rtasd.c 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510
  1. /*
  2. * Copyright (C) 2001 Anton Blanchard <anton@au.ibm.com>, IBM
  3. *
  4. * This program is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU General Public License
  6. * as published by the Free Software Foundation; either version
  7. * 2 of the License, or (at your option) any later version.
  8. *
  9. * Communication to userspace based on kernel/printk.c
  10. */
  11. #include <linux/types.h>
  12. #include <linux/errno.h>
  13. #include <linux/sched.h>
  14. #include <linux/kernel.h>
  15. #include <linux/poll.h>
  16. #include <linux/proc_fs.h>
  17. #include <linux/init.h>
  18. #include <linux/vmalloc.h>
  19. #include <linux/spinlock.h>
  20. #include <linux/cpu.h>
  21. #include <linux/delay.h>
  22. #include <asm/uaccess.h>
  23. #include <asm/io.h>
  24. #include <asm/rtas.h>
  25. #include <asm/prom.h>
  26. #include <asm/nvram.h>
  27. #include <asm/atomic.h>
  28. #include <asm/machdep.h>
  29. #if 0
  30. #define DEBUG(A...) printk(KERN_ERR A)
  31. #else
  32. #define DEBUG(A...)
  33. #endif
  34. static DEFINE_SPINLOCK(rtasd_log_lock);
  35. DECLARE_WAIT_QUEUE_HEAD(rtas_log_wait);
  36. static char *rtas_log_buf;
  37. static unsigned long rtas_log_start;
  38. static unsigned long rtas_log_size;
  39. static int surveillance_timeout = -1;
  40. static unsigned int rtas_error_log_max;
  41. static unsigned int rtas_error_log_buffer_max;
  42. /* RTAS service tokens */
  43. static unsigned int event_scan;
  44. static unsigned int rtas_event_scan_rate;
  45. static int full_rtas_msgs = 0;
  46. /* Stop logging to nvram after first fatal error */
  47. static int logging_enabled; /* Until we initialize everything,
  48. * make sure we don't try logging
  49. * anything */
  50. static int error_log_cnt;
  51. /*
  52. * Since we use 32 bit RTAS, the physical address of this must be below
  53. * 4G or else bad things happen. Allocate this in the kernel data and
  54. * make it big enough.
  55. */
  56. static unsigned char logdata[RTAS_ERROR_LOG_MAX];
  57. static char *rtas_type[] = {
  58. "Unknown", "Retry", "TCE Error", "Internal Device Failure",
  59. "Timeout", "Data Parity", "Address Parity", "Cache Parity",
  60. "Address Invalid", "ECC Uncorrected", "ECC Corrupted",
  61. };
  62. static char *rtas_event_type(int type)
  63. {
  64. if ((type > 0) && (type < 11))
  65. return rtas_type[type];
  66. switch (type) {
  67. case RTAS_TYPE_EPOW:
  68. return "EPOW";
  69. case RTAS_TYPE_PLATFORM:
  70. return "Platform Error";
  71. case RTAS_TYPE_IO:
  72. return "I/O Event";
  73. case RTAS_TYPE_INFO:
  74. return "Platform Information Event";
  75. case RTAS_TYPE_DEALLOC:
  76. return "Resource Deallocation Event";
  77. case RTAS_TYPE_DUMP:
  78. return "Dump Notification Event";
  79. }
  80. return rtas_type[0];
  81. }
  82. /* To see this info, grep RTAS /var/log/messages and each entry
  83. * will be collected together with obvious begin/end.
  84. * There will be a unique identifier on the begin and end lines.
  85. * This will persist across reboots.
  86. *
  87. * format of error logs returned from RTAS:
  88. * bytes (size) : contents
  89. * --------------------------------------------------------
  90. * 0-7 (8) : rtas_error_log
  91. * 8-47 (40) : extended info
  92. * 48-51 (4) : vendor id
  93. * 52-1023 (vendor specific) : location code and debug data
  94. */
  95. static void printk_log_rtas(char *buf, int len)
  96. {
  97. int i,j,n = 0;
  98. int perline = 16;
  99. char buffer[64];
  100. char * str = "RTAS event";
  101. if (full_rtas_msgs) {
  102. printk(RTAS_DEBUG "%d -------- %s begin --------\n",
  103. error_log_cnt, str);
  104. /*
  105. * Print perline bytes on each line, each line will start
  106. * with RTAS and a changing number, so syslogd will
  107. * print lines that are otherwise the same. Separate every
  108. * 4 bytes with a space.
  109. */
  110. for (i = 0; i < len; i++) {
  111. j = i % perline;
  112. if (j == 0) {
  113. memset(buffer, 0, sizeof(buffer));
  114. n = sprintf(buffer, "RTAS %d:", i/perline);
  115. }
  116. if ((i % 4) == 0)
  117. n += sprintf(buffer+n, " ");
  118. n += sprintf(buffer+n, "%02x", (unsigned char)buf[i]);
  119. if (j == (perline-1))
  120. printk(KERN_DEBUG "%s\n", buffer);
  121. }
  122. if ((i % perline) != 0)
  123. printk(KERN_DEBUG "%s\n", buffer);
  124. printk(RTAS_DEBUG "%d -------- %s end ----------\n",
  125. error_log_cnt, str);
  126. } else {
  127. struct rtas_error_log *errlog = (struct rtas_error_log *)buf;
  128. printk(RTAS_DEBUG "event: %d, Type: %s, Severity: %d\n",
  129. error_log_cnt, rtas_event_type(errlog->type),
  130. errlog->severity);
  131. }
  132. }
  133. static int log_rtas_len(char * buf)
  134. {
  135. int len;
  136. struct rtas_error_log *err;
  137. /* rtas fixed header */
  138. len = 8;
  139. err = (struct rtas_error_log *)buf;
  140. if (err->extended_log_length) {
  141. /* extended header */
  142. len += err->extended_log_length;
  143. }
  144. if (rtas_error_log_max == 0)
  145. rtas_error_log_max = rtas_get_error_log_max();
  146. if (len > rtas_error_log_max)
  147. len = rtas_error_log_max;
  148. return len;
  149. }
  150. /*
  151. * First write to nvram, if fatal error, that is the only
  152. * place we log the info. The error will be picked up
  153. * on the next reboot by rtasd. If not fatal, run the
  154. * method for the type of error. Currently, only RTAS
  155. * errors have methods implemented, but in the future
  156. * there might be a need to store data in nvram before a
  157. * call to panic().
  158. *
  159. * XXX We write to nvram periodically, to indicate error has
  160. * been written and sync'd, but there is a possibility
  161. * that if we don't shutdown correctly, a duplicate error
  162. * record will be created on next reboot.
  163. */
  164. void pSeries_log_error(char *buf, unsigned int err_type, int fatal)
  165. {
  166. unsigned long offset;
  167. unsigned long s;
  168. int len = 0;
  169. DEBUG("logging event\n");
  170. if (buf == NULL)
  171. return;
  172. spin_lock_irqsave(&rtasd_log_lock, s);
  173. /* get length and increase count */
  174. switch (err_type & ERR_TYPE_MASK) {
  175. case ERR_TYPE_RTAS_LOG:
  176. len = log_rtas_len(buf);
  177. if (!(err_type & ERR_FLAG_BOOT))
  178. error_log_cnt++;
  179. break;
  180. case ERR_TYPE_KERNEL_PANIC:
  181. default:
  182. spin_unlock_irqrestore(&rtasd_log_lock, s);
  183. return;
  184. }
  185. /* Write error to NVRAM */
  186. if (logging_enabled && !(err_type & ERR_FLAG_BOOT))
  187. nvram_write_error_log(buf, len, err_type, error_log_cnt);
  188. /*
  189. * rtas errors can occur during boot, and we do want to capture
  190. * those somewhere, even if nvram isn't ready (why not?), and even
  191. * if rtasd isn't ready. Put them into the boot log, at least.
  192. */
  193. if ((err_type & ERR_TYPE_MASK) == ERR_TYPE_RTAS_LOG)
  194. printk_log_rtas(buf, len);
  195. /* Check to see if we need to or have stopped logging */
  196. if (fatal || !logging_enabled) {
  197. logging_enabled = 0;
  198. spin_unlock_irqrestore(&rtasd_log_lock, s);
  199. return;
  200. }
  201. /* call type specific method for error */
  202. switch (err_type & ERR_TYPE_MASK) {
  203. case ERR_TYPE_RTAS_LOG:
  204. offset = rtas_error_log_buffer_max *
  205. ((rtas_log_start+rtas_log_size) & LOG_NUMBER_MASK);
  206. /* First copy over sequence number */
  207. memcpy(&rtas_log_buf[offset], (void *) &error_log_cnt, sizeof(int));
  208. /* Second copy over error log data */
  209. offset += sizeof(int);
  210. memcpy(&rtas_log_buf[offset], buf, len);
  211. if (rtas_log_size < LOG_NUMBER)
  212. rtas_log_size += 1;
  213. else
  214. rtas_log_start += 1;
  215. spin_unlock_irqrestore(&rtasd_log_lock, s);
  216. wake_up_interruptible(&rtas_log_wait);
  217. break;
  218. case ERR_TYPE_KERNEL_PANIC:
  219. default:
  220. spin_unlock_irqrestore(&rtasd_log_lock, s);
  221. return;
  222. }
  223. }
  224. static int rtas_log_open(struct inode * inode, struct file * file)
  225. {
  226. return 0;
  227. }
  228. static int rtas_log_release(struct inode * inode, struct file * file)
  229. {
  230. return 0;
  231. }
  232. /* This will check if all events are logged, if they are then, we
  233. * know that we can safely clear the events in NVRAM.
  234. * Next we'll sit and wait for something else to log.
  235. */
  236. static ssize_t rtas_log_read(struct file * file, char __user * buf,
  237. size_t count, loff_t *ppos)
  238. {
  239. int error;
  240. char *tmp;
  241. unsigned long s;
  242. unsigned long offset;
  243. if (!buf || count < rtas_error_log_buffer_max)
  244. return -EINVAL;
  245. count = rtas_error_log_buffer_max;
  246. if (!access_ok(VERIFY_WRITE, buf, count))
  247. return -EFAULT;
  248. tmp = kmalloc(count, GFP_KERNEL);
  249. if (!tmp)
  250. return -ENOMEM;
  251. spin_lock_irqsave(&rtasd_log_lock, s);
  252. /* if it's 0, then we know we got the last one (the one in NVRAM) */
  253. if (rtas_log_size == 0 && logging_enabled)
  254. nvram_clear_error_log();
  255. spin_unlock_irqrestore(&rtasd_log_lock, s);
  256. error = wait_event_interruptible(rtas_log_wait, rtas_log_size);
  257. if (error)
  258. goto out;
  259. spin_lock_irqsave(&rtasd_log_lock, s);
  260. offset = rtas_error_log_buffer_max * (rtas_log_start & LOG_NUMBER_MASK);
  261. memcpy(tmp, &rtas_log_buf[offset], count);
  262. rtas_log_start += 1;
  263. rtas_log_size -= 1;
  264. spin_unlock_irqrestore(&rtasd_log_lock, s);
  265. error = copy_to_user(buf, tmp, count) ? -EFAULT : count;
  266. out:
  267. kfree(tmp);
  268. return error;
  269. }
  270. static unsigned int rtas_log_poll(struct file *file, poll_table * wait)
  271. {
  272. poll_wait(file, &rtas_log_wait, wait);
  273. if (rtas_log_size)
  274. return POLLIN | POLLRDNORM;
  275. return 0;
  276. }
  277. const struct file_operations proc_rtas_log_operations = {
  278. .read = rtas_log_read,
  279. .poll = rtas_log_poll,
  280. .open = rtas_log_open,
  281. .release = rtas_log_release,
  282. };
  283. static int enable_surveillance(int timeout)
  284. {
  285. int error;
  286. error = rtas_set_indicator(SURVEILLANCE_TOKEN, 0, timeout);
  287. if (error == 0)
  288. return 0;
  289. if (error == -EINVAL) {
  290. printk(KERN_DEBUG "rtasd: surveillance not supported\n");
  291. return 0;
  292. }
  293. printk(KERN_ERR "rtasd: could not update surveillance\n");
  294. return -1;
  295. }
  296. static void do_event_scan(void)
  297. {
  298. int error;
  299. do {
  300. memset(logdata, 0, rtas_error_log_max);
  301. error = rtas_call(event_scan, 4, 1, NULL,
  302. RTAS_EVENT_SCAN_ALL_EVENTS, 0,
  303. __pa(logdata), rtas_error_log_max);
  304. if (error == -1) {
  305. printk(KERN_ERR "event-scan failed\n");
  306. break;
  307. }
  308. if (error == 0)
  309. pSeries_log_error(logdata, ERR_TYPE_RTAS_LOG, 0);
  310. } while(error == 0);
  311. }
  312. static void do_event_scan_all_cpus(long delay)
  313. {
  314. int cpu;
  315. lock_cpu_hotplug();
  316. cpu = first_cpu(cpu_online_map);
  317. for (;;) {
  318. set_cpus_allowed(current, cpumask_of_cpu(cpu));
  319. do_event_scan();
  320. set_cpus_allowed(current, CPU_MASK_ALL);
  321. /* Drop hotplug lock, and sleep for the specified delay */
  322. unlock_cpu_hotplug();
  323. msleep_interruptible(delay);
  324. lock_cpu_hotplug();
  325. cpu = next_cpu(cpu, cpu_online_map);
  326. if (cpu == NR_CPUS)
  327. break;
  328. }
  329. unlock_cpu_hotplug();
  330. }
  331. static int rtasd(void *unused)
  332. {
  333. unsigned int err_type;
  334. int rc;
  335. daemonize("rtasd");
  336. printk(KERN_DEBUG "RTAS daemon started\n");
  337. DEBUG("will sleep for %d milliseconds\n", (30000/rtas_event_scan_rate));
  338. /* See if we have any error stored in NVRAM */
  339. memset(logdata, 0, rtas_error_log_max);
  340. rc = nvram_read_error_log(logdata, rtas_error_log_max,
  341. &err_type, &error_log_cnt);
  342. /* We can use rtas_log_buf now */
  343. logging_enabled = 1;
  344. if (!rc) {
  345. if (err_type != ERR_FLAG_ALREADY_LOGGED) {
  346. pSeries_log_error(logdata, err_type | ERR_FLAG_BOOT, 0);
  347. }
  348. }
  349. /* First pass. */
  350. do_event_scan_all_cpus(1000);
  351. if (surveillance_timeout != -1) {
  352. DEBUG("enabling surveillance\n");
  353. enable_surveillance(surveillance_timeout);
  354. DEBUG("surveillance enabled\n");
  355. }
  356. /* Delay should be at least one second since some
  357. * machines have problems if we call event-scan too
  358. * quickly. */
  359. for (;;)
  360. do_event_scan_all_cpus(30000/rtas_event_scan_rate);
  361. return -EINVAL;
  362. }
  363. static int __init rtas_init(void)
  364. {
  365. struct proc_dir_entry *entry;
  366. if (!machine_is(pseries))
  367. return 0;
  368. /* No RTAS */
  369. event_scan = rtas_token("event-scan");
  370. if (event_scan == RTAS_UNKNOWN_SERVICE) {
  371. printk(KERN_DEBUG "rtasd: no event-scan on system\n");
  372. return -ENODEV;
  373. }
  374. rtas_event_scan_rate = rtas_token("rtas-event-scan-rate");
  375. if (rtas_event_scan_rate == RTAS_UNKNOWN_SERVICE) {
  376. printk(KERN_ERR "rtasd: no rtas-event-scan-rate on system\n");
  377. return -ENODEV;
  378. }
  379. /* Make room for the sequence number */
  380. rtas_error_log_max = rtas_get_error_log_max();
  381. rtas_error_log_buffer_max = rtas_error_log_max + sizeof(int);
  382. rtas_log_buf = vmalloc(rtas_error_log_buffer_max*LOG_NUMBER);
  383. if (!rtas_log_buf) {
  384. printk(KERN_ERR "rtasd: no memory\n");
  385. return -ENOMEM;
  386. }
  387. entry = create_proc_entry("ppc64/rtas/error_log", S_IRUSR, NULL);
  388. if (entry)
  389. entry->proc_fops = &proc_rtas_log_operations;
  390. else
  391. printk(KERN_ERR "Failed to create error_log proc entry\n");
  392. if (kernel_thread(rtasd, NULL, CLONE_FS) < 0)
  393. printk(KERN_ERR "Failed to start RTAS daemon\n");
  394. return 0;
  395. }
  396. static int __init surveillance_setup(char *str)
  397. {
  398. int i;
  399. if (get_option(&str,&i)) {
  400. if (i >= 0 && i <= 255)
  401. surveillance_timeout = i;
  402. }
  403. return 1;
  404. }
  405. static int __init rtasmsgs_setup(char *str)
  406. {
  407. if (strcmp(str, "on") == 0)
  408. full_rtas_msgs = 1;
  409. else if (strcmp(str, "off") == 0)
  410. full_rtas_msgs = 0;
  411. return 1;
  412. }
  413. __initcall(rtas_init);
  414. __setup("surveillance=", surveillance_setup);
  415. __setup("rtasmsgs=", rtasmsgs_setup);