loop.c 39 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585
  1. /*
  2. * linux/drivers/block/loop.c
  3. *
  4. * Written by Theodore Ts'o, 3/29/93
  5. *
  6. * Copyright 1993 by Theodore Ts'o. Redistribution of this file is
  7. * permitted under the GNU General Public License.
  8. *
  9. * DES encryption plus some minor changes by Werner Almesberger, 30-MAY-1993
  10. * more DES encryption plus IDEA encryption by Nicholas J. Leon, June 20, 1996
  11. *
  12. * Modularized and updated for 1.1.16 kernel - Mitch Dsouza 28th May 1994
  13. * Adapted for 1.3.59 kernel - Andries Brouwer, 1 Feb 1996
  14. *
  15. * Fixed do_loop_request() re-entrancy - Vincent.Renardias@waw.com Mar 20, 1997
  16. *
  17. * Added devfs support - Richard Gooch <rgooch@atnf.csiro.au> 16-Jan-1998
  18. *
  19. * Handle sparse backing files correctly - Kenn Humborg, Jun 28, 1998
  20. *
  21. * Loadable modules and other fixes by AK, 1998
  22. *
  23. * Make real block number available to downstream transfer functions, enables
  24. * CBC (and relatives) mode encryption requiring unique IVs per data block.
  25. * Reed H. Petty, rhp@draper.net
  26. *
  27. * Maximum number of loop devices now dynamic via max_loop module parameter.
  28. * Russell Kroll <rkroll@exploits.org> 19990701
  29. *
  30. * Maximum number of loop devices when compiled-in now selectable by passing
  31. * max_loop=<1-255> to the kernel on boot.
  32. * Erik I. Bolsø, <eriki@himolde.no>, Oct 31, 1999
  33. *
  34. * Completely rewrite request handling to be make_request_fn style and
  35. * non blocking, pushing work to a helper thread. Lots of fixes from
  36. * Al Viro too.
  37. * Jens Axboe <axboe@suse.de>, Nov 2000
  38. *
  39. * Support up to 256 loop devices
  40. * Heinz Mauelshagen <mge@sistina.com>, Feb 2002
  41. *
  42. * Support for falling back on the write file operation when the address space
  43. * operations prepare_write and/or commit_write are not available on the
  44. * backing filesystem.
  45. * Anton Altaparmakov, 16 Feb 2005
  46. *
  47. * Still To Fix:
  48. * - Advisory locking is ignored here.
  49. * - Should use an own CAP_* category instead of CAP_SYS_ADMIN
  50. *
  51. */
  52. #include <linux/module.h>
  53. #include <linux/moduleparam.h>
  54. #include <linux/sched.h>
  55. #include <linux/fs.h>
  56. #include <linux/file.h>
  57. #include <linux/stat.h>
  58. #include <linux/errno.h>
  59. #include <linux/major.h>
  60. #include <linux/wait.h>
  61. #include <linux/blkdev.h>
  62. #include <linux/blkpg.h>
  63. #include <linux/init.h>
  64. #include <linux/smp_lock.h>
  65. #include <linux/swap.h>
  66. #include <linux/slab.h>
  67. #include <linux/loop.h>
  68. #include <linux/compat.h>
  69. #include <linux/suspend.h>
  70. #include <linux/freezer.h>
  71. #include <linux/writeback.h>
  72. #include <linux/buffer_head.h> /* for invalidate_bdev() */
  73. #include <linux/completion.h>
  74. #include <linux/highmem.h>
  75. #include <linux/gfp.h>
  76. #include <linux/kthread.h>
  77. #include <linux/splice.h>
  78. #include <asm/uaccess.h>
  79. static LIST_HEAD(loop_devices);
  80. static DEFINE_MUTEX(loop_devices_mutex);
  81. /*
  82. * Transfer functions
  83. */
  84. static int transfer_none(struct loop_device *lo, int cmd,
  85. struct page *raw_page, unsigned raw_off,
  86. struct page *loop_page, unsigned loop_off,
  87. int size, sector_t real_block)
  88. {
  89. char *raw_buf = kmap_atomic(raw_page, KM_USER0) + raw_off;
  90. char *loop_buf = kmap_atomic(loop_page, KM_USER1) + loop_off;
  91. if (cmd == READ)
  92. memcpy(loop_buf, raw_buf, size);
  93. else
  94. memcpy(raw_buf, loop_buf, size);
  95. kunmap_atomic(raw_buf, KM_USER0);
  96. kunmap_atomic(loop_buf, KM_USER1);
  97. cond_resched();
  98. return 0;
  99. }
  100. static int transfer_xor(struct loop_device *lo, int cmd,
  101. struct page *raw_page, unsigned raw_off,
  102. struct page *loop_page, unsigned loop_off,
  103. int size, sector_t real_block)
  104. {
  105. char *raw_buf = kmap_atomic(raw_page, KM_USER0) + raw_off;
  106. char *loop_buf = kmap_atomic(loop_page, KM_USER1) + loop_off;
  107. char *in, *out, *key;
  108. int i, keysize;
  109. if (cmd == READ) {
  110. in = raw_buf;
  111. out = loop_buf;
  112. } else {
  113. in = loop_buf;
  114. out = raw_buf;
  115. }
  116. key = lo->lo_encrypt_key;
  117. keysize = lo->lo_encrypt_key_size;
  118. for (i = 0; i < size; i++)
  119. *out++ = *in++ ^ key[(i & 511) % keysize];
  120. kunmap_atomic(raw_buf, KM_USER0);
  121. kunmap_atomic(loop_buf, KM_USER1);
  122. cond_resched();
  123. return 0;
  124. }
  125. static int xor_init(struct loop_device *lo, const struct loop_info64 *info)
  126. {
  127. if (unlikely(info->lo_encrypt_key_size <= 0))
  128. return -EINVAL;
  129. return 0;
  130. }
  131. static struct loop_func_table none_funcs = {
  132. .number = LO_CRYPT_NONE,
  133. .transfer = transfer_none,
  134. };
  135. static struct loop_func_table xor_funcs = {
  136. .number = LO_CRYPT_XOR,
  137. .transfer = transfer_xor,
  138. .init = xor_init
  139. };
  140. /* xfer_funcs[0] is special - its release function is never called */
  141. static struct loop_func_table *xfer_funcs[MAX_LO_CRYPT] = {
  142. &none_funcs,
  143. &xor_funcs
  144. };
  145. static loff_t get_loop_size(struct loop_device *lo, struct file *file)
  146. {
  147. loff_t size, offset, loopsize;
  148. /* Compute loopsize in bytes */
  149. size = i_size_read(file->f_mapping->host);
  150. offset = lo->lo_offset;
  151. loopsize = size - offset;
  152. if (lo->lo_sizelimit > 0 && lo->lo_sizelimit < loopsize)
  153. loopsize = lo->lo_sizelimit;
  154. /*
  155. * Unfortunately, if we want to do I/O on the device,
  156. * the number of 512-byte sectors has to fit into a sector_t.
  157. */
  158. return loopsize >> 9;
  159. }
  160. static int
  161. figure_loop_size(struct loop_device *lo)
  162. {
  163. loff_t size = get_loop_size(lo, lo->lo_backing_file);
  164. sector_t x = (sector_t)size;
  165. if (unlikely((loff_t)x != size))
  166. return -EFBIG;
  167. set_capacity(lo->lo_disk, x);
  168. return 0;
  169. }
  170. static inline int
  171. lo_do_transfer(struct loop_device *lo, int cmd,
  172. struct page *rpage, unsigned roffs,
  173. struct page *lpage, unsigned loffs,
  174. int size, sector_t rblock)
  175. {
  176. if (unlikely(!lo->transfer))
  177. return 0;
  178. return lo->transfer(lo, cmd, rpage, roffs, lpage, loffs, size, rblock);
  179. }
  180. /**
  181. * do_lo_send_aops - helper for writing data to a loop device
  182. *
  183. * This is the fast version for backing filesystems which implement the address
  184. * space operations prepare_write and commit_write.
  185. */
  186. static int do_lo_send_aops(struct loop_device *lo, struct bio_vec *bvec,
  187. int bsize, loff_t pos, struct page *page)
  188. {
  189. struct file *file = lo->lo_backing_file; /* kudos to NFsckingS */
  190. struct address_space *mapping = file->f_mapping;
  191. const struct address_space_operations *aops = mapping->a_ops;
  192. pgoff_t index;
  193. unsigned offset, bv_offs;
  194. int len, ret;
  195. mutex_lock(&mapping->host->i_mutex);
  196. index = pos >> PAGE_CACHE_SHIFT;
  197. offset = pos & ((pgoff_t)PAGE_CACHE_SIZE - 1);
  198. bv_offs = bvec->bv_offset;
  199. len = bvec->bv_len;
  200. while (len > 0) {
  201. sector_t IV;
  202. unsigned size;
  203. int transfer_result;
  204. IV = ((sector_t)index << (PAGE_CACHE_SHIFT - 9))+(offset >> 9);
  205. size = PAGE_CACHE_SIZE - offset;
  206. if (size > len)
  207. size = len;
  208. page = grab_cache_page(mapping, index);
  209. if (unlikely(!page))
  210. goto fail;
  211. ret = aops->prepare_write(file, page, offset,
  212. offset + size);
  213. if (unlikely(ret)) {
  214. if (ret == AOP_TRUNCATED_PAGE) {
  215. page_cache_release(page);
  216. continue;
  217. }
  218. goto unlock;
  219. }
  220. transfer_result = lo_do_transfer(lo, WRITE, page, offset,
  221. bvec->bv_page, bv_offs, size, IV);
  222. if (unlikely(transfer_result)) {
  223. /*
  224. * The transfer failed, but we still write the data to
  225. * keep prepare/commit calls balanced.
  226. */
  227. printk(KERN_ERR "loop: transfer error block %llu\n",
  228. (unsigned long long)index);
  229. zero_user_page(page, offset, size, KM_USER0);
  230. }
  231. flush_dcache_page(page);
  232. ret = aops->commit_write(file, page, offset,
  233. offset + size);
  234. if (unlikely(ret)) {
  235. if (ret == AOP_TRUNCATED_PAGE) {
  236. page_cache_release(page);
  237. continue;
  238. }
  239. goto unlock;
  240. }
  241. if (unlikely(transfer_result))
  242. goto unlock;
  243. bv_offs += size;
  244. len -= size;
  245. offset = 0;
  246. index++;
  247. pos += size;
  248. unlock_page(page);
  249. page_cache_release(page);
  250. }
  251. ret = 0;
  252. out:
  253. mutex_unlock(&mapping->host->i_mutex);
  254. return ret;
  255. unlock:
  256. unlock_page(page);
  257. page_cache_release(page);
  258. fail:
  259. ret = -1;
  260. goto out;
  261. }
  262. /**
  263. * __do_lo_send_write - helper for writing data to a loop device
  264. *
  265. * This helper just factors out common code between do_lo_send_direct_write()
  266. * and do_lo_send_write().
  267. */
  268. static int __do_lo_send_write(struct file *file,
  269. u8 *buf, const int len, loff_t pos)
  270. {
  271. ssize_t bw;
  272. mm_segment_t old_fs = get_fs();
  273. set_fs(get_ds());
  274. bw = file->f_op->write(file, buf, len, &pos);
  275. set_fs(old_fs);
  276. if (likely(bw == len))
  277. return 0;
  278. printk(KERN_ERR "loop: Write error at byte offset %llu, length %i.\n",
  279. (unsigned long long)pos, len);
  280. if (bw >= 0)
  281. bw = -EIO;
  282. return bw;
  283. }
  284. /**
  285. * do_lo_send_direct_write - helper for writing data to a loop device
  286. *
  287. * This is the fast, non-transforming version for backing filesystems which do
  288. * not implement the address space operations prepare_write and commit_write.
  289. * It uses the write file operation which should be present on all writeable
  290. * filesystems.
  291. */
  292. static int do_lo_send_direct_write(struct loop_device *lo,
  293. struct bio_vec *bvec, int bsize, loff_t pos, struct page *page)
  294. {
  295. ssize_t bw = __do_lo_send_write(lo->lo_backing_file,
  296. kmap(bvec->bv_page) + bvec->bv_offset,
  297. bvec->bv_len, pos);
  298. kunmap(bvec->bv_page);
  299. cond_resched();
  300. return bw;
  301. }
  302. /**
  303. * do_lo_send_write - helper for writing data to a loop device
  304. *
  305. * This is the slow, transforming version for filesystems which do not
  306. * implement the address space operations prepare_write and commit_write. It
  307. * uses the write file operation which should be present on all writeable
  308. * filesystems.
  309. *
  310. * Using fops->write is slower than using aops->{prepare,commit}_write in the
  311. * transforming case because we need to double buffer the data as we cannot do
  312. * the transformations in place as we do not have direct access to the
  313. * destination pages of the backing file.
  314. */
  315. static int do_lo_send_write(struct loop_device *lo, struct bio_vec *bvec,
  316. int bsize, loff_t pos, struct page *page)
  317. {
  318. int ret = lo_do_transfer(lo, WRITE, page, 0, bvec->bv_page,
  319. bvec->bv_offset, bvec->bv_len, pos >> 9);
  320. if (likely(!ret))
  321. return __do_lo_send_write(lo->lo_backing_file,
  322. page_address(page), bvec->bv_len,
  323. pos);
  324. printk(KERN_ERR "loop: Transfer error at byte offset %llu, "
  325. "length %i.\n", (unsigned long long)pos, bvec->bv_len);
  326. if (ret > 0)
  327. ret = -EIO;
  328. return ret;
  329. }
  330. static int lo_send(struct loop_device *lo, struct bio *bio, int bsize,
  331. loff_t pos)
  332. {
  333. int (*do_lo_send)(struct loop_device *, struct bio_vec *, int, loff_t,
  334. struct page *page);
  335. struct bio_vec *bvec;
  336. struct page *page = NULL;
  337. int i, ret = 0;
  338. do_lo_send = do_lo_send_aops;
  339. if (!(lo->lo_flags & LO_FLAGS_USE_AOPS)) {
  340. do_lo_send = do_lo_send_direct_write;
  341. if (lo->transfer != transfer_none) {
  342. page = alloc_page(GFP_NOIO | __GFP_HIGHMEM);
  343. if (unlikely(!page))
  344. goto fail;
  345. kmap(page);
  346. do_lo_send = do_lo_send_write;
  347. }
  348. }
  349. bio_for_each_segment(bvec, bio, i) {
  350. ret = do_lo_send(lo, bvec, bsize, pos, page);
  351. if (ret < 0)
  352. break;
  353. pos += bvec->bv_len;
  354. }
  355. if (page) {
  356. kunmap(page);
  357. __free_page(page);
  358. }
  359. out:
  360. return ret;
  361. fail:
  362. printk(KERN_ERR "loop: Failed to allocate temporary page for write.\n");
  363. ret = -ENOMEM;
  364. goto out;
  365. }
  366. struct lo_read_data {
  367. struct loop_device *lo;
  368. struct page *page;
  369. unsigned offset;
  370. int bsize;
  371. };
  372. static int
  373. lo_splice_actor(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
  374. struct splice_desc *sd)
  375. {
  376. struct lo_read_data *p = sd->u.data;
  377. struct loop_device *lo = p->lo;
  378. struct page *page = buf->page;
  379. sector_t IV;
  380. size_t size;
  381. int ret;
  382. ret = buf->ops->confirm(pipe, buf);
  383. if (unlikely(ret))
  384. return ret;
  385. IV = ((sector_t) page->index << (PAGE_CACHE_SHIFT - 9)) +
  386. (buf->offset >> 9);
  387. size = sd->len;
  388. if (size > p->bsize)
  389. size = p->bsize;
  390. if (lo_do_transfer(lo, READ, page, buf->offset, p->page, p->offset, size, IV)) {
  391. printk(KERN_ERR "loop: transfer error block %ld\n",
  392. page->index);
  393. size = -EINVAL;
  394. }
  395. flush_dcache_page(p->page);
  396. if (size > 0)
  397. p->offset += size;
  398. return size;
  399. }
  400. static int
  401. lo_direct_splice_actor(struct pipe_inode_info *pipe, struct splice_desc *sd)
  402. {
  403. return __splice_from_pipe(pipe, sd, lo_splice_actor);
  404. }
  405. static int
  406. do_lo_receive(struct loop_device *lo,
  407. struct bio_vec *bvec, int bsize, loff_t pos)
  408. {
  409. struct lo_read_data cookie;
  410. struct splice_desc sd;
  411. struct file *file;
  412. long retval;
  413. cookie.lo = lo;
  414. cookie.page = bvec->bv_page;
  415. cookie.offset = bvec->bv_offset;
  416. cookie.bsize = bsize;
  417. sd.len = 0;
  418. sd.total_len = bvec->bv_len;
  419. sd.flags = 0;
  420. sd.pos = pos;
  421. sd.u.data = &cookie;
  422. file = lo->lo_backing_file;
  423. retval = splice_direct_to_actor(file, &sd, lo_direct_splice_actor);
  424. if (retval < 0)
  425. return retval;
  426. return 0;
  427. }
  428. static int
  429. lo_receive(struct loop_device *lo, struct bio *bio, int bsize, loff_t pos)
  430. {
  431. struct bio_vec *bvec;
  432. int i, ret = 0;
  433. bio_for_each_segment(bvec, bio, i) {
  434. ret = do_lo_receive(lo, bvec, bsize, pos);
  435. if (ret < 0)
  436. break;
  437. pos += bvec->bv_len;
  438. }
  439. return ret;
  440. }
  441. static int do_bio_filebacked(struct loop_device *lo, struct bio *bio)
  442. {
  443. loff_t pos;
  444. int ret;
  445. pos = ((loff_t) bio->bi_sector << 9) + lo->lo_offset;
  446. if (bio_rw(bio) == WRITE)
  447. ret = lo_send(lo, bio, lo->lo_blocksize, pos);
  448. else
  449. ret = lo_receive(lo, bio, lo->lo_blocksize, pos);
  450. return ret;
  451. }
  452. /*
  453. * Add bio to back of pending list
  454. */
  455. static void loop_add_bio(struct loop_device *lo, struct bio *bio)
  456. {
  457. if (lo->lo_biotail) {
  458. lo->lo_biotail->bi_next = bio;
  459. lo->lo_biotail = bio;
  460. } else
  461. lo->lo_bio = lo->lo_biotail = bio;
  462. }
  463. /*
  464. * Grab first pending buffer
  465. */
  466. static struct bio *loop_get_bio(struct loop_device *lo)
  467. {
  468. struct bio *bio;
  469. if ((bio = lo->lo_bio)) {
  470. if (bio == lo->lo_biotail)
  471. lo->lo_biotail = NULL;
  472. lo->lo_bio = bio->bi_next;
  473. bio->bi_next = NULL;
  474. }
  475. return bio;
  476. }
  477. static int loop_make_request(struct request_queue *q, struct bio *old_bio)
  478. {
  479. struct loop_device *lo = q->queuedata;
  480. int rw = bio_rw(old_bio);
  481. if (rw == READA)
  482. rw = READ;
  483. BUG_ON(!lo || (rw != READ && rw != WRITE));
  484. spin_lock_irq(&lo->lo_lock);
  485. if (lo->lo_state != Lo_bound)
  486. goto out;
  487. if (unlikely(rw == WRITE && (lo->lo_flags & LO_FLAGS_READ_ONLY)))
  488. goto out;
  489. loop_add_bio(lo, old_bio);
  490. wake_up(&lo->lo_event);
  491. spin_unlock_irq(&lo->lo_lock);
  492. return 0;
  493. out:
  494. spin_unlock_irq(&lo->lo_lock);
  495. bio_io_error(old_bio);
  496. return 0;
  497. }
  498. /*
  499. * kick off io on the underlying address space
  500. */
  501. static void loop_unplug(struct request_queue *q)
  502. {
  503. struct loop_device *lo = q->queuedata;
  504. clear_bit(QUEUE_FLAG_PLUGGED, &q->queue_flags);
  505. blk_run_address_space(lo->lo_backing_file->f_mapping);
  506. }
  507. struct switch_request {
  508. struct file *file;
  509. struct completion wait;
  510. };
  511. static void do_loop_switch(struct loop_device *, struct switch_request *);
  512. static inline void loop_handle_bio(struct loop_device *lo, struct bio *bio)
  513. {
  514. if (unlikely(!bio->bi_bdev)) {
  515. do_loop_switch(lo, bio->bi_private);
  516. bio_put(bio);
  517. } else {
  518. int ret = do_bio_filebacked(lo, bio);
  519. bio_endio(bio, ret);
  520. }
  521. }
  522. /*
  523. * worker thread that handles reads/writes to file backed loop devices,
  524. * to avoid blocking in our make_request_fn. it also does loop decrypting
  525. * on reads for block backed loop, as that is too heavy to do from
  526. * b_end_io context where irqs may be disabled.
  527. *
  528. * Loop explanation: loop_clr_fd() sets lo_state to Lo_rundown before
  529. * calling kthread_stop(). Therefore once kthread_should_stop() is
  530. * true, make_request will not place any more requests. Therefore
  531. * once kthread_should_stop() is true and lo_bio is NULL, we are
  532. * done with the loop.
  533. */
  534. static int loop_thread(void *data)
  535. {
  536. struct loop_device *lo = data;
  537. struct bio *bio;
  538. set_user_nice(current, -20);
  539. while (!kthread_should_stop() || lo->lo_bio) {
  540. wait_event_interruptible(lo->lo_event,
  541. lo->lo_bio || kthread_should_stop());
  542. if (!lo->lo_bio)
  543. continue;
  544. spin_lock_irq(&lo->lo_lock);
  545. bio = loop_get_bio(lo);
  546. spin_unlock_irq(&lo->lo_lock);
  547. BUG_ON(!bio);
  548. loop_handle_bio(lo, bio);
  549. }
  550. return 0;
  551. }
  552. /*
  553. * loop_switch performs the hard work of switching a backing store.
  554. * First it needs to flush existing IO, it does this by sending a magic
  555. * BIO down the pipe. The completion of this BIO does the actual switch.
  556. */
  557. static int loop_switch(struct loop_device *lo, struct file *file)
  558. {
  559. struct switch_request w;
  560. struct bio *bio = bio_alloc(GFP_KERNEL, 1);
  561. if (!bio)
  562. return -ENOMEM;
  563. init_completion(&w.wait);
  564. w.file = file;
  565. bio->bi_private = &w;
  566. bio->bi_bdev = NULL;
  567. loop_make_request(lo->lo_queue, bio);
  568. wait_for_completion(&w.wait);
  569. return 0;
  570. }
  571. /*
  572. * Do the actual switch; called from the BIO completion routine
  573. */
  574. static void do_loop_switch(struct loop_device *lo, struct switch_request *p)
  575. {
  576. struct file *file = p->file;
  577. struct file *old_file = lo->lo_backing_file;
  578. struct address_space *mapping = file->f_mapping;
  579. mapping_set_gfp_mask(old_file->f_mapping, lo->old_gfp_mask);
  580. lo->lo_backing_file = file;
  581. lo->lo_blocksize = S_ISBLK(mapping->host->i_mode) ?
  582. mapping->host->i_bdev->bd_block_size : PAGE_SIZE;
  583. lo->old_gfp_mask = mapping_gfp_mask(mapping);
  584. mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS));
  585. complete(&p->wait);
  586. }
  587. /*
  588. * loop_change_fd switched the backing store of a loopback device to
  589. * a new file. This is useful for operating system installers to free up
  590. * the original file and in High Availability environments to switch to
  591. * an alternative location for the content in case of server meltdown.
  592. * This can only work if the loop device is used read-only, and if the
  593. * new backing store is the same size and type as the old backing store.
  594. */
  595. static int loop_change_fd(struct loop_device *lo, struct file *lo_file,
  596. struct block_device *bdev, unsigned int arg)
  597. {
  598. struct file *file, *old_file;
  599. struct inode *inode;
  600. int error;
  601. error = -ENXIO;
  602. if (lo->lo_state != Lo_bound)
  603. goto out;
  604. /* the loop device has to be read-only */
  605. error = -EINVAL;
  606. if (!(lo->lo_flags & LO_FLAGS_READ_ONLY))
  607. goto out;
  608. error = -EBADF;
  609. file = fget(arg);
  610. if (!file)
  611. goto out;
  612. inode = file->f_mapping->host;
  613. old_file = lo->lo_backing_file;
  614. error = -EINVAL;
  615. if (!S_ISREG(inode->i_mode) && !S_ISBLK(inode->i_mode))
  616. goto out_putf;
  617. /* new backing store needs to support loop (eg splice_read) */
  618. if (!inode->i_fop->splice_read)
  619. goto out_putf;
  620. /* size of the new backing store needs to be the same */
  621. if (get_loop_size(lo, file) != get_loop_size(lo, old_file))
  622. goto out_putf;
  623. /* and ... switch */
  624. error = loop_switch(lo, file);
  625. if (error)
  626. goto out_putf;
  627. fput(old_file);
  628. return 0;
  629. out_putf:
  630. fput(file);
  631. out:
  632. return error;
  633. }
  634. static inline int is_loop_device(struct file *file)
  635. {
  636. struct inode *i = file->f_mapping->host;
  637. return i && S_ISBLK(i->i_mode) && MAJOR(i->i_rdev) == LOOP_MAJOR;
  638. }
  639. static int loop_set_fd(struct loop_device *lo, struct file *lo_file,
  640. struct block_device *bdev, unsigned int arg)
  641. {
  642. struct file *file, *f;
  643. struct inode *inode;
  644. struct address_space *mapping;
  645. unsigned lo_blocksize;
  646. int lo_flags = 0;
  647. int error;
  648. loff_t size;
  649. /* This is safe, since we have a reference from open(). */
  650. __module_get(THIS_MODULE);
  651. error = -EBADF;
  652. file = fget(arg);
  653. if (!file)
  654. goto out;
  655. error = -EBUSY;
  656. if (lo->lo_state != Lo_unbound)
  657. goto out_putf;
  658. /* Avoid recursion */
  659. f = file;
  660. while (is_loop_device(f)) {
  661. struct loop_device *l;
  662. if (f->f_mapping->host->i_rdev == lo_file->f_mapping->host->i_rdev)
  663. goto out_putf;
  664. l = f->f_mapping->host->i_bdev->bd_disk->private_data;
  665. if (l->lo_state == Lo_unbound) {
  666. error = -EINVAL;
  667. goto out_putf;
  668. }
  669. f = l->lo_backing_file;
  670. }
  671. mapping = file->f_mapping;
  672. inode = mapping->host;
  673. if (!(file->f_mode & FMODE_WRITE))
  674. lo_flags |= LO_FLAGS_READ_ONLY;
  675. error = -EINVAL;
  676. if (S_ISREG(inode->i_mode) || S_ISBLK(inode->i_mode)) {
  677. const struct address_space_operations *aops = mapping->a_ops;
  678. /*
  679. * If we can't read - sorry. If we only can't write - well,
  680. * it's going to be read-only.
  681. */
  682. if (!file->f_op->splice_read)
  683. goto out_putf;
  684. if (aops->prepare_write && aops->commit_write)
  685. lo_flags |= LO_FLAGS_USE_AOPS;
  686. if (!(lo_flags & LO_FLAGS_USE_AOPS) && !file->f_op->write)
  687. lo_flags |= LO_FLAGS_READ_ONLY;
  688. lo_blocksize = S_ISBLK(inode->i_mode) ?
  689. inode->i_bdev->bd_block_size : PAGE_SIZE;
  690. error = 0;
  691. } else {
  692. goto out_putf;
  693. }
  694. size = get_loop_size(lo, file);
  695. if ((loff_t)(sector_t)size != size) {
  696. error = -EFBIG;
  697. goto out_putf;
  698. }
  699. if (!(lo_file->f_mode & FMODE_WRITE))
  700. lo_flags |= LO_FLAGS_READ_ONLY;
  701. set_device_ro(bdev, (lo_flags & LO_FLAGS_READ_ONLY) != 0);
  702. lo->lo_blocksize = lo_blocksize;
  703. lo->lo_device = bdev;
  704. lo->lo_flags = lo_flags;
  705. lo->lo_backing_file = file;
  706. lo->transfer = transfer_none;
  707. lo->ioctl = NULL;
  708. lo->lo_sizelimit = 0;
  709. lo->old_gfp_mask = mapping_gfp_mask(mapping);
  710. mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS));
  711. lo->lo_bio = lo->lo_biotail = NULL;
  712. /*
  713. * set queue make_request_fn, and add limits based on lower level
  714. * device
  715. */
  716. blk_queue_make_request(lo->lo_queue, loop_make_request);
  717. lo->lo_queue->queuedata = lo;
  718. lo->lo_queue->unplug_fn = loop_unplug;
  719. set_capacity(lo->lo_disk, size);
  720. bd_set_size(bdev, size << 9);
  721. set_blocksize(bdev, lo_blocksize);
  722. lo->lo_thread = kthread_create(loop_thread, lo, "loop%d",
  723. lo->lo_number);
  724. if (IS_ERR(lo->lo_thread)) {
  725. error = PTR_ERR(lo->lo_thread);
  726. goto out_clr;
  727. }
  728. lo->lo_state = Lo_bound;
  729. wake_up_process(lo->lo_thread);
  730. return 0;
  731. out_clr:
  732. lo->lo_thread = NULL;
  733. lo->lo_device = NULL;
  734. lo->lo_backing_file = NULL;
  735. lo->lo_flags = 0;
  736. set_capacity(lo->lo_disk, 0);
  737. invalidate_bdev(bdev);
  738. bd_set_size(bdev, 0);
  739. mapping_set_gfp_mask(mapping, lo->old_gfp_mask);
  740. lo->lo_state = Lo_unbound;
  741. out_putf:
  742. fput(file);
  743. out:
  744. /* This is safe: open() is still holding a reference. */
  745. module_put(THIS_MODULE);
  746. return error;
  747. }
  748. static int
  749. loop_release_xfer(struct loop_device *lo)
  750. {
  751. int err = 0;
  752. struct loop_func_table *xfer = lo->lo_encryption;
  753. if (xfer) {
  754. if (xfer->release)
  755. err = xfer->release(lo);
  756. lo->transfer = NULL;
  757. lo->lo_encryption = NULL;
  758. module_put(xfer->owner);
  759. }
  760. return err;
  761. }
  762. static int
  763. loop_init_xfer(struct loop_device *lo, struct loop_func_table *xfer,
  764. const struct loop_info64 *i)
  765. {
  766. int err = 0;
  767. if (xfer) {
  768. struct module *owner = xfer->owner;
  769. if (!try_module_get(owner))
  770. return -EINVAL;
  771. if (xfer->init)
  772. err = xfer->init(lo, i);
  773. if (err)
  774. module_put(owner);
  775. else
  776. lo->lo_encryption = xfer;
  777. }
  778. return err;
  779. }
  780. static int loop_clr_fd(struct loop_device *lo, struct block_device *bdev)
  781. {
  782. struct file *filp = lo->lo_backing_file;
  783. gfp_t gfp = lo->old_gfp_mask;
  784. if (lo->lo_state != Lo_bound)
  785. return -ENXIO;
  786. if (lo->lo_refcnt > 1) /* we needed one fd for the ioctl */
  787. return -EBUSY;
  788. if (filp == NULL)
  789. return -EINVAL;
  790. spin_lock_irq(&lo->lo_lock);
  791. lo->lo_state = Lo_rundown;
  792. spin_unlock_irq(&lo->lo_lock);
  793. kthread_stop(lo->lo_thread);
  794. lo->lo_backing_file = NULL;
  795. loop_release_xfer(lo);
  796. lo->transfer = NULL;
  797. lo->ioctl = NULL;
  798. lo->lo_device = NULL;
  799. lo->lo_encryption = NULL;
  800. lo->lo_offset = 0;
  801. lo->lo_sizelimit = 0;
  802. lo->lo_encrypt_key_size = 0;
  803. lo->lo_flags = 0;
  804. lo->lo_thread = NULL;
  805. memset(lo->lo_encrypt_key, 0, LO_KEY_SIZE);
  806. memset(lo->lo_crypt_name, 0, LO_NAME_SIZE);
  807. memset(lo->lo_file_name, 0, LO_NAME_SIZE);
  808. invalidate_bdev(bdev);
  809. set_capacity(lo->lo_disk, 0);
  810. bd_set_size(bdev, 0);
  811. mapping_set_gfp_mask(filp->f_mapping, gfp);
  812. lo->lo_state = Lo_unbound;
  813. fput(filp);
  814. /* This is safe: open() is still holding a reference. */
  815. module_put(THIS_MODULE);
  816. return 0;
  817. }
  818. static int
  819. loop_set_status(struct loop_device *lo, const struct loop_info64 *info)
  820. {
  821. int err;
  822. struct loop_func_table *xfer;
  823. if (lo->lo_encrypt_key_size && lo->lo_key_owner != current->uid &&
  824. !capable(CAP_SYS_ADMIN))
  825. return -EPERM;
  826. if (lo->lo_state != Lo_bound)
  827. return -ENXIO;
  828. if ((unsigned int) info->lo_encrypt_key_size > LO_KEY_SIZE)
  829. return -EINVAL;
  830. err = loop_release_xfer(lo);
  831. if (err)
  832. return err;
  833. if (info->lo_encrypt_type) {
  834. unsigned int type = info->lo_encrypt_type;
  835. if (type >= MAX_LO_CRYPT)
  836. return -EINVAL;
  837. xfer = xfer_funcs[type];
  838. if (xfer == NULL)
  839. return -EINVAL;
  840. } else
  841. xfer = NULL;
  842. err = loop_init_xfer(lo, xfer, info);
  843. if (err)
  844. return err;
  845. if (lo->lo_offset != info->lo_offset ||
  846. lo->lo_sizelimit != info->lo_sizelimit) {
  847. lo->lo_offset = info->lo_offset;
  848. lo->lo_sizelimit = info->lo_sizelimit;
  849. if (figure_loop_size(lo))
  850. return -EFBIG;
  851. }
  852. memcpy(lo->lo_file_name, info->lo_file_name, LO_NAME_SIZE);
  853. memcpy(lo->lo_crypt_name, info->lo_crypt_name, LO_NAME_SIZE);
  854. lo->lo_file_name[LO_NAME_SIZE-1] = 0;
  855. lo->lo_crypt_name[LO_NAME_SIZE-1] = 0;
  856. if (!xfer)
  857. xfer = &none_funcs;
  858. lo->transfer = xfer->transfer;
  859. lo->ioctl = xfer->ioctl;
  860. lo->lo_encrypt_key_size = info->lo_encrypt_key_size;
  861. lo->lo_init[0] = info->lo_init[0];
  862. lo->lo_init[1] = info->lo_init[1];
  863. if (info->lo_encrypt_key_size) {
  864. memcpy(lo->lo_encrypt_key, info->lo_encrypt_key,
  865. info->lo_encrypt_key_size);
  866. lo->lo_key_owner = current->uid;
  867. }
  868. return 0;
  869. }
  870. static int
  871. loop_get_status(struct loop_device *lo, struct loop_info64 *info)
  872. {
  873. struct file *file = lo->lo_backing_file;
  874. struct kstat stat;
  875. int error;
  876. if (lo->lo_state != Lo_bound)
  877. return -ENXIO;
  878. error = vfs_getattr(file->f_path.mnt, file->f_path.dentry, &stat);
  879. if (error)
  880. return error;
  881. memset(info, 0, sizeof(*info));
  882. info->lo_number = lo->lo_number;
  883. info->lo_device = huge_encode_dev(stat.dev);
  884. info->lo_inode = stat.ino;
  885. info->lo_rdevice = huge_encode_dev(lo->lo_device ? stat.rdev : stat.dev);
  886. info->lo_offset = lo->lo_offset;
  887. info->lo_sizelimit = lo->lo_sizelimit;
  888. info->lo_flags = lo->lo_flags;
  889. memcpy(info->lo_file_name, lo->lo_file_name, LO_NAME_SIZE);
  890. memcpy(info->lo_crypt_name, lo->lo_crypt_name, LO_NAME_SIZE);
  891. info->lo_encrypt_type =
  892. lo->lo_encryption ? lo->lo_encryption->number : 0;
  893. if (lo->lo_encrypt_key_size && capable(CAP_SYS_ADMIN)) {
  894. info->lo_encrypt_key_size = lo->lo_encrypt_key_size;
  895. memcpy(info->lo_encrypt_key, lo->lo_encrypt_key,
  896. lo->lo_encrypt_key_size);
  897. }
  898. return 0;
  899. }
  900. static void
  901. loop_info64_from_old(const struct loop_info *info, struct loop_info64 *info64)
  902. {
  903. memset(info64, 0, sizeof(*info64));
  904. info64->lo_number = info->lo_number;
  905. info64->lo_device = info->lo_device;
  906. info64->lo_inode = info->lo_inode;
  907. info64->lo_rdevice = info->lo_rdevice;
  908. info64->lo_offset = info->lo_offset;
  909. info64->lo_sizelimit = 0;
  910. info64->lo_encrypt_type = info->lo_encrypt_type;
  911. info64->lo_encrypt_key_size = info->lo_encrypt_key_size;
  912. info64->lo_flags = info->lo_flags;
  913. info64->lo_init[0] = info->lo_init[0];
  914. info64->lo_init[1] = info->lo_init[1];
  915. if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
  916. memcpy(info64->lo_crypt_name, info->lo_name, LO_NAME_SIZE);
  917. else
  918. memcpy(info64->lo_file_name, info->lo_name, LO_NAME_SIZE);
  919. memcpy(info64->lo_encrypt_key, info->lo_encrypt_key, LO_KEY_SIZE);
  920. }
  921. static int
  922. loop_info64_to_old(const struct loop_info64 *info64, struct loop_info *info)
  923. {
  924. memset(info, 0, sizeof(*info));
  925. info->lo_number = info64->lo_number;
  926. info->lo_device = info64->lo_device;
  927. info->lo_inode = info64->lo_inode;
  928. info->lo_rdevice = info64->lo_rdevice;
  929. info->lo_offset = info64->lo_offset;
  930. info->lo_encrypt_type = info64->lo_encrypt_type;
  931. info->lo_encrypt_key_size = info64->lo_encrypt_key_size;
  932. info->lo_flags = info64->lo_flags;
  933. info->lo_init[0] = info64->lo_init[0];
  934. info->lo_init[1] = info64->lo_init[1];
  935. if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
  936. memcpy(info->lo_name, info64->lo_crypt_name, LO_NAME_SIZE);
  937. else
  938. memcpy(info->lo_name, info64->lo_file_name, LO_NAME_SIZE);
  939. memcpy(info->lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE);
  940. /* error in case values were truncated */
  941. if (info->lo_device != info64->lo_device ||
  942. info->lo_rdevice != info64->lo_rdevice ||
  943. info->lo_inode != info64->lo_inode ||
  944. info->lo_offset != info64->lo_offset)
  945. return -EOVERFLOW;
  946. return 0;
  947. }
  948. static int
  949. loop_set_status_old(struct loop_device *lo, const struct loop_info __user *arg)
  950. {
  951. struct loop_info info;
  952. struct loop_info64 info64;
  953. if (copy_from_user(&info, arg, sizeof (struct loop_info)))
  954. return -EFAULT;
  955. loop_info64_from_old(&info, &info64);
  956. return loop_set_status(lo, &info64);
  957. }
  958. static int
  959. loop_set_status64(struct loop_device *lo, const struct loop_info64 __user *arg)
  960. {
  961. struct loop_info64 info64;
  962. if (copy_from_user(&info64, arg, sizeof (struct loop_info64)))
  963. return -EFAULT;
  964. return loop_set_status(lo, &info64);
  965. }
  966. static int
  967. loop_get_status_old(struct loop_device *lo, struct loop_info __user *arg) {
  968. struct loop_info info;
  969. struct loop_info64 info64;
  970. int err = 0;
  971. if (!arg)
  972. err = -EINVAL;
  973. if (!err)
  974. err = loop_get_status(lo, &info64);
  975. if (!err)
  976. err = loop_info64_to_old(&info64, &info);
  977. if (!err && copy_to_user(arg, &info, sizeof(info)))
  978. err = -EFAULT;
  979. return err;
  980. }
  981. static int
  982. loop_get_status64(struct loop_device *lo, struct loop_info64 __user *arg) {
  983. struct loop_info64 info64;
  984. int err = 0;
  985. if (!arg)
  986. err = -EINVAL;
  987. if (!err)
  988. err = loop_get_status(lo, &info64);
  989. if (!err && copy_to_user(arg, &info64, sizeof(info64)))
  990. err = -EFAULT;
  991. return err;
  992. }
  993. static int lo_ioctl(struct inode * inode, struct file * file,
  994. unsigned int cmd, unsigned long arg)
  995. {
  996. struct loop_device *lo = inode->i_bdev->bd_disk->private_data;
  997. int err;
  998. mutex_lock(&lo->lo_ctl_mutex);
  999. switch (cmd) {
  1000. case LOOP_SET_FD:
  1001. err = loop_set_fd(lo, file, inode->i_bdev, arg);
  1002. break;
  1003. case LOOP_CHANGE_FD:
  1004. err = loop_change_fd(lo, file, inode->i_bdev, arg);
  1005. break;
  1006. case LOOP_CLR_FD:
  1007. err = loop_clr_fd(lo, inode->i_bdev);
  1008. break;
  1009. case LOOP_SET_STATUS:
  1010. err = loop_set_status_old(lo, (struct loop_info __user *) arg);
  1011. break;
  1012. case LOOP_GET_STATUS:
  1013. err = loop_get_status_old(lo, (struct loop_info __user *) arg);
  1014. break;
  1015. case LOOP_SET_STATUS64:
  1016. err = loop_set_status64(lo, (struct loop_info64 __user *) arg);
  1017. break;
  1018. case LOOP_GET_STATUS64:
  1019. err = loop_get_status64(lo, (struct loop_info64 __user *) arg);
  1020. break;
  1021. default:
  1022. err = lo->ioctl ? lo->ioctl(lo, cmd, arg) : -EINVAL;
  1023. }
  1024. mutex_unlock(&lo->lo_ctl_mutex);
  1025. return err;
  1026. }
  1027. #ifdef CONFIG_COMPAT
  1028. struct compat_loop_info {
  1029. compat_int_t lo_number; /* ioctl r/o */
  1030. compat_dev_t lo_device; /* ioctl r/o */
  1031. compat_ulong_t lo_inode; /* ioctl r/o */
  1032. compat_dev_t lo_rdevice; /* ioctl r/o */
  1033. compat_int_t lo_offset;
  1034. compat_int_t lo_encrypt_type;
  1035. compat_int_t lo_encrypt_key_size; /* ioctl w/o */
  1036. compat_int_t lo_flags; /* ioctl r/o */
  1037. char lo_name[LO_NAME_SIZE];
  1038. unsigned char lo_encrypt_key[LO_KEY_SIZE]; /* ioctl w/o */
  1039. compat_ulong_t lo_init[2];
  1040. char reserved[4];
  1041. };
  1042. /*
  1043. * Transfer 32-bit compatibility structure in userspace to 64-bit loop info
  1044. * - noinlined to reduce stack space usage in main part of driver
  1045. */
  1046. static noinline int
  1047. loop_info64_from_compat(const struct compat_loop_info __user *arg,
  1048. struct loop_info64 *info64)
  1049. {
  1050. struct compat_loop_info info;
  1051. if (copy_from_user(&info, arg, sizeof(info)))
  1052. return -EFAULT;
  1053. memset(info64, 0, sizeof(*info64));
  1054. info64->lo_number = info.lo_number;
  1055. info64->lo_device = info.lo_device;
  1056. info64->lo_inode = info.lo_inode;
  1057. info64->lo_rdevice = info.lo_rdevice;
  1058. info64->lo_offset = info.lo_offset;
  1059. info64->lo_sizelimit = 0;
  1060. info64->lo_encrypt_type = info.lo_encrypt_type;
  1061. info64->lo_encrypt_key_size = info.lo_encrypt_key_size;
  1062. info64->lo_flags = info.lo_flags;
  1063. info64->lo_init[0] = info.lo_init[0];
  1064. info64->lo_init[1] = info.lo_init[1];
  1065. if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
  1066. memcpy(info64->lo_crypt_name, info.lo_name, LO_NAME_SIZE);
  1067. else
  1068. memcpy(info64->lo_file_name, info.lo_name, LO_NAME_SIZE);
  1069. memcpy(info64->lo_encrypt_key, info.lo_encrypt_key, LO_KEY_SIZE);
  1070. return 0;
  1071. }
  1072. /*
  1073. * Transfer 64-bit loop info to 32-bit compatibility structure in userspace
  1074. * - noinlined to reduce stack space usage in main part of driver
  1075. */
  1076. static noinline int
  1077. loop_info64_to_compat(const struct loop_info64 *info64,
  1078. struct compat_loop_info __user *arg)
  1079. {
  1080. struct compat_loop_info info;
  1081. memset(&info, 0, sizeof(info));
  1082. info.lo_number = info64->lo_number;
  1083. info.lo_device = info64->lo_device;
  1084. info.lo_inode = info64->lo_inode;
  1085. info.lo_rdevice = info64->lo_rdevice;
  1086. info.lo_offset = info64->lo_offset;
  1087. info.lo_encrypt_type = info64->lo_encrypt_type;
  1088. info.lo_encrypt_key_size = info64->lo_encrypt_key_size;
  1089. info.lo_flags = info64->lo_flags;
  1090. info.lo_init[0] = info64->lo_init[0];
  1091. info.lo_init[1] = info64->lo_init[1];
  1092. if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
  1093. memcpy(info.lo_name, info64->lo_crypt_name, LO_NAME_SIZE);
  1094. else
  1095. memcpy(info.lo_name, info64->lo_file_name, LO_NAME_SIZE);
  1096. memcpy(info.lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE);
  1097. /* error in case values were truncated */
  1098. if (info.lo_device != info64->lo_device ||
  1099. info.lo_rdevice != info64->lo_rdevice ||
  1100. info.lo_inode != info64->lo_inode ||
  1101. info.lo_offset != info64->lo_offset ||
  1102. info.lo_init[0] != info64->lo_init[0] ||
  1103. info.lo_init[1] != info64->lo_init[1])
  1104. return -EOVERFLOW;
  1105. if (copy_to_user(arg, &info, sizeof(info)))
  1106. return -EFAULT;
  1107. return 0;
  1108. }
  1109. static int
  1110. loop_set_status_compat(struct loop_device *lo,
  1111. const struct compat_loop_info __user *arg)
  1112. {
  1113. struct loop_info64 info64;
  1114. int ret;
  1115. ret = loop_info64_from_compat(arg, &info64);
  1116. if (ret < 0)
  1117. return ret;
  1118. return loop_set_status(lo, &info64);
  1119. }
  1120. static int
  1121. loop_get_status_compat(struct loop_device *lo,
  1122. struct compat_loop_info __user *arg)
  1123. {
  1124. struct loop_info64 info64;
  1125. int err = 0;
  1126. if (!arg)
  1127. err = -EINVAL;
  1128. if (!err)
  1129. err = loop_get_status(lo, &info64);
  1130. if (!err)
  1131. err = loop_info64_to_compat(&info64, arg);
  1132. return err;
  1133. }
  1134. static long lo_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
  1135. {
  1136. struct inode *inode = file->f_path.dentry->d_inode;
  1137. struct loop_device *lo = inode->i_bdev->bd_disk->private_data;
  1138. int err;
  1139. lock_kernel();
  1140. switch(cmd) {
  1141. case LOOP_SET_STATUS:
  1142. mutex_lock(&lo->lo_ctl_mutex);
  1143. err = loop_set_status_compat(
  1144. lo, (const struct compat_loop_info __user *) arg);
  1145. mutex_unlock(&lo->lo_ctl_mutex);
  1146. break;
  1147. case LOOP_GET_STATUS:
  1148. mutex_lock(&lo->lo_ctl_mutex);
  1149. err = loop_get_status_compat(
  1150. lo, (struct compat_loop_info __user *) arg);
  1151. mutex_unlock(&lo->lo_ctl_mutex);
  1152. break;
  1153. case LOOP_CLR_FD:
  1154. case LOOP_GET_STATUS64:
  1155. case LOOP_SET_STATUS64:
  1156. arg = (unsigned long) compat_ptr(arg);
  1157. case LOOP_SET_FD:
  1158. case LOOP_CHANGE_FD:
  1159. err = lo_ioctl(inode, file, cmd, arg);
  1160. break;
  1161. default:
  1162. err = -ENOIOCTLCMD;
  1163. break;
  1164. }
  1165. unlock_kernel();
  1166. return err;
  1167. }
  1168. #endif
  1169. static int lo_open(struct inode *inode, struct file *file)
  1170. {
  1171. struct loop_device *lo = inode->i_bdev->bd_disk->private_data;
  1172. mutex_lock(&lo->lo_ctl_mutex);
  1173. lo->lo_refcnt++;
  1174. mutex_unlock(&lo->lo_ctl_mutex);
  1175. return 0;
  1176. }
  1177. static int lo_release(struct inode *inode, struct file *file)
  1178. {
  1179. struct loop_device *lo = inode->i_bdev->bd_disk->private_data;
  1180. mutex_lock(&lo->lo_ctl_mutex);
  1181. --lo->lo_refcnt;
  1182. mutex_unlock(&lo->lo_ctl_mutex);
  1183. return 0;
  1184. }
  1185. static struct block_device_operations lo_fops = {
  1186. .owner = THIS_MODULE,
  1187. .open = lo_open,
  1188. .release = lo_release,
  1189. .ioctl = lo_ioctl,
  1190. #ifdef CONFIG_COMPAT
  1191. .compat_ioctl = lo_compat_ioctl,
  1192. #endif
  1193. };
  1194. /*
  1195. * And now the modules code and kernel interface.
  1196. */
  1197. static int max_loop;
  1198. module_param(max_loop, int, 0);
  1199. MODULE_PARM_DESC(max_loop, "Maximum number of loop devices");
  1200. MODULE_LICENSE("GPL");
  1201. MODULE_ALIAS_BLOCKDEV_MAJOR(LOOP_MAJOR);
  1202. int loop_register_transfer(struct loop_func_table *funcs)
  1203. {
  1204. unsigned int n = funcs->number;
  1205. if (n >= MAX_LO_CRYPT || xfer_funcs[n])
  1206. return -EINVAL;
  1207. xfer_funcs[n] = funcs;
  1208. return 0;
  1209. }
  1210. int loop_unregister_transfer(int number)
  1211. {
  1212. unsigned int n = number;
  1213. struct loop_device *lo;
  1214. struct loop_func_table *xfer;
  1215. if (n == 0 || n >= MAX_LO_CRYPT || (xfer = xfer_funcs[n]) == NULL)
  1216. return -EINVAL;
  1217. xfer_funcs[n] = NULL;
  1218. list_for_each_entry(lo, &loop_devices, lo_list) {
  1219. mutex_lock(&lo->lo_ctl_mutex);
  1220. if (lo->lo_encryption == xfer)
  1221. loop_release_xfer(lo);
  1222. mutex_unlock(&lo->lo_ctl_mutex);
  1223. }
  1224. return 0;
  1225. }
  1226. EXPORT_SYMBOL(loop_register_transfer);
  1227. EXPORT_SYMBOL(loop_unregister_transfer);
  1228. static struct loop_device *loop_alloc(int i)
  1229. {
  1230. struct loop_device *lo;
  1231. struct gendisk *disk;
  1232. lo = kzalloc(sizeof(*lo), GFP_KERNEL);
  1233. if (!lo)
  1234. goto out;
  1235. lo->lo_queue = blk_alloc_queue(GFP_KERNEL);
  1236. if (!lo->lo_queue)
  1237. goto out_free_dev;
  1238. disk = lo->lo_disk = alloc_disk(1);
  1239. if (!disk)
  1240. goto out_free_queue;
  1241. mutex_init(&lo->lo_ctl_mutex);
  1242. lo->lo_number = i;
  1243. lo->lo_thread = NULL;
  1244. init_waitqueue_head(&lo->lo_event);
  1245. spin_lock_init(&lo->lo_lock);
  1246. disk->major = LOOP_MAJOR;
  1247. disk->first_minor = i;
  1248. disk->fops = &lo_fops;
  1249. disk->private_data = lo;
  1250. disk->queue = lo->lo_queue;
  1251. sprintf(disk->disk_name, "loop%d", i);
  1252. return lo;
  1253. out_free_queue:
  1254. blk_cleanup_queue(lo->lo_queue);
  1255. out_free_dev:
  1256. kfree(lo);
  1257. out:
  1258. return NULL;
  1259. }
  1260. static void loop_free(struct loop_device *lo)
  1261. {
  1262. blk_cleanup_queue(lo->lo_queue);
  1263. put_disk(lo->lo_disk);
  1264. list_del(&lo->lo_list);
  1265. kfree(lo);
  1266. }
  1267. static struct loop_device *loop_init_one(int i)
  1268. {
  1269. struct loop_device *lo;
  1270. list_for_each_entry(lo, &loop_devices, lo_list) {
  1271. if (lo->lo_number == i)
  1272. return lo;
  1273. }
  1274. lo = loop_alloc(i);
  1275. if (lo) {
  1276. add_disk(lo->lo_disk);
  1277. list_add_tail(&lo->lo_list, &loop_devices);
  1278. }
  1279. return lo;
  1280. }
  1281. static void loop_del_one(struct loop_device *lo)
  1282. {
  1283. del_gendisk(lo->lo_disk);
  1284. loop_free(lo);
  1285. }
  1286. static struct kobject *loop_probe(dev_t dev, int *part, void *data)
  1287. {
  1288. struct loop_device *lo;
  1289. struct kobject *kobj;
  1290. mutex_lock(&loop_devices_mutex);
  1291. lo = loop_init_one(dev & MINORMASK);
  1292. kobj = lo ? get_disk(lo->lo_disk) : ERR_PTR(-ENOMEM);
  1293. mutex_unlock(&loop_devices_mutex);
  1294. *part = 0;
  1295. return kobj;
  1296. }
  1297. static int __init loop_init(void)
  1298. {
  1299. int i, nr;
  1300. unsigned long range;
  1301. struct loop_device *lo, *next;
  1302. /*
  1303. * loop module now has a feature to instantiate underlying device
  1304. * structure on-demand, provided that there is an access dev node.
  1305. * However, this will not work well with user space tool that doesn't
  1306. * know about such "feature". In order to not break any existing
  1307. * tool, we do the following:
  1308. *
  1309. * (1) if max_loop is specified, create that many upfront, and this
  1310. * also becomes a hard limit.
  1311. * (2) if max_loop is not specified, create 8 loop device on module
  1312. * load, user can further extend loop device by create dev node
  1313. * themselves and have kernel automatically instantiate actual
  1314. * device on-demand.
  1315. */
  1316. if (max_loop > 1UL << MINORBITS)
  1317. return -EINVAL;
  1318. if (max_loop) {
  1319. nr = max_loop;
  1320. range = max_loop;
  1321. } else {
  1322. nr = 8;
  1323. range = 1UL << MINORBITS;
  1324. }
  1325. if (register_blkdev(LOOP_MAJOR, "loop"))
  1326. return -EIO;
  1327. for (i = 0; i < nr; i++) {
  1328. lo = loop_alloc(i);
  1329. if (!lo)
  1330. goto Enomem;
  1331. list_add_tail(&lo->lo_list, &loop_devices);
  1332. }
  1333. /* point of no return */
  1334. list_for_each_entry(lo, &loop_devices, lo_list)
  1335. add_disk(lo->lo_disk);
  1336. blk_register_region(MKDEV(LOOP_MAJOR, 0), range,
  1337. THIS_MODULE, loop_probe, NULL, NULL);
  1338. printk(KERN_INFO "loop: module loaded\n");
  1339. return 0;
  1340. Enomem:
  1341. printk(KERN_INFO "loop: out of memory\n");
  1342. list_for_each_entry_safe(lo, next, &loop_devices, lo_list)
  1343. loop_free(lo);
  1344. unregister_blkdev(LOOP_MAJOR, "loop");
  1345. return -ENOMEM;
  1346. }
  1347. static void __exit loop_exit(void)
  1348. {
  1349. unsigned long range;
  1350. struct loop_device *lo, *next;
  1351. range = max_loop ? max_loop : 1UL << MINORBITS;
  1352. list_for_each_entry_safe(lo, next, &loop_devices, lo_list)
  1353. loop_del_one(lo);
  1354. blk_unregister_region(MKDEV(LOOP_MAJOR, 0), range);
  1355. unregister_blkdev(LOOP_MAJOR, "loop");
  1356. }
  1357. module_init(loop_init);
  1358. module_exit(loop_exit);
  1359. #ifndef MODULE
  1360. static int __init max_loop_setup(char *str)
  1361. {
  1362. max_loop = simple_strtol(str, NULL, 0);
  1363. return 1;
  1364. }
  1365. __setup("max_loop=", max_loop_setup);
  1366. #endif