pci_sun4v.c 24 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064
  1. /* pci_sun4v.c: SUN4V specific PCI controller support.
  2. *
  3. * Copyright (C) 2006, 2007 David S. Miller (davem@davemloft.net)
  4. */
  5. #include <linux/kernel.h>
  6. #include <linux/types.h>
  7. #include <linux/pci.h>
  8. #include <linux/init.h>
  9. #include <linux/slab.h>
  10. #include <linux/interrupt.h>
  11. #include <linux/percpu.h>
  12. #include <linux/irq.h>
  13. #include <linux/msi.h>
  14. #include <linux/log2.h>
  15. #include <asm/iommu.h>
  16. #include <asm/irq.h>
  17. #include <asm/upa.h>
  18. #include <asm/pstate.h>
  19. #include <asm/oplib.h>
  20. #include <asm/hypervisor.h>
  21. #include <asm/prom.h>
  22. #include "pci_impl.h"
  23. #include "iommu_common.h"
  24. #include "pci_sun4v.h"
  25. static unsigned long vpci_major = 1;
  26. static unsigned long vpci_minor = 1;
  27. #define PGLIST_NENTS (PAGE_SIZE / sizeof(u64))
  28. struct iommu_batch {
  29. struct device *dev; /* Device mapping is for. */
  30. unsigned long prot; /* IOMMU page protections */
  31. unsigned long entry; /* Index into IOTSB. */
  32. u64 *pglist; /* List of physical pages */
  33. unsigned long npages; /* Number of pages in list. */
  34. };
  35. static DEFINE_PER_CPU(struct iommu_batch, iommu_batch);
  36. /* Interrupts must be disabled. */
  37. static inline void iommu_batch_start(struct device *dev, unsigned long prot, unsigned long entry)
  38. {
  39. struct iommu_batch *p = &__get_cpu_var(iommu_batch);
  40. p->dev = dev;
  41. p->prot = prot;
  42. p->entry = entry;
  43. p->npages = 0;
  44. }
  45. /* Interrupts must be disabled. */
  46. static long iommu_batch_flush(struct iommu_batch *p)
  47. {
  48. struct pci_pbm_info *pbm = p->dev->archdata.host_controller;
  49. unsigned long devhandle = pbm->devhandle;
  50. unsigned long prot = p->prot;
  51. unsigned long entry = p->entry;
  52. u64 *pglist = p->pglist;
  53. unsigned long npages = p->npages;
  54. while (npages != 0) {
  55. long num;
  56. num = pci_sun4v_iommu_map(devhandle, HV_PCI_TSBID(0, entry),
  57. npages, prot, __pa(pglist));
  58. if (unlikely(num < 0)) {
  59. if (printk_ratelimit())
  60. printk("iommu_batch_flush: IOMMU map of "
  61. "[%08lx:%08lx:%lx:%lx:%lx] failed with "
  62. "status %ld\n",
  63. devhandle, HV_PCI_TSBID(0, entry),
  64. npages, prot, __pa(pglist), num);
  65. return -1;
  66. }
  67. entry += num;
  68. npages -= num;
  69. pglist += num;
  70. }
  71. p->entry = entry;
  72. p->npages = 0;
  73. return 0;
  74. }
  75. /* Interrupts must be disabled. */
  76. static inline long iommu_batch_add(u64 phys_page)
  77. {
  78. struct iommu_batch *p = &__get_cpu_var(iommu_batch);
  79. BUG_ON(p->npages >= PGLIST_NENTS);
  80. p->pglist[p->npages++] = phys_page;
  81. if (p->npages == PGLIST_NENTS)
  82. return iommu_batch_flush(p);
  83. return 0;
  84. }
  85. /* Interrupts must be disabled. */
  86. static inline long iommu_batch_end(void)
  87. {
  88. struct iommu_batch *p = &__get_cpu_var(iommu_batch);
  89. BUG_ON(p->npages >= PGLIST_NENTS);
  90. return iommu_batch_flush(p);
  91. }
  92. static long arena_alloc(struct iommu_arena *arena, unsigned long npages)
  93. {
  94. unsigned long n, i, start, end, limit;
  95. int pass;
  96. limit = arena->limit;
  97. start = arena->hint;
  98. pass = 0;
  99. again:
  100. n = find_next_zero_bit(arena->map, limit, start);
  101. end = n + npages;
  102. if (unlikely(end >= limit)) {
  103. if (likely(pass < 1)) {
  104. limit = start;
  105. start = 0;
  106. pass++;
  107. goto again;
  108. } else {
  109. /* Scanned the whole thing, give up. */
  110. return -1;
  111. }
  112. }
  113. for (i = n; i < end; i++) {
  114. if (test_bit(i, arena->map)) {
  115. start = i + 1;
  116. goto again;
  117. }
  118. }
  119. for (i = n; i < end; i++)
  120. __set_bit(i, arena->map);
  121. arena->hint = end;
  122. return n;
  123. }
  124. static void arena_free(struct iommu_arena *arena, unsigned long base,
  125. unsigned long npages)
  126. {
  127. unsigned long i;
  128. for (i = base; i < (base + npages); i++)
  129. __clear_bit(i, arena->map);
  130. }
  131. static void *dma_4v_alloc_coherent(struct device *dev, size_t size,
  132. dma_addr_t *dma_addrp, gfp_t gfp)
  133. {
  134. struct iommu *iommu;
  135. unsigned long flags, order, first_page, npages, n;
  136. void *ret;
  137. long entry;
  138. size = IO_PAGE_ALIGN(size);
  139. order = get_order(size);
  140. if (unlikely(order >= MAX_ORDER))
  141. return NULL;
  142. npages = size >> IO_PAGE_SHIFT;
  143. first_page = __get_free_pages(gfp, order);
  144. if (unlikely(first_page == 0UL))
  145. return NULL;
  146. memset((char *)first_page, 0, PAGE_SIZE << order);
  147. iommu = dev->archdata.iommu;
  148. spin_lock_irqsave(&iommu->lock, flags);
  149. entry = arena_alloc(&iommu->arena, npages);
  150. spin_unlock_irqrestore(&iommu->lock, flags);
  151. if (unlikely(entry < 0L))
  152. goto arena_alloc_fail;
  153. *dma_addrp = (iommu->page_table_map_base +
  154. (entry << IO_PAGE_SHIFT));
  155. ret = (void *) first_page;
  156. first_page = __pa(first_page);
  157. local_irq_save(flags);
  158. iommu_batch_start(dev,
  159. (HV_PCI_MAP_ATTR_READ |
  160. HV_PCI_MAP_ATTR_WRITE),
  161. entry);
  162. for (n = 0; n < npages; n++) {
  163. long err = iommu_batch_add(first_page + (n * PAGE_SIZE));
  164. if (unlikely(err < 0L))
  165. goto iommu_map_fail;
  166. }
  167. if (unlikely(iommu_batch_end() < 0L))
  168. goto iommu_map_fail;
  169. local_irq_restore(flags);
  170. return ret;
  171. iommu_map_fail:
  172. /* Interrupts are disabled. */
  173. spin_lock(&iommu->lock);
  174. arena_free(&iommu->arena, entry, npages);
  175. spin_unlock_irqrestore(&iommu->lock, flags);
  176. arena_alloc_fail:
  177. free_pages(first_page, order);
  178. return NULL;
  179. }
  180. static void dma_4v_free_coherent(struct device *dev, size_t size, void *cpu,
  181. dma_addr_t dvma)
  182. {
  183. struct pci_pbm_info *pbm;
  184. struct iommu *iommu;
  185. unsigned long flags, order, npages, entry;
  186. u32 devhandle;
  187. npages = IO_PAGE_ALIGN(size) >> IO_PAGE_SHIFT;
  188. iommu = dev->archdata.iommu;
  189. pbm = dev->archdata.host_controller;
  190. devhandle = pbm->devhandle;
  191. entry = ((dvma - iommu->page_table_map_base) >> IO_PAGE_SHIFT);
  192. spin_lock_irqsave(&iommu->lock, flags);
  193. arena_free(&iommu->arena, entry, npages);
  194. do {
  195. unsigned long num;
  196. num = pci_sun4v_iommu_demap(devhandle, HV_PCI_TSBID(0, entry),
  197. npages);
  198. entry += num;
  199. npages -= num;
  200. } while (npages != 0);
  201. spin_unlock_irqrestore(&iommu->lock, flags);
  202. order = get_order(size);
  203. if (order < 10)
  204. free_pages((unsigned long)cpu, order);
  205. }
  206. static dma_addr_t dma_4v_map_single(struct device *dev, void *ptr, size_t sz,
  207. enum dma_data_direction direction)
  208. {
  209. struct iommu *iommu;
  210. unsigned long flags, npages, oaddr;
  211. unsigned long i, base_paddr;
  212. u32 bus_addr, ret;
  213. unsigned long prot;
  214. long entry;
  215. iommu = dev->archdata.iommu;
  216. if (unlikely(direction == DMA_NONE))
  217. goto bad;
  218. oaddr = (unsigned long)ptr;
  219. npages = IO_PAGE_ALIGN(oaddr + sz) - (oaddr & IO_PAGE_MASK);
  220. npages >>= IO_PAGE_SHIFT;
  221. spin_lock_irqsave(&iommu->lock, flags);
  222. entry = arena_alloc(&iommu->arena, npages);
  223. spin_unlock_irqrestore(&iommu->lock, flags);
  224. if (unlikely(entry < 0L))
  225. goto bad;
  226. bus_addr = (iommu->page_table_map_base +
  227. (entry << IO_PAGE_SHIFT));
  228. ret = bus_addr | (oaddr & ~IO_PAGE_MASK);
  229. base_paddr = __pa(oaddr & IO_PAGE_MASK);
  230. prot = HV_PCI_MAP_ATTR_READ;
  231. if (direction != DMA_TO_DEVICE)
  232. prot |= HV_PCI_MAP_ATTR_WRITE;
  233. local_irq_save(flags);
  234. iommu_batch_start(dev, prot, entry);
  235. for (i = 0; i < npages; i++, base_paddr += IO_PAGE_SIZE) {
  236. long err = iommu_batch_add(base_paddr);
  237. if (unlikely(err < 0L))
  238. goto iommu_map_fail;
  239. }
  240. if (unlikely(iommu_batch_end() < 0L))
  241. goto iommu_map_fail;
  242. local_irq_restore(flags);
  243. return ret;
  244. bad:
  245. if (printk_ratelimit())
  246. WARN_ON(1);
  247. return DMA_ERROR_CODE;
  248. iommu_map_fail:
  249. /* Interrupts are disabled. */
  250. spin_lock(&iommu->lock);
  251. arena_free(&iommu->arena, entry, npages);
  252. spin_unlock_irqrestore(&iommu->lock, flags);
  253. return DMA_ERROR_CODE;
  254. }
  255. static void dma_4v_unmap_single(struct device *dev, dma_addr_t bus_addr,
  256. size_t sz, enum dma_data_direction direction)
  257. {
  258. struct pci_pbm_info *pbm;
  259. struct iommu *iommu;
  260. unsigned long flags, npages;
  261. long entry;
  262. u32 devhandle;
  263. if (unlikely(direction == DMA_NONE)) {
  264. if (printk_ratelimit())
  265. WARN_ON(1);
  266. return;
  267. }
  268. iommu = dev->archdata.iommu;
  269. pbm = dev->archdata.host_controller;
  270. devhandle = pbm->devhandle;
  271. npages = IO_PAGE_ALIGN(bus_addr + sz) - (bus_addr & IO_PAGE_MASK);
  272. npages >>= IO_PAGE_SHIFT;
  273. bus_addr &= IO_PAGE_MASK;
  274. spin_lock_irqsave(&iommu->lock, flags);
  275. entry = (bus_addr - iommu->page_table_map_base) >> IO_PAGE_SHIFT;
  276. arena_free(&iommu->arena, entry, npages);
  277. do {
  278. unsigned long num;
  279. num = pci_sun4v_iommu_demap(devhandle, HV_PCI_TSBID(0, entry),
  280. npages);
  281. entry += num;
  282. npages -= num;
  283. } while (npages != 0);
  284. spin_unlock_irqrestore(&iommu->lock, flags);
  285. }
  286. #define SG_ENT_PHYS_ADDRESS(SG) \
  287. (__pa(page_address((SG)->page)) + (SG)->offset)
  288. static inline long fill_sg(long entry, struct device *dev,
  289. struct scatterlist *sg,
  290. int nused, int nelems, unsigned long prot)
  291. {
  292. struct scatterlist *dma_sg = sg;
  293. struct scatterlist *sg_end = sg + nelems;
  294. unsigned long flags;
  295. int i;
  296. local_irq_save(flags);
  297. iommu_batch_start(dev, prot, entry);
  298. for (i = 0; i < nused; i++) {
  299. unsigned long pteval = ~0UL;
  300. u32 dma_npages;
  301. dma_npages = ((dma_sg->dma_address & (IO_PAGE_SIZE - 1UL)) +
  302. dma_sg->dma_length +
  303. ((IO_PAGE_SIZE - 1UL))) >> IO_PAGE_SHIFT;
  304. do {
  305. unsigned long offset;
  306. signed int len;
  307. /* If we are here, we know we have at least one
  308. * more page to map. So walk forward until we
  309. * hit a page crossing, and begin creating new
  310. * mappings from that spot.
  311. */
  312. for (;;) {
  313. unsigned long tmp;
  314. tmp = SG_ENT_PHYS_ADDRESS(sg);
  315. len = sg->length;
  316. if (((tmp ^ pteval) >> IO_PAGE_SHIFT) != 0UL) {
  317. pteval = tmp & IO_PAGE_MASK;
  318. offset = tmp & (IO_PAGE_SIZE - 1UL);
  319. break;
  320. }
  321. if (((tmp ^ (tmp + len - 1UL)) >> IO_PAGE_SHIFT) != 0UL) {
  322. pteval = (tmp + IO_PAGE_SIZE) & IO_PAGE_MASK;
  323. offset = 0UL;
  324. len -= (IO_PAGE_SIZE - (tmp & (IO_PAGE_SIZE - 1UL)));
  325. break;
  326. }
  327. sg++;
  328. }
  329. pteval = (pteval & IOPTE_PAGE);
  330. while (len > 0) {
  331. long err;
  332. err = iommu_batch_add(pteval);
  333. if (unlikely(err < 0L))
  334. goto iommu_map_failed;
  335. pteval += IO_PAGE_SIZE;
  336. len -= (IO_PAGE_SIZE - offset);
  337. offset = 0;
  338. dma_npages--;
  339. }
  340. pteval = (pteval & IOPTE_PAGE) + len;
  341. sg++;
  342. /* Skip over any tail mappings we've fully mapped,
  343. * adjusting pteval along the way. Stop when we
  344. * detect a page crossing event.
  345. */
  346. while (sg < sg_end &&
  347. (pteval << (64 - IO_PAGE_SHIFT)) != 0UL &&
  348. (pteval == SG_ENT_PHYS_ADDRESS(sg)) &&
  349. ((pteval ^
  350. (SG_ENT_PHYS_ADDRESS(sg) + sg->length - 1UL)) >> IO_PAGE_SHIFT) == 0UL) {
  351. pteval += sg->length;
  352. sg++;
  353. }
  354. if ((pteval << (64 - IO_PAGE_SHIFT)) == 0UL)
  355. pteval = ~0UL;
  356. } while (dma_npages != 0);
  357. dma_sg++;
  358. }
  359. if (unlikely(iommu_batch_end() < 0L))
  360. goto iommu_map_failed;
  361. local_irq_restore(flags);
  362. return 0;
  363. iommu_map_failed:
  364. local_irq_restore(flags);
  365. return -1L;
  366. }
  367. static int dma_4v_map_sg(struct device *dev, struct scatterlist *sglist,
  368. int nelems, enum dma_data_direction direction)
  369. {
  370. struct iommu *iommu;
  371. unsigned long flags, npages, prot;
  372. u32 dma_base;
  373. struct scatterlist *sgtmp;
  374. long entry, err;
  375. int used;
  376. /* Fast path single entry scatterlists. */
  377. if (nelems == 1) {
  378. sglist->dma_address =
  379. dma_4v_map_single(dev,
  380. (page_address(sglist->page) +
  381. sglist->offset),
  382. sglist->length, direction);
  383. if (unlikely(sglist->dma_address == DMA_ERROR_CODE))
  384. return 0;
  385. sglist->dma_length = sglist->length;
  386. return 1;
  387. }
  388. iommu = dev->archdata.iommu;
  389. if (unlikely(direction == DMA_NONE))
  390. goto bad;
  391. /* Step 1: Prepare scatter list. */
  392. npages = prepare_sg(sglist, nelems);
  393. /* Step 2: Allocate a cluster and context, if necessary. */
  394. spin_lock_irqsave(&iommu->lock, flags);
  395. entry = arena_alloc(&iommu->arena, npages);
  396. spin_unlock_irqrestore(&iommu->lock, flags);
  397. if (unlikely(entry < 0L))
  398. goto bad;
  399. dma_base = iommu->page_table_map_base +
  400. (entry << IO_PAGE_SHIFT);
  401. /* Step 3: Normalize DMA addresses. */
  402. used = nelems;
  403. sgtmp = sglist;
  404. while (used && sgtmp->dma_length) {
  405. sgtmp->dma_address += dma_base;
  406. sgtmp++;
  407. used--;
  408. }
  409. used = nelems - used;
  410. /* Step 4: Create the mappings. */
  411. prot = HV_PCI_MAP_ATTR_READ;
  412. if (direction != DMA_TO_DEVICE)
  413. prot |= HV_PCI_MAP_ATTR_WRITE;
  414. err = fill_sg(entry, dev, sglist, used, nelems, prot);
  415. if (unlikely(err < 0L))
  416. goto iommu_map_failed;
  417. return used;
  418. bad:
  419. if (printk_ratelimit())
  420. WARN_ON(1);
  421. return 0;
  422. iommu_map_failed:
  423. spin_lock_irqsave(&iommu->lock, flags);
  424. arena_free(&iommu->arena, entry, npages);
  425. spin_unlock_irqrestore(&iommu->lock, flags);
  426. return 0;
  427. }
  428. static void dma_4v_unmap_sg(struct device *dev, struct scatterlist *sglist,
  429. int nelems, enum dma_data_direction direction)
  430. {
  431. struct pci_pbm_info *pbm;
  432. struct iommu *iommu;
  433. unsigned long flags, i, npages;
  434. long entry;
  435. u32 devhandle, bus_addr;
  436. if (unlikely(direction == DMA_NONE)) {
  437. if (printk_ratelimit())
  438. WARN_ON(1);
  439. }
  440. iommu = dev->archdata.iommu;
  441. pbm = dev->archdata.host_controller;
  442. devhandle = pbm->devhandle;
  443. bus_addr = sglist->dma_address & IO_PAGE_MASK;
  444. for (i = 1; i < nelems; i++)
  445. if (sglist[i].dma_length == 0)
  446. break;
  447. i--;
  448. npages = (IO_PAGE_ALIGN(sglist[i].dma_address + sglist[i].dma_length) -
  449. bus_addr) >> IO_PAGE_SHIFT;
  450. entry = ((bus_addr - iommu->page_table_map_base) >> IO_PAGE_SHIFT);
  451. spin_lock_irqsave(&iommu->lock, flags);
  452. arena_free(&iommu->arena, entry, npages);
  453. do {
  454. unsigned long num;
  455. num = pci_sun4v_iommu_demap(devhandle, HV_PCI_TSBID(0, entry),
  456. npages);
  457. entry += num;
  458. npages -= num;
  459. } while (npages != 0);
  460. spin_unlock_irqrestore(&iommu->lock, flags);
  461. }
  462. static void dma_4v_sync_single_for_cpu(struct device *dev,
  463. dma_addr_t bus_addr, size_t sz,
  464. enum dma_data_direction direction)
  465. {
  466. /* Nothing to do... */
  467. }
  468. static void dma_4v_sync_sg_for_cpu(struct device *dev,
  469. struct scatterlist *sglist, int nelems,
  470. enum dma_data_direction direction)
  471. {
  472. /* Nothing to do... */
  473. }
  474. const struct dma_ops sun4v_dma_ops = {
  475. .alloc_coherent = dma_4v_alloc_coherent,
  476. .free_coherent = dma_4v_free_coherent,
  477. .map_single = dma_4v_map_single,
  478. .unmap_single = dma_4v_unmap_single,
  479. .map_sg = dma_4v_map_sg,
  480. .unmap_sg = dma_4v_unmap_sg,
  481. .sync_single_for_cpu = dma_4v_sync_single_for_cpu,
  482. .sync_sg_for_cpu = dma_4v_sync_sg_for_cpu,
  483. };
  484. static void pci_sun4v_scan_bus(struct pci_pbm_info *pbm)
  485. {
  486. struct property *prop;
  487. struct device_node *dp;
  488. dp = pbm->prom_node;
  489. prop = of_find_property(dp, "66mhz-capable", NULL);
  490. pbm->is_66mhz_capable = (prop != NULL);
  491. pbm->pci_bus = pci_scan_one_pbm(pbm);
  492. /* XXX register error interrupt handlers XXX */
  493. }
  494. static unsigned long probe_existing_entries(struct pci_pbm_info *pbm,
  495. struct iommu *iommu)
  496. {
  497. struct iommu_arena *arena = &iommu->arena;
  498. unsigned long i, cnt = 0;
  499. u32 devhandle;
  500. devhandle = pbm->devhandle;
  501. for (i = 0; i < arena->limit; i++) {
  502. unsigned long ret, io_attrs, ra;
  503. ret = pci_sun4v_iommu_getmap(devhandle,
  504. HV_PCI_TSBID(0, i),
  505. &io_attrs, &ra);
  506. if (ret == HV_EOK) {
  507. if (page_in_phys_avail(ra)) {
  508. pci_sun4v_iommu_demap(devhandle,
  509. HV_PCI_TSBID(0, i), 1);
  510. } else {
  511. cnt++;
  512. __set_bit(i, arena->map);
  513. }
  514. }
  515. }
  516. return cnt;
  517. }
  518. static void pci_sun4v_iommu_init(struct pci_pbm_info *pbm)
  519. {
  520. struct iommu *iommu = pbm->iommu;
  521. struct property *prop;
  522. unsigned long num_tsb_entries, sz, tsbsize;
  523. u32 vdma[2], dma_mask, dma_offset;
  524. prop = of_find_property(pbm->prom_node, "virtual-dma", NULL);
  525. if (prop) {
  526. u32 *val = prop->value;
  527. vdma[0] = val[0];
  528. vdma[1] = val[1];
  529. } else {
  530. /* No property, use default values. */
  531. vdma[0] = 0x80000000;
  532. vdma[1] = 0x80000000;
  533. }
  534. if ((vdma[0] | vdma[1]) & ~IO_PAGE_MASK) {
  535. prom_printf("PCI-SUN4V: strange virtual-dma[%08x:%08x].\n",
  536. vdma[0], vdma[1]);
  537. prom_halt();
  538. };
  539. dma_mask = (roundup_pow_of_two(vdma[1]) - 1UL);
  540. num_tsb_entries = vdma[1] / IO_PAGE_SIZE;
  541. tsbsize = num_tsb_entries * sizeof(iopte_t);
  542. dma_offset = vdma[0];
  543. /* Setup initial software IOMMU state. */
  544. spin_lock_init(&iommu->lock);
  545. iommu->ctx_lowest_free = 1;
  546. iommu->page_table_map_base = dma_offset;
  547. iommu->dma_addr_mask = dma_mask;
  548. /* Allocate and initialize the free area map. */
  549. sz = (num_tsb_entries + 7) / 8;
  550. sz = (sz + 7UL) & ~7UL;
  551. iommu->arena.map = kzalloc(sz, GFP_KERNEL);
  552. if (!iommu->arena.map) {
  553. prom_printf("PCI_IOMMU: Error, kmalloc(arena.map) failed.\n");
  554. prom_halt();
  555. }
  556. iommu->arena.limit = num_tsb_entries;
  557. sz = probe_existing_entries(pbm, iommu);
  558. if (sz)
  559. printk("%s: Imported %lu TSB entries from OBP\n",
  560. pbm->name, sz);
  561. }
  562. #ifdef CONFIG_PCI_MSI
  563. struct pci_sun4v_msiq_entry {
  564. u64 version_type;
  565. #define MSIQ_VERSION_MASK 0xffffffff00000000UL
  566. #define MSIQ_VERSION_SHIFT 32
  567. #define MSIQ_TYPE_MASK 0x00000000000000ffUL
  568. #define MSIQ_TYPE_SHIFT 0
  569. #define MSIQ_TYPE_NONE 0x00
  570. #define MSIQ_TYPE_MSG 0x01
  571. #define MSIQ_TYPE_MSI32 0x02
  572. #define MSIQ_TYPE_MSI64 0x03
  573. #define MSIQ_TYPE_INTX 0x08
  574. #define MSIQ_TYPE_NONE2 0xff
  575. u64 intx_sysino;
  576. u64 reserved1;
  577. u64 stick;
  578. u64 req_id; /* bus/device/func */
  579. #define MSIQ_REQID_BUS_MASK 0xff00UL
  580. #define MSIQ_REQID_BUS_SHIFT 8
  581. #define MSIQ_REQID_DEVICE_MASK 0x00f8UL
  582. #define MSIQ_REQID_DEVICE_SHIFT 3
  583. #define MSIQ_REQID_FUNC_MASK 0x0007UL
  584. #define MSIQ_REQID_FUNC_SHIFT 0
  585. u64 msi_address;
  586. /* The format of this value is message type dependent.
  587. * For MSI bits 15:0 are the data from the MSI packet.
  588. * For MSI-X bits 31:0 are the data from the MSI packet.
  589. * For MSG, the message code and message routing code where:
  590. * bits 39:32 is the bus/device/fn of the msg target-id
  591. * bits 18:16 is the message routing code
  592. * bits 7:0 is the message code
  593. * For INTx the low order 2-bits are:
  594. * 00 - INTA
  595. * 01 - INTB
  596. * 10 - INTC
  597. * 11 - INTD
  598. */
  599. u64 msi_data;
  600. u64 reserved2;
  601. };
  602. static int pci_sun4v_get_head(struct pci_pbm_info *pbm, unsigned long msiqid,
  603. unsigned long *head)
  604. {
  605. unsigned long err, limit;
  606. err = pci_sun4v_msiq_gethead(pbm->devhandle, msiqid, head);
  607. if (unlikely(err))
  608. return -ENXIO;
  609. limit = pbm->msiq_ent_count * sizeof(struct pci_sun4v_msiq_entry);
  610. if (unlikely(*head >= limit))
  611. return -EFBIG;
  612. return 0;
  613. }
  614. static int pci_sun4v_dequeue_msi(struct pci_pbm_info *pbm,
  615. unsigned long msiqid, unsigned long *head,
  616. unsigned long *msi)
  617. {
  618. struct pci_sun4v_msiq_entry *ep;
  619. unsigned long err, type;
  620. /* Note: void pointer arithmetic, 'head' is a byte offset */
  621. ep = (pbm->msi_queues + ((msiqid - pbm->msiq_first) *
  622. (pbm->msiq_ent_count *
  623. sizeof(struct pci_sun4v_msiq_entry))) +
  624. *head);
  625. if ((ep->version_type & MSIQ_TYPE_MASK) == 0)
  626. return 0;
  627. type = (ep->version_type & MSIQ_TYPE_MASK) >> MSIQ_TYPE_SHIFT;
  628. if (unlikely(type != MSIQ_TYPE_MSI32 &&
  629. type != MSIQ_TYPE_MSI64))
  630. return -EINVAL;
  631. *msi = ep->msi_data;
  632. err = pci_sun4v_msi_setstate(pbm->devhandle,
  633. ep->msi_data /* msi_num */,
  634. HV_MSISTATE_IDLE);
  635. if (unlikely(err))
  636. return -ENXIO;
  637. /* Clear the entry. */
  638. ep->version_type &= ~MSIQ_TYPE_MASK;
  639. (*head) += sizeof(struct pci_sun4v_msiq_entry);
  640. if (*head >=
  641. (pbm->msiq_ent_count * sizeof(struct pci_sun4v_msiq_entry)))
  642. *head = 0;
  643. return 1;
  644. }
  645. static int pci_sun4v_set_head(struct pci_pbm_info *pbm, unsigned long msiqid,
  646. unsigned long head)
  647. {
  648. unsigned long err;
  649. err = pci_sun4v_msiq_sethead(pbm->devhandle, msiqid, head);
  650. if (unlikely(err))
  651. return -EINVAL;
  652. return 0;
  653. }
  654. static int pci_sun4v_msi_setup(struct pci_pbm_info *pbm, unsigned long msiqid,
  655. unsigned long msi, int is_msi64)
  656. {
  657. if (pci_sun4v_msi_setmsiq(pbm->devhandle, msi, msiqid,
  658. (is_msi64 ?
  659. HV_MSITYPE_MSI64 : HV_MSITYPE_MSI32)))
  660. return -ENXIO;
  661. if (pci_sun4v_msi_setstate(pbm->devhandle, msi, HV_MSISTATE_IDLE))
  662. return -ENXIO;
  663. if (pci_sun4v_msi_setvalid(pbm->devhandle, msi, HV_MSIVALID_VALID))
  664. return -ENXIO;
  665. return 0;
  666. }
  667. static int pci_sun4v_msi_teardown(struct pci_pbm_info *pbm, unsigned long msi)
  668. {
  669. unsigned long err, msiqid;
  670. err = pci_sun4v_msi_getmsiq(pbm->devhandle, msi, &msiqid);
  671. if (err)
  672. return -ENXIO;
  673. pci_sun4v_msi_setvalid(pbm->devhandle, msi, HV_MSIVALID_INVALID);
  674. return 0;
  675. }
  676. static int pci_sun4v_msiq_alloc(struct pci_pbm_info *pbm)
  677. {
  678. unsigned long q_size, alloc_size, pages, order;
  679. int i;
  680. q_size = pbm->msiq_ent_count * sizeof(struct pci_sun4v_msiq_entry);
  681. alloc_size = (pbm->msiq_num * q_size);
  682. order = get_order(alloc_size);
  683. pages = __get_free_pages(GFP_KERNEL | __GFP_COMP, order);
  684. if (pages == 0UL) {
  685. printk(KERN_ERR "MSI: Cannot allocate MSI queues (o=%lu).\n",
  686. order);
  687. return -ENOMEM;
  688. }
  689. memset((char *)pages, 0, PAGE_SIZE << order);
  690. pbm->msi_queues = (void *) pages;
  691. for (i = 0; i < pbm->msiq_num; i++) {
  692. unsigned long err, base = __pa(pages + (i * q_size));
  693. unsigned long ret1, ret2;
  694. err = pci_sun4v_msiq_conf(pbm->devhandle,
  695. pbm->msiq_first + i,
  696. base, pbm->msiq_ent_count);
  697. if (err) {
  698. printk(KERN_ERR "MSI: msiq register fails (err=%lu)\n",
  699. err);
  700. goto h_error;
  701. }
  702. err = pci_sun4v_msiq_info(pbm->devhandle,
  703. pbm->msiq_first + i,
  704. &ret1, &ret2);
  705. if (err) {
  706. printk(KERN_ERR "MSI: Cannot read msiq (err=%lu)\n",
  707. err);
  708. goto h_error;
  709. }
  710. if (ret1 != base || ret2 != pbm->msiq_ent_count) {
  711. printk(KERN_ERR "MSI: Bogus qconf "
  712. "expected[%lx:%x] got[%lx:%lx]\n",
  713. base, pbm->msiq_ent_count,
  714. ret1, ret2);
  715. goto h_error;
  716. }
  717. }
  718. return 0;
  719. h_error:
  720. free_pages(pages, order);
  721. return -EINVAL;
  722. }
  723. static void pci_sun4v_msiq_free(struct pci_pbm_info *pbm)
  724. {
  725. unsigned long q_size, alloc_size, pages, order;
  726. int i;
  727. for (i = 0; i < pbm->msiq_num; i++) {
  728. unsigned long msiqid = pbm->msiq_first + i;
  729. (void) pci_sun4v_msiq_conf(pbm->devhandle, msiqid, 0UL, 0);
  730. }
  731. q_size = pbm->msiq_ent_count * sizeof(struct pci_sun4v_msiq_entry);
  732. alloc_size = (pbm->msiq_num * q_size);
  733. order = get_order(alloc_size);
  734. pages = (unsigned long) pbm->msi_queues;
  735. free_pages(pages, order);
  736. pbm->msi_queues = NULL;
  737. }
  738. static int pci_sun4v_msiq_build_irq(struct pci_pbm_info *pbm,
  739. unsigned long msiqid,
  740. unsigned long devino)
  741. {
  742. unsigned int virt_irq = sun4v_build_irq(pbm->devhandle, devino);
  743. if (!virt_irq)
  744. return -ENOMEM;
  745. if (pci_sun4v_msiq_setstate(pbm->devhandle, msiqid, HV_MSIQSTATE_IDLE))
  746. return -EINVAL;
  747. if (pci_sun4v_msiq_setvalid(pbm->devhandle, msiqid, HV_MSIQ_VALID))
  748. return -EINVAL;
  749. return virt_irq;
  750. }
  751. static const struct sparc64_msiq_ops pci_sun4v_msiq_ops = {
  752. .get_head = pci_sun4v_get_head,
  753. .dequeue_msi = pci_sun4v_dequeue_msi,
  754. .set_head = pci_sun4v_set_head,
  755. .msi_setup = pci_sun4v_msi_setup,
  756. .msi_teardown = pci_sun4v_msi_teardown,
  757. .msiq_alloc = pci_sun4v_msiq_alloc,
  758. .msiq_free = pci_sun4v_msiq_free,
  759. .msiq_build_irq = pci_sun4v_msiq_build_irq,
  760. };
  761. static void pci_sun4v_msi_init(struct pci_pbm_info *pbm)
  762. {
  763. sparc64_pbm_msi_init(pbm, &pci_sun4v_msiq_ops);
  764. }
  765. #else /* CONFIG_PCI_MSI */
  766. static void pci_sun4v_msi_init(struct pci_pbm_info *pbm)
  767. {
  768. }
  769. #endif /* !(CONFIG_PCI_MSI) */
  770. static void __init pci_sun4v_pbm_init(struct pci_controller_info *p, struct device_node *dp, u32 devhandle)
  771. {
  772. struct pci_pbm_info *pbm;
  773. if (devhandle & 0x40)
  774. pbm = &p->pbm_B;
  775. else
  776. pbm = &p->pbm_A;
  777. pbm->next = pci_pbm_root;
  778. pci_pbm_root = pbm;
  779. pbm->scan_bus = pci_sun4v_scan_bus;
  780. pbm->pci_ops = &sun4v_pci_ops;
  781. pbm->config_space_reg_bits = 12;
  782. pbm->index = pci_num_pbms++;
  783. pbm->parent = p;
  784. pbm->prom_node = dp;
  785. pbm->devhandle = devhandle;
  786. pbm->name = dp->full_name;
  787. printk("%s: SUN4V PCI Bus Module\n", pbm->name);
  788. pci_determine_mem_io_space(pbm);
  789. pci_get_pbm_props(pbm);
  790. pci_sun4v_iommu_init(pbm);
  791. pci_sun4v_msi_init(pbm);
  792. }
  793. void __init sun4v_pci_init(struct device_node *dp, char *model_name)
  794. {
  795. static int hvapi_negotiated = 0;
  796. struct pci_controller_info *p;
  797. struct pci_pbm_info *pbm;
  798. struct iommu *iommu;
  799. struct property *prop;
  800. struct linux_prom64_registers *regs;
  801. u32 devhandle;
  802. int i;
  803. if (!hvapi_negotiated++) {
  804. int err = sun4v_hvapi_register(HV_GRP_PCI,
  805. vpci_major,
  806. &vpci_minor);
  807. if (err) {
  808. prom_printf("SUN4V_PCI: Could not register hvapi, "
  809. "err=%d\n", err);
  810. prom_halt();
  811. }
  812. printk("SUN4V_PCI: Registered hvapi major[%lu] minor[%lu]\n",
  813. vpci_major, vpci_minor);
  814. dma_ops = &sun4v_dma_ops;
  815. }
  816. prop = of_find_property(dp, "reg", NULL);
  817. regs = prop->value;
  818. devhandle = (regs->phys_addr >> 32UL) & 0x0fffffff;
  819. for (pbm = pci_pbm_root; pbm; pbm = pbm->next) {
  820. if (pbm->devhandle == (devhandle ^ 0x40)) {
  821. pci_sun4v_pbm_init(pbm->parent, dp, devhandle);
  822. return;
  823. }
  824. }
  825. for_each_possible_cpu(i) {
  826. unsigned long page = get_zeroed_page(GFP_ATOMIC);
  827. if (!page)
  828. goto fatal_memory_error;
  829. per_cpu(iommu_batch, i).pglist = (u64 *) page;
  830. }
  831. p = kzalloc(sizeof(struct pci_controller_info), GFP_ATOMIC);
  832. if (!p)
  833. goto fatal_memory_error;
  834. iommu = kzalloc(sizeof(struct iommu), GFP_ATOMIC);
  835. if (!iommu)
  836. goto fatal_memory_error;
  837. p->pbm_A.iommu = iommu;
  838. iommu = kzalloc(sizeof(struct iommu), GFP_ATOMIC);
  839. if (!iommu)
  840. goto fatal_memory_error;
  841. p->pbm_B.iommu = iommu;
  842. pci_sun4v_pbm_init(p, dp, devhandle);
  843. return;
  844. fatal_memory_error:
  845. prom_printf("SUN4V_PCI: Fatal memory allocation error.\n");
  846. prom_halt();
  847. }