_speed = 0xff;
  965. }
  966. /*
  967. * do_reset1() attempts to recover a confused drive by resetting it.
  968. * Unfortunately, resetting a disk drive actually resets all devices on
  969. * the same interface, so it can really be thought of as resetting the
  970. * interface rather than resetting the drive.
  971. *
  972. * ATAPI devices have their own reset mechanism which allows them to be
  973. * individually reset without clobbering other devices on the same interface.
  974. *
  975. * Unfortunately, the IDE interface does not generate an interrupt to let
  976. * us know when the reset operation has finished, so we must poll for this.
  977. * Equally poor, though, is the fact that this may a very long time to complete,
  978. * (up to 30 seconds worstcase). So, instead of busy-waiting here for it,
  979. * we set a timer to poll at 50ms intervals.
  980. */
  981. static ide_startstop_t do_reset1 (ide_drive_t *drive, int do_not_try_atapi)
  982. {
  983. unsigned int unit;
  984. unsigned long flags;
  985. ide_hwif_t *hwif;
  986. ide_hwgroup_t *hwgroup;
  987. spin_lock_irqsave(&ide_lock, flags);
  988. hwif = HWIF(drive);
  989. hwgroup = HWGROUP(drive);
  990. /* We must not reset with running handlers */
  991. BUG_ON(hwgroup->handler != NULL);
  992. /* For an ATAPI device, first try an ATAPI SRST. */
  993. if (drive->media != ide_disk && !do_not_try_atapi) {
  994. hwgroup->resetting = 1;
  995. pre_reset(drive);
  996. SELECT_DRIVE(drive);
  997. udelay (20);
  998. hwif->OUTBSYNC(drive, WIN_SRST, IDE_COMMAND_REG);
  999. ndelay(400);
  1000. hwgroup->poll_timeout = jiffies + WAIT_WORSTCASE;
  1001. hwgroup->polling = 1;
  1002. __ide_set_handler(drive, &atapi_reset_pollfunc, HZ/20, NULL);
  1003. spin_unlock_irqrestore(&ide_lock, flags);
  1004. return ide_started;
  1005. }
  1006. /*
  1007. * First, reset any device state data we were maintaining
  1008. * for any of the drives on this interface.
  1009. */
  1010. for (unit = 0; unit < MAX_DRIVES; ++unit)
  1011. pre_reset(&hwif->drives[unit]);
  1012. #if OK_TO_RESET_CONTROLLER
  1013. if (!IDE_CONTROL_REG) {
  1014. spin_unlock_irqrestore(&ide_lock, flags);
  1015. return ide_stopped;
  1016. }
  1017. hwgroup->resetting = 1;
  1018. /*
  1019. * Note that we also set nIEN while resetting the device,
  1020. * to mask unwanted interrupts from the interface during the reset.
  1021. * However, due to the design of PC hardware, this will cause an
  1022. * immediate interrupt due to the edge transition it produces.
  1023. * This single interrupt gives us a "fast poll" for drives that
  1024. * recover from reset very quickly, saving us the first 50ms wait time.
  1025. */
  1026. /* set SRST and nIEN */
  1027. hwif->OUTBSYNC(drive, drive->ctl|6,IDE_CONTROL_REG);
  1028. /* more than enough time */
  1029. udelay(10);
  1030. if (drive->quirk_list == 2) {
  1031. /* clear SRST and nIEN */
  1032. hwif->OUTBSYNC(drive, drive->ctl, IDE_CONTROL_REG);
  1033. } else {
  1034. /* clear SRST, leave nIEN */
  1035. hwif->OUTBSYNC(drive, drive->ctl|2, IDE_CONTROL_REG);
  1036. }
  1037. /* more than enough time */
  1038. udelay(10);
  1039. hwgroup->poll_timeout = jiffies + WAIT_WORSTCASE;
  1040. hwgroup->polling = 1;
  1041. __ide_set_handler(drive, &reset_pollfunc, HZ/20, NULL);
  1042. /*
  1043. * Some weird controller like resetting themselves to a strange
  1044. * state when the disks are reset this way. At least, the Winbond
  1045. * 553 documentation says that
  1046. */
  1047. if (hwif->resetproc != NULL) {
  1048. hwif->resetproc(drive);
  1049. }
  1050. #endif /* OK_TO_RESET_CONTROLLER */
  1051. spin_unlock_irqrestore(&ide_lock, flags);
  1052. return ide_started;
  1053. }
  1054. /*
  1055. * ide_do_reset() is the entry point to the drive/interface reset code.
  1056. */
  1057. ide_startstop_t ide_do_reset (ide_drive_t *drive)
  1058. {
  1059. return do_reset1(drive, 0);
  1060. }
  1061. EXPORT_SYMBOL(ide_do_reset);
  1062. /*
  1063. * ide_wait_not_busy() waits for the currently selected device on the hwif
  1064. * to report a non-busy status, see comments in probe_hwif().
  1065. */
  1066. int ide_wait_not_busy(ide_hwif_t *hwif, unsigned long timeout)
  1067. {
  1068. u8 stat = 0;
  1069. while(timeout--) {
  1070. /*
  1071. * Turn this into a schedule() sleep once I'm sure
  1072. * about locking issues (2.5 work ?).
  1073. */
  1074. mdelay(1);
  1075. stat = hwif->INB(hwif->io_ports[IDE_STATUS_OFFSET]);
  1076. if ((stat & BUSY_STAT) == 0)
  1077. return 0;
  1078. /*
  1079. * Assume a value of 0xff means nothing is connected to
  1080. * the interface and it doesn't implement the pull-down
  1081. * resistor on D7.
  1082. */
  1083. if (stat == 0xff)
  1084. return -ENODEV;
  1085. touch_softlockup_watchdog();
  1086. touch_nmi_watchdog();
  1087. }
  1088. return -EBUSY;
  1089. }
  1090. EXPORT_SYMBOL_GPL(ide_wait_not_busy);