ethertap_user.c 5.5 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238
  1. /*
  2. * Copyright (C) 2001 Lennert Buytenhek (buytenh@gnu.org) and
  3. * James Leu (jleu@mindspring.net).
  4. * Copyright (C) 2001 by various other people who didn't put their name here.
  5. * Licensed under the GPL.
  6. */
  7. #include <stdio.h>
  8. #include <unistd.h>
  9. #include <stddef.h>
  10. #include <stdlib.h>
  11. #include <sys/errno.h>
  12. #include <sys/socket.h>
  13. #include <sys/wait.h>
  14. #include <sys/un.h>
  15. #include <net/if.h>
  16. #include "user.h"
  17. #include "kern_util.h"
  18. #include "net_user.h"
  19. #include "etap.h"
  20. #include "os.h"
  21. #include "um_malloc.h"
  22. #include "kern_constants.h"
  23. #define MAX_PACKET ETH_MAX_PACKET
  24. static int etap_user_init(void *data, void *dev)
  25. {
  26. struct ethertap_data *pri = data;
  27. pri->dev = dev;
  28. return 0;
  29. }
  30. struct addr_change {
  31. enum { ADD_ADDR, DEL_ADDR } what;
  32. unsigned char addr[4];
  33. unsigned char netmask[4];
  34. };
  35. static void etap_change(int op, unsigned char *addr, unsigned char *netmask,
  36. int fd)
  37. {
  38. struct addr_change change;
  39. char *output;
  40. int n;
  41. change.what = op;
  42. memcpy(change.addr, addr, sizeof(change.addr));
  43. memcpy(change.netmask, netmask, sizeof(change.netmask));
  44. CATCH_EINTR(n = write(fd, &change, sizeof(change)));
  45. if(n != sizeof(change)){
  46. printk("etap_change - request failed, err = %d\n", errno);
  47. return;
  48. }
  49. output = kmalloc(UM_KERN_PAGE_SIZE, UM_GFP_KERNEL);
  50. if(output == NULL)
  51. printk("etap_change : Failed to allocate output buffer\n");
  52. read_output(fd, output, UM_KERN_PAGE_SIZE);
  53. if(output != NULL){
  54. printk("%s", output);
  55. kfree(output);
  56. }
  57. }
  58. static void etap_open_addr(unsigned char *addr, unsigned char *netmask,
  59. void *arg)
  60. {
  61. etap_change(ADD_ADDR, addr, netmask, *((int *) arg));
  62. }
  63. static void etap_close_addr(unsigned char *addr, unsigned char *netmask,
  64. void *arg)
  65. {
  66. etap_change(DEL_ADDR, addr, netmask, *((int *) arg));
  67. }
  68. struct etap_pre_exec_data {
  69. int control_remote;
  70. int control_me;
  71. int data_me;
  72. };
  73. static void etap_pre_exec(void *arg)
  74. {
  75. struct etap_pre_exec_data *data = arg;
  76. dup2(data->control_remote, 1);
  77. os_close_file(data->data_me);
  78. os_close_file(data->control_me);
  79. }
  80. static int etap_tramp(char *dev, char *gate, int control_me,
  81. int control_remote, int data_me, int data_remote)
  82. {
  83. struct etap_pre_exec_data pe_data;
  84. int pid, status, err, n;
  85. char version_buf[sizeof("nnnnn\0")];
  86. char data_fd_buf[sizeof("nnnnnn\0")];
  87. char gate_buf[sizeof("nnn.nnn.nnn.nnn\0")];
  88. char *setup_args[] = { "uml_net", version_buf, "ethertap", dev,
  89. data_fd_buf, gate_buf, NULL };
  90. char *nosetup_args[] = { "uml_net", version_buf, "ethertap",
  91. dev, data_fd_buf, NULL };
  92. char **args, c;
  93. sprintf(data_fd_buf, "%d", data_remote);
  94. sprintf(version_buf, "%d", UML_NET_VERSION);
  95. if(gate != NULL){
  96. strcpy(gate_buf, gate);
  97. args = setup_args;
  98. }
  99. else args = nosetup_args;
  100. err = 0;
  101. pe_data.control_remote = control_remote;
  102. pe_data.control_me = control_me;
  103. pe_data.data_me = data_me;
  104. pid = run_helper(etap_pre_exec, &pe_data, args);
  105. if(pid < 0)
  106. err = pid;
  107. os_close_file(data_remote);
  108. os_close_file(control_remote);
  109. CATCH_EINTR(n = read(control_me, &c, sizeof(c)));
  110. if(n != sizeof(c)){
  111. err = -errno;
  112. printk("etap_tramp : read of status failed, err = %d\n", -err);
  113. return err;
  114. }
  115. if(c != 1){
  116. printk("etap_tramp : uml_net failed\n");
  117. err = -EINVAL;
  118. CATCH_EINTR(n = waitpid(pid, &status, 0));
  119. if(n < 0)
  120. err = -errno;
  121. else if(!WIFEXITED(status) || (WEXITSTATUS(status) != 1))
  122. printk("uml_net didn't exit with status 1\n");
  123. }
  124. return err;
  125. }
  126. static int etap_open(void *data)
  127. {
  128. struct ethertap_data *pri = data;
  129. char *output;
  130. int data_fds[2], control_fds[2], err, output_len;
  131. err = tap_open_common(pri->dev, pri->gate_addr);
  132. if(err)
  133. return err;
  134. err = os_pipe(data_fds, 0, 0);
  135. if(err < 0){
  136. printk("data os_pipe failed - err = %d\n", -err);
  137. return err;
  138. }
  139. err = os_pipe(control_fds, 1, 0);
  140. if(err < 0){
  141. printk("control os_pipe failed - err = %d\n", -err);
  142. return err;
  143. }
  144. err = etap_tramp(pri->dev_name, pri->gate_addr, control_fds[0],
  145. control_fds[1], data_fds[0], data_fds[1]);
  146. output_len = UM_KERN_PAGE_SIZE;
  147. output = kmalloc(output_len, UM_GFP_KERNEL);
  148. read_output(control_fds[0], output, output_len);
  149. if(output == NULL)
  150. printk("etap_open : failed to allocate output buffer\n");
  151. else {
  152. printk("%s", output);
  153. kfree(output);
  154. }
  155. if(err < 0){
  156. printk("etap_tramp failed - err = %d\n", -err);
  157. return err;
  158. }
  159. pri->data_fd = data_fds[0];
  160. pri->control_fd = control_fds[0];
  161. iter_addresses(pri->dev, etap_open_addr, &pri->control_fd);
  162. return data_fds[0];
  163. }
  164. static void etap_close(int fd, void *data)
  165. {
  166. struct ethertap_data *pri = data;
  167. iter_addresses(pri->dev, etap_close_addr, &pri->control_fd);
  168. os_close_file(fd);
  169. os_shutdown_socket(pri->data_fd, 1, 1);
  170. os_close_file(pri->data_fd);
  171. pri->data_fd = -1;
  172. os_close_file(pri->control_fd);
  173. pri->control_fd = -1;
  174. }
  175. static int etap_set_mtu(int mtu, void *data)
  176. {
  177. return mtu;
  178. }
  179. static void etap_add_addr(unsigned char *addr, unsigned char *netmask,
  180. void *data)
  181. {
  182. struct ethertap_data *pri = data;
  183. tap_check_ips(pri->gate_addr, addr);
  184. if(pri->control_fd == -1)
  185. return;
  186. etap_open_addr(addr, netmask, &pri->control_fd);
  187. }
  188. static void etap_del_addr(unsigned char *addr, unsigned char *netmask,
  189. void *data)
  190. {
  191. struct ethertap_data *pri = data;
  192. if(pri->control_fd == -1)
  193. return;
  194. etap_close_addr(addr, netmask, &pri->control_fd);
  195. }
  196. const struct net_user_info ethertap_user_info = {
  197. .init = etap_user_init,
  198. .open = etap_open,
  199. .close = etap_close,
  200. .remove = NULL,
  201. .set_mtu = etap_set_mtu,
  202. .add_address = etap_add_addr,
  203. .delete_address = etap_del_addr,
  204. .max_packet = MAX_PACKET - ETH_HEADER_ETHERTAP
  205. };