process.c 8.2 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413
  1. /*
  2. * Copyright (C) 2000, 2001, 2002 Jeff Dike (jdike@karaya.com)
  3. * Copyright 2003 PathScale, Inc.
  4. * Licensed under the GPL
  5. */
  6. #include "linux/kernel.h"
  7. #include "linux/sched.h"
  8. #include "linux/interrupt.h"
  9. #include "linux/string.h"
  10. #include "linux/mm.h"
  11. #include "linux/slab.h"
  12. #include "linux/utsname.h"
  13. #include "linux/fs.h"
  14. #include "linux/utime.h"
  15. #include "linux/smp_lock.h"
  16. #include "linux/module.h"
  17. #include "linux/init.h"
  18. #include "linux/capability.h"
  19. #include "linux/vmalloc.h"
  20. #include "linux/spinlock.h"
  21. #include "linux/proc_fs.h"
  22. #include "linux/ptrace.h"
  23. #include "linux/random.h"
  24. #include "linux/personality.h"
  25. #include "asm/unistd.h"
  26. #include "asm/mman.h"
  27. #include "asm/segment.h"
  28. #include "asm/stat.h"
  29. #include "asm/pgtable.h"
  30. #include "asm/processor.h"
  31. #include "asm/tlbflush.h"
  32. #include "asm/uaccess.h"
  33. #include "asm/user.h"
  34. #include "kern_util.h"
  35. #include "as-layout.h"
  36. #include "kern.h"
  37. #include "signal_kern.h"
  38. #include "init.h"
  39. #include "irq_user.h"
  40. #include "mem_user.h"
  41. #include "tlb.h"
  42. #include "frame_kern.h"
  43. #include "sigcontext.h"
  44. #include "os.h"
  45. #include "mode.h"
  46. #include "mode_kern.h"
  47. #include "choose-mode.h"
  48. /* This is a per-cpu array. A processor only modifies its entry and it only
  49. * cares about its entry, so it's OK if another processor is modifying its
  50. * entry.
  51. */
  52. struct cpu_task cpu_tasks[NR_CPUS] = { [0 ... NR_CPUS - 1] = { -1, NULL } };
  53. static inline int external_pid(struct task_struct *task)
  54. {
  55. return CHOOSE_MODE_PROC(external_pid_tt, external_pid_skas, task);
  56. }
  57. int pid_to_processor_id(int pid)
  58. {
  59. int i;
  60. for(i = 0; i < ncpus; i++){
  61. if(cpu_tasks[i].pid == pid)
  62. return i;
  63. }
  64. return -1;
  65. }
  66. void free_stack(unsigned long stack, int order)
  67. {
  68. free_pages(stack, order);
  69. }
  70. unsigned long alloc_stack(int order, int atomic)
  71. {
  72. unsigned long page;
  73. gfp_t flags = GFP_KERNEL;
  74. if (atomic)
  75. flags = GFP_ATOMIC;
  76. page = __get_free_pages(flags, order);
  77. if(page == 0)
  78. return 0;
  79. stack_protections(page);
  80. return page;
  81. }
  82. int kernel_thread(int (*fn)(void *), void * arg, unsigned long flags)
  83. {
  84. int pid;
  85. current->thread.request.u.thread.proc = fn;
  86. current->thread.request.u.thread.arg = arg;
  87. pid = do_fork(CLONE_VM | CLONE_UNTRACED | flags, 0,
  88. &current->thread.regs, 0, NULL, NULL);
  89. return pid;
  90. }
  91. static inline void set_current(struct task_struct *task)
  92. {
  93. cpu_tasks[task_thread_info(task)->cpu] = ((struct cpu_task)
  94. { external_pid(task), task });
  95. }
  96. void *_switch_to(void *prev, void *next, void *last)
  97. {
  98. struct task_struct *from = prev;
  99. struct task_struct *to= next;
  100. to->thread.prev_sched = from;
  101. set_current(to);
  102. do {
  103. current->thread.saved_task = NULL ;
  104. CHOOSE_MODE_PROC(switch_to_tt, switch_to_skas, prev, next);
  105. if(current->thread.saved_task)
  106. show_regs(&(current->thread.regs));
  107. next= current->thread.saved_task;
  108. prev= current;
  109. } while(current->thread.saved_task);
  110. return current->thread.prev_sched;
  111. }
  112. void interrupt_end(void)
  113. {
  114. if(need_resched())
  115. schedule();
  116. if(test_tsk_thread_flag(current, TIF_SIGPENDING))
  117. do_signal();
  118. }
  119. void release_thread(struct task_struct *task)
  120. {
  121. CHOOSE_MODE(release_thread_tt(task), release_thread_skas(task));
  122. }
  123. void exit_thread(void)
  124. {
  125. unprotect_stack((unsigned long) current_thread);
  126. }
  127. void *get_current(void)
  128. {
  129. return current;
  130. }
  131. int copy_thread(int nr, unsigned long clone_flags, unsigned long sp,
  132. unsigned long stack_top, struct task_struct * p,
  133. struct pt_regs *regs)
  134. {
  135. int ret;
  136. p->thread = (struct thread_struct) INIT_THREAD;
  137. ret = CHOOSE_MODE_PROC(copy_thread_tt, copy_thread_skas, nr,
  138. clone_flags, sp, stack_top, p, regs);
  139. if (ret || !current->thread.forking)
  140. goto out;
  141. clear_flushed_tls(p);
  142. /*
  143. * Set a new TLS for the child thread?
  144. */
  145. if (clone_flags & CLONE_SETTLS)
  146. ret = arch_copy_tls(p);
  147. out:
  148. return ret;
  149. }
  150. void initial_thread_cb(void (*proc)(void *), void *arg)
  151. {
  152. int save_kmalloc_ok = kmalloc_ok;
  153. kmalloc_ok = 0;
  154. CHOOSE_MODE_PROC(initial_thread_cb_tt, initial_thread_cb_skas, proc,
  155. arg);
  156. kmalloc_ok = save_kmalloc_ok;
  157. }
  158. #ifdef CONFIG_MODE_TT
  159. unsigned long stack_sp(unsigned long page)
  160. {
  161. return page + PAGE_SIZE - sizeof(void *);
  162. }
  163. #endif
  164. void default_idle(void)
  165. {
  166. CHOOSE_MODE(uml_idle_timer(), (void) 0);
  167. while(1){
  168. /* endless idle loop with no priority at all */
  169. /*
  170. * although we are an idle CPU, we do not want to
  171. * get into the scheduler unnecessarily.
  172. */
  173. if(need_resched())
  174. schedule();
  175. idle_sleep(10);
  176. }
  177. }
  178. void cpu_idle(void)
  179. {
  180. CHOOSE_MODE(init_idle_tt(), init_idle_skas());
  181. }
  182. void *um_virt_to_phys(struct task_struct *task, unsigned long addr,
  183. pte_t *pte_out)
  184. {
  185. pgd_t *pgd;
  186. pud_t *pud;
  187. pmd_t *pmd;
  188. pte_t *pte;
  189. pte_t ptent;
  190. if(task->mm == NULL)
  191. return ERR_PTR(-EINVAL);
  192. pgd = pgd_offset(task->mm, addr);
  193. if(!pgd_present(*pgd))
  194. return ERR_PTR(-EINVAL);
  195. pud = pud_offset(pgd, addr);
  196. if(!pud_present(*pud))
  197. return ERR_PTR(-EINVAL);
  198. pmd = pmd_offset(pud, addr);
  199. if(!pmd_present(*pmd))
  200. return ERR_PTR(-EINVAL);
  201. pte = pte_offset_kernel(pmd, addr);
  202. ptent = *pte;
  203. if(!pte_present(ptent))
  204. return ERR_PTR(-EINVAL);
  205. if(pte_out != NULL)
  206. *pte_out = ptent;
  207. return (void *) (pte_val(ptent) & PAGE_MASK) + (addr & ~PAGE_MASK);
  208. }
  209. char *current_cmd(void)
  210. {
  211. #if defined(CONFIG_SMP) || defined(CONFIG_HIGHMEM)
  212. return "(Unknown)";
  213. #else
  214. void *addr = um_virt_to_phys(current, current->mm->arg_start, NULL);
  215. return IS_ERR(addr) ? "(Unknown)": __va((unsigned long) addr);
  216. #endif
  217. }
  218. void dump_thread(struct pt_regs *regs, struct user *u)
  219. {
  220. }
  221. int __cant_sleep(void) {
  222. return in_atomic() || irqs_disabled() || in_interrupt();
  223. /* Is in_interrupt() really needed? */
  224. }
  225. int user_context(unsigned long sp)
  226. {
  227. unsigned long stack;
  228. stack = sp & (PAGE_MASK << CONFIG_KERNEL_STACK_ORDER);
  229. return stack != (unsigned long) current_thread;
  230. }
  231. extern exitcall_t __uml_exitcall_begin, __uml_exitcall_end;
  232. void do_uml_exitcalls(void)
  233. {
  234. exitcall_t *call;
  235. call = &__uml_exitcall_end;
  236. while (--call >= &__uml_exitcall_begin)
  237. (*call)();
  238. }
  239. char *uml_strdup(char *string)
  240. {
  241. return kstrdup(string, GFP_KERNEL);
  242. }
  243. int copy_to_user_proc(void __user *to, void *from, int size)
  244. {
  245. return copy_to_user(to, from, size);
  246. }
  247. int copy_from_user_proc(void *to, void __user *from, int size)
  248. {
  249. return copy_from_user(to, from, size);
  250. }
  251. int clear_user_proc(void __user *buf, int size)
  252. {
  253. return clear_user(buf, size);
  254. }
  255. int strlen_user_proc(char __user *str)
  256. {
  257. return strlen_user(str);
  258. }
  259. int smp_sigio_handler(void)
  260. {
  261. #ifdef CONFIG_SMP
  262. int cpu = current_thread->cpu;
  263. IPI_handler(cpu);
  264. if(cpu != 0)
  265. return 1;
  266. #endif
  267. return 0;
  268. }
  269. int cpu(void)
  270. {
  271. return current_thread->cpu;
  272. }
  273. static atomic_t using_sysemu = ATOMIC_INIT(0);
  274. int sysemu_supported;
  275. void set_using_sysemu(int value)
  276. {
  277. if (value > sysemu_supported)
  278. return;
  279. atomic_set(&using_sysemu, value);
  280. }
  281. int get_using_sysemu(void)
  282. {
  283. return atomic_read(&using_sysemu);
  284. }
  285. static int proc_read_sysemu(char *buf, char **start, off_t offset, int size,int *eof, void *data)
  286. {
  287. if (snprintf(buf, size, "%d\n", get_using_sysemu()) < size) /*No overflow*/
  288. *eof = 1;
  289. return strlen(buf);
  290. }
  291. static int proc_write_sysemu(struct file *file,const char __user *buf, unsigned long count,void *data)
  292. {
  293. char tmp[2];
  294. if (copy_from_user(tmp, buf, 1))
  295. return -EFAULT;
  296. if (tmp[0] >= '0' && tmp[0] <= '2')
  297. set_using_sysemu(tmp[0] - '0');
  298. return count; /*We use the first char, but pretend to write everything*/
  299. }
  300. int __init make_proc_sysemu(void)
  301. {
  302. struct proc_dir_entry *ent;
  303. if (!sysemu_supported)
  304. return 0;
  305. ent = create_proc_entry("sysemu", 0600, &proc_root);
  306. if (ent == NULL)
  307. {
  308. printk(KERN_WARNING "Failed to register /proc/sysemu\n");
  309. return 0;
  310. }
  311. ent->read_proc = proc_read_sysemu;
  312. ent->write_proc = proc_write_sysemu;
  313. return 0;
  314. }
  315. late_initcall(make_proc_sysemu);
  316. int singlestepping(void * t)
  317. {
  318. struct task_struct *task = t ? t : current;
  319. if ( ! (task->ptrace & PT_DTRACE) )
  320. return(0);
  321. if (task->thread.singlestep_syscall)
  322. return(1);
  323. return 2;
  324. }
  325. /*
  326. * Only x86 and x86_64 have an arch_align_stack().
  327. * All other arches have "#define arch_align_stack(x) (x)"
  328. * in their asm/system.h
  329. * As this is included in UML from asm-um/system-generic.h,
  330. * we can use it to behave as the subarch does.
  331. */
  332. #ifndef arch_align_stack
  333. unsigned long arch_align_stack(unsigned long sp)
  334. {
  335. if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
  336. sp -= get_random_int() % 8192;
  337. return sp & ~0xf;
  338. }
  339. #endif