srat_32.c 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360
  1. /*
  2. * Some of the code in this file has been gleaned from the 64 bit
  3. * discontigmem support code base.
  4. *
  5. * Copyright (C) 2002, IBM Corp.
  6. *
  7. * All rights reserved.
  8. *
  9. * This program is free software; you can redistribute it and/or modify
  10. * it under the terms of the GNU General Public License as published by
  11. * the Free Software Foundation; either version 2 of the License, or
  12. * (at your option) any later version.
  13. *
  14. * This program is distributed in the hope that it will be useful, but
  15. * WITHOUT ANY WARRANTY; without even the implied warranty of
  16. * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
  17. * NON INFRINGEMENT. See the GNU General Public License for more
  18. * details.
  19. *
  20. * You should have received a copy of the GNU General Public License
  21. * along with this program; if not, write to the Free Software
  22. * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  23. *
  24. * Send feedback to Pat Gaughen <gone@us.ibm.com>
  25. */
  26. #include <linux/mm.h>
  27. #include <linux/bootmem.h>
  28. #include <linux/mmzone.h>
  29. #include <linux/acpi.h>
  30. #include <linux/nodemask.h>
  31. #include <asm/srat.h>
  32. #include <asm/topology.h>
  33. #include <asm/smp.h>
  34. /*
  35. * proximity macros and definitions
  36. */
  37. #define NODE_ARRAY_INDEX(x) ((x) / 8) /* 8 bits/char */
  38. #define NODE_ARRAY_OFFSET(x) ((x) % 8) /* 8 bits/char */
  39. #define BMAP_SET(bmap, bit) ((bmap)[NODE_ARRAY_INDEX(bit)] |= 1 << NODE_ARRAY_OFFSET(bit))
  40. #define BMAP_TEST(bmap, bit) ((bmap)[NODE_ARRAY_INDEX(bit)] & (1 << NODE_ARRAY_OFFSET(bit)))
  41. /* bitmap length; _PXM is at most 255 */
  42. #define PXM_BITMAP_LEN (MAX_PXM_DOMAINS / 8)
  43. static u8 pxm_bitmap[PXM_BITMAP_LEN]; /* bitmap of proximity domains */
  44. #define MAX_CHUNKS_PER_NODE 3
  45. #define MAXCHUNKS (MAX_CHUNKS_PER_NODE * MAX_NUMNODES)
  46. struct node_memory_chunk_s {
  47. unsigned long start_pfn;
  48. unsigned long end_pfn;
  49. u8 pxm; // proximity domain of node
  50. u8 nid; // which cnode contains this chunk?
  51. u8 bank; // which mem bank on this node
  52. };
  53. static struct node_memory_chunk_s node_memory_chunk[MAXCHUNKS];
  54. static int num_memory_chunks; /* total number of memory chunks */
  55. static u8 __initdata apicid_to_pxm[MAX_APICID];
  56. extern void * boot_ioremap(unsigned long, unsigned long);
  57. /* Identify CPU proximity domains */
  58. static void __init parse_cpu_affinity_structure(char *p)
  59. {
  60. struct acpi_srat_cpu_affinity *cpu_affinity =
  61. (struct acpi_srat_cpu_affinity *) p;
  62. if ((cpu_affinity->flags & ACPI_SRAT_CPU_ENABLED) == 0)
  63. return; /* empty entry */
  64. /* mark this node as "seen" in node bitmap */
  65. BMAP_SET(pxm_bitmap, cpu_affinity->proximity_domain_lo);
  66. apicid_to_pxm[cpu_affinity->apic_id] = cpu_affinity->proximity_domain_lo;
  67. printk("CPU 0x%02X in proximity domain 0x%02X\n",
  68. cpu_affinity->apic_id, cpu_affinity->proximity_domain_lo);
  69. }
  70. /*
  71. * Identify memory proximity domains and hot-remove capabilities.
  72. * Fill node memory chunk list structure.
  73. */
  74. static void __init parse_memory_affinity_structure (char *sratp)
  75. {
  76. unsigned long long paddr, size;
  77. unsigned long start_pfn, end_pfn;
  78. u8 pxm;
  79. struct node_memory_chunk_s *p, *q, *pend;
  80. struct acpi_srat_mem_affinity *memory_affinity =
  81. (struct acpi_srat_mem_affinity *) sratp;
  82. if ((memory_affinity->flags & ACPI_SRAT_MEM_ENABLED) == 0)
  83. return; /* empty entry */
  84. pxm = memory_affinity->proximity_domain & 0xff;
  85. /* mark this node as "seen" in node bitmap */
  86. BMAP_SET(pxm_bitmap, pxm);
  87. /* calculate info for memory chunk structure */
  88. paddr = memory_affinity->base_address;
  89. size = memory_affinity->length;
  90. start_pfn = paddr >> PAGE_SHIFT;
  91. end_pfn = (paddr + size) >> PAGE_SHIFT;
  92. if (num_memory_chunks >= MAXCHUNKS) {
  93. printk("Too many mem chunks in SRAT. Ignoring %lld MBytes at %llx\n",
  94. size/(1024*1024), paddr);
  95. return;
  96. }
  97. /* Insertion sort based on base address */
  98. pend = &node_memory_chunk[num_memory_chunks];
  99. for (p = &node_memory_chunk[0]; p < pend; p++) {
  100. if (start_pfn < p->start_pfn)
  101. break;
  102. }
  103. if (p < pend) {
  104. for (q = pend; q >= p; q--)
  105. *(q + 1) = *q;
  106. }
  107. p->start_pfn = start_pfn;
  108. p->end_pfn = end_pfn;
  109. p->pxm = pxm;
  110. num_memory_chunks++;
  111. printk("Memory range 0x%lX to 0x%lX (type 0x%X) in proximity domain 0x%02X %s\n",
  112. start_pfn, end_pfn,
  113. memory_affinity->memory_type,
  114. pxm,
  115. ((memory_affinity->flags & ACPI_SRAT_MEM_HOT_PLUGGABLE) ?
  116. "enabled and removable" : "enabled" ) );
  117. }
  118. /*
  119. * The SRAT table always lists ascending addresses, so can always
  120. * assume that the first "start" address that you see is the real
  121. * start of the node, and that the current "end" address is after
  122. * the previous one.
  123. */
  124. static __init void node_read_chunk(int nid, struct node_memory_chunk_s *memory_chunk)
  125. {
  126. /*
  127. * Only add present memory as told by the e820.
  128. * There is no guarantee from the SRAT that the memory it
  129. * enumerates is present at boot time because it represents
  130. * *possible* memory hotplug areas the same as normal RAM.
  131. */
  132. if (memory_chunk->start_pfn >= max_pfn) {
  133. printk (KERN_INFO "Ignoring SRAT pfns: 0x%08lx -> %08lx\n",
  134. memory_chunk->start_pfn, memory_chunk->end_pfn);
  135. return;
  136. }
  137. if (memory_chunk->nid != nid)
  138. return;
  139. if (!node_has_online_mem(nid))
  140. node_start_pfn[nid] = memory_chunk->start_pfn;
  141. if (node_start_pfn[nid] > memory_chunk->start_pfn)
  142. node_start_pfn[nid] = memory_chunk->start_pfn;
  143. if (node_end_pfn[nid] < memory_chunk->end_pfn)
  144. node_end_pfn[nid] = memory_chunk->end_pfn;
  145. }
  146. /* Parse the ACPI Static Resource Affinity Table */
  147. static int __init acpi20_parse_srat(struct acpi_table_srat *sratp)
  148. {
  149. u8 *start, *end, *p;
  150. int i, j, nid;
  151. start = (u8 *)(&(sratp->reserved) + 1); /* skip header */
  152. p = start;
  153. end = (u8 *)sratp + sratp->header.length;
  154. memset(pxm_bitmap, 0, sizeof(pxm_bitmap)); /* init proximity domain bitmap */
  155. memset(node_memory_chunk, 0, sizeof(node_memory_chunk));
  156. num_memory_chunks = 0;
  157. while (p < end) {
  158. switch (*p) {
  159. case ACPI_SRAT_TYPE_CPU_AFFINITY:
  160. parse_cpu_affinity_structure(p);
  161. break;
  162. case ACPI_SRAT_TYPE_MEMORY_AFFINITY:
  163. parse_memory_affinity_structure(p);
  164. break;
  165. default:
  166. printk("ACPI 2.0 SRAT: unknown entry skipped: type=0x%02X, len=%d\n", p[0], p[1]);
  167. break;
  168. }
  169. p += p[1];
  170. if (p[1] == 0) {
  171. printk("acpi20_parse_srat: Entry length value is zero;"
  172. " can't parse any further!\n");
  173. break;
  174. }
  175. }
  176. if (num_memory_chunks == 0) {
  177. printk("could not finy any ACPI SRAT memory areas.\n");
  178. goto out_fail;
  179. }
  180. /* Calculate total number of nodes in system from PXM bitmap and create
  181. * a set of sequential node IDs starting at zero. (ACPI doesn't seem
  182. * to specify the range of _PXM values.)
  183. */
  184. /*
  185. * MCD - we no longer HAVE to number nodes sequentially. PXM domain
  186. * numbers could go as high as 256, and MAX_NUMNODES for i386 is typically
  187. * 32, so we will continue numbering them in this manner until MAX_NUMNODES
  188. * approaches MAX_PXM_DOMAINS for i386.
  189. */
  190. nodes_clear(node_online_map);
  191. for (i = 0; i < MAX_PXM_DOMAINS; i++) {
  192. if (BMAP_TEST(pxm_bitmap, i)) {
  193. int nid = acpi_map_pxm_to_node(i);
  194. node_set_online(nid);
  195. }
  196. }
  197. BUG_ON(num_online_nodes() == 0);
  198. /* set cnode id in memory chunk structure */
  199. for (i = 0; i < num_memory_chunks; i++)
  200. node_memory_chunk[i].nid = pxm_to_node(node_memory_chunk[i].pxm);
  201. printk("pxm bitmap: ");
  202. for (i = 0; i < sizeof(pxm_bitmap); i++) {
  203. printk("%02X ", pxm_bitmap[i]);
  204. }
  205. printk("\n");
  206. printk("Number of logical nodes in system = %d\n", num_online_nodes());
  207. printk("Number of memory chunks in system = %d\n", num_memory_chunks);
  208. for (i = 0; i < MAX_APICID; i++)
  209. apicid_2_node[i] = pxm_to_node(apicid_to_pxm[i]);
  210. for (j = 0; j < num_memory_chunks; j++){
  211. struct node_memory_chunk_s * chunk = &node_memory_chunk[j];
  212. printk("chunk %d nid %d start_pfn %08lx end_pfn %08lx\n",
  213. j, chunk->nid, chunk->start_pfn, chunk->end_pfn);
  214. node_read_chunk(chunk->nid, chunk);
  215. add_active_range(chunk->nid, chunk->start_pfn, chunk->end_pfn);
  216. }
  217. for_each_online_node(nid) {
  218. unsigned long start = node_start_pfn[nid];
  219. unsigned long end = node_end_pfn[nid];
  220. memory_present(nid, start, end);
  221. node_remap_size[nid] = node_memmap_size_bytes(nid, start, end);
  222. }
  223. return 1;
  224. out_fail:
  225. return 0;
  226. }
  227. struct acpi_static_rsdt {
  228. struct acpi_table_rsdt table;
  229. u32 padding[7]; /* Allow for 7 more table entries */
  230. };
  231. int __init get_memcfg_from_srat(void)
  232. {
  233. struct acpi_table_header *header = NULL;
  234. struct acpi_table_rsdp *rsdp = NULL;
  235. struct acpi_table_rsdt *rsdt = NULL;
  236. acpi_native_uint rsdp_address = 0;
  237. struct acpi_static_rsdt saved_rsdt;
  238. int tables = 0;
  239. int i = 0;
  240. rsdp_address = acpi_find_rsdp();
  241. if (!rsdp_address) {
  242. printk("%s: System description tables not found\n",
  243. __FUNCTION__);
  244. goto out_err;
  245. }
  246. printk("%s: assigning address to rsdp\n", __FUNCTION__);
  247. rsdp = (struct acpi_table_rsdp *)(u32)rsdp_address;
  248. if (!rsdp) {
  249. printk("%s: Didn't find ACPI root!\n", __FUNCTION__);
  250. goto out_err;
  251. }
  252. printk(KERN_INFO "%.8s v%d [%.6s]\n", rsdp->signature, rsdp->revision,
  253. rsdp->oem_id);
  254. if (strncmp(rsdp->signature, ACPI_SIG_RSDP,strlen(ACPI_SIG_RSDP))) {
  255. printk(KERN_WARNING "%s: RSDP table signature incorrect\n", __FUNCTION__);
  256. goto out_err;
  257. }
  258. rsdt = (struct acpi_table_rsdt *)
  259. boot_ioremap(rsdp->rsdt_physical_address, sizeof(struct acpi_table_rsdt));
  260. if (!rsdt) {
  261. printk(KERN_WARNING
  262. "%s: ACPI: Invalid root system description tables (RSDT)\n",
  263. __FUNCTION__);
  264. goto out_err;
  265. }
  266. header = &rsdt->header;
  267. if (strncmp(header->signature, ACPI_SIG_RSDT, strlen(ACPI_SIG_RSDT))) {
  268. printk(KERN_WARNING "ACPI: RSDT signature incorrect\n");
  269. goto out_err;
  270. }
  271. /*
  272. * The number of tables is computed by taking the
  273. * size of all entries (header size minus total
  274. * size of RSDT) divided by the size of each entry
  275. * (4-byte table pointers).
  276. */
  277. tables = (header->length - sizeof(struct acpi_table_header)) / 4;
  278. if (!tables)
  279. goto out_err;
  280. memcpy(&saved_rsdt, rsdt, sizeof(saved_rsdt));
  281. if (saved_rsdt.table.header.length > sizeof(saved_rsdt)) {
  282. printk(KERN_WARNING "ACPI: Too big length in RSDT: %d\n",
  283. saved_rsdt.table.header.length);
  284. goto out_err;
  285. }
  286. printk("Begin SRAT table scan....\n");
  287. for (i = 0; i < tables; i++) {
  288. /* Map in header, then map in full table length. */
  289. header = (struct acpi_table_header *)
  290. boot_ioremap(saved_rsdt.table.table_offset_entry[i], sizeof(struct acpi_table_header));
  291. if (!header)
  292. break;
  293. header = (struct acpi_table_header *)
  294. boot_ioremap(saved_rsdt.table.table_offset_entry[i], header->length);
  295. if (!header)
  296. break;
  297. if (strncmp((char *) &header->signature, ACPI_SIG_SRAT, 4))
  298. continue;
  299. /* we've found the srat table. don't need to look at any more tables */
  300. return acpi20_parse_srat((struct acpi_table_srat *)header);
  301. }
  302. out_err:
  303. remove_all_active_ranges();
  304. printk("failed to get NUMA memory information from SRAT table\n");
  305. return 0;
  306. }