sched.c 25 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991
  1. /* sched.c - SPU scheduler.
  2. *
  3. * Copyright (C) IBM 2005
  4. * Author: Mark Nutter <mnutter@us.ibm.com>
  5. *
  6. * 2006-03-31 NUMA domains added.
  7. *
  8. * This program is free software; you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation; either version 2, or (at your option)
  11. * any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program; if not, write to the Free Software
  20. * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  21. */
  22. #undef DEBUG
  23. #include <linux/module.h>
  24. #include <linux/errno.h>
  25. #include <linux/sched.h>
  26. #include <linux/kernel.h>
  27. #include <linux/mm.h>
  28. #include <linux/completion.h>
  29. #include <linux/vmalloc.h>
  30. #include <linux/smp.h>
  31. #include <linux/stddef.h>
  32. #include <linux/unistd.h>
  33. #include <linux/numa.h>
  34. #include <linux/mutex.h>
  35. #include <linux/notifier.h>
  36. #include <linux/kthread.h>
  37. #include <linux/pid_namespace.h>
  38. #include <linux/proc_fs.h>
  39. #include <linux/seq_file.h>
  40. #include <asm/io.h>
  41. #include <asm/mmu_context.h>
  42. #include <asm/spu.h>
  43. #include <asm/spu_csa.h>
  44. #include <asm/spu_priv1.h>
  45. #include "spufs.h"
  46. struct spu_prio_array {
  47. DECLARE_BITMAP(bitmap, MAX_PRIO);
  48. struct list_head runq[MAX_PRIO];
  49. spinlock_t runq_lock;
  50. int nr_waiting;
  51. };
  52. static unsigned long spu_avenrun[3];
  53. static struct spu_prio_array *spu_prio;
  54. static struct task_struct *spusched_task;
  55. static struct timer_list spusched_timer;
  56. /*
  57. * Priority of a normal, non-rt, non-niced'd process (aka nice level 0).
  58. */
  59. #define NORMAL_PRIO 120
  60. /*
  61. * Frequency of the spu scheduler tick. By default we do one SPU scheduler
  62. * tick for every 10 CPU scheduler ticks.
  63. */
  64. #define SPUSCHED_TICK (10)
  65. /*
  66. * These are the 'tuning knobs' of the scheduler:
  67. *
  68. * Minimum timeslice is 5 msecs (or 1 spu scheduler tick, whichever is
  69. * larger), default timeslice is 100 msecs, maximum timeslice is 800 msecs.
  70. */
  71. #define MIN_SPU_TIMESLICE max(5 * HZ / (1000 * SPUSCHED_TICK), 1)
  72. #define DEF_SPU_TIMESLICE (100 * HZ / (1000 * SPUSCHED_TICK))
  73. #define MAX_USER_PRIO (MAX_PRIO - MAX_RT_PRIO)
  74. #define SCALE_PRIO(x, prio) \
  75. max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO / 2), MIN_SPU_TIMESLICE)
  76. /*
  77. * scale user-nice values [ -20 ... 0 ... 19 ] to time slice values:
  78. * [800ms ... 100ms ... 5ms]
  79. *
  80. * The higher a thread's priority, the bigger timeslices
  81. * it gets during one round of execution. But even the lowest
  82. * priority thread gets MIN_TIMESLICE worth of execution time.
  83. */
  84. void spu_set_timeslice(struct spu_context *ctx)
  85. {
  86. if (ctx->prio < NORMAL_PRIO)
  87. ctx->time_slice = SCALE_PRIO(DEF_SPU_TIMESLICE * 4, ctx->prio);
  88. else
  89. ctx->time_slice = SCALE_PRIO(DEF_SPU_TIMESLICE, ctx->prio);
  90. }
  91. /*
  92. * Update scheduling information from the owning thread.
  93. */
  94. void __spu_update_sched_info(struct spu_context *ctx)
  95. {
  96. /*
  97. * 32-Bit assignment are atomic on powerpc, and we don't care about
  98. * memory ordering here because retriving the controlling thread is
  99. * per defintion racy.
  100. */
  101. ctx->tid = current->pid;
  102. /*
  103. * We do our own priority calculations, so we normally want
  104. * ->static_prio to start with. Unfortunately thies field
  105. * contains junk for threads with a realtime scheduling
  106. * policy so we have to look at ->prio in this case.
  107. */
  108. if (rt_prio(current->prio))
  109. ctx->prio = current->prio;
  110. else
  111. ctx->prio = current->static_prio;
  112. ctx->policy = current->policy;
  113. /*
  114. * A lot of places that don't hold list_mutex poke into
  115. * cpus_allowed, including grab_runnable_context which
  116. * already holds the runq_lock. So abuse runq_lock
  117. * to protect this field aswell.
  118. */
  119. spin_lock(&spu_prio->runq_lock);
  120. ctx->cpus_allowed = current->cpus_allowed;
  121. spin_unlock(&spu_prio->runq_lock);
  122. }
  123. void spu_update_sched_info(struct spu_context *ctx)
  124. {
  125. int node = ctx->spu->node;
  126. mutex_lock(&cbe_spu_info[node].list_mutex);
  127. __spu_update_sched_info(ctx);
  128. mutex_unlock(&cbe_spu_info[node].list_mutex);
  129. }
  130. static int __node_allowed(struct spu_context *ctx, int node)
  131. {
  132. if (nr_cpus_node(node)) {
  133. cpumask_t mask = node_to_cpumask(node);
  134. if (cpus_intersects(mask, ctx->cpus_allowed))
  135. return 1;
  136. }
  137. return 0;
  138. }
  139. static int node_allowed(struct spu_context *ctx, int node)
  140. {
  141. int rval;
  142. spin_lock(&spu_prio->runq_lock);
  143. rval = __node_allowed(ctx, node);
  144. spin_unlock(&spu_prio->runq_lock);
  145. return rval;
  146. }
  147. static BLOCKING_NOTIFIER_HEAD(spu_switch_notifier);
  148. void spu_switch_notify(struct spu *spu, struct spu_context *ctx)
  149. {
  150. blocking_notifier_call_chain(&spu_switch_notifier,
  151. ctx ? ctx->object_id : 0, spu);
  152. }
  153. static void notify_spus_active(void)
  154. {
  155. int node;
  156. /*
  157. * Wake up the active spu_contexts.
  158. *
  159. * When the awakened processes see their "notify_active" flag is set,
  160. * they will call spu_switch_notify();
  161. */
  162. for_each_online_node(node) {
  163. struct spu *spu;
  164. mutex_lock(&cbe_spu_info[node].list_mutex);
  165. list_for_each_entry(spu, &cbe_spu_info[node].spus, cbe_list) {
  166. if (spu->alloc_state != SPU_FREE) {
  167. struct spu_context *ctx = spu->ctx;
  168. set_bit(SPU_SCHED_NOTIFY_ACTIVE,
  169. &ctx->sched_flags);
  170. mb();
  171. wake_up_all(&ctx->stop_wq);
  172. }
  173. }
  174. mutex_unlock(&cbe_spu_info[node].list_mutex);
  175. }
  176. }
  177. int spu_switch_event_register(struct notifier_block * n)
  178. {
  179. int ret;
  180. ret = blocking_notifier_chain_register(&spu_switch_notifier, n);
  181. if (!ret)
  182. notify_spus_active();
  183. return ret;
  184. }
  185. EXPORT_SYMBOL_GPL(spu_switch_event_register);
  186. int spu_switch_event_unregister(struct notifier_block * n)
  187. {
  188. return blocking_notifier_chain_unregister(&spu_switch_notifier, n);
  189. }
  190. EXPORT_SYMBOL_GPL(spu_switch_event_unregister);
  191. /**
  192. * spu_bind_context - bind spu context to physical spu
  193. * @spu: physical spu to bind to
  194. * @ctx: context to bind
  195. */
  196. static void spu_bind_context(struct spu *spu, struct spu_context *ctx)
  197. {
  198. pr_debug("%s: pid=%d SPU=%d NODE=%d\n", __FUNCTION__, current->pid,
  199. spu->number, spu->node);
  200. spuctx_switch_state(ctx, SPU_UTIL_SYSTEM);
  201. if (ctx->flags & SPU_CREATE_NOSCHED)
  202. atomic_inc(&cbe_spu_info[spu->node].reserved_spus);
  203. ctx->stats.slb_flt_base = spu->stats.slb_flt;
  204. ctx->stats.class2_intr_base = spu->stats.class2_intr;
  205. spu->ctx = ctx;
  206. spu->flags = 0;
  207. ctx->spu = spu;
  208. ctx->ops = &spu_hw_ops;
  209. spu->pid = current->pid;
  210. spu->tgid = current->tgid;
  211. spu_associate_mm(spu, ctx->owner);
  212. spu->ibox_callback = spufs_ibox_callback;
  213. spu->wbox_callback = spufs_wbox_callback;
  214. spu->stop_callback = spufs_stop_callback;
  215. spu->mfc_callback = spufs_mfc_callback;
  216. spu->dma_callback = spufs_dma_callback;
  217. mb();
  218. spu_unmap_mappings(ctx);
  219. spu_restore(&ctx->csa, spu);
  220. spu->timestamp = jiffies;
  221. spu_cpu_affinity_set(spu, raw_smp_processor_id());
  222. spu_switch_notify(spu, ctx);
  223. ctx->state = SPU_STATE_RUNNABLE;
  224. spuctx_switch_state(ctx, SPU_UTIL_IDLE_LOADED);
  225. }
  226. /*
  227. * Must be used with the list_mutex held.
  228. */
  229. static inline int sched_spu(struct spu *spu)
  230. {
  231. BUG_ON(!mutex_is_locked(&cbe_spu_info[spu->node].list_mutex));
  232. return (!spu->ctx || !(spu->ctx->flags & SPU_CREATE_NOSCHED));
  233. }
  234. static void aff_merge_remaining_ctxs(struct spu_gang *gang)
  235. {
  236. struct spu_context *ctx;
  237. list_for_each_entry(ctx, &gang->aff_list_head, aff_list) {
  238. if (list_empty(&ctx->aff_list))
  239. list_add(&ctx->aff_list, &gang->aff_list_head);
  240. }
  241. gang->aff_flags |= AFF_MERGED;
  242. }
  243. static void aff_set_offsets(struct spu_gang *gang)
  244. {
  245. struct spu_context *ctx;
  246. int offset;
  247. offset = -1;
  248. list_for_each_entry_reverse(ctx, &gang->aff_ref_ctx->aff_list,
  249. aff_list) {
  250. if (&ctx->aff_list == &gang->aff_list_head)
  251. break;
  252. ctx->aff_offset = offset--;
  253. }
  254. offset = 0;
  255. list_for_each_entry(ctx, gang->aff_ref_ctx->aff_list.prev, aff_list) {
  256. if (&ctx->aff_list == &gang->aff_list_head)
  257. break;
  258. ctx->aff_offset = offset++;
  259. }
  260. gang->aff_flags |= AFF_OFFSETS_SET;
  261. }
  262. static struct spu *aff_ref_location(struct spu_context *ctx, int mem_aff,
  263. int group_size, int lowest_offset)
  264. {
  265. struct spu *spu;
  266. int node, n;
  267. /*
  268. * TODO: A better algorithm could be used to find a good spu to be
  269. * used as reference location for the ctxs chain.
  270. */
  271. node = cpu_to_node(raw_smp_processor_id());
  272. for (n = 0; n < MAX_NUMNODES; n++, node++) {
  273. node = (node < MAX_NUMNODES) ? node : 0;
  274. if (!node_allowed(ctx, node))
  275. continue;
  276. mutex_lock(&cbe_spu_info[node].list_mutex);
  277. list_for_each_entry(spu, &cbe_spu_info[node].spus, cbe_list) {
  278. if ((!mem_aff || spu->has_mem_affinity) &&
  279. sched_spu(spu)) {
  280. mutex_unlock(&cbe_spu_info[node].list_mutex);
  281. return spu;
  282. }
  283. }
  284. mutex_unlock(&cbe_spu_info[node].list_mutex);
  285. }
  286. return NULL;
  287. }
  288. static void aff_set_ref_point_location(struct spu_gang *gang)
  289. {
  290. int mem_aff, gs, lowest_offset;
  291. struct spu_context *ctx;
  292. struct spu *tmp;
  293. mem_aff = gang->aff_ref_ctx->flags & SPU_CREATE_AFFINITY_MEM;
  294. lowest_offset = 0;
  295. gs = 0;
  296. list_for_each_entry(tmp, &gang->aff_list_head, aff_list)
  297. gs++;
  298. list_for_each_entry_reverse(ctx, &gang->aff_ref_ctx->aff_list,
  299. aff_list) {
  300. if (&ctx->aff_list == &gang->aff_list_head)
  301. break;
  302. lowest_offset = ctx->aff_offset;
  303. }
  304. gang->aff_ref_spu = aff_ref_location(gang->aff_ref_ctx, mem_aff, gs,
  305. lowest_offset);
  306. }
  307. static struct spu *ctx_location(struct spu *ref, int offset, int node)
  308. {
  309. struct spu *spu;
  310. spu = NULL;
  311. if (offset >= 0) {
  312. list_for_each_entry(spu, ref->aff_list.prev, aff_list) {
  313. BUG_ON(spu->node != node);
  314. if (offset == 0)
  315. break;
  316. if (sched_spu(spu))
  317. offset--;
  318. }
  319. } else {
  320. list_for_each_entry_reverse(spu, ref->aff_list.next, aff_list) {
  321. BUG_ON(spu->node != node);
  322. if (offset == 0)
  323. break;
  324. if (sched_spu(spu))
  325. offset++;
  326. }
  327. }
  328. return spu;
  329. }
  330. /*
  331. * affinity_check is called each time a context is going to be scheduled.
  332. * It returns the spu ptr on which the context must run.
  333. */
  334. static int has_affinity(struct spu_context *ctx)
  335. {
  336. struct spu_gang *gang = ctx->gang;
  337. if (list_empty(&ctx->aff_list))
  338. return 0;
  339. if (!gang->aff_ref_spu) {
  340. if (!(gang->aff_flags & AFF_MERGED))
  341. aff_merge_remaining_ctxs(gang);
  342. if (!(gang->aff_flags & AFF_OFFSETS_SET))
  343. aff_set_offsets(gang);
  344. aff_set_ref_point_location(gang);
  345. }
  346. return gang->aff_ref_spu != NULL;
  347. }
  348. /**
  349. * spu_unbind_context - unbind spu context from physical spu
  350. * @spu: physical spu to unbind from
  351. * @ctx: context to unbind
  352. */
  353. static void spu_unbind_context(struct spu *spu, struct spu_context *ctx)
  354. {
  355. pr_debug("%s: unbind pid=%d SPU=%d NODE=%d\n", __FUNCTION__,
  356. spu->pid, spu->number, spu->node);
  357. spuctx_switch_state(ctx, SPU_UTIL_SYSTEM);
  358. if (spu->ctx->flags & SPU_CREATE_NOSCHED)
  359. atomic_dec(&cbe_spu_info[spu->node].reserved_spus);
  360. if (ctx->gang){
  361. mutex_lock(&ctx->gang->aff_mutex);
  362. if (has_affinity(ctx)) {
  363. if (atomic_dec_and_test(&ctx->gang->aff_sched_count))
  364. ctx->gang->aff_ref_spu = NULL;
  365. }
  366. mutex_unlock(&ctx->gang->aff_mutex);
  367. }
  368. spu_switch_notify(spu, NULL);
  369. spu_unmap_mappings(ctx);
  370. spu_save(&ctx->csa, spu);
  371. spu->timestamp = jiffies;
  372. ctx->state = SPU_STATE_SAVED;
  373. spu->ibox_callback = NULL;
  374. spu->wbox_callback = NULL;
  375. spu->stop_callback = NULL;
  376. spu->mfc_callback = NULL;
  377. spu->dma_callback = NULL;
  378. spu_associate_mm(spu, NULL);
  379. spu->pid = 0;
  380. spu->tgid = 0;
  381. ctx->ops = &spu_backing_ops;
  382. spu->flags = 0;
  383. spu->ctx = NULL;
  384. ctx->stats.slb_flt +=
  385. (spu->stats.slb_flt - ctx->stats.slb_flt_base);
  386. ctx->stats.class2_intr +=
  387. (spu->stats.class2_intr - ctx->stats.class2_intr_base);
  388. /* This maps the underlying spu state to idle */
  389. spuctx_switch_state(ctx, SPU_UTIL_IDLE_LOADED);
  390. ctx->spu = NULL;
  391. }
  392. /**
  393. * spu_add_to_rq - add a context to the runqueue
  394. * @ctx: context to add
  395. */
  396. static void __spu_add_to_rq(struct spu_context *ctx)
  397. {
  398. /*
  399. * Unfortunately this code path can be called from multiple threads
  400. * on behalf of a single context due to the way the problem state
  401. * mmap support works.
  402. *
  403. * Fortunately we need to wake up all these threads at the same time
  404. * and can simply skip the runqueue addition for every but the first
  405. * thread getting into this codepath.
  406. *
  407. * It's still quite hacky, and long-term we should proxy all other
  408. * threads through the owner thread so that spu_run is in control
  409. * of all the scheduling activity for a given context.
  410. */
  411. if (list_empty(&ctx->rq)) {
  412. list_add_tail(&ctx->rq, &spu_prio->runq[ctx->prio]);
  413. set_bit(ctx->prio, spu_prio->bitmap);
  414. if (!spu_prio->nr_waiting++)
  415. __mod_timer(&spusched_timer, jiffies + SPUSCHED_TICK);
  416. }
  417. }
  418. static void __spu_del_from_rq(struct spu_context *ctx)
  419. {
  420. int prio = ctx->prio;
  421. if (!list_empty(&ctx->rq)) {
  422. if (!--spu_prio->nr_waiting)
  423. del_timer(&spusched_timer);
  424. list_del_init(&ctx->rq);
  425. if (list_empty(&spu_prio->runq[prio]))
  426. clear_bit(prio, spu_prio->bitmap);
  427. }
  428. }
  429. static void spu_prio_wait(struct spu_context *ctx)
  430. {
  431. DEFINE_WAIT(wait);
  432. spin_lock(&spu_prio->runq_lock);
  433. prepare_to_wait_exclusive(&ctx->stop_wq, &wait, TASK_INTERRUPTIBLE);
  434. if (!signal_pending(current)) {
  435. __spu_add_to_rq(ctx);
  436. spin_unlock(&spu_prio->runq_lock);
  437. mutex_unlock(&ctx->state_mutex);
  438. schedule();
  439. mutex_lock(&ctx->state_mutex);
  440. spin_lock(&spu_prio->runq_lock);
  441. __spu_del_from_rq(ctx);
  442. }
  443. spin_unlock(&spu_prio->runq_lock);
  444. __set_current_state(TASK_RUNNING);
  445. remove_wait_queue(&ctx->stop_wq, &wait);
  446. }
  447. static struct spu *spu_get_idle(struct spu_context *ctx)
  448. {
  449. struct spu *spu, *aff_ref_spu;
  450. int node, n;
  451. if (ctx->gang) {
  452. mutex_lock(&ctx->gang->aff_mutex);
  453. if (has_affinity(ctx)) {
  454. aff_ref_spu = ctx->gang->aff_ref_spu;
  455. atomic_inc(&ctx->gang->aff_sched_count);
  456. mutex_unlock(&ctx->gang->aff_mutex);
  457. node = aff_ref_spu->node;
  458. mutex_lock(&cbe_spu_info[node].list_mutex);
  459. spu = ctx_location(aff_ref_spu, ctx->aff_offset, node);
  460. if (spu && spu->alloc_state == SPU_FREE)
  461. goto found;
  462. mutex_unlock(&cbe_spu_info[node].list_mutex);
  463. mutex_lock(&ctx->gang->aff_mutex);
  464. if (atomic_dec_and_test(&ctx->gang->aff_sched_count))
  465. ctx->gang->aff_ref_spu = NULL;
  466. mutex_unlock(&ctx->gang->aff_mutex);
  467. return NULL;
  468. }
  469. mutex_unlock(&ctx->gang->aff_mutex);
  470. }
  471. node = cpu_to_node(raw_smp_processor_id());
  472. for (n = 0; n < MAX_NUMNODES; n++, node++) {
  473. node = (node < MAX_NUMNODES) ? node : 0;
  474. if (!node_allowed(ctx, node))
  475. continue;
  476. mutex_lock(&cbe_spu_info[node].list_mutex);
  477. list_for_each_entry(spu, &cbe_spu_info[node].spus, cbe_list) {
  478. if (spu->alloc_state == SPU_FREE)
  479. goto found;
  480. }
  481. mutex_unlock(&cbe_spu_info[node].list_mutex);
  482. }
  483. return NULL;
  484. found:
  485. spu->alloc_state = SPU_USED;
  486. mutex_unlock(&cbe_spu_info[node].list_mutex);
  487. pr_debug("Got SPU %d %d\n", spu->number, spu->node);
  488. spu_init_channels(spu);
  489. return spu;
  490. }
  491. /**
  492. * find_victim - find a lower priority context to preempt
  493. * @ctx: canidate context for running
  494. *
  495. * Returns the freed physical spu to run the new context on.
  496. */
  497. static struct spu *find_victim(struct spu_context *ctx)
  498. {
  499. struct spu_context *victim = NULL;
  500. struct spu *spu;
  501. int node, n;
  502. /*
  503. * Look for a possible preemption candidate on the local node first.
  504. * If there is no candidate look at the other nodes. This isn't
  505. * exactly fair, but so far the whole spu schedule tries to keep
  506. * a strong node affinity. We might want to fine-tune this in
  507. * the future.
  508. */
  509. restart:
  510. node = cpu_to_node(raw_smp_processor_id());
  511. for (n = 0; n < MAX_NUMNODES; n++, node++) {
  512. node = (node < MAX_NUMNODES) ? node : 0;
  513. if (!node_allowed(ctx, node))
  514. continue;
  515. mutex_lock(&cbe_spu_info[node].list_mutex);
  516. list_for_each_entry(spu, &cbe_spu_info[node].spus, cbe_list) {
  517. struct spu_context *tmp = spu->ctx;
  518. if (tmp && tmp->prio > ctx->prio &&
  519. (!victim || tmp->prio > victim->prio))
  520. victim = spu->ctx;
  521. }
  522. mutex_unlock(&cbe_spu_info[node].list_mutex);
  523. if (victim) {
  524. /*
  525. * This nests ctx->state_mutex, but we always lock
  526. * higher priority contexts before lower priority
  527. * ones, so this is safe until we introduce
  528. * priority inheritance schemes.
  529. */
  530. if (!mutex_trylock(&victim->state_mutex)) {
  531. victim = NULL;
  532. goto restart;
  533. }
  534. spu = victim->spu;
  535. if (!spu) {
  536. /*
  537. * This race can happen because we've dropped
  538. * the active list mutex. No a problem, just
  539. * restart the search.
  540. */
  541. mutex_unlock(&victim->state_mutex);
  542. victim = NULL;
  543. goto restart;
  544. }
  545. mutex_lock(&cbe_spu_info[node].list_mutex);
  546. cbe_spu_info[node].nr_active--;
  547. spu_unbind_context(spu, victim);
  548. mutex_unlock(&cbe_spu_info[node].list_mutex);
  549. victim->stats.invol_ctx_switch++;
  550. spu->stats.invol_ctx_switch++;
  551. mutex_unlock(&victim->state_mutex);
  552. /*
  553. * We need to break out of the wait loop in spu_run
  554. * manually to ensure this context gets put on the
  555. * runqueue again ASAP.
  556. */
  557. wake_up(&victim->stop_wq);
  558. return spu;
  559. }
  560. }
  561. return NULL;
  562. }
  563. /**
  564. * spu_activate - find a free spu for a context and execute it
  565. * @ctx: spu context to schedule
  566. * @flags: flags (currently ignored)
  567. *
  568. * Tries to find a free spu to run @ctx. If no free spu is available
  569. * add the context to the runqueue so it gets woken up once an spu
  570. * is available.
  571. */
  572. int spu_activate(struct spu_context *ctx, unsigned long flags)
  573. {
  574. do {
  575. struct spu *spu;
  576. /*
  577. * If there are multiple threads waiting for a single context
  578. * only one actually binds the context while the others will
  579. * only be able to acquire the state_mutex once the context
  580. * already is in runnable state.
  581. */
  582. if (ctx->spu)
  583. return 0;
  584. spu = spu_get_idle(ctx);
  585. /*
  586. * If this is a realtime thread we try to get it running by
  587. * preempting a lower priority thread.
  588. */
  589. if (!spu && rt_prio(ctx->prio))
  590. spu = find_victim(ctx);
  591. if (spu) {
  592. int node = spu->node;
  593. mutex_lock(&cbe_spu_info[node].list_mutex);
  594. spu_bind_context(spu, ctx);
  595. cbe_spu_info[node].nr_active++;
  596. mutex_unlock(&cbe_spu_info[node].list_mutex);
  597. return 0;
  598. }
  599. spu_prio_wait(ctx);
  600. } while (!signal_pending(current));
  601. return -ERESTARTSYS;
  602. }
  603. /**
  604. * grab_runnable_context - try to find a runnable context
  605. *
  606. * Remove the highest priority context on the runqueue and return it
  607. * to the caller. Returns %NULL if no runnable context was found.
  608. */
  609. static struct spu_context *grab_runnable_context(int prio, int node)
  610. {
  611. struct spu_context *ctx;
  612. int best;
  613. spin_lock(&spu_prio->runq_lock);
  614. best = find_first_bit(spu_prio->bitmap, prio);
  615. while (best < prio) {
  616. struct list_head *rq = &spu_prio->runq[best];
  617. list_for_each_entry(ctx, rq, rq) {
  618. /* XXX(hch): check for affinity here aswell */
  619. if (__node_allowed(ctx, node)) {
  620. __spu_del_from_rq(ctx);
  621. goto found;
  622. }
  623. }
  624. best++;
  625. }
  626. ctx = NULL;
  627. found:
  628. spin_unlock(&spu_prio->runq_lock);
  629. return ctx;
  630. }
  631. static int __spu_deactivate(struct spu_context *ctx, int force, int max_prio)
  632. {
  633. struct spu *spu = ctx->spu;
  634. struct spu_context *new = NULL;
  635. if (spu) {
  636. new = grab_runnable_context(max_prio, spu->node);
  637. if (new || force) {
  638. int node = spu->node;
  639. mutex_lock(&cbe_spu_info[node].list_mutex);
  640. spu_unbind_context(spu, ctx);
  641. spu->alloc_state = SPU_FREE;
  642. cbe_spu_info[node].nr_active--;
  643. mutex_unlock(&cbe_spu_info[node].list_mutex);
  644. ctx->stats.vol_ctx_switch++;
  645. spu->stats.vol_ctx_switch++;
  646. if (new)
  647. wake_up(&new->stop_wq);
  648. }
  649. }
  650. return new != NULL;
  651. }
  652. /**
  653. * spu_deactivate - unbind a context from it's physical spu
  654. * @ctx: spu context to unbind
  655. *
  656. * Unbind @ctx from the physical spu it is running on and schedule
  657. * the highest priority context to run on the freed physical spu.
  658. */
  659. void spu_deactivate(struct spu_context *ctx)
  660. {
  661. __spu_deactivate(ctx, 1, MAX_PRIO);
  662. }
  663. /**
  664. * spu_yield - yield a physical spu if others are waiting
  665. * @ctx: spu context to yield
  666. *
  667. * Check if there is a higher priority context waiting and if yes
  668. * unbind @ctx from the physical spu and schedule the highest
  669. * priority context to run on the freed physical spu instead.
  670. */
  671. void spu_yield(struct spu_context *ctx)
  672. {
  673. if (!(ctx->flags & SPU_CREATE_NOSCHED)) {
  674. mutex_lock(&ctx->state_mutex);
  675. __spu_deactivate(ctx, 0, MAX_PRIO);
  676. mutex_unlock(&ctx->state_mutex);
  677. }
  678. }
  679. static noinline void spusched_tick(struct spu_context *ctx)
  680. {
  681. if (ctx->flags & SPU_CREATE_NOSCHED)
  682. return;
  683. if (ctx->policy == SCHED_FIFO)
  684. return;
  685. if (--ctx->time_slice)
  686. return;
  687. /*
  688. * Unfortunately list_mutex ranks outside of state_mutex, so
  689. * we have to trylock here. If we fail give the context another
  690. * tick and try again.
  691. */
  692. if (mutex_trylock(&ctx->state_mutex)) {
  693. struct spu *spu = ctx->spu;
  694. struct spu_context *new;
  695. new = grab_runnable_context(ctx->prio + 1, spu->node);
  696. if (new) {
  697. spu_unbind_context(spu, ctx);
  698. ctx->stats.invol_ctx_switch++;
  699. spu->stats.invol_ctx_switch++;
  700. spu->alloc_state = SPU_FREE;
  701. cbe_spu_info[spu->node].nr_active--;
  702. wake_up(&new->stop_wq);
  703. /*
  704. * We need to break out of the wait loop in
  705. * spu_run manually to ensure this context
  706. * gets put on the runqueue again ASAP.
  707. */
  708. wake_up(&ctx->stop_wq);
  709. }
  710. spu_set_timeslice(ctx);
  711. mutex_unlock(&ctx->state_mutex);
  712. } else {
  713. ctx->time_slice++;
  714. }
  715. }
  716. /**
  717. * count_active_contexts - count nr of active tasks
  718. *
  719. * Return the number of tasks currently running or waiting to run.
  720. *
  721. * Note that we don't take runq_lock / list_mutex here. Reading
  722. * a single 32bit value is atomic on powerpc, and we don't care
  723. * about memory ordering issues here.
  724. */
  725. static unsigned long count_active_contexts(void)
  726. {
  727. int nr_active = 0, node;
  728. for (node = 0; node < MAX_NUMNODES; node++)
  729. nr_active += cbe_spu_info[node].nr_active;
  730. nr_active += spu_prio->nr_waiting;
  731. return nr_active;
  732. }
  733. /**
  734. * spu_calc_load - given tick count, update the avenrun load estimates.
  735. * @tick: tick count
  736. *
  737. * No locking against reading these values from userspace, as for
  738. * the CPU loadavg code.
  739. */
  740. static void spu_calc_load(unsigned long ticks)
  741. {
  742. unsigned long active_tasks; /* fixed-point */
  743. static int count = LOAD_FREQ;
  744. count -= ticks;
  745. if (unlikely(count < 0)) {
  746. active_tasks = count_active_contexts() * FIXED_1;
  747. do {
  748. CALC_LOAD(spu_avenrun[0], EXP_1, active_tasks);
  749. CALC_LOAD(spu_avenrun[1], EXP_5, active_tasks);
  750. CALC_LOAD(spu_avenrun[2], EXP_15, active_tasks);
  751. count += LOAD_FREQ;
  752. } while (count < 0);
  753. }
  754. }
  755. static void spusched_wake(unsigned long data)
  756. {
  757. mod_timer(&spusched_timer, jiffies + SPUSCHED_TICK);
  758. wake_up_process(spusched_task);
  759. spu_calc_load(SPUSCHED_TICK);
  760. }
  761. static int spusched_thread(void *unused)
  762. {
  763. struct spu *spu;
  764. int node;
  765. while (!kthread_should_stop()) {
  766. set_current_state(TASK_INTERRUPTIBLE);
  767. schedule();
  768. for (node = 0; node < MAX_NUMNODES; node++) {
  769. mutex_lock(&cbe_spu_info[node].list_mutex);
  770. list_for_each_entry(spu, &cbe_spu_info[node].spus, cbe_list)
  771. if (spu->ctx)
  772. spusched_tick(spu->ctx);
  773. mutex_unlock(&cbe_spu_info[node].list_mutex);
  774. }
  775. }
  776. return 0;
  777. }
  778. #define LOAD_INT(x) ((x) >> FSHIFT)
  779. #define LOAD_FRAC(x) LOAD_INT(((x) & (FIXED_1-1)) * 100)
  780. static int show_spu_loadavg(struct seq_file *s, void *private)
  781. {
  782. int a, b, c;
  783. a = spu_avenrun[0] + (FIXED_1/200);
  784. b = spu_avenrun[1] + (FIXED_1/200);
  785. c = spu_avenrun[2] + (FIXED_1/200);
  786. /*
  787. * Note that last_pid doesn't really make much sense for the
  788. * SPU loadavg (it even seems very odd on the CPU side..),
  789. * but we include it here to have a 100% compatible interface.
  790. */
  791. seq_printf(s, "%d.%02d %d.%02d %d.%02d %ld/%d %d\n",
  792. LOAD_INT(a), LOAD_FRAC(a),
  793. LOAD_INT(b), LOAD_FRAC(b),
  794. LOAD_INT(c), LOAD_FRAC(c),
  795. count_active_contexts(),
  796. atomic_read(&nr_spu_contexts),
  797. current->nsproxy->pid_ns->last_pid);
  798. return 0;
  799. }
  800. static int spu_loadavg_open(struct inode *inode, struct file *file)
  801. {
  802. return single_open(file, show_spu_loadavg, NULL);
  803. }
  804. static const struct file_operations spu_loadavg_fops = {
  805. .open = spu_loadavg_open,
  806. .read = seq_read,
  807. .llseek = seq_lseek,
  808. .release = single_release,
  809. };
  810. int __init spu_sched_init(void)
  811. {
  812. struct proc_dir_entry *entry;
  813. int err = -ENOMEM, i;
  814. spu_prio = kzalloc(sizeof(struct spu_prio_array), GFP_KERNEL);
  815. if (!spu_prio)
  816. goto out;
  817. for (i = 0; i < MAX_PRIO; i++) {
  818. INIT_LIST_HEAD(&spu_prio->runq[i]);
  819. __clear_bit(i, spu_prio->bitmap);
  820. }
  821. spin_lock_init(&spu_prio->runq_lock);
  822. setup_timer(&spusched_timer, spusched_wake, 0);
  823. spusched_task = kthread_run(spusched_thread, NULL, "spusched");
  824. if (IS_ERR(spusched_task)) {
  825. err = PTR_ERR(spusched_task);
  826. goto out_free_spu_prio;
  827. }
  828. entry = create_proc_entry("spu_loadavg", 0, NULL);
  829. if (!entry)
  830. goto out_stop_kthread;
  831. entry->proc_fops = &spu_loadavg_fops;
  832. pr_debug("spusched: tick: %d, min ticks: %d, default ticks: %d\n",
  833. SPUSCHED_TICK, MIN_SPU_TIMESLICE, DEF_SPU_TIMESLICE);
  834. return 0;
  835. out_stop_kthread:
  836. kthread_stop(spusched_task);
  837. out_free_spu_prio:
  838. kfree(spu_prio);
  839. out:
  840. return err;
  841. }
  842. void spu_sched_exit(void)
  843. {
  844. struct spu *spu;
  845. int node;
  846. remove_proc_entry("spu_loadavg", NULL);
  847. del_timer_sync(&spusched_timer);
  848. kthread_stop(spusched_task);
  849. for (node = 0; node < MAX_NUMNODES; node++) {
  850. mutex_lock(&cbe_spu_info[node].list_mutex);
  851. list_for_each_entry(spu, &cbe_spu_info[node].spus, cbe_list)
  852. if (spu->alloc_state != SPU_FREE)
  853. spu->alloc_state = SPU_FREE;
  854. mutex_unlock(&cbe_spu_info[node].list_mutex);
  855. }
  856. kfree(spu_prio);
  857. }