pgtable_32.c 9.3 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373
  1. /*
  2. * linux/arch/i386/mm/pgtable.c
  3. */
  4. #include <linux/sched.h>
  5. #include <linux/kernel.h>
  6. #include <linux/errno.h>
  7. #include <linux/mm.h>
  8. #include <linux/swap.h>
  9. #include <linux/smp.h>
  10. #include <linux/highmem.h>
  11. #include <linux/slab.h>
  12. #include <linux/pagemap.h>
  13. #include <linux/spinlock.h>
  14. #include <linux/module.h>
  15. #include <linux/quicklist.h>
  16. #include <asm/system.h>
  17. #include <asm/pgtable.h>
  18. #include <asm/pgalloc.h>
  19. #include <asm/fixmap.h>
  20. #include <asm/e820.h>
  21. #include <asm/tlb.h>
  22. #include <asm/tlbflush.h>
  23. void show_mem(void)
  24. {
  25. int total = 0, reserved = 0;
  26. int shared = 0, cached = 0;
  27. int highmem = 0;
  28. struct page *page;
  29. pg_data_t *pgdat;
  30. unsigned long i;
  31. unsigned long flags;
  32. printk(KERN_INFO "Mem-info:\n");
  33. show_free_areas();
  34. printk(KERN_INFO "Free swap: %6ldkB\n", nr_swap_pages<<(PAGE_SHIFT-10));
  35. for_each_online_pgdat(pgdat) {
  36. pgdat_resize_lock(pgdat, &flags);
  37. for (i = 0; i < pgdat->node_spanned_pages; ++i) {
  38. page = pgdat_page_nr(pgdat, i);
  39. total++;
  40. if (PageHighMem(page))
  41. highmem++;
  42. if (PageReserved(page))
  43. reserved++;
  44. else if (PageSwapCache(page))
  45. cached++;
  46. else if (page_count(page))
  47. shared += page_count(page) - 1;
  48. }
  49. pgdat_resize_unlock(pgdat, &flags);
  50. }
  51. printk(KERN_INFO "%d pages of RAM\n", total);
  52. printk(KERN_INFO "%d pages of HIGHMEM\n", highmem);
  53. printk(KERN_INFO "%d reserved pages\n", reserved);
  54. printk(KERN_INFO "%d pages shared\n", shared);
  55. printk(KERN_INFO "%d pages swap cached\n", cached);
  56. printk(KERN_INFO "%lu pages dirty\n", global_page_state(NR_FILE_DIRTY));
  57. printk(KERN_INFO "%lu pages writeback\n",
  58. global_page_state(NR_WRITEBACK));
  59. printk(KERN_INFO "%lu pages mapped\n", global_page_state(NR_FILE_MAPPED));
  60. printk(KERN_INFO "%lu pages slab\n",
  61. global_page_state(NR_SLAB_RECLAIMABLE) +
  62. global_page_state(NR_SLAB_UNRECLAIMABLE));
  63. printk(KERN_INFO "%lu pages pagetables\n",
  64. global_page_state(NR_PAGETABLE));
  65. }
  66. /*
  67. * Associate a virtual page frame with a given physical page frame
  68. * and protection flags for that frame.
  69. */
  70. static void set_pte_pfn(unsigned long vaddr, unsigned long pfn, pgprot_t flags)
  71. {
  72. pgd_t *pgd;
  73. pud_t *pud;
  74. pmd_t *pmd;
  75. pte_t *pte;
  76. pgd = swapper_pg_dir + pgd_index(vaddr);
  77. if (pgd_none(*pgd)) {
  78. BUG();
  79. return;
  80. }
  81. pud = pud_offset(pgd, vaddr);
  82. if (pud_none(*pud)) {
  83. BUG();
  84. return;
  85. }
  86. pmd = pmd_offset(pud, vaddr);
  87. if (pmd_none(*pmd)) {
  88. BUG();
  89. return;
  90. }
  91. pte = pte_offset_kernel(pmd, vaddr);
  92. if (pgprot_val(flags))
  93. /* <pfn,flags> stored as-is, to permit clearing entries */
  94. set_pte(pte, pfn_pte(pfn, flags));
  95. else
  96. pte_clear(&init_mm, vaddr, pte);
  97. /*
  98. * It's enough to flush this one mapping.
  99. * (PGE mappings get flushed as well)
  100. */
  101. __flush_tlb_one(vaddr);
  102. }
  103. /*
  104. * Associate a large virtual page frame with a given physical page frame
  105. * and protection flags for that frame. pfn is for the base of the page,
  106. * vaddr is what the page gets mapped to - both must be properly aligned.
  107. * The pmd must already be instantiated. Assumes PAE mode.
  108. */
  109. void set_pmd_pfn(unsigned long vaddr, unsigned long pfn, pgprot_t flags)
  110. {
  111. pgd_t *pgd;
  112. pud_t *pud;
  113. pmd_t *pmd;
  114. if (vaddr & (PMD_SIZE-1)) { /* vaddr is misaligned */
  115. printk(KERN_WARNING "set_pmd_pfn: vaddr misaligned\n");
  116. return; /* BUG(); */
  117. }
  118. if (pfn & (PTRS_PER_PTE-1)) { /* pfn is misaligned */
  119. printk(KERN_WARNING "set_pmd_pfn: pfn misaligned\n");
  120. return; /* BUG(); */
  121. }
  122. pgd = swapper_pg_dir + pgd_index(vaddr);
  123. if (pgd_none(*pgd)) {
  124. printk(KERN_WARNING "set_pmd_pfn: pgd_none\n");
  125. return; /* BUG(); */
  126. }
  127. pud = pud_offset(pgd, vaddr);
  128. pmd = pmd_offset(pud, vaddr);
  129. set_pmd(pmd, pfn_pmd(pfn, flags));
  130. /*
  131. * It's enough to flush this one mapping.
  132. * (PGE mappings get flushed as well)
  133. */
  134. __flush_tlb_one(vaddr);
  135. }
  136. static int fixmaps;
  137. unsigned long __FIXADDR_TOP = 0xfffff000;
  138. EXPORT_SYMBOL(__FIXADDR_TOP);
  139. void __set_fixmap (enum fixed_addresses idx, unsigned long phys, pgprot_t flags)
  140. {
  141. unsigned long address = __fix_to_virt(idx);
  142. if (idx >= __end_of_fixed_addresses) {
  143. BUG();
  144. return;
  145. }
  146. set_pte_pfn(address, phys >> PAGE_SHIFT, flags);
  147. fixmaps++;
  148. }
  149. /**
  150. * reserve_top_address - reserves a hole in the top of kernel address space
  151. * @reserve - size of hole to reserve
  152. *
  153. * Can be used to relocate the fixmap area and poke a hole in the top
  154. * of kernel address space to make room for a hypervisor.
  155. */
  156. void reserve_top_address(unsigned long reserve)
  157. {
  158. BUG_ON(fixmaps > 0);
  159. printk(KERN_INFO "Reserving virtual address space above 0x%08x\n",
  160. (int)-reserve);
  161. __FIXADDR_TOP = -reserve - PAGE_SIZE;
  162. __VMALLOC_RESERVE += reserve;
  163. }
  164. pte_t *pte_alloc_one_kernel(struct mm_struct *mm, unsigned long address)
  165. {
  166. return (pte_t *)__get_free_page(GFP_KERNEL|__GFP_REPEAT|__GFP_ZERO);
  167. }
  168. struct page *pte_alloc_one(struct mm_struct *mm, unsigned long address)
  169. {
  170. struct page *pte;
  171. #ifdef CONFIG_HIGHPTE
  172. pte = alloc_pages(GFP_KERNEL|__GFP_HIGHMEM|__GFP_REPEAT|__GFP_ZERO, 0);
  173. #else
  174. pte = alloc_pages(GFP_KERNEL|__GFP_REPEAT|__GFP_ZERO, 0);
  175. #endif
  176. return pte;
  177. }
  178. void pmd_ctor(void *pmd, struct kmem_cache *cache, unsigned long flags)
  179. {
  180. memset(pmd, 0, PTRS_PER_PMD*sizeof(pmd_t));
  181. }
  182. /*
  183. * List of all pgd's needed for non-PAE so it can invalidate entries
  184. * in both cached and uncached pgd's; not needed for PAE since the
  185. * kernel pmd is shared. If PAE were not to share the pmd a similar
  186. * tactic would be needed. This is essentially codepath-based locking
  187. * against pageattr.c; it is the unique case in which a valid change
  188. * of kernel pagetables can't be lazily synchronized by vmalloc faults.
  189. * vmalloc faults work because attached pagetables are never freed.
  190. * -- wli
  191. */
  192. DEFINE_SPINLOCK(pgd_lock);
  193. struct page *pgd_list;
  194. static inline void pgd_list_add(pgd_t *pgd)
  195. {
  196. struct page *page = virt_to_page(pgd);
  197. page->index = (unsigned long)pgd_list;
  198. if (pgd_list)
  199. set_page_private(pgd_list, (unsigned long)&page->index);
  200. pgd_list = page;
  201. set_page_private(page, (unsigned long)&pgd_list);
  202. }
  203. static inline void pgd_list_del(pgd_t *pgd)
  204. {
  205. struct page *next, **pprev, *page = virt_to_page(pgd);
  206. next = (struct page *)page->index;
  207. pprev = (struct page **)page_private(page);
  208. *pprev = next;
  209. if (next)
  210. set_page_private(next, (unsigned long)pprev);
  211. }
  212. #if (PTRS_PER_PMD == 1)
  213. /* Non-PAE pgd constructor */
  214. static void pgd_ctor(void *pgd)
  215. {
  216. unsigned long flags;
  217. /* !PAE, no pagetable sharing */
  218. memset(pgd, 0, USER_PTRS_PER_PGD*sizeof(pgd_t));
  219. spin_lock_irqsave(&pgd_lock, flags);
  220. /* must happen under lock */
  221. clone_pgd_range((pgd_t *)pgd + USER_PTRS_PER_PGD,
  222. swapper_pg_dir + USER_PTRS_PER_PGD,
  223. KERNEL_PGD_PTRS);
  224. paravirt_alloc_pd_clone(__pa(pgd) >> PAGE_SHIFT,
  225. __pa(swapper_pg_dir) >> PAGE_SHIFT,
  226. USER_PTRS_PER_PGD,
  227. KERNEL_PGD_PTRS);
  228. pgd_list_add(pgd);
  229. spin_unlock_irqrestore(&pgd_lock, flags);
  230. }
  231. #else /* PTRS_PER_PMD > 1 */
  232. /* PAE pgd constructor */
  233. static void pgd_ctor(void *pgd)
  234. {
  235. /* PAE, kernel PMD may be shared */
  236. if (SHARED_KERNEL_PMD) {
  237. clone_pgd_range((pgd_t *)pgd + USER_PTRS_PER_PGD,
  238. swapper_pg_dir + USER_PTRS_PER_PGD,
  239. KERNEL_PGD_PTRS);
  240. } else {
  241. unsigned long flags;
  242. memset(pgd, 0, USER_PTRS_PER_PGD*sizeof(pgd_t));
  243. spin_lock_irqsave(&pgd_lock, flags);
  244. pgd_list_add(pgd);
  245. spin_unlock_irqrestore(&pgd_lock, flags);
  246. }
  247. }
  248. #endif /* PTRS_PER_PMD */
  249. static void pgd_dtor(void *pgd)
  250. {
  251. unsigned long flags; /* can be called from interrupt context */
  252. if (SHARED_KERNEL_PMD)
  253. return;
  254. paravirt_release_pd(__pa(pgd) >> PAGE_SHIFT);
  255. spin_lock_irqsave(&pgd_lock, flags);
  256. pgd_list_del(pgd);
  257. spin_unlock_irqrestore(&pgd_lock, flags);
  258. }
  259. #define UNSHARED_PTRS_PER_PGD \
  260. (SHARED_KERNEL_PMD ? USER_PTRS_PER_PGD : PTRS_PER_PGD)
  261. /* If we allocate a pmd for part of the kernel address space, then
  262. make sure its initialized with the appropriate kernel mappings.
  263. Otherwise use a cached zeroed pmd. */
  264. static pmd_t *pmd_cache_alloc(int idx)
  265. {
  266. pmd_t *pmd;
  267. if (idx >= USER_PTRS_PER_PGD) {
  268. pmd = (pmd_t *)__get_free_page(GFP_KERNEL);
  269. if (pmd)
  270. memcpy(pmd,
  271. (void *)pgd_page_vaddr(swapper_pg_dir[idx]),
  272. sizeof(pmd_t) * PTRS_PER_PMD);
  273. } else
  274. pmd = kmem_cache_alloc(pmd_cache, GFP_KERNEL);
  275. return pmd;
  276. }
  277. static void pmd_cache_free(pmd_t *pmd, int idx)
  278. {
  279. if (idx >= USER_PTRS_PER_PGD)
  280. free_page((unsigned long)pmd);
  281. else
  282. kmem_cache_free(pmd_cache, pmd);
  283. }
  284. pgd_t *pgd_alloc(struct mm_struct *mm)
  285. {
  286. int i;
  287. pgd_t *pgd = quicklist_alloc(0, GFP_KERNEL, pgd_ctor);
  288. if (PTRS_PER_PMD == 1 || !pgd)
  289. return pgd;
  290. for (i = 0; i < UNSHARED_PTRS_PER_PGD; ++i) {
  291. pmd_t *pmd = pmd_cache_alloc(i);
  292. if (!pmd)
  293. goto out_oom;
  294. paravirt_alloc_pd(__pa(pmd) >> PAGE_SHIFT);
  295. set_pgd(&pgd[i], __pgd(1 + __pa(pmd)));
  296. }
  297. return pgd;
  298. out_oom:
  299. for (i--; i >= 0; i--) {
  300. pgd_t pgdent = pgd[i];
  301. void* pmd = (void *)__va(pgd_val(pgdent)-1);
  302. paravirt_release_pd(__pa(pmd) >> PAGE_SHIFT);
  303. pmd_cache_free(pmd, i);
  304. }
  305. quicklist_free(0, pgd_dtor, pgd);
  306. return NULL;
  307. }
  308. void pgd_free(pgd_t *pgd)
  309. {
  310. int i;
  311. /* in the PAE case user pgd entries are overwritten before usage */
  312. if (PTRS_PER_PMD > 1)
  313. for (i = 0; i < UNSHARED_PTRS_PER_PGD; ++i) {
  314. pgd_t pgdent = pgd[i];
  315. void* pmd = (void *)__va(pgd_val(pgdent)-1);
  316. paravirt_release_pd(__pa(pmd) >> PAGE_SHIFT);
  317. pmd_cache_free(pmd, i);
  318. }
  319. /* in the non-PAE case, free_pgtables() clears user pgd entries */
  320. quicklist_free(0, pgd_dtor, pgd);
  321. }
  322. void check_pgt_cache(void)
  323. {
  324. quicklist_trim(0, pgd_dtor, 25, 16);
  325. }