intc.c 16 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631
  1. /*
  2. * Shared interrupt handling code for IPR and INTC2 types of IRQs.
  3. *
  4. * Copyright (C) 2007 Magnus Damm
  5. *
  6. * Based on intc2.c and ipr.c
  7. *
  8. * Copyright (C) 1999 Niibe Yutaka & Takeshi Yaegashi
  9. * Copyright (C) 2000 Kazumoto Kojima
  10. * Copyright (C) 2001 David J. Mckay (david.mckay@st.com)
  11. * Copyright (C) 2003 Takashi Kusuda <kusuda-takashi@hitachi-ul.co.jp>
  12. * Copyright (C) 2005, 2006 Paul Mundt
  13. *
  14. * This file is subject to the terms and conditions of the GNU General Public
  15. * License. See the file "COPYING" in the main directory of this archive
  16. * for more details.
  17. */
  18. #include <linux/init.h>
  19. #include <linux/irq.h>
  20. #include <linux/module.h>
  21. #include <linux/io.h>
  22. #include <linux/interrupt.h>
  23. #include <linux/bootmem.h>
  24. #define _INTC_MK(fn, mode, addr_e, addr_d, width, shift) \
  25. ((shift) | ((width) << 5) | ((fn) << 9) | ((mode) << 13) | \
  26. ((addr_e) << 16) | ((addr_d << 24)))
  27. #define _INTC_SHIFT(h) (h & 0x1f)
  28. #define _INTC_WIDTH(h) ((h >> 5) & 0xf)
  29. #define _INTC_FN(h) ((h >> 9) & 0xf)
  30. #define _INTC_MODE(h) ((h >> 13) & 0x7)
  31. #define _INTC_ADDR_E(h) ((h >> 16) & 0xff)
  32. #define _INTC_ADDR_D(h) ((h >> 24) & 0xff)
  33. struct intc_handle_int {
  34. unsigned int irq;
  35. unsigned long handle;
  36. };
  37. struct intc_desc_int {
  38. unsigned long *reg;
  39. #ifdef CONFIG_SMP
  40. unsigned long *smp;
  41. #endif
  42. unsigned int nr_reg;
  43. struct intc_handle_int *prio;
  44. unsigned int nr_prio;
  45. struct intc_handle_int *sense;
  46. unsigned int nr_sense;
  47. struct irq_chip chip;
  48. };
  49. #ifdef CONFIG_SMP
  50. #define IS_SMP(x) x.smp
  51. #define INTC_REG(d, x, c) (d->reg[(x)] + ((d->smp[(x)] & 0xff) * c))
  52. #define SMP_NR(d, x) ((d->smp[(x)] >> 8) ? (d->smp[(x)] >> 8) : 1)
  53. #else
  54. #define IS_SMP(x) 0
  55. #define INTC_REG(d, x, c) (d->reg[(x)])
  56. #define SMP_NR(d, x) 1
  57. #endif
  58. static unsigned int intc_prio_level[NR_IRQS]; /* for now */
  59. static inline struct intc_desc_int *get_intc_desc(unsigned int irq)
  60. {
  61. struct irq_chip *chip = get_irq_chip(irq);
  62. return (void *)((char *)chip - offsetof(struct intc_desc_int, chip));
  63. }
  64. static inline unsigned int set_field(unsigned int value,
  65. unsigned int field_value,
  66. unsigned int handle)
  67. {
  68. unsigned int width = _INTC_WIDTH(handle);
  69. unsigned int shift = _INTC_SHIFT(handle);
  70. value &= ~(((1 << width) - 1) << shift);
  71. value |= field_value << shift;
  72. return value;
  73. }
  74. static void write_8(unsigned long addr, unsigned long h, unsigned long data)
  75. {
  76. ctrl_outb(set_field(0, data, h), addr);
  77. }
  78. static void write_16(unsigned long addr, unsigned long h, unsigned long data)
  79. {
  80. ctrl_outw(set_field(0, data, h), addr);
  81. }
  82. static void write_32(unsigned long addr, unsigned long h, unsigned long data)
  83. {
  84. ctrl_outl(set_field(0, data, h), addr);
  85. }
  86. static void modify_8(unsigned long addr, unsigned long h, unsigned long data)
  87. {
  88. ctrl_outb(set_field(ctrl_inb(addr), data, h), addr);
  89. }
  90. static void modify_16(unsigned long addr, unsigned long h, unsigned long data)
  91. {
  92. ctrl_outw(set_field(ctrl_inw(addr), data, h), addr);
  93. }
  94. static void modify_32(unsigned long addr, unsigned long h, unsigned long data)
  95. {
  96. ctrl_outl(set_field(ctrl_inl(addr), data, h), addr);
  97. }
  98. enum { REG_FN_ERR = 0, REG_FN_WRITE_BASE = 1, REG_FN_MODIFY_BASE = 5 };
  99. static void (*intc_reg_fns[])(unsigned long addr,
  100. unsigned long h,
  101. unsigned long data) = {
  102. [REG_FN_WRITE_BASE + 0] = write_8,
  103. [REG_FN_WRITE_BASE + 1] = write_16,
  104. [REG_FN_WRITE_BASE + 3] = write_32,
  105. [REG_FN_MODIFY_BASE + 0] = modify_8,
  106. [REG_FN_MODIFY_BASE + 1] = modify_16,
  107. [REG_FN_MODIFY_BASE + 3] = modify_32,
  108. };
  109. enum { MODE_ENABLE_REG = 0, /* Bit(s) set -> interrupt enabled */
  110. MODE_MASK_REG, /* Bit(s) set -> interrupt disabled */
  111. MODE_DUAL_REG, /* Two registers, set bit to enable / disable */
  112. MODE_PRIO_REG, /* Priority value written to enable interrupt */
  113. MODE_PCLR_REG, /* Above plus all bits set to disable interrupt */
  114. };
  115. static void intc_mode_field(unsigned long addr,
  116. unsigned long handle,
  117. void (*fn)(unsigned long,
  118. unsigned long,
  119. unsigned long),
  120. unsigned int irq)
  121. {
  122. fn(addr, handle, ((1 << _INTC_WIDTH(handle)) - 1));
  123. }
  124. static void intc_mode_zero(unsigned long addr,
  125. unsigned long handle,
  126. void (*fn)(unsigned long,
  127. unsigned long,
  128. unsigned long),
  129. unsigned int irq)
  130. {
  131. fn(addr, handle, 0);
  132. }
  133. static void intc_mode_prio(unsigned long addr,
  134. unsigned long handle,
  135. void (*fn)(unsigned long,
  136. unsigned long,
  137. unsigned long),
  138. unsigned int irq)
  139. {
  140. fn(addr, handle, intc_prio_level[irq]);
  141. }
  142. static void (*intc_enable_fns[])(unsigned long addr,
  143. unsigned long handle,
  144. void (*fn)(unsigned long,
  145. unsigned long,
  146. unsigned long),
  147. unsigned int irq) = {
  148. [MODE_ENABLE_REG] = intc_mode_field,
  149. [MODE_MASK_REG] = intc_mode_zero,
  150. [MODE_DUAL_REG] = intc_mode_field,
  151. [MODE_PRIO_REG] = intc_mode_prio,
  152. [MODE_PCLR_REG] = intc_mode_prio,
  153. };
  154. static void (*intc_disable_fns[])(unsigned long addr,
  155. unsigned long handle,
  156. void (*fn)(unsigned long,
  157. unsigned long,
  158. unsigned long),
  159. unsigned int irq) = {
  160. [MODE_ENABLE_REG] = intc_mode_zero,
  161. [MODE_MASK_REG] = intc_mode_field,
  162. [MODE_DUAL_REG] = intc_mode_field,
  163. [MODE_PRIO_REG] = intc_mode_zero,
  164. [MODE_PCLR_REG] = intc_mode_field,
  165. };
  166. static inline void _intc_enable(unsigned int irq, unsigned long handle)
  167. {
  168. struct intc_desc_int *d = get_intc_desc(irq);
  169. unsigned long addr;
  170. unsigned int cpu;
  171. for (cpu = 0; cpu < SMP_NR(d, _INTC_ADDR_E(handle)); cpu++) {
  172. addr = INTC_REG(d, _INTC_ADDR_E(handle), cpu);
  173. intc_enable_fns[_INTC_MODE(handle)](addr, handle, intc_reg_fns\
  174. [_INTC_FN(handle)], irq);
  175. }
  176. }
  177. static void intc_enable(unsigned int irq)
  178. {
  179. _intc_enable(irq, (unsigned long)get_irq_chip_data(irq));
  180. }
  181. static void intc_disable(unsigned int irq)
  182. {
  183. struct intc_desc_int *d = get_intc_desc(irq);
  184. unsigned long handle = (unsigned long) get_irq_chip_data(irq);
  185. unsigned long addr;
  186. unsigned int cpu;
  187. for (cpu = 0; cpu < SMP_NR(d, _INTC_ADDR_D(handle)); cpu++) {
  188. addr = INTC_REG(d, _INTC_ADDR_D(handle), cpu);
  189. intc_disable_fns[_INTC_MODE(handle)](addr, handle,intc_reg_fns\
  190. [_INTC_FN(handle)], irq);
  191. }
  192. }
  193. static struct intc_handle_int *intc_find_irq(struct intc_handle_int *hp,
  194. unsigned int nr_hp,
  195. unsigned int irq)
  196. {
  197. int i;
  198. /* this doesn't scale well, but...
  199. *
  200. * this function should only be used for cerain uncommon
  201. * operations such as intc_set_priority() and intc_set_sense()
  202. * and in those rare cases performance doesn't matter that much.
  203. * keeping the memory footprint low is more important.
  204. *
  205. * one rather simple way to speed this up and still keep the
  206. * memory footprint down is to make sure the array is sorted
  207. * and then perform a bisect to lookup the irq.
  208. */
  209. for (i = 0; i < nr_hp; i++) {
  210. if ((hp + i)->irq != irq)
  211. continue;
  212. return hp + i;
  213. }
  214. return NULL;
  215. }
  216. int intc_set_priority(unsigned int irq, unsigned int prio)
  217. {
  218. struct intc_desc_int *d = get_intc_desc(irq);
  219. struct intc_handle_int *ihp;
  220. if (!intc_prio_level[irq] || prio <= 1)
  221. return -EINVAL;
  222. ihp = intc_find_irq(d->prio, d->nr_prio, irq);
  223. if (ihp) {
  224. if (prio >= (1 << _INTC_WIDTH(ihp->handle)))
  225. return -EINVAL;
  226. intc_prio_level[irq] = prio;
  227. /*
  228. * only set secondary masking method directly
  229. * primary masking method is using intc_prio_level[irq]
  230. * priority level will be set during next enable()
  231. */
  232. if (_INTC_FN(ihp->handle) != REG_FN_ERR)
  233. _intc_enable(irq, ihp->handle);
  234. }
  235. return 0;
  236. }
  237. #define VALID(x) (x | 0x80)
  238. static unsigned char intc_irq_sense_table[IRQ_TYPE_SENSE_MASK + 1] = {
  239. [IRQ_TYPE_EDGE_FALLING] = VALID(0),
  240. [IRQ_TYPE_EDGE_RISING] = VALID(1),
  241. [IRQ_TYPE_LEVEL_LOW] = VALID(2),
  242. [IRQ_TYPE_LEVEL_HIGH] = VALID(3),
  243. };
  244. static int intc_set_sense(unsigned int irq, unsigned int type)
  245. {
  246. struct intc_desc_int *d = get_intc_desc(irq);
  247. unsigned char value = intc_irq_sense_table[type & IRQ_TYPE_SENSE_MASK];
  248. struct intc_handle_int *ihp;
  249. unsigned long addr;
  250. if (!value)
  251. return -EINVAL;
  252. ihp = intc_find_irq(d->sense, d->nr_sense, irq);
  253. if (ihp) {
  254. addr = INTC_REG(d, _INTC_ADDR_E(ihp->handle), 0);
  255. intc_reg_fns[_INTC_FN(ihp->handle)](addr, ihp->handle, value);
  256. }
  257. return 0;
  258. }
  259. static unsigned int __init intc_get_reg(struct intc_desc_int *d,
  260. unsigned long address)
  261. {
  262. unsigned int k;
  263. for (k = 0; k < d->nr_reg; k++) {
  264. if (d->reg[k] == address)
  265. return k;
  266. }
  267. BUG();
  268. return 0;
  269. }
  270. static intc_enum __init intc_grp_id(struct intc_desc *desc,
  271. intc_enum enum_id)
  272. {
  273. struct intc_group *g = desc->groups;
  274. unsigned int i, j;
  275. for (i = 0; g && enum_id && i < desc->nr_groups; i++) {
  276. g = desc->groups + i;
  277. for (j = 0; g->enum_ids[j]; j++) {
  278. if (g->enum_ids[j] != enum_id)
  279. continue;
  280. return g->enum_id;
  281. }
  282. }
  283. return 0;
  284. }
  285. static unsigned int __init intc_prio_value(struct intc_desc *desc,
  286. intc_enum enum_id, int do_grps)
  287. {
  288. struct intc_prio *p = desc->priorities;
  289. unsigned int i;
  290. for (i = 0; p && enum_id && i < desc->nr_priorities; i++) {
  291. p = desc->priorities + i;
  292. if (p->enum_id != enum_id)
  293. continue;
  294. return p->priority;
  295. }
  296. if (do_grps)
  297. return intc_prio_value(desc, intc_grp_id(desc, enum_id), 0);
  298. /* default to the lowest priority possible if no priority is set
  299. * - this needs to be at least 2 for 5-bit priorities on 7780
  300. */
  301. return 2;
  302. }
  303. static unsigned int __init intc_mask_data(struct intc_desc *desc,
  304. struct intc_desc_int *d,
  305. intc_enum enum_id, int do_grps)
  306. {
  307. struct intc_mask_reg *mr = desc->mask_regs;
  308. unsigned int i, j, fn, mode;
  309. unsigned long reg_e, reg_d;
  310. for (i = 0; mr && enum_id && i < desc->nr_mask_regs; i++) {
  311. mr = desc->mask_regs + i;
  312. for (j = 0; j < ARRAY_SIZE(mr->enum_ids); j++) {
  313. if (mr->enum_ids[j] != enum_id)
  314. continue;
  315. if (mr->set_reg && mr->clr_reg) {
  316. fn = REG_FN_WRITE_BASE;
  317. mode = MODE_DUAL_REG;
  318. reg_e = mr->clr_reg;
  319. reg_d = mr->set_reg;
  320. } else {
  321. fn = REG_FN_MODIFY_BASE;
  322. if (mr->set_reg) {
  323. mode = MODE_ENABLE_REG;
  324. reg_e = mr->set_reg;
  325. reg_d = mr->set_reg;
  326. } else {
  327. mode = MODE_MASK_REG;
  328. reg_e = mr->clr_reg;
  329. reg_d = mr->clr_reg;
  330. }
  331. }
  332. fn += (mr->reg_width >> 3) - 1;
  333. return _INTC_MK(fn, mode,
  334. intc_get_reg(d, reg_e),
  335. intc_get_reg(d, reg_d),
  336. 1,
  337. (mr->reg_width - 1) - j);
  338. }
  339. }
  340. if (do_grps)
  341. return intc_mask_data(desc, d, intc_grp_id(desc, enum_id), 0);
  342. return 0;
  343. }
  344. static unsigned int __init intc_prio_data(struct intc_desc *desc,
  345. struct intc_desc_int *d,
  346. intc_enum enum_id, int do_grps)
  347. {
  348. struct intc_prio_reg *pr = desc->prio_regs;
  349. unsigned int i, j, fn, mode, bit;
  350. unsigned long reg_e, reg_d;
  351. for (i = 0; pr && enum_id && i < desc->nr_prio_regs; i++) {
  352. pr = desc->prio_regs + i;
  353. for (j = 0; j < ARRAY_SIZE(pr->enum_ids); j++) {
  354. if (pr->enum_ids[j] != enum_id)
  355. continue;
  356. if (pr->set_reg && pr->clr_reg) {
  357. fn = REG_FN_WRITE_BASE;
  358. mode = MODE_PCLR_REG;
  359. reg_e = pr->set_reg;
  360. reg_d = pr->clr_reg;
  361. } else {
  362. fn = REG_FN_MODIFY_BASE;
  363. mode = MODE_PRIO_REG;
  364. if (!pr->set_reg)
  365. BUG();
  366. reg_e = pr->set_reg;
  367. reg_d = pr->set_reg;
  368. }
  369. fn += (pr->reg_width >> 3) - 1;
  370. bit = pr->reg_width - ((j + 1) * pr->field_width);
  371. BUG_ON(bit < 0);
  372. return _INTC_MK(fn, mode,
  373. intc_get_reg(d, reg_e),
  374. intc_get_reg(d, reg_d),
  375. pr->field_width, bit);
  376. }
  377. }
  378. if (do_grps)
  379. return intc_prio_data(desc, d, intc_grp_id(desc, enum_id), 0);
  380. return 0;
  381. }
  382. static unsigned int __init intc_sense_data(struct intc_desc *desc,
  383. struct intc_desc_int *d,
  384. intc_enum enum_id)
  385. {
  386. struct intc_sense_reg *sr = desc->sense_regs;
  387. unsigned int i, j, fn, bit;
  388. for (i = 0; sr && enum_id && i < desc->nr_sense_regs; i++) {
  389. sr = desc->sense_regs + i;
  390. for (j = 0; j < ARRAY_SIZE(sr->enum_ids); j++) {
  391. if (sr->enum_ids[j] != enum_id)
  392. continue;
  393. fn = REG_FN_MODIFY_BASE;
  394. fn += (sr->reg_width >> 3) - 1;
  395. bit = sr->reg_width - ((j + 1) * sr->field_width);
  396. BUG_ON(bit < 0);
  397. return _INTC_MK(fn, 0, intc_get_reg(d, sr->reg),
  398. 0, sr->field_width, bit);
  399. }
  400. }
  401. return 0;
  402. }
  403. static void __init intc_register_irq(struct intc_desc *desc,
  404. struct intc_desc_int *d,
  405. intc_enum enum_id,
  406. unsigned int irq)
  407. {
  408. struct intc_handle_int *hp;
  409. unsigned int data[2], primary;
  410. /* Prefer single interrupt source bitmap over other combinations:
  411. * 1. bitmap, single interrupt source
  412. * 2. priority, single interrupt source
  413. * 3. bitmap, multiple interrupt sources (groups)
  414. * 4. priority, multiple interrupt sources (groups)
  415. */
  416. data[0] = intc_mask_data(desc, d, enum_id, 0);
  417. data[1] = intc_prio_data(desc, d, enum_id, 0);
  418. primary = 0;
  419. if (!data[0] && data[1])
  420. primary = 1;
  421. data[0] = data[0] ? data[0] : intc_mask_data(desc, d, enum_id, 1);
  422. data[1] = data[1] ? data[1] : intc_prio_data(desc, d, enum_id, 1);
  423. if (!data[primary])
  424. primary ^= 1;
  425. BUG_ON(!data[primary]); /* must have primary masking method */
  426. disable_irq_nosync(irq);
  427. set_irq_chip_and_handler_name(irq, &d->chip,
  428. handle_level_irq, "level");
  429. set_irq_chip_data(irq, (void *)data[primary]);
  430. /* record the desired priority level */
  431. intc_prio_level[irq] = intc_prio_value(desc, enum_id, 1);
  432. /* enable secondary masking method if present */
  433. if (data[!primary])
  434. _intc_enable(irq, data[!primary]);
  435. /* add irq to d->prio list if priority is available */
  436. if (data[1]) {
  437. hp = d->prio + d->nr_prio;
  438. hp->irq = irq;
  439. hp->handle = data[1];
  440. if (primary) {
  441. /*
  442. * only secondary priority should access registers, so
  443. * set _INTC_FN(h) = REG_FN_ERR for intc_set_priority()
  444. */
  445. hp->handle &= ~_INTC_MK(0x0f, 0, 0, 0, 0, 0);
  446. hp->handle |= _INTC_MK(REG_FN_ERR, 0, 0, 0, 0, 0);
  447. }
  448. d->nr_prio++;
  449. }
  450. /* add irq to d->sense list if sense is available */
  451. data[0] = intc_sense_data(desc, d, enum_id);
  452. if (data[0]) {
  453. (d->sense + d->nr_sense)->irq = irq;
  454. (d->sense + d->nr_sense)->handle = data[0];
  455. d->nr_sense++;
  456. }
  457. /* irq should be disabled by default */
  458. d->chip.mask(irq);
  459. }
  460. static unsigned int __init save_reg(struct intc_desc_int *d,
  461. unsigned int cnt,
  462. unsigned long value,
  463. unsigned int smp)
  464. {
  465. if (value) {
  466. d->reg[cnt] = value;
  467. #ifdef CONFIG_SMP
  468. d->smp[cnt] = smp;
  469. #endif
  470. return 1;
  471. }
  472. return 0;
  473. }
  474. void __init register_intc_controller(struct intc_desc *desc)
  475. {
  476. unsigned int i, k, smp;
  477. struct intc_desc_int *d;
  478. d = alloc_bootmem(sizeof(*d));
  479. d->nr_reg = desc->mask_regs ? desc->nr_mask_regs * 2 : 0;
  480. d->nr_reg += desc->prio_regs ? desc->nr_prio_regs * 2 : 0;
  481. d->nr_reg += desc->sense_regs ? desc->nr_sense_regs : 0;
  482. d->reg = alloc_bootmem(d->nr_reg * sizeof(*d->reg));
  483. #ifdef CONFIG_SMP
  484. d->smp = alloc_bootmem(d->nr_reg * sizeof(*d->smp));
  485. #endif
  486. k = 0;
  487. if (desc->mask_regs) {
  488. for (i = 0; i < desc->nr_mask_regs; i++) {
  489. smp = IS_SMP(desc->mask_regs[i]);
  490. k += save_reg(d, k, desc->mask_regs[i].set_reg, smp);
  491. k += save_reg(d, k, desc->mask_regs[i].clr_reg, smp);
  492. }
  493. }
  494. if (desc->prio_regs) {
  495. d->prio = alloc_bootmem(desc->nr_vectors * sizeof(*d->prio));
  496. for (i = 0; i < desc->nr_prio_regs; i++) {
  497. smp = IS_SMP(desc->prio_regs[i]);
  498. k += save_reg(d, k, desc->prio_regs[i].set_reg, smp);
  499. k += save_reg(d, k, desc->prio_regs[i].clr_reg, smp);
  500. }
  501. }
  502. if (desc->sense_regs) {
  503. d->sense = alloc_bootmem(desc->nr_vectors * sizeof(*d->sense));
  504. for (i = 0; i < desc->nr_sense_regs; i++) {
  505. k += save_reg(d, k, desc->sense_regs[i].reg, 0);
  506. }
  507. }
  508. BUG_ON(k > 256); /* _INTC_ADDR_E() and _INTC_ADDR_D() are 8 bits */
  509. d->chip.name = desc->name;
  510. d->chip.mask = intc_disable;
  511. d->chip.unmask = intc_enable;
  512. d->chip.mask_ack = intc_disable;
  513. d->chip.set_type = intc_set_sense;
  514. for (i = 0; i < desc->nr_vectors; i++) {
  515. struct intc_vect *vect = desc->vectors + i;
  516. intc_register_irq(desc, d, vect->enum_id, evt2irq(vect->vect));
  517. }
  518. }