ioremap.c 4.2 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150
  1. /*
  2. * arch/sh/mm/ioremap.c
  3. *
  4. * Re-map IO memory to kernel address space so that we can access it.
  5. * This is needed for high PCI addresses that aren't mapped in the
  6. * 640k-1MB IO memory area on PC's
  7. *
  8. * (C) Copyright 1995 1996 Linus Torvalds
  9. * (C) Copyright 2005, 2006 Paul Mundt
  10. *
  11. * This file is subject to the terms and conditions of the GNU General
  12. * Public License. See the file "COPYING" in the main directory of this
  13. * archive for more details.
  14. */
  15. #include <linux/vmalloc.h>
  16. #include <linux/module.h>
  17. #include <linux/mm.h>
  18. #include <linux/pci.h>
  19. #include <linux/io.h>
  20. #include <asm/page.h>
  21. #include <asm/pgalloc.h>
  22. #include <asm/addrspace.h>
  23. #include <asm/cacheflush.h>
  24. #include <asm/tlbflush.h>
  25. #include <asm/mmu.h>
  26. /*
  27. * Remap an arbitrary physical address space into the kernel virtual
  28. * address space. Needed when the kernel wants to access high addresses
  29. * directly.
  30. *
  31. * NOTE! We need to allow non-page-aligned mappings too: we will obviously
  32. * have to convert them into an offset in a page-aligned mapping, but the
  33. * caller shouldn't need to know that small detail.
  34. */
  35. void __iomem *__ioremap(unsigned long phys_addr, unsigned long size,
  36. unsigned long flags)
  37. {
  38. struct vm_struct * area;
  39. unsigned long offset, last_addr, addr, orig_addr;
  40. pgprot_t pgprot;
  41. /* Don't allow wraparound or zero size */
  42. last_addr = phys_addr + size - 1;
  43. if (!size || last_addr < phys_addr)
  44. return NULL;
  45. /*
  46. * If we're on an SH7751 or SH7780 PCI controller, PCI memory is
  47. * mapped at the end of the address space (typically 0xfd000000)
  48. * in a non-translatable area, so mapping through page tables for
  49. * this area is not only pointless, but also fundamentally
  50. * broken. Just return the physical address instead.
  51. *
  52. * For boards that map a small PCI memory aperture somewhere in
  53. * P1/P2 space, ioremap() will already do the right thing,
  54. * and we'll never get this far.
  55. */
  56. if (is_pci_memaddr(phys_addr) && is_pci_memaddr(last_addr))
  57. return (void __iomem *)phys_addr;
  58. /*
  59. * Don't allow anybody to remap normal RAM that we're using..
  60. */
  61. if (phys_addr < virt_to_phys(high_memory))
  62. return NULL;
  63. /*
  64. * Mappings have to be page-aligned
  65. */
  66. offset = phys_addr & ~PAGE_MASK;
  67. phys_addr &= PAGE_MASK;
  68. size = PAGE_ALIGN(last_addr+1) - phys_addr;
  69. /*
  70. * Ok, go for it..
  71. */
  72. area = get_vm_area(size, VM_IOREMAP);
  73. if (!area)
  74. return NULL;
  75. area->phys_addr = phys_addr;
  76. orig_addr = addr = (unsigned long)area->addr;
  77. #ifdef CONFIG_32BIT
  78. /*
  79. * First try to remap through the PMB once a valid VMA has been
  80. * established. Smaller allocations (or the rest of the size
  81. * remaining after a PMB mapping due to the size not being
  82. * perfectly aligned on a PMB size boundary) are then mapped
  83. * through the UTLB using conventional page tables.
  84. *
  85. * PMB entries are all pre-faulted.
  86. */
  87. if (unlikely(size >= 0x1000000)) {
  88. unsigned long mapped = pmb_remap(addr, phys_addr, size, flags);
  89. if (likely(mapped)) {
  90. addr += mapped;
  91. phys_addr += mapped;
  92. size -= mapped;
  93. }
  94. }
  95. #endif
  96. pgprot = __pgprot(pgprot_val(PAGE_KERNEL_NOCACHE) | flags);
  97. if (likely(size))
  98. if (ioremap_page_range(addr, addr + size, phys_addr, pgprot)) {
  99. vunmap((void *)orig_addr);
  100. return NULL;
  101. }
  102. return (void __iomem *)(offset + (char *)orig_addr);
  103. }
  104. EXPORT_SYMBOL(__ioremap);
  105. void __iounmap(void __iomem *addr)
  106. {
  107. unsigned long vaddr = (unsigned long __force)addr;
  108. struct vm_struct *p;
  109. if (PXSEG(vaddr) < P3SEG || is_pci_memaddr(vaddr))
  110. return;
  111. #ifdef CONFIG_32BIT
  112. /*
  113. * Purge any PMB entries that may have been established for this
  114. * mapping, then proceed with conventional VMA teardown.
  115. *
  116. * XXX: Note that due to the way that remove_vm_area() does
  117. * matching of the resultant VMA, we aren't able to fast-forward
  118. * the address past the PMB space until the end of the VMA where
  119. * the page tables reside. As such, unmap_vm_area() will be
  120. * forced to linearly scan over the area until it finds the page
  121. * tables where PTEs that need to be unmapped actually reside,
  122. * which is far from optimal. Perhaps we need to use a separate
  123. * VMA for the PMB mappings?
  124. * -- PFM.
  125. */
  126. pmb_unmap(vaddr);
  127. #endif
  128. p = remove_vm_area((void *)(vaddr & PAGE_MASK));
  129. if (!p) {
  130. printk(KERN_ERR "%s: bad address %p\n", __FUNCTION__, addr);
  131. return;
  132. }
  133. kfree(p);
  134. }
  135. EXPORT_SYMBOL(__iounmap);