discontig_32.c 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431
  1. /*
  2. * Written by: Patricia Gaughen <gone@us.ibm.com>, IBM Corporation
  3. * August 2002: added remote node KVA remap - Martin J. Bligh
  4. *
  5. * Copyright (C) 2002, IBM Corp.
  6. *
  7. * All rights reserved.
  8. *
  9. * This program is free software; you can redistribute it and/or modify
  10. * it under the terms of the GNU General Public License as published by
  11. * the Free Software Foundation; either version 2 of the License, or
  12. * (at your option) any later version.
  13. *
  14. * This program is distributed in the hope that it will be useful, but
  15. * WITHOUT ANY WARRANTY; without even the implied warranty of
  16. * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
  17. * NON INFRINGEMENT. See the GNU General Public License for more
  18. * details.
  19. *
  20. * You should have received a copy of the GNU General Public License
  21. * along with this program; if not, write to the Free Software
  22. * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  23. */
  24. #include <linux/mm.h>
  25. #include <linux/bootmem.h>
  26. #include <linux/mmzone.h>
  27. #include <linux/highmem.h>
  28. #include <linux/initrd.h>
  29. #include <linux/nodemask.h>
  30. #include <linux/module.h>
  31. #include <linux/kexec.h>
  32. #include <linux/pfn.h>
  33. #include <linux/swap.h>
  34. #include <asm/e820.h>
  35. #include <asm/setup.h>
  36. #include <asm/mmzone.h>
  37. #include <bios_ebda.h>
  38. struct pglist_data *node_data[MAX_NUMNODES] __read_mostly;
  39. EXPORT_SYMBOL(node_data);
  40. bootmem_data_t node0_bdata;
  41. /*
  42. * numa interface - we expect the numa architecture specific code to have
  43. * populated the following initialisation.
  44. *
  45. * 1) node_online_map - the map of all nodes configured (online) in the system
  46. * 2) node_start_pfn - the starting page frame number for a node
  47. * 3) node_end_pfn - the ending page fram number for a node
  48. */
  49. unsigned long node_start_pfn[MAX_NUMNODES] __read_mostly;
  50. unsigned long node_end_pfn[MAX_NUMNODES] __read_mostly;
  51. #ifdef CONFIG_DISCONTIGMEM
  52. /*
  53. * 4) physnode_map - the mapping between a pfn and owning node
  54. * physnode_map keeps track of the physical memory layout of a generic
  55. * numa node on a 256Mb break (each element of the array will
  56. * represent 256Mb of memory and will be marked by the node id. so,
  57. * if the first gig is on node 0, and the second gig is on node 1
  58. * physnode_map will contain:
  59. *
  60. * physnode_map[0-3] = 0;
  61. * physnode_map[4-7] = 1;
  62. * physnode_map[8- ] = -1;
  63. */
  64. s8 physnode_map[MAX_ELEMENTS] __read_mostly = { [0 ... (MAX_ELEMENTS - 1)] = -1};
  65. EXPORT_SYMBOL(physnode_map);
  66. void memory_present(int nid, unsigned long start, unsigned long end)
  67. {
  68. unsigned long pfn;
  69. printk(KERN_INFO "Node: %d, start_pfn: %ld, end_pfn: %ld\n",
  70. nid, start, end);
  71. printk(KERN_DEBUG " Setting physnode_map array to node %d for pfns:\n", nid);
  72. printk(KERN_DEBUG " ");
  73. for (pfn = start; pfn < end; pfn += PAGES_PER_ELEMENT) {
  74. physnode_map[pfn / PAGES_PER_ELEMENT] = nid;
  75. printk("%ld ", pfn);
  76. }
  77. printk("\n");
  78. }
  79. unsigned long node_memmap_size_bytes(int nid, unsigned long start_pfn,
  80. unsigned long end_pfn)
  81. {
  82. unsigned long nr_pages = end_pfn - start_pfn;
  83. if (!nr_pages)
  84. return 0;
  85. return (nr_pages + 1) * sizeof(struct page);
  86. }
  87. #endif
  88. extern unsigned long find_max_low_pfn(void);
  89. extern void add_one_highpage_init(struct page *, int, int);
  90. extern unsigned long highend_pfn, highstart_pfn;
  91. #define LARGE_PAGE_BYTES (PTRS_PER_PTE * PAGE_SIZE)
  92. unsigned long node_remap_start_pfn[MAX_NUMNODES];
  93. unsigned long node_remap_size[MAX_NUMNODES];
  94. unsigned long node_remap_offset[MAX_NUMNODES];
  95. void *node_remap_start_vaddr[MAX_NUMNODES];
  96. void set_pmd_pfn(unsigned long vaddr, unsigned long pfn, pgprot_t flags);
  97. void *node_remap_end_vaddr[MAX_NUMNODES];
  98. void *node_remap_alloc_vaddr[MAX_NUMNODES];
  99. static unsigned long kva_start_pfn;
  100. static unsigned long kva_pages;
  101. /*
  102. * FLAT - support for basic PC memory model with discontig enabled, essentially
  103. * a single node with all available processors in it with a flat
  104. * memory map.
  105. */
  106. int __init get_memcfg_numa_flat(void)
  107. {
  108. printk("NUMA - single node, flat memory mode\n");
  109. /* Run the memory configuration and find the top of memory. */
  110. find_max_pfn();
  111. node_start_pfn[0] = 0;
  112. node_end_pfn[0] = max_pfn;
  113. memory_present(0, 0, max_pfn);
  114. /* Indicate there is one node available. */
  115. nodes_clear(node_online_map);
  116. node_set_online(0);
  117. return 1;
  118. }
  119. /*
  120. * Find the highest page frame number we have available for the node
  121. */
  122. static void __init find_max_pfn_node(int nid)
  123. {
  124. if (node_end_pfn[nid] > max_pfn)
  125. node_end_pfn[nid] = max_pfn;
  126. /*
  127. * if a user has given mem=XXXX, then we need to make sure
  128. * that the node _starts_ before that, too, not just ends
  129. */
  130. if (node_start_pfn[nid] > max_pfn)
  131. node_start_pfn[nid] = max_pfn;
  132. BUG_ON(node_start_pfn[nid] > node_end_pfn[nid]);
  133. }
  134. /*
  135. * Allocate memory for the pg_data_t for this node via a crude pre-bootmem
  136. * method. For node zero take this from the bottom of memory, for
  137. * subsequent nodes place them at node_remap_start_vaddr which contains
  138. * node local data in physically node local memory. See setup_memory()
  139. * for details.
  140. */
  141. static void __init allocate_pgdat(int nid)
  142. {
  143. if (nid && node_has_online_mem(nid))
  144. NODE_DATA(nid) = (pg_data_t *)node_remap_start_vaddr[nid];
  145. else {
  146. NODE_DATA(nid) = (pg_data_t *)(pfn_to_kaddr(min_low_pfn));
  147. min_low_pfn += PFN_UP(sizeof(pg_data_t));
  148. }
  149. }
  150. void *alloc_remap(int nid, unsigned long size)
  151. {
  152. void *allocation = node_remap_alloc_vaddr[nid];
  153. size = ALIGN(size, L1_CACHE_BYTES);
  154. if (!allocation || (allocation + size) >= node_remap_end_vaddr[nid])
  155. return 0;
  156. node_remap_alloc_vaddr[nid] += size;
  157. memset(allocation, 0, size);
  158. return allocation;
  159. }
  160. void __init remap_numa_kva(void)
  161. {
  162. void *vaddr;
  163. unsigned long pfn;
  164. int node;
  165. for_each_online_node(node) {
  166. for (pfn=0; pfn < node_remap_size[node]; pfn += PTRS_PER_PTE) {
  167. vaddr = node_remap_start_vaddr[node]+(pfn<<PAGE_SHIFT);
  168. set_pmd_pfn((ulong) vaddr,
  169. node_remap_start_pfn[node] + pfn,
  170. PAGE_KERNEL_LARGE);
  171. }
  172. }
  173. }
  174. static unsigned long calculate_numa_remap_pages(void)
  175. {
  176. int nid;
  177. unsigned long size, reserve_pages = 0;
  178. unsigned long pfn;
  179. for_each_online_node(nid) {
  180. unsigned old_end_pfn = node_end_pfn[nid];
  181. /*
  182. * The acpi/srat node info can show hot-add memroy zones
  183. * where memory could be added but not currently present.
  184. */
  185. if (node_start_pfn[nid] > max_pfn)
  186. continue;
  187. if (node_end_pfn[nid] > max_pfn)
  188. node_end_pfn[nid] = max_pfn;
  189. /* ensure the remap includes space for the pgdat. */
  190. size = node_remap_size[nid] + sizeof(pg_data_t);
  191. /* convert size to large (pmd size) pages, rounding up */
  192. size = (size + LARGE_PAGE_BYTES - 1) / LARGE_PAGE_BYTES;
  193. /* now the roundup is correct, convert to PAGE_SIZE pages */
  194. size = size * PTRS_PER_PTE;
  195. /*
  196. * Validate the region we are allocating only contains valid
  197. * pages.
  198. */
  199. for (pfn = node_end_pfn[nid] - size;
  200. pfn < node_end_pfn[nid]; pfn++)
  201. if (!page_is_ram(pfn))
  202. break;
  203. if (pfn != node_end_pfn[nid])
  204. size = 0;
  205. printk("Reserving %ld pages of KVA for lmem_map of node %d\n",
  206. size, nid);
  207. node_remap_size[nid] = size;
  208. node_remap_offset[nid] = reserve_pages;
  209. reserve_pages += size;
  210. printk("Shrinking node %d from %ld pages to %ld pages\n",
  211. nid, node_end_pfn[nid], node_end_pfn[nid] - size);
  212. if (node_end_pfn[nid] & (PTRS_PER_PTE-1)) {
  213. /*
  214. * Align node_end_pfn[] and node_remap_start_pfn[] to
  215. * pmd boundary. remap_numa_kva will barf otherwise.
  216. */
  217. printk("Shrinking node %d further by %ld pages for proper alignment\n",
  218. nid, node_end_pfn[nid] & (PTRS_PER_PTE-1));
  219. size += node_end_pfn[nid] & (PTRS_PER_PTE-1);
  220. }
  221. node_end_pfn[nid] -= size;
  222. node_remap_start_pfn[nid] = node_end_pfn[nid];
  223. shrink_active_range(nid, old_end_pfn, node_end_pfn[nid]);
  224. }
  225. printk("Reserving total of %ld pages for numa KVA remap\n",
  226. reserve_pages);
  227. return reserve_pages;
  228. }
  229. extern void setup_bootmem_allocator(void);
  230. unsigned long __init setup_memory(void)
  231. {
  232. int nid;
  233. unsigned long system_start_pfn, system_max_low_pfn;
  234. /*
  235. * When mapping a NUMA machine we allocate the node_mem_map arrays
  236. * from node local memory. They are then mapped directly into KVA
  237. * between zone normal and vmalloc space. Calculate the size of
  238. * this space and use it to adjust the boundry between ZONE_NORMAL
  239. * and ZONE_HIGHMEM.
  240. */
  241. find_max_pfn();
  242. get_memcfg_numa();
  243. kva_pages = calculate_numa_remap_pages();
  244. /* partially used pages are not usable - thus round upwards */
  245. system_start_pfn = min_low_pfn = PFN_UP(init_pg_tables_end);
  246. kva_start_pfn = find_max_low_pfn() - kva_pages;
  247. #ifdef CONFIG_BLK_DEV_INITRD
  248. /* Numa kva area is below the initrd */
  249. if (LOADER_TYPE && INITRD_START)
  250. kva_start_pfn = PFN_DOWN(INITRD_START) - kva_pages;
  251. #endif
  252. kva_start_pfn -= kva_start_pfn & (PTRS_PER_PTE-1);
  253. system_max_low_pfn = max_low_pfn = find_max_low_pfn();
  254. printk("kva_start_pfn ~ %ld find_max_low_pfn() ~ %ld\n",
  255. kva_start_pfn, max_low_pfn);
  256. printk("max_pfn = %ld\n", max_pfn);
  257. #ifdef CONFIG_HIGHMEM
  258. highstart_pfn = highend_pfn = max_pfn;
  259. if (max_pfn > system_max_low_pfn)
  260. highstart_pfn = system_max_low_pfn;
  261. printk(KERN_NOTICE "%ldMB HIGHMEM available.\n",
  262. pages_to_mb(highend_pfn - highstart_pfn));
  263. num_physpages = highend_pfn;
  264. high_memory = (void *) __va(highstart_pfn * PAGE_SIZE - 1) + 1;
  265. #else
  266. num_physpages = system_max_low_pfn;
  267. high_memory = (void *) __va(system_max_low_pfn * PAGE_SIZE - 1) + 1;
  268. #endif
  269. printk(KERN_NOTICE "%ldMB LOWMEM available.\n",
  270. pages_to_mb(system_max_low_pfn));
  271. printk("min_low_pfn = %ld, max_low_pfn = %ld, highstart_pfn = %ld\n",
  272. min_low_pfn, max_low_pfn, highstart_pfn);
  273. printk("Low memory ends at vaddr %08lx\n",
  274. (ulong) pfn_to_kaddr(max_low_pfn));
  275. for_each_online_node(nid) {
  276. node_remap_start_vaddr[nid] = pfn_to_kaddr(
  277. kva_start_pfn + node_remap_offset[nid]);
  278. /* Init the node remap allocator */
  279. node_remap_end_vaddr[nid] = node_remap_start_vaddr[nid] +
  280. (node_remap_size[nid] * PAGE_SIZE);
  281. node_remap_alloc_vaddr[nid] = node_remap_start_vaddr[nid] +
  282. ALIGN(sizeof(pg_data_t), PAGE_SIZE);
  283. allocate_pgdat(nid);
  284. printk ("node %d will remap to vaddr %08lx - %08lx\n", nid,
  285. (ulong) node_remap_start_vaddr[nid],
  286. (ulong) pfn_to_kaddr(highstart_pfn
  287. + node_remap_offset[nid] + node_remap_size[nid]));
  288. }
  289. printk("High memory starts at vaddr %08lx\n",
  290. (ulong) pfn_to_kaddr(highstart_pfn));
  291. for_each_online_node(nid)
  292. find_max_pfn_node(nid);
  293. memset(NODE_DATA(0), 0, sizeof(struct pglist_data));
  294. NODE_DATA(0)->bdata = &node0_bdata;
  295. setup_bootmem_allocator();
  296. return max_low_pfn;
  297. }
  298. void __init numa_kva_reserve(void)
  299. {
  300. reserve_bootmem(PFN_PHYS(kva_start_pfn),PFN_PHYS(kva_pages));
  301. }
  302. void __init zone_sizes_init(void)
  303. {
  304. int nid;
  305. unsigned long max_zone_pfns[MAX_NR_ZONES];
  306. memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
  307. max_zone_pfns[ZONE_DMA] =
  308. virt_to_phys((char *)MAX_DMA_ADDRESS) >> PAGE_SHIFT;
  309. max_zone_pfns[ZONE_NORMAL] = max_low_pfn;
  310. #ifdef CONFIG_HIGHMEM
  311. max_zone_pfns[ZONE_HIGHMEM] = highend_pfn;
  312. #endif
  313. /* If SRAT has not registered memory, register it now */
  314. if (find_max_pfn_with_active_regions() == 0) {
  315. for_each_online_node(nid) {
  316. if (node_has_online_mem(nid))
  317. add_active_range(nid, node_start_pfn[nid],
  318. node_end_pfn[nid]);
  319. }
  320. }
  321. free_area_init_nodes(max_zone_pfns);
  322. return;
  323. }
  324. void __init set_highmem_pages_init(int bad_ppro)
  325. {
  326. #ifdef CONFIG_HIGHMEM
  327. struct zone *zone;
  328. struct page *page;
  329. for_each_zone(zone) {
  330. unsigned long node_pfn, zone_start_pfn, zone_end_pfn;
  331. if (!is_highmem(zone))
  332. continue;
  333. zone_start_pfn = zone->zone_start_pfn;
  334. zone_end_pfn = zone_start_pfn + zone->spanned_pages;
  335. printk("Initializing %s for node %d (%08lx:%08lx)\n",
  336. zone->name, zone_to_nid(zone),
  337. zone_start_pfn, zone_end_pfn);
  338. for (node_pfn = zone_start_pfn; node_pfn < zone_end_pfn; node_pfn++) {
  339. if (!pfn_valid(node_pfn))
  340. continue;
  341. page = pfn_to_page(node_pfn);
  342. add_one_highpage_init(page, node_pfn, bad_ppro);
  343. }
  344. }
  345. totalram_pages += totalhigh_pages;
  346. #endif
  347. }
  348. #ifdef CONFIG_MEMORY_HOTPLUG
  349. int paddr_to_nid(u64 addr)
  350. {
  351. int nid;
  352. unsigned long pfn = PFN_DOWN(addr);
  353. for_each_node(nid)
  354. if (node_start_pfn[nid] <= pfn &&
  355. pfn < node_end_pfn[nid])
  356. return nid;
  357. return -1;
  358. }
  359. /*
  360. * This function is used to ask node id BEFORE memmap and mem_section's
  361. * initialization (pfn_to_nid() can't be used yet).
  362. * If _PXM is not defined on ACPI's DSDT, node id must be found by this.
  363. */
  364. int memory_add_physaddr_to_nid(u64 addr)
  365. {
  366. int nid = paddr_to_nid(addr);
  367. return (nid >= 0) ? nid : 0;
  368. }
  369. EXPORT_SYMBOL_GPL(memory_add_physaddr_to_nid);
  370. #endif