process.c 20 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746
  1. /* $Id: process.c,v 1.161 2002/01/23 11:27:32 davem Exp $
  2. * linux/arch/sparc/kernel/process.c
  3. *
  4. * Copyright (C) 1995 David S. Miller (davem@caip.rutgers.edu)
  5. * Copyright (C) 1996 Eddie C. Dost (ecd@skynet.be)
  6. */
  7. /*
  8. * This file handles the architecture-dependent parts of process handling..
  9. */
  10. #include <stdarg.h>
  11. #include <linux/errno.h>
  12. #include <linux/module.h>
  13. #include <linux/sched.h>
  14. #include <linux/kernel.h>
  15. #include <linux/kallsyms.h>
  16. #include <linux/mm.h>
  17. #include <linux/stddef.h>
  18. #include <linux/ptrace.h>
  19. #include <linux/slab.h>
  20. #include <linux/user.h>
  21. #include <linux/a.out.h>
  22. #include <linux/smp.h>
  23. #include <linux/reboot.h>
  24. #include <linux/delay.h>
  25. #include <linux/pm.h>
  26. #include <linux/init.h>
  27. #include <asm/auxio.h>
  28. #include <asm/oplib.h>
  29. #include <asm/uaccess.h>
  30. #include <asm/system.h>
  31. #include <asm/page.h>
  32. #include <asm/pgalloc.h>
  33. #include <asm/pgtable.h>
  34. #include <asm/delay.h>
  35. #include <asm/processor.h>
  36. #include <asm/psr.h>
  37. #include <asm/elf.h>
  38. #include <asm/prom.h>
  39. #include <asm/unistd.h>
  40. /*
  41. * Power management idle function
  42. * Set in pm platform drivers (apc.c and pmc.c)
  43. */
  44. void (*pm_idle)(void);
  45. /*
  46. * Power-off handler instantiation for pm.h compliance
  47. * This is done via auxio, but could be used as a fallback
  48. * handler when auxio is not present-- unused for now...
  49. */
  50. void (*pm_power_off)(void) = machine_power_off;
  51. EXPORT_SYMBOL(pm_power_off);
  52. /*
  53. * sysctl - toggle power-off restriction for serial console
  54. * systems in machine_power_off()
  55. */
  56. int scons_pwroff = 1;
  57. extern void fpsave(unsigned long *, unsigned long *, void *, unsigned long *);
  58. struct task_struct *last_task_used_math = NULL;
  59. struct thread_info *current_set[NR_CPUS];
  60. #ifndef CONFIG_SMP
  61. #define SUN4C_FAULT_HIGH 100
  62. /*
  63. * the idle loop on a Sparc... ;)
  64. */
  65. void cpu_idle(void)
  66. {
  67. /* endless idle loop with no priority at all */
  68. for (;;) {
  69. if (ARCH_SUN4C_SUN4) {
  70. static int count = HZ;
  71. static unsigned long last_jiffies;
  72. static unsigned long last_faults;
  73. static unsigned long fps;
  74. unsigned long now;
  75. unsigned long faults;
  76. extern unsigned long sun4c_kernel_faults;
  77. extern void sun4c_grow_kernel_ring(void);
  78. local_irq_disable();
  79. now = jiffies;
  80. count -= (now - last_jiffies);
  81. last_jiffies = now;
  82. if (count < 0) {
  83. count += HZ;
  84. faults = sun4c_kernel_faults;
  85. fps = (fps + (faults - last_faults)) >> 1;
  86. last_faults = faults;
  87. #if 0
  88. printk("kernel faults / second = %ld\n", fps);
  89. #endif
  90. if (fps >= SUN4C_FAULT_HIGH) {
  91. sun4c_grow_kernel_ring();
  92. }
  93. }
  94. local_irq_enable();
  95. }
  96. if (pm_idle) {
  97. while (!need_resched())
  98. (*pm_idle)();
  99. } else {
  100. while (!need_resched())
  101. cpu_relax();
  102. }
  103. preempt_enable_no_resched();
  104. schedule();
  105. preempt_disable();
  106. check_pgt_cache();
  107. }
  108. }
  109. #else
  110. /* This is being executed in task 0 'user space'. */
  111. void cpu_idle(void)
  112. {
  113. set_thread_flag(TIF_POLLING_NRFLAG);
  114. /* endless idle loop with no priority at all */
  115. while(1) {
  116. while (!need_resched())
  117. cpu_relax();
  118. preempt_enable_no_resched();
  119. schedule();
  120. preempt_disable();
  121. check_pgt_cache();
  122. }
  123. }
  124. #endif
  125. extern char reboot_command [];
  126. extern void (*prom_palette)(int);
  127. /* XXX cli/sti -> local_irq_xxx here, check this works once SMP is fixed. */
  128. void machine_halt(void)
  129. {
  130. local_irq_enable();
  131. mdelay(8);
  132. local_irq_disable();
  133. if (prom_palette)
  134. prom_palette (1);
  135. prom_halt();
  136. panic("Halt failed!");
  137. }
  138. void machine_restart(char * cmd)
  139. {
  140. char *p;
  141. local_irq_enable();
  142. mdelay(8);
  143. local_irq_disable();
  144. p = strchr (reboot_command, '\n');
  145. if (p) *p = 0;
  146. if (prom_palette)
  147. prom_palette (1);
  148. if (cmd)
  149. prom_reboot(cmd);
  150. if (*reboot_command)
  151. prom_reboot(reboot_command);
  152. prom_feval ("reset");
  153. panic("Reboot failed!");
  154. }
  155. void machine_power_off(void)
  156. {
  157. #ifdef CONFIG_SUN_AUXIO
  158. if (auxio_power_register &&
  159. (strcmp(of_console_device->type, "serial") || scons_pwroff))
  160. *auxio_power_register |= AUXIO_POWER_OFF;
  161. #endif
  162. machine_halt();
  163. }
  164. static DEFINE_SPINLOCK(sparc_backtrace_lock);
  165. void __show_backtrace(unsigned long fp)
  166. {
  167. struct reg_window *rw;
  168. unsigned long flags;
  169. int cpu = smp_processor_id();
  170. spin_lock_irqsave(&sparc_backtrace_lock, flags);
  171. rw = (struct reg_window *)fp;
  172. while(rw && (((unsigned long) rw) >= PAGE_OFFSET) &&
  173. !(((unsigned long) rw) & 0x7)) {
  174. printk("CPU[%d]: ARGS[%08lx,%08lx,%08lx,%08lx,%08lx,%08lx] "
  175. "FP[%08lx] CALLER[%08lx]: ", cpu,
  176. rw->ins[0], rw->ins[1], rw->ins[2], rw->ins[3],
  177. rw->ins[4], rw->ins[5],
  178. rw->ins[6],
  179. rw->ins[7]);
  180. print_symbol("%s\n", rw->ins[7]);
  181. rw = (struct reg_window *) rw->ins[6];
  182. }
  183. spin_unlock_irqrestore(&sparc_backtrace_lock, flags);
  184. }
  185. #define __SAVE __asm__ __volatile__("save %sp, -0x40, %sp\n\t")
  186. #define __RESTORE __asm__ __volatile__("restore %g0, %g0, %g0\n\t")
  187. #define __GET_FP(fp) __asm__ __volatile__("mov %%i6, %0" : "=r" (fp))
  188. void show_backtrace(void)
  189. {
  190. unsigned long fp;
  191. __SAVE; __SAVE; __SAVE; __SAVE;
  192. __SAVE; __SAVE; __SAVE; __SAVE;
  193. __RESTORE; __RESTORE; __RESTORE; __RESTORE;
  194. __RESTORE; __RESTORE; __RESTORE; __RESTORE;
  195. __GET_FP(fp);
  196. __show_backtrace(fp);
  197. }
  198. #ifdef CONFIG_SMP
  199. void smp_show_backtrace_all_cpus(void)
  200. {
  201. xc0((smpfunc_t) show_backtrace);
  202. show_backtrace();
  203. }
  204. #endif
  205. #if 0
  206. void show_stackframe(struct sparc_stackf *sf)
  207. {
  208. unsigned long size;
  209. unsigned long *stk;
  210. int i;
  211. printk("l0: %08lx l1: %08lx l2: %08lx l3: %08lx "
  212. "l4: %08lx l5: %08lx l6: %08lx l7: %08lx\n",
  213. sf->locals[0], sf->locals[1], sf->locals[2], sf->locals[3],
  214. sf->locals[4], sf->locals[5], sf->locals[6], sf->locals[7]);
  215. printk("i0: %08lx i1: %08lx i2: %08lx i3: %08lx "
  216. "i4: %08lx i5: %08lx fp: %08lx i7: %08lx\n",
  217. sf->ins[0], sf->ins[1], sf->ins[2], sf->ins[3],
  218. sf->ins[4], sf->ins[5], (unsigned long)sf->fp, sf->callers_pc);
  219. printk("sp: %08lx x0: %08lx x1: %08lx x2: %08lx "
  220. "x3: %08lx x4: %08lx x5: %08lx xx: %08lx\n",
  221. (unsigned long)sf->structptr, sf->xargs[0], sf->xargs[1],
  222. sf->xargs[2], sf->xargs[3], sf->xargs[4], sf->xargs[5],
  223. sf->xxargs[0]);
  224. size = ((unsigned long)sf->fp) - ((unsigned long)sf);
  225. size -= STACKFRAME_SZ;
  226. stk = (unsigned long *)((unsigned long)sf + STACKFRAME_SZ);
  227. i = 0;
  228. do {
  229. printk("s%d: %08lx\n", i++, *stk++);
  230. } while ((size -= sizeof(unsigned long)));
  231. }
  232. #endif
  233. void show_regs(struct pt_regs *r)
  234. {
  235. struct reg_window *rw = (struct reg_window *) r->u_regs[14];
  236. printk("PSR: %08lx PC: %08lx NPC: %08lx Y: %08lx %s\n",
  237. r->psr, r->pc, r->npc, r->y, print_tainted());
  238. print_symbol("PC: <%s>\n", r->pc);
  239. printk("%%G: %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
  240. r->u_regs[0], r->u_regs[1], r->u_regs[2], r->u_regs[3],
  241. r->u_regs[4], r->u_regs[5], r->u_regs[6], r->u_regs[7]);
  242. printk("%%O: %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
  243. r->u_regs[8], r->u_regs[9], r->u_regs[10], r->u_regs[11],
  244. r->u_regs[12], r->u_regs[13], r->u_regs[14], r->u_regs[15]);
  245. print_symbol("RPC: <%s>\n", r->u_regs[15]);
  246. printk("%%L: %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
  247. rw->locals[0], rw->locals[1], rw->locals[2], rw->locals[3],
  248. rw->locals[4], rw->locals[5], rw->locals[6], rw->locals[7]);
  249. printk("%%I: %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
  250. rw->ins[0], rw->ins[1], rw->ins[2], rw->ins[3],
  251. rw->ins[4], rw->ins[5], rw->ins[6], rw->ins[7]);
  252. }
  253. /*
  254. * The show_stack is an external API which we do not use ourselves.
  255. * The oops is printed in die_if_kernel.
  256. */
  257. void show_stack(struct task_struct *tsk, unsigned long *_ksp)
  258. {
  259. unsigned long pc, fp;
  260. unsigned long task_base;
  261. struct reg_window *rw;
  262. int count = 0;
  263. if (tsk != NULL)
  264. task_base = (unsigned long) task_stack_page(tsk);
  265. else
  266. task_base = (unsigned long) current_thread_info();
  267. fp = (unsigned long) _ksp;
  268. do {
  269. /* Bogus frame pointer? */
  270. if (fp < (task_base + sizeof(struct thread_info)) ||
  271. fp >= (task_base + (PAGE_SIZE << 1)))
  272. break;
  273. rw = (struct reg_window *) fp;
  274. pc = rw->ins[7];
  275. printk("[%08lx : ", pc);
  276. print_symbol("%s ] ", pc);
  277. fp = rw->ins[6];
  278. } while (++count < 16);
  279. printk("\n");
  280. }
  281. void dump_stack(void)
  282. {
  283. unsigned long *ksp;
  284. __asm__ __volatile__("mov %%fp, %0"
  285. : "=r" (ksp));
  286. show_stack(current, ksp);
  287. }
  288. EXPORT_SYMBOL(dump_stack);
  289. /*
  290. * Note: sparc64 has a pretty intricated thread_saved_pc, check it out.
  291. */
  292. unsigned long thread_saved_pc(struct task_struct *tsk)
  293. {
  294. return task_thread_info(tsk)->kpc;
  295. }
  296. /*
  297. * Free current thread data structures etc..
  298. */
  299. void exit_thread(void)
  300. {
  301. #ifndef CONFIG_SMP
  302. if(last_task_used_math == current) {
  303. #else
  304. if (test_thread_flag(TIF_USEDFPU)) {
  305. #endif
  306. /* Keep process from leaving FPU in a bogon state. */
  307. put_psr(get_psr() | PSR_EF);
  308. fpsave(&current->thread.float_regs[0], &current->thread.fsr,
  309. &current->thread.fpqueue[0], &current->thread.fpqdepth);
  310. #ifndef CONFIG_SMP
  311. last_task_used_math = NULL;
  312. #else
  313. clear_thread_flag(TIF_USEDFPU);
  314. #endif
  315. }
  316. }
  317. void flush_thread(void)
  318. {
  319. current_thread_info()->w_saved = 0;
  320. /* No new signal delivery by default */
  321. current->thread.new_signal = 0;
  322. #ifndef CONFIG_SMP
  323. if(last_task_used_math == current) {
  324. #else
  325. if (test_thread_flag(TIF_USEDFPU)) {
  326. #endif
  327. /* Clean the fpu. */
  328. put_psr(get_psr() | PSR_EF);
  329. fpsave(&current->thread.float_regs[0], &current->thread.fsr,
  330. &current->thread.fpqueue[0], &current->thread.fpqdepth);
  331. #ifndef CONFIG_SMP
  332. last_task_used_math = NULL;
  333. #else
  334. clear_thread_flag(TIF_USEDFPU);
  335. #endif
  336. }
  337. /* Now, this task is no longer a kernel thread. */
  338. current->thread.current_ds = USER_DS;
  339. if (current->thread.flags & SPARC_FLAG_KTHREAD) {
  340. current->thread.flags &= ~SPARC_FLAG_KTHREAD;
  341. /* We must fixup kregs as well. */
  342. /* XXX This was not fixed for ti for a while, worked. Unused? */
  343. current->thread.kregs = (struct pt_regs *)
  344. (task_stack_page(current) + (THREAD_SIZE - TRACEREG_SZ));
  345. }
  346. }
  347. static __inline__ struct sparc_stackf __user *
  348. clone_stackframe(struct sparc_stackf __user *dst,
  349. struct sparc_stackf __user *src)
  350. {
  351. unsigned long size, fp;
  352. struct sparc_stackf *tmp;
  353. struct sparc_stackf __user *sp;
  354. if (get_user(tmp, &src->fp))
  355. return NULL;
  356. fp = (unsigned long) tmp;
  357. size = (fp - ((unsigned long) src));
  358. fp = (unsigned long) dst;
  359. sp = (struct sparc_stackf __user *)(fp - size);
  360. /* do_fork() grabs the parent semaphore, we must release it
  361. * temporarily so we can build the child clone stack frame
  362. * without deadlocking.
  363. */
  364. if (__copy_user(sp, src, size))
  365. sp = NULL;
  366. else if (put_user(fp, &sp->fp))
  367. sp = NULL;
  368. return sp;
  369. }
  370. asmlinkage int sparc_do_fork(unsigned long clone_flags,
  371. unsigned long stack_start,
  372. struct pt_regs *regs,
  373. unsigned long stack_size)
  374. {
  375. unsigned long parent_tid_ptr, child_tid_ptr;
  376. parent_tid_ptr = regs->u_regs[UREG_I2];
  377. child_tid_ptr = regs->u_regs[UREG_I4];
  378. return do_fork(clone_flags, stack_start,
  379. regs, stack_size,
  380. (int __user *) parent_tid_ptr,
  381. (int __user *) child_tid_ptr);
  382. }
  383. /* Copy a Sparc thread. The fork() return value conventions
  384. * under SunOS are nothing short of bletcherous:
  385. * Parent --> %o0 == childs pid, %o1 == 0
  386. * Child --> %o0 == parents pid, %o1 == 1
  387. *
  388. * NOTE: We have a separate fork kpsr/kwim because
  389. * the parent could change these values between
  390. * sys_fork invocation and when we reach here
  391. * if the parent should sleep while trying to
  392. * allocate the task_struct and kernel stack in
  393. * do_fork().
  394. * XXX See comment above sys_vfork in sparc64. todo.
  395. */
  396. extern void ret_from_fork(void);
  397. int copy_thread(int nr, unsigned long clone_flags, unsigned long sp,
  398. unsigned long unused,
  399. struct task_struct *p, struct pt_regs *regs)
  400. {
  401. struct thread_info *ti = task_thread_info(p);
  402. struct pt_regs *childregs;
  403. char *new_stack;
  404. #ifndef CONFIG_SMP
  405. if(last_task_used_math == current) {
  406. #else
  407. if (test_thread_flag(TIF_USEDFPU)) {
  408. #endif
  409. put_psr(get_psr() | PSR_EF);
  410. fpsave(&p->thread.float_regs[0], &p->thread.fsr,
  411. &p->thread.fpqueue[0], &p->thread.fpqdepth);
  412. #ifdef CONFIG_SMP
  413. clear_thread_flag(TIF_USEDFPU);
  414. #endif
  415. }
  416. /*
  417. * p->thread_info new_stack childregs
  418. * ! ! ! {if(PSR_PS) }
  419. * V V (stk.fr.) V (pt_regs) { (stk.fr.) }
  420. * +----- - - - - - ------+===========+============={+==========}+
  421. */
  422. new_stack = task_stack_page(p) + THREAD_SIZE;
  423. if (regs->psr & PSR_PS)
  424. new_stack -= STACKFRAME_SZ;
  425. new_stack -= STACKFRAME_SZ + TRACEREG_SZ;
  426. memcpy(new_stack, (char *)regs - STACKFRAME_SZ, STACKFRAME_SZ + TRACEREG_SZ);
  427. childregs = (struct pt_regs *) (new_stack + STACKFRAME_SZ);
  428. /*
  429. * A new process must start with interrupts closed in 2.5,
  430. * because this is how Mingo's scheduler works (see schedule_tail
  431. * and finish_arch_switch). If we do not do it, a timer interrupt hits
  432. * before we unlock, attempts to re-take the rq->lock, and then we die.
  433. * Thus, kpsr|=PSR_PIL.
  434. */
  435. ti->ksp = (unsigned long) new_stack;
  436. ti->kpc = (((unsigned long) ret_from_fork) - 0x8);
  437. ti->kpsr = current->thread.fork_kpsr | PSR_PIL;
  438. ti->kwim = current->thread.fork_kwim;
  439. if(regs->psr & PSR_PS) {
  440. extern struct pt_regs fake_swapper_regs;
  441. p->thread.kregs = &fake_swapper_regs;
  442. new_stack += STACKFRAME_SZ + TRACEREG_SZ;
  443. childregs->u_regs[UREG_FP] = (unsigned long) new_stack;
  444. p->thread.flags |= SPARC_FLAG_KTHREAD;
  445. p->thread.current_ds = KERNEL_DS;
  446. memcpy(new_stack, (void *)regs->u_regs[UREG_FP], STACKFRAME_SZ);
  447. childregs->u_regs[UREG_G6] = (unsigned long) ti;
  448. } else {
  449. p->thread.kregs = childregs;
  450. childregs->u_regs[UREG_FP] = sp;
  451. p->thread.flags &= ~SPARC_FLAG_KTHREAD;
  452. p->thread.current_ds = USER_DS;
  453. if (sp != regs->u_regs[UREG_FP]) {
  454. struct sparc_stackf __user *childstack;
  455. struct sparc_stackf __user *parentstack;
  456. /*
  457. * This is a clone() call with supplied user stack.
  458. * Set some valid stack frames to give to the child.
  459. */
  460. childstack = (struct sparc_stackf __user *)
  461. (sp & ~0x7UL);
  462. parentstack = (struct sparc_stackf __user *)
  463. regs->u_regs[UREG_FP];
  464. #if 0
  465. printk("clone: parent stack:\n");
  466. show_stackframe(parentstack);
  467. #endif
  468. childstack = clone_stackframe(childstack, parentstack);
  469. if (!childstack)
  470. return -EFAULT;
  471. #if 0
  472. printk("clone: child stack:\n");
  473. show_stackframe(childstack);
  474. #endif
  475. childregs->u_regs[UREG_FP] = (unsigned long)childstack;
  476. }
  477. }
  478. #ifdef CONFIG_SMP
  479. /* FPU must be disabled on SMP. */
  480. childregs->psr &= ~PSR_EF;
  481. #endif
  482. /* Set the return value for the child. */
  483. childregs->u_regs[UREG_I0] = current->pid;
  484. childregs->u_regs[UREG_I1] = 1;
  485. /* Set the return value for the parent. */
  486. regs->u_regs[UREG_I1] = 0;
  487. if (clone_flags & CLONE_SETTLS)
  488. childregs->u_regs[UREG_G7] = regs->u_regs[UREG_I3];
  489. return 0;
  490. }
  491. /*
  492. * fill in the user structure for a core dump..
  493. */
  494. void dump_thread(struct pt_regs * regs, struct user * dump)
  495. {
  496. unsigned long first_stack_page;
  497. dump->magic = SUNOS_CORE_MAGIC;
  498. dump->len = sizeof(struct user);
  499. dump->regs.psr = regs->psr;
  500. dump->regs.pc = regs->pc;
  501. dump->regs.npc = regs->npc;
  502. dump->regs.y = regs->y;
  503. /* fuck me plenty */
  504. memcpy(&dump->regs.regs[0], &regs->u_regs[1], (sizeof(unsigned long) * 15));
  505. dump->uexec = current->thread.core_exec;
  506. dump->u_tsize = (((unsigned long) current->mm->end_code) -
  507. ((unsigned long) current->mm->start_code)) & ~(PAGE_SIZE - 1);
  508. dump->u_dsize = ((unsigned long) (current->mm->brk + (PAGE_SIZE-1)));
  509. dump->u_dsize -= dump->u_tsize;
  510. dump->u_dsize &= ~(PAGE_SIZE - 1);
  511. first_stack_page = (regs->u_regs[UREG_FP] & ~(PAGE_SIZE - 1));
  512. dump->u_ssize = (TASK_SIZE - first_stack_page) & ~(PAGE_SIZE - 1);
  513. memcpy(&dump->fpu.fpstatus.fregs.regs[0], &current->thread.float_regs[0], (sizeof(unsigned long) * 32));
  514. dump->fpu.fpstatus.fsr = current->thread.fsr;
  515. dump->fpu.fpstatus.flags = dump->fpu.fpstatus.extra = 0;
  516. dump->fpu.fpstatus.fpq_count = current->thread.fpqdepth;
  517. memcpy(&dump->fpu.fpstatus.fpq[0], &current->thread.fpqueue[0],
  518. ((sizeof(unsigned long) * 2) * 16));
  519. dump->sigcode = 0;
  520. }
  521. /*
  522. * fill in the fpu structure for a core dump.
  523. */
  524. int dump_fpu (struct pt_regs * regs, elf_fpregset_t * fpregs)
  525. {
  526. if (used_math()) {
  527. memset(fpregs, 0, sizeof(*fpregs));
  528. fpregs->pr_q_entrysize = 8;
  529. return 1;
  530. }
  531. #ifdef CONFIG_SMP
  532. if (test_thread_flag(TIF_USEDFPU)) {
  533. put_psr(get_psr() | PSR_EF);
  534. fpsave(&current->thread.float_regs[0], &current->thread.fsr,
  535. &current->thread.fpqueue[0], &current->thread.fpqdepth);
  536. if (regs != NULL) {
  537. regs->psr &= ~(PSR_EF);
  538. clear_thread_flag(TIF_USEDFPU);
  539. }
  540. }
  541. #else
  542. if (current == last_task_used_math) {
  543. put_psr(get_psr() | PSR_EF);
  544. fpsave(&current->thread.float_regs[0], &current->thread.fsr,
  545. &current->thread.fpqueue[0], &current->thread.fpqdepth);
  546. if (regs != NULL) {
  547. regs->psr &= ~(PSR_EF);
  548. last_task_used_math = NULL;
  549. }
  550. }
  551. #endif
  552. memcpy(&fpregs->pr_fr.pr_regs[0],
  553. &current->thread.float_regs[0],
  554. (sizeof(unsigned long) * 32));
  555. fpregs->pr_fsr = current->thread.fsr;
  556. fpregs->pr_qcnt = current->thread.fpqdepth;
  557. fpregs->pr_q_entrysize = 8;
  558. fpregs->pr_en = 1;
  559. if(fpregs->pr_qcnt != 0) {
  560. memcpy(&fpregs->pr_q[0],
  561. &current->thread.fpqueue[0],
  562. sizeof(struct fpq) * fpregs->pr_qcnt);
  563. }
  564. /* Zero out the rest. */
  565. memset(&fpregs->pr_q[fpregs->pr_qcnt], 0,
  566. sizeof(struct fpq) * (32 - fpregs->pr_qcnt));
  567. return 1;
  568. }
  569. /*
  570. * sparc_execve() executes a new program after the asm stub has set
  571. * things up for us. This should basically do what I want it to.
  572. */
  573. asmlinkage int sparc_execve(struct pt_regs *regs)
  574. {
  575. int error, base = 0;
  576. char *filename;
  577. /* Check for indirect call. */
  578. if(regs->u_regs[UREG_G1] == 0)
  579. base = 1;
  580. filename = getname((char __user *)regs->u_regs[base + UREG_I0]);
  581. error = PTR_ERR(filename);
  582. if(IS_ERR(filename))
  583. goto out;
  584. error = do_execve(filename,
  585. (char __user * __user *)regs->u_regs[base + UREG_I1],
  586. (char __user * __user *)regs->u_regs[base + UREG_I2],
  587. regs);
  588. putname(filename);
  589. if (error == 0) {
  590. task_lock(current);
  591. current->ptrace &= ~PT_DTRACE;
  592. task_unlock(current);
  593. }
  594. out:
  595. return error;
  596. }
  597. /*
  598. * This is the mechanism for creating a new kernel thread.
  599. *
  600. * NOTE! Only a kernel-only process(ie the swapper or direct descendants
  601. * who haven't done an "execve()") should use this: it will work within
  602. * a system call from a "real" process, but the process memory space will
  603. * not be freed until both the parent and the child have exited.
  604. */
  605. pid_t kernel_thread(int (*fn)(void *), void * arg, unsigned long flags)
  606. {
  607. long retval;
  608. __asm__ __volatile__("mov %4, %%g2\n\t" /* Set aside fn ptr... */
  609. "mov %5, %%g3\n\t" /* and arg. */
  610. "mov %1, %%g1\n\t"
  611. "mov %2, %%o0\n\t" /* Clone flags. */
  612. "mov 0, %%o1\n\t" /* usp arg == 0 */
  613. "t 0x10\n\t" /* Linux/Sparc clone(). */
  614. "cmp %%o1, 0\n\t"
  615. "be 1f\n\t" /* The parent, just return. */
  616. " nop\n\t" /* Delay slot. */
  617. "jmpl %%g2, %%o7\n\t" /* Call the function. */
  618. " mov %%g3, %%o0\n\t" /* Get back the arg in delay. */
  619. "mov %3, %%g1\n\t"
  620. "t 0x10\n\t" /* Linux/Sparc exit(). */
  621. /* Notreached by child. */
  622. "1: mov %%o0, %0\n\t" :
  623. "=r" (retval) :
  624. "i" (__NR_clone), "r" (flags | CLONE_VM | CLONE_UNTRACED),
  625. "i" (__NR_exit), "r" (fn), "r" (arg) :
  626. "g1", "g2", "g3", "o0", "o1", "memory", "cc");
  627. return retval;
  628. }
  629. unsigned long get_wchan(struct task_struct *task)
  630. {
  631. unsigned long pc, fp, bias = 0;
  632. unsigned long task_base = (unsigned long) task;
  633. unsigned long ret = 0;
  634. struct reg_window *rw;
  635. int count = 0;
  636. if (!task || task == current ||
  637. task->state == TASK_RUNNING)
  638. goto out;
  639. fp = task_thread_info(task)->ksp + bias;
  640. do {
  641. /* Bogus frame pointer? */
  642. if (fp < (task_base + sizeof(struct thread_info)) ||
  643. fp >= (task_base + (2 * PAGE_SIZE)))
  644. break;
  645. rw = (struct reg_window *) fp;
  646. pc = rw->ins[7];
  647. if (!in_sched_functions(pc)) {
  648. ret = pc;
  649. goto out;
  650. }
  651. fp = rw->ins[6] + bias;
  652. } while (++count < 16);
  653. out:
  654. return ret;
  655. }