process.c 18 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695
  1. /*
  2. * This file is subject to the terms and conditions of the GNU General Public
  3. * License. See the file "COPYING" in the main directory of this archive
  4. * for more details.
  5. *
  6. * arch/sh64/kernel/process.c
  7. *
  8. * Copyright (C) 2000, 2001 Paolo Alberelli
  9. * Copyright (C) 2003 Paul Mundt
  10. * Copyright (C) 2003, 2004 Richard Curnow
  11. *
  12. * Started from SH3/4 version:
  13. * Copyright (C) 1999, 2000 Niibe Yutaka & Kaz Kojima
  14. *
  15. * In turn started from i386 version:
  16. * Copyright (C) 1995 Linus Torvalds
  17. *
  18. */
  19. /*
  20. * This file handles the architecture-dependent parts of process handling..
  21. */
  22. #include <linux/mm.h>
  23. #include <linux/fs.h>
  24. #include <linux/ptrace.h>
  25. #include <linux/reboot.h>
  26. #include <linux/init.h>
  27. #include <linux/module.h>
  28. #include <asm/uaccess.h>
  29. #include <asm/pgtable.h>
  30. struct task_struct *last_task_used_math = NULL;
  31. static int hlt_counter = 1;
  32. #define HARD_IDLE_TIMEOUT (HZ / 3)
  33. void disable_hlt(void)
  34. {
  35. hlt_counter++;
  36. }
  37. void enable_hlt(void)
  38. {
  39. hlt_counter--;
  40. }
  41. static int __init nohlt_setup(char *__unused)
  42. {
  43. hlt_counter = 1;
  44. return 1;
  45. }
  46. static int __init hlt_setup(char *__unused)
  47. {
  48. hlt_counter = 0;
  49. return 1;
  50. }
  51. __setup("nohlt", nohlt_setup);
  52. __setup("hlt", hlt_setup);
  53. static inline void hlt(void)
  54. {
  55. __asm__ __volatile__ ("sleep" : : : "memory");
  56. }
  57. /*
  58. * The idle loop on a uniprocessor SH..
  59. */
  60. void cpu_idle(void)
  61. {
  62. /* endless idle loop with no priority at all */
  63. while (1) {
  64. if (hlt_counter) {
  65. while (!need_resched())
  66. cpu_relax();
  67. } else {
  68. local_irq_disable();
  69. while (!need_resched()) {
  70. local_irq_enable();
  71. hlt();
  72. local_irq_disable();
  73. }
  74. local_irq_enable();
  75. }
  76. preempt_enable_no_resched();
  77. schedule();
  78. preempt_disable();
  79. }
  80. }
  81. void machine_restart(char * __unused)
  82. {
  83. extern void phys_stext(void);
  84. phys_stext();
  85. }
  86. void machine_halt(void)
  87. {
  88. for (;;);
  89. }
  90. void machine_power_off(void)
  91. {
  92. extern void enter_deep_standby(void);
  93. enter_deep_standby();
  94. }
  95. void (*pm_power_off)(void) = machine_power_off;
  96. EXPORT_SYMBOL(pm_power_off);
  97. void show_regs(struct pt_regs * regs)
  98. {
  99. unsigned long long ah, al, bh, bl, ch, cl;
  100. printk("\n");
  101. ah = (regs->pc) >> 32;
  102. al = (regs->pc) & 0xffffffff;
  103. bh = (regs->regs[18]) >> 32;
  104. bl = (regs->regs[18]) & 0xffffffff;
  105. ch = (regs->regs[15]) >> 32;
  106. cl = (regs->regs[15]) & 0xffffffff;
  107. printk("PC : %08Lx%08Lx LINK: %08Lx%08Lx SP : %08Lx%08Lx\n",
  108. ah, al, bh, bl, ch, cl);
  109. ah = (regs->sr) >> 32;
  110. al = (regs->sr) & 0xffffffff;
  111. asm volatile ("getcon " __TEA ", %0" : "=r" (bh));
  112. asm volatile ("getcon " __TEA ", %0" : "=r" (bl));
  113. bh = (bh) >> 32;
  114. bl = (bl) & 0xffffffff;
  115. asm volatile ("getcon " __KCR0 ", %0" : "=r" (ch));
  116. asm volatile ("getcon " __KCR0 ", %0" : "=r" (cl));
  117. ch = (ch) >> 32;
  118. cl = (cl) & 0xffffffff;
  119. printk("SR : %08Lx%08Lx TEA : %08Lx%08Lx KCR0: %08Lx%08Lx\n",
  120. ah, al, bh, bl, ch, cl);
  121. ah = (regs->regs[0]) >> 32;
  122. al = (regs->regs[0]) & 0xffffffff;
  123. bh = (regs->regs[1]) >> 32;
  124. bl = (regs->regs[1]) & 0xffffffff;
  125. ch = (regs->regs[2]) >> 32;
  126. cl = (regs->regs[2]) & 0xffffffff;
  127. printk("R0 : %08Lx%08Lx R1 : %08Lx%08Lx R2 : %08Lx%08Lx\n",
  128. ah, al, bh, bl, ch, cl);
  129. ah = (regs->regs[3]) >> 32;
  130. al = (regs->regs[3]) & 0xffffffff;
  131. bh = (regs->regs[4]) >> 32;
  132. bl = (regs->regs[4]) & 0xffffffff;
  133. ch = (regs->regs[5]) >> 32;
  134. cl = (regs->regs[5]) & 0xffffffff;
  135. printk("R3 : %08Lx%08Lx R4 : %08Lx%08Lx R5 : %08Lx%08Lx\n",
  136. ah, al, bh, bl, ch, cl);
  137. ah = (regs->regs[6]) >> 32;
  138. al = (regs->regs[6]) & 0xffffffff;
  139. bh = (regs->regs[7]) >> 32;
  140. bl = (regs->regs[7]) & 0xffffffff;
  141. ch = (regs->regs[8]) >> 32;
  142. cl = (regs->regs[8]) & 0xffffffff;
  143. printk("R6 : %08Lx%08Lx R7 : %08Lx%08Lx R8 : %08Lx%08Lx\n",
  144. ah, al, bh, bl, ch, cl);
  145. ah = (regs->regs[9]) >> 32;
  146. al = (regs->regs[9]) & 0xffffffff;
  147. bh = (regs->regs[10]) >> 32;
  148. bl = (regs->regs[10]) & 0xffffffff;
  149. ch = (regs->regs[11]) >> 32;
  150. cl = (regs->regs[11]) & 0xffffffff;
  151. printk("R9 : %08Lx%08Lx R10 : %08Lx%08Lx R11 : %08Lx%08Lx\n",
  152. ah, al, bh, bl, ch, cl);
  153. ah = (regs->regs[12]) >> 32;
  154. al = (regs->regs[12]) & 0xffffffff;
  155. bh = (regs->regs[13]) >> 32;
  156. bl = (regs->regs[13]) & 0xffffffff;
  157. ch = (regs->regs[14]) >> 32;
  158. cl = (regs->regs[14]) & 0xffffffff;
  159. printk("R12 : %08Lx%08Lx R13 : %08Lx%08Lx R14 : %08Lx%08Lx\n",
  160. ah, al, bh, bl, ch, cl);
  161. ah = (regs->regs[16]) >> 32;
  162. al = (regs->regs[16]) & 0xffffffff;
  163. bh = (regs->regs[17]) >> 32;
  164. bl = (regs->regs[17]) & 0xffffffff;
  165. ch = (regs->regs[19]) >> 32;
  166. cl = (regs->regs[19]) & 0xffffffff;
  167. printk("R16 : %08Lx%08Lx R17 : %08Lx%08Lx R19 : %08Lx%08Lx\n",
  168. ah, al, bh, bl, ch, cl);
  169. ah = (regs->regs[20]) >> 32;
  170. al = (regs->regs[20]) & 0xffffffff;
  171. bh = (regs->regs[21]) >> 32;
  172. bl = (regs->regs[21]) & 0xffffffff;
  173. ch = (regs->regs[22]) >> 32;
  174. cl = (regs->regs[22]) & 0xffffffff;
  175. printk("R20 : %08Lx%08Lx R21 : %08Lx%08Lx R22 : %08Lx%08Lx\n",
  176. ah, al, bh, bl, ch, cl);
  177. ah = (regs->regs[23]) >> 32;
  178. al = (regs->regs[23]) & 0xffffffff;
  179. bh = (regs->regs[24]) >> 32;
  180. bl = (regs->regs[24]) & 0xffffffff;
  181. ch = (regs->regs[25]) >> 32;
  182. cl = (regs->regs[25]) & 0xffffffff;
  183. printk("R23 : %08Lx%08Lx R24 : %08Lx%08Lx R25 : %08Lx%08Lx\n",
  184. ah, al, bh, bl, ch, cl);
  185. ah = (regs->regs[26]) >> 32;
  186. al = (regs->regs[26]) & 0xffffffff;
  187. bh = (regs->regs[27]) >> 32;
  188. bl = (regs->regs[27]) & 0xffffffff;
  189. ch = (regs->regs[28]) >> 32;
  190. cl = (regs->regs[28]) & 0xffffffff;
  191. printk("R26 : %08Lx%08Lx R27 : %08Lx%08Lx R28 : %08Lx%08Lx\n",
  192. ah, al, bh, bl, ch, cl);
  193. ah = (regs->regs[29]) >> 32;
  194. al = (regs->regs[29]) & 0xffffffff;
  195. bh = (regs->regs[30]) >> 32;
  196. bl = (regs->regs[30]) & 0xffffffff;
  197. ch = (regs->regs[31]) >> 32;
  198. cl = (regs->regs[31]) & 0xffffffff;
  199. printk("R29 : %08Lx%08Lx R30 : %08Lx%08Lx R31 : %08Lx%08Lx\n",
  200. ah, al, bh, bl, ch, cl);
  201. ah = (regs->regs[32]) >> 32;
  202. al = (regs->regs[32]) & 0xffffffff;
  203. bh = (regs->regs[33]) >> 32;
  204. bl = (regs->regs[33]) & 0xffffffff;
  205. ch = (regs->regs[34]) >> 32;
  206. cl = (regs->regs[34]) & 0xffffffff;
  207. printk("R32 : %08Lx%08Lx R33 : %08Lx%08Lx R34 : %08Lx%08Lx\n",
  208. ah, al, bh, bl, ch, cl);
  209. ah = (regs->regs[35]) >> 32;
  210. al = (regs->regs[35]) & 0xffffffff;
  211. bh = (regs->regs[36]) >> 32;
  212. bl = (regs->regs[36]) & 0xffffffff;
  213. ch = (regs->regs[37]) >> 32;
  214. cl = (regs->regs[37]) & 0xffffffff;
  215. printk("R35 : %08Lx%08Lx R36 : %08Lx%08Lx R37 : %08Lx%08Lx\n",
  216. ah, al, bh, bl, ch, cl);
  217. ah = (regs->regs[38]) >> 32;
  218. al = (regs->regs[38]) & 0xffffffff;
  219. bh = (regs->regs[39]) >> 32;
  220. bl = (regs->regs[39]) & 0xffffffff;
  221. ch = (regs->regs[40]) >> 32;
  222. cl = (regs->regs[40]) & 0xffffffff;
  223. printk("R38 : %08Lx%08Lx R39 : %08Lx%08Lx R40 : %08Lx%08Lx\n",
  224. ah, al, bh, bl, ch, cl);
  225. ah = (regs->regs[41]) >> 32;
  226. al = (regs->regs[41]) & 0xffffffff;
  227. bh = (regs->regs[42]) >> 32;
  228. bl = (regs->regs[42]) & 0xffffffff;
  229. ch = (regs->regs[43]) >> 32;
  230. cl = (regs->regs[43]) & 0xffffffff;
  231. printk("R41 : %08Lx%08Lx R42 : %08Lx%08Lx R43 : %08Lx%08Lx\n",
  232. ah, al, bh, bl, ch, cl);
  233. ah = (regs->regs[44]) >> 32;
  234. al = (regs->regs[44]) & 0xffffffff;
  235. bh = (regs->regs[45]) >> 32;
  236. bl = (regs->regs[45]) & 0xffffffff;
  237. ch = (regs->regs[46]) >> 32;
  238. cl = (regs->regs[46]) & 0xffffffff;
  239. printk("R44 : %08Lx%08Lx R45 : %08Lx%08Lx R46 : %08Lx%08Lx\n",
  240. ah, al, bh, bl, ch, cl);
  241. ah = (regs->regs[47]) >> 32;
  242. al = (regs->regs[47]) & 0xffffffff;
  243. bh = (regs->regs[48]) >> 32;
  244. bl = (regs->regs[48]) & 0xffffffff;
  245. ch = (regs->regs[49]) >> 32;
  246. cl = (regs->regs[49]) & 0xffffffff;
  247. printk("R47 : %08Lx%08Lx R48 : %08Lx%08Lx R49 : %08Lx%08Lx\n",
  248. ah, al, bh, bl, ch, cl);
  249. ah = (regs->regs[50]) >> 32;
  250. al = (regs->regs[50]) & 0xffffffff;
  251. bh = (regs->regs[51]) >> 32;
  252. bl = (regs->regs[51]) & 0xffffffff;
  253. ch = (regs->regs[52]) >> 32;
  254. cl = (regs->regs[52]) & 0xffffffff;
  255. printk("R50 : %08Lx%08Lx R51 : %08Lx%08Lx R52 : %08Lx%08Lx\n",
  256. ah, al, bh, bl, ch, cl);
  257. ah = (regs->regs[53]) >> 32;
  258. al = (regs->regs[53]) & 0xffffffff;
  259. bh = (regs->regs[54]) >> 32;
  260. bl = (regs->regs[54]) & 0xffffffff;
  261. ch = (regs->regs[55]) >> 32;
  262. cl = (regs->regs[55]) & 0xffffffff;
  263. printk("R53 : %08Lx%08Lx R54 : %08Lx%08Lx R55 : %08Lx%08Lx\n",
  264. ah, al, bh, bl, ch, cl);
  265. ah = (regs->regs[56]) >> 32;
  266. al = (regs->regs[56]) & 0xffffffff;
  267. bh = (regs->regs[57]) >> 32;
  268. bl = (regs->regs[57]) & 0xffffffff;
  269. ch = (regs->regs[58]) >> 32;
  270. cl = (regs->regs[58]) & 0xffffffff;
  271. printk("R56 : %08Lx%08Lx R57 : %08Lx%08Lx R58 : %08Lx%08Lx\n",
  272. ah, al, bh, bl, ch, cl);
  273. ah = (regs->regs[59]) >> 32;
  274. al = (regs->regs[59]) & 0xffffffff;
  275. bh = (regs->regs[60]) >> 32;
  276. bl = (regs->regs[60]) & 0xffffffff;
  277. ch = (regs->regs[61]) >> 32;
  278. cl = (regs->regs[61]) & 0xffffffff;
  279. printk("R59 : %08Lx%08Lx R60 : %08Lx%08Lx R61 : %08Lx%08Lx\n",
  280. ah, al, bh, bl, ch, cl);
  281. ah = (regs->regs[62]) >> 32;
  282. al = (regs->regs[62]) & 0xffffffff;
  283. bh = (regs->tregs[0]) >> 32;
  284. bl = (regs->tregs[0]) & 0xffffffff;
  285. ch = (regs->tregs[1]) >> 32;
  286. cl = (regs->tregs[1]) & 0xffffffff;
  287. printk("R62 : %08Lx%08Lx T0 : %08Lx%08Lx T1 : %08Lx%08Lx\n",
  288. ah, al, bh, bl, ch, cl);
  289. ah = (regs->tregs[2]) >> 32;
  290. al = (regs->tregs[2]) & 0xffffffff;
  291. bh = (regs->tregs[3]) >> 32;
  292. bl = (regs->tregs[3]) & 0xffffffff;
  293. ch = (regs->tregs[4]) >> 32;
  294. cl = (regs->tregs[4]) & 0xffffffff;
  295. printk("T2 : %08Lx%08Lx T3 : %08Lx%08Lx T4 : %08Lx%08Lx\n",
  296. ah, al, bh, bl, ch, cl);
  297. ah = (regs->tregs[5]) >> 32;
  298. al = (regs->tregs[5]) & 0xffffffff;
  299. bh = (regs->tregs[6]) >> 32;
  300. bl = (regs->tregs[6]) & 0xffffffff;
  301. ch = (regs->tregs[7]) >> 32;
  302. cl = (regs->tregs[7]) & 0xffffffff;
  303. printk("T5 : %08Lx%08Lx T6 : %08Lx%08Lx T7 : %08Lx%08Lx\n",
  304. ah, al, bh, bl, ch, cl);
  305. /*
  306. * If we're in kernel mode, dump the stack too..
  307. */
  308. if (!user_mode(regs)) {
  309. void show_stack(struct task_struct *tsk, unsigned long *sp);
  310. unsigned long sp = regs->regs[15] & 0xffffffff;
  311. struct task_struct *tsk = get_current();
  312. tsk->thread.kregs = regs;
  313. show_stack(tsk, (unsigned long *)sp);
  314. }
  315. }
  316. struct task_struct * alloc_task_struct(void)
  317. {
  318. /* Get task descriptor pages */
  319. return (struct task_struct *)
  320. __get_free_pages(GFP_KERNEL, get_order(THREAD_SIZE));
  321. }
  322. void free_task_struct(struct task_struct *p)
  323. {
  324. free_pages((unsigned long) p, get_order(THREAD_SIZE));
  325. }
  326. /*
  327. * Create a kernel thread
  328. */
  329. ATTRIB_NORET void kernel_thread_helper(void *arg, int (*fn)(void *))
  330. {
  331. do_exit(fn(arg));
  332. }
  333. /*
  334. * This is the mechanism for creating a new kernel thread.
  335. *
  336. * NOTE! Only a kernel-only process(ie the swapper or direct descendants
  337. * who haven't done an "execve()") should use this: it will work within
  338. * a system call from a "real" process, but the process memory space will
  339. * not be freed until both the parent and the child have exited.
  340. */
  341. int kernel_thread(int (*fn)(void *), void * arg, unsigned long flags)
  342. {
  343. struct pt_regs regs;
  344. memset(&regs, 0, sizeof(regs));
  345. regs.regs[2] = (unsigned long)arg;
  346. regs.regs[3] = (unsigned long)fn;
  347. regs.pc = (unsigned long)kernel_thread_helper;
  348. regs.sr = (1 << 30);
  349. return do_fork(flags | CLONE_VM | CLONE_UNTRACED, 0,
  350. &regs, 0, NULL, NULL);
  351. }
  352. /*
  353. * Free current thread data structures etc..
  354. */
  355. void exit_thread(void)
  356. {
  357. /* See arch/sparc/kernel/process.c for the precedent for doing this -- RPC.
  358. The SH-5 FPU save/restore approach relies on last_task_used_math
  359. pointing to a live task_struct. When another task tries to use the
  360. FPU for the 1st time, the FPUDIS trap handling (see
  361. arch/sh64/kernel/fpu.c) will save the existing FPU state to the
  362. FP regs field within last_task_used_math before re-loading the new
  363. task's FPU state (or initialising it if the FPU has been used
  364. before). So if last_task_used_math is stale, and its page has already been
  365. re-allocated for another use, the consequences are rather grim. Unless we
  366. null it here, there is no other path through which it would get safely
  367. nulled. */
  368. #ifdef CONFIG_SH_FPU
  369. if (last_task_used_math == current) {
  370. last_task_used_math = NULL;
  371. }
  372. #endif
  373. }
  374. void flush_thread(void)
  375. {
  376. /* Called by fs/exec.c (flush_old_exec) to remove traces of a
  377. * previously running executable. */
  378. #ifdef CONFIG_SH_FPU
  379. if (last_task_used_math == current) {
  380. last_task_used_math = NULL;
  381. }
  382. /* Force FPU state to be reinitialised after exec */
  383. clear_used_math();
  384. #endif
  385. /* if we are a kernel thread, about to change to user thread,
  386. * update kreg
  387. */
  388. if(current->thread.kregs==&fake_swapper_regs) {
  389. current->thread.kregs =
  390. ((struct pt_regs *)(THREAD_SIZE + (unsigned long) current) - 1);
  391. current->thread.uregs = current->thread.kregs;
  392. }
  393. }
  394. void release_thread(struct task_struct *dead_task)
  395. {
  396. /* do nothing */
  397. }
  398. /* Fill in the fpu structure for a core dump.. */
  399. int dump_fpu(struct pt_regs *regs, elf_fpregset_t *fpu)
  400. {
  401. #ifdef CONFIG_SH_FPU
  402. int fpvalid;
  403. struct task_struct *tsk = current;
  404. fpvalid = !!tsk_used_math(tsk);
  405. if (fpvalid) {
  406. if (current == last_task_used_math) {
  407. grab_fpu();
  408. fpsave(&tsk->thread.fpu.hard);
  409. release_fpu();
  410. last_task_used_math = 0;
  411. regs->sr |= SR_FD;
  412. }
  413. memcpy(fpu, &tsk->thread.fpu.hard, sizeof(*fpu));
  414. }
  415. return fpvalid;
  416. #else
  417. return 0; /* Task didn't use the fpu at all. */
  418. #endif
  419. }
  420. asmlinkage void ret_from_fork(void);
  421. int copy_thread(int nr, unsigned long clone_flags, unsigned long usp,
  422. unsigned long unused,
  423. struct task_struct *p, struct pt_regs *regs)
  424. {
  425. struct pt_regs *childregs;
  426. unsigned long long se; /* Sign extension */
  427. #ifdef CONFIG_SH_FPU
  428. if(last_task_used_math == current) {
  429. grab_fpu();
  430. fpsave(&current->thread.fpu.hard);
  431. release_fpu();
  432. last_task_used_math = NULL;
  433. regs->sr |= SR_FD;
  434. }
  435. #endif
  436. /* Copy from sh version */
  437. childregs = (struct pt_regs *)(THREAD_SIZE + task_stack_page(p)) - 1;
  438. *childregs = *regs;
  439. if (user_mode(regs)) {
  440. childregs->regs[15] = usp;
  441. p->thread.uregs = childregs;
  442. } else {
  443. childregs->regs[15] = (unsigned long)task_stack_page(p) + THREAD_SIZE;
  444. }
  445. childregs->regs[9] = 0; /* Set return value for child */
  446. childregs->sr |= SR_FD; /* Invalidate FPU flag */
  447. p->thread.sp = (unsigned long) childregs;
  448. p->thread.pc = (unsigned long) ret_from_fork;
  449. /*
  450. * Sign extend the edited stack.
  451. * Note that thread.pc and thread.pc will stay
  452. * 32-bit wide and context switch must take care
  453. * of NEFF sign extension.
  454. */
  455. se = childregs->regs[15];
  456. se = (se & NEFF_SIGN) ? (se | NEFF_MASK) : se;
  457. childregs->regs[15] = se;
  458. return 0;
  459. }
  460. asmlinkage int sys_fork(unsigned long r2, unsigned long r3,
  461. unsigned long r4, unsigned long r5,
  462. unsigned long r6, unsigned long r7,
  463. struct pt_regs *pregs)
  464. {
  465. return do_fork(SIGCHLD, pregs->regs[15], pregs, 0, 0, 0);
  466. }
  467. asmlinkage int sys_clone(unsigned long clone_flags, unsigned long newsp,
  468. unsigned long r4, unsigned long r5,
  469. unsigned long r6, unsigned long r7,
  470. struct pt_regs *pregs)
  471. {
  472. if (!newsp)
  473. newsp = pregs->regs[15];
  474. return do_fork(clone_flags, newsp, pregs, 0, 0, 0);
  475. }
  476. /*
  477. * This is trivial, and on the face of it looks like it
  478. * could equally well be done in user mode.
  479. *
  480. * Not so, for quite unobvious reasons - register pressure.
  481. * In user mode vfork() cannot have a stack frame, and if
  482. * done by calling the "clone()" system call directly, you
  483. * do not have enough call-clobbered registers to hold all
  484. * the information you need.
  485. */
  486. asmlinkage int sys_vfork(unsigned long r2, unsigned long r3,
  487. unsigned long r4, unsigned long r5,
  488. unsigned long r6, unsigned long r7,
  489. struct pt_regs *pregs)
  490. {
  491. return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, pregs->regs[15], pregs, 0, 0, 0);
  492. }
  493. /*
  494. * sys_execve() executes a new program.
  495. */
  496. asmlinkage int sys_execve(char *ufilename, char **uargv,
  497. char **uenvp, unsigned long r5,
  498. unsigned long r6, unsigned long r7,
  499. struct pt_regs *pregs)
  500. {
  501. int error;
  502. char *filename;
  503. lock_kernel();
  504. filename = getname((char __user *)ufilename);
  505. error = PTR_ERR(filename);
  506. if (IS_ERR(filename))
  507. goto out;
  508. error = do_execve(filename,
  509. (char __user * __user *)uargv,
  510. (char __user * __user *)uenvp,
  511. pregs);
  512. if (error == 0) {
  513. task_lock(current);
  514. current->ptrace &= ~PT_DTRACE;
  515. task_unlock(current);
  516. }
  517. putname(filename);
  518. out:
  519. unlock_kernel();
  520. return error;
  521. }
  522. /*
  523. * These bracket the sleeping functions..
  524. */
  525. extern void interruptible_sleep_on(wait_queue_head_t *q);
  526. #define mid_sched ((unsigned long) interruptible_sleep_on)
  527. static int in_sh64_switch_to(unsigned long pc)
  528. {
  529. extern char __sh64_switch_to_end;
  530. /* For a sleeping task, the PC is somewhere in the middle of the function,
  531. so we don't have to worry about masking the LSB off */
  532. return (pc >= (unsigned long) sh64_switch_to) &&
  533. (pc < (unsigned long) &__sh64_switch_to_end);
  534. }
  535. unsigned long get_wchan(struct task_struct *p)
  536. {
  537. unsigned long schedule_fp;
  538. unsigned long sh64_switch_to_fp;
  539. unsigned long schedule_caller_pc;
  540. unsigned long pc;
  541. if (!p || p == current || p->state == TASK_RUNNING)
  542. return 0;
  543. /*
  544. * The same comment as on the Alpha applies here, too ...
  545. */
  546. pc = thread_saved_pc(p);
  547. #ifdef CONFIG_FRAME_POINTER
  548. if (in_sh64_switch_to(pc)) {
  549. sh64_switch_to_fp = (long) p->thread.sp;
  550. /* r14 is saved at offset 4 in the sh64_switch_to frame */
  551. schedule_fp = *(unsigned long *) (long)(sh64_switch_to_fp + 4);
  552. /* and the caller of 'schedule' is (currently!) saved at offset 24
  553. in the frame of schedule (from disasm) */
  554. schedule_caller_pc = *(unsigned long *) (long)(schedule_fp + 24);
  555. return schedule_caller_pc;
  556. }
  557. #endif
  558. return pc;
  559. }
  560. /* Provide a /proc/asids file that lists out the
  561. ASIDs currently associated with the processes. (If the DM.PC register is
  562. examined through the debug link, this shows ASID + PC. To make use of this,
  563. the PID->ASID relationship needs to be known. This is primarily for
  564. debugging.)
  565. */
  566. #if defined(CONFIG_SH64_PROC_ASIDS)
  567. #include <linux/init.h>
  568. #include <linux/proc_fs.h>
  569. static int
  570. asids_proc_info(char *buf, char **start, off_t fpos, int length, int *eof, void *data)
  571. {
  572. int len=0;
  573. struct task_struct *p;
  574. read_lock(&tasklist_lock);
  575. for_each_process(p) {
  576. int pid = p->pid;
  577. struct mm_struct *mm;
  578. if (!pid) continue;
  579. mm = p->mm;
  580. if (mm) {
  581. unsigned long asid, context;
  582. context = mm->context;
  583. asid = (context & 0xff);
  584. len += sprintf(buf+len, "%5d : %02lx\n", pid, asid);
  585. } else {
  586. len += sprintf(buf+len, "%5d : (none)\n", pid);
  587. }
  588. }
  589. read_unlock(&tasklist_lock);
  590. *eof = 1;
  591. return len;
  592. }
  593. static int __init register_proc_asids(void)
  594. {
  595. create_proc_read_entry("asids", 0, NULL, asids_proc_info, NULL);
  596. return 0;
  597. }
  598. __initcall(register_proc_asids);
  599. #endif