setup.c 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590
  1. /*
  2. * This file is subject to the terms and conditions of the GNU General Public
  3. * License. See the file "COPYING" in the main directory of this archive
  4. * for more details.
  5. *
  6. * Copyright (C) 1995 Linus Torvalds
  7. * Copyright (C) 1995 Waldorf Electronics
  8. * Copyright (C) 1994, 95, 96, 97, 98, 99, 2000, 01, 02, 03 Ralf Baechle
  9. * Copyright (C) 1996 Stoned Elipot
  10. * Copyright (C) 1999 Silicon Graphics, Inc.
  11. * Copyright (C) 2000 2001, 2002 Maciej W. Rozycki
  12. */
  13. #include <linux/init.h>
  14. #include <linux/ioport.h>
  15. #include <linux/module.h>
  16. #include <linux/screen_info.h>
  17. #include <linux/bootmem.h>
  18. #include <linux/initrd.h>
  19. #include <linux/root_dev.h>
  20. #include <linux/highmem.h>
  21. #include <linux/console.h>
  22. #include <linux/pfn.h>
  23. #include <linux/debugfs.h>
  24. #include <asm/addrspace.h>
  25. #include <asm/bootinfo.h>
  26. #include <asm/cache.h>
  27. #include <asm/cpu.h>
  28. #include <asm/sections.h>
  29. #include <asm/setup.h>
  30. #include <asm/system.h>
  31. struct cpuinfo_mips cpu_data[NR_CPUS] __read_mostly;
  32. EXPORT_SYMBOL(cpu_data);
  33. #ifdef CONFIG_VT
  34. struct screen_info screen_info;
  35. #endif
  36. /*
  37. * Despite it's name this variable is even if we don't have PCI
  38. */
  39. unsigned int PCI_DMA_BUS_IS_PHYS;
  40. EXPORT_SYMBOL(PCI_DMA_BUS_IS_PHYS);
  41. /*
  42. * Setup information
  43. *
  44. * These are initialized so they are in the .data section
  45. */
  46. unsigned long mips_machtype __read_mostly = MACH_UNKNOWN;
  47. EXPORT_SYMBOL(mips_machtype);
  48. struct boot_mem_map boot_mem_map;
  49. static char command_line[CL_SIZE];
  50. char arcs_cmdline[CL_SIZE]=CONFIG_CMDLINE;
  51. /*
  52. * mips_io_port_base is the begin of the address space to which x86 style
  53. * I/O ports are mapped.
  54. */
  55. const unsigned long mips_io_port_base __read_mostly = -1;
  56. EXPORT_SYMBOL(mips_io_port_base);
  57. /*
  58. * isa_slot_offset is the address where E(ISA) busaddress 0 is mapped
  59. * for the processor.
  60. */
  61. unsigned long isa_slot_offset;
  62. EXPORT_SYMBOL(isa_slot_offset);
  63. static struct resource code_resource = { .name = "Kernel code", };
  64. static struct resource data_resource = { .name = "Kernel data", };
  65. void __init add_memory_region(phys_t start, phys_t size, long type)
  66. {
  67. int x = boot_mem_map.nr_map;
  68. struct boot_mem_map_entry *prev = boot_mem_map.map + x - 1;
  69. /* Sanity check */
  70. if (start + size < start) {
  71. printk("Trying to add an invalid memory region, skipped\n");
  72. return;
  73. }
  74. /*
  75. * Try to merge with previous entry if any. This is far less than
  76. * perfect but is sufficient for most real world cases.
  77. */
  78. if (x && prev->addr + prev->size == start && prev->type == type) {
  79. prev->size += size;
  80. return;
  81. }
  82. if (x == BOOT_MEM_MAP_MAX) {
  83. printk("Ooops! Too many entries in the memory map!\n");
  84. return;
  85. }
  86. boot_mem_map.map[x].addr = start;
  87. boot_mem_map.map[x].size = size;
  88. boot_mem_map.map[x].type = type;
  89. boot_mem_map.nr_map++;
  90. }
  91. static void __init print_memory_map(void)
  92. {
  93. int i;
  94. const int field = 2 * sizeof(unsigned long);
  95. for (i = 0; i < boot_mem_map.nr_map; i++) {
  96. printk(" memory: %0*Lx @ %0*Lx ",
  97. field, (unsigned long long) boot_mem_map.map[i].size,
  98. field, (unsigned long long) boot_mem_map.map[i].addr);
  99. switch (boot_mem_map.map[i].type) {
  100. case BOOT_MEM_RAM:
  101. printk("(usable)\n");
  102. break;
  103. case BOOT_MEM_ROM_DATA:
  104. printk("(ROM data)\n");
  105. break;
  106. case BOOT_MEM_RESERVED:
  107. printk("(reserved)\n");
  108. break;
  109. default:
  110. printk("type %lu\n", boot_mem_map.map[i].type);
  111. break;
  112. }
  113. }
  114. }
  115. /*
  116. * Manage initrd
  117. */
  118. #ifdef CONFIG_BLK_DEV_INITRD
  119. static int __init rd_start_early(char *p)
  120. {
  121. unsigned long start = memparse(p, &p);
  122. #ifdef CONFIG_64BIT
  123. /* Guess if the sign extension was forgotten by bootloader */
  124. if (start < XKPHYS)
  125. start = (int)start;
  126. #endif
  127. initrd_start = start;
  128. initrd_end += start;
  129. return 0;
  130. }
  131. early_param("rd_start", rd_start_early);
  132. static int __init rd_size_early(char *p)
  133. {
  134. initrd_end += memparse(p, &p);
  135. return 0;
  136. }
  137. early_param("rd_size", rd_size_early);
  138. /* it returns the next free pfn after initrd */
  139. static unsigned long __init init_initrd(void)
  140. {
  141. unsigned long end;
  142. u32 *initrd_header;
  143. /*
  144. * Board specific code or command line parser should have
  145. * already set up initrd_start and initrd_end. In these cases
  146. * perfom sanity checks and use them if all looks good.
  147. */
  148. if (initrd_start && initrd_end > initrd_start)
  149. goto sanitize;
  150. /*
  151. * See if initrd has been added to the kernel image by
  152. * arch/mips/boot/addinitrd.c. In that case a header is
  153. * prepended to initrd and is made up by 8 bytes. The fisrt
  154. * word is a magic number and the second one is the size of
  155. * initrd. Initrd start must be page aligned in any cases.
  156. */
  157. initrd_header = __va(PAGE_ALIGN(__pa_symbol(&_end) + 8)) - 8;
  158. if (initrd_header[0] != 0x494E5244)
  159. goto disable;
  160. initrd_start = (unsigned long)(initrd_header + 2);
  161. initrd_end = initrd_start + initrd_header[1];
  162. sanitize:
  163. if (initrd_start & ~PAGE_MASK) {
  164. printk(KERN_ERR "initrd start must be page aligned\n");
  165. goto disable;
  166. }
  167. if (initrd_start < PAGE_OFFSET) {
  168. printk(KERN_ERR "initrd start < PAGE_OFFSET\n");
  169. goto disable;
  170. }
  171. /*
  172. * Sanitize initrd addresses. For example firmware
  173. * can't guess if they need to pass them through
  174. * 64-bits values if the kernel has been built in pure
  175. * 32-bit. We need also to switch from KSEG0 to XKPHYS
  176. * addresses now, so the code can now safely use __pa().
  177. */
  178. end = __pa(initrd_end);
  179. initrd_end = (unsigned long)__va(end);
  180. initrd_start = (unsigned long)__va(__pa(initrd_start));
  181. ROOT_DEV = Root_RAM0;
  182. return PFN_UP(end);
  183. disable:
  184. initrd_start = 0;
  185. initrd_end = 0;
  186. return 0;
  187. }
  188. static void __init finalize_initrd(void)
  189. {
  190. unsigned long size = initrd_end - initrd_start;
  191. if (size == 0) {
  192. printk(KERN_INFO "Initrd not found or empty");
  193. goto disable;
  194. }
  195. if (__pa(initrd_end) > PFN_PHYS(max_low_pfn)) {
  196. printk("Initrd extends beyond end of memory");
  197. goto disable;
  198. }
  199. reserve_bootmem(__pa(initrd_start), size);
  200. initrd_below_start_ok = 1;
  201. printk(KERN_INFO "Initial ramdisk at: 0x%lx (%lu bytes)\n",
  202. initrd_start, size);
  203. return;
  204. disable:
  205. printk(" - disabling initrd\n");
  206. initrd_start = 0;
  207. initrd_end = 0;
  208. }
  209. #else /* !CONFIG_BLK_DEV_INITRD */
  210. static unsigned long __init init_initrd(void)
  211. {
  212. return 0;
  213. }
  214. #define finalize_initrd() do {} while (0)
  215. #endif
  216. /*
  217. * Initialize the bootmem allocator. It also setup initrd related data
  218. * if needed.
  219. */
  220. #ifdef CONFIG_SGI_IP27
  221. static void __init bootmem_init(void)
  222. {
  223. init_initrd();
  224. finalize_initrd();
  225. }
  226. #else /* !CONFIG_SGI_IP27 */
  227. static void __init bootmem_init(void)
  228. {
  229. unsigned long reserved_end;
  230. unsigned long mapstart = ~0UL;
  231. unsigned long bootmap_size;
  232. int i;
  233. /*
  234. * Init any data related to initrd. It's a nop if INITRD is
  235. * not selected. Once that done we can determine the low bound
  236. * of usable memory.
  237. */
  238. reserved_end = max(init_initrd(), PFN_UP(__pa_symbol(&_end)));
  239. /*
  240. * max_low_pfn is not a number of pages. The number of pages
  241. * of the system is given by 'max_low_pfn - min_low_pfn'.
  242. */
  243. min_low_pfn = ~0UL;
  244. max_low_pfn = 0;
  245. /*
  246. * Find the highest page frame number we have available.
  247. */
  248. for (i = 0; i < boot_mem_map.nr_map; i++) {
  249. unsigned long start, end;
  250. if (boot_mem_map.map[i].type != BOOT_MEM_RAM)
  251. continue;
  252. start = PFN_UP(boot_mem_map.map[i].addr);
  253. end = PFN_DOWN(boot_mem_map.map[i].addr
  254. + boot_mem_map.map[i].size);
  255. if (end > max_low_pfn)
  256. max_low_pfn = end;
  257. if (start < min_low_pfn)
  258. min_low_pfn = start;
  259. if (end <= reserved_end)
  260. continue;
  261. if (start >= mapstart)
  262. continue;
  263. mapstart = max(reserved_end, start);
  264. }
  265. if (min_low_pfn >= max_low_pfn)
  266. panic("Incorrect memory mapping !!!");
  267. if (min_low_pfn > ARCH_PFN_OFFSET) {
  268. printk(KERN_INFO
  269. "Wasting %lu bytes for tracking %lu unused pages\n",
  270. (min_low_pfn - ARCH_PFN_OFFSET) * sizeof(struct page),
  271. min_low_pfn - ARCH_PFN_OFFSET);
  272. } else if (min_low_pfn < ARCH_PFN_OFFSET) {
  273. printk(KERN_INFO
  274. "%lu free pages won't be used\n",
  275. ARCH_PFN_OFFSET - min_low_pfn);
  276. }
  277. min_low_pfn = ARCH_PFN_OFFSET;
  278. /*
  279. * Determine low and high memory ranges
  280. */
  281. if (max_low_pfn > PFN_DOWN(HIGHMEM_START)) {
  282. #ifdef CONFIG_HIGHMEM
  283. highstart_pfn = PFN_DOWN(HIGHMEM_START);
  284. highend_pfn = max_low_pfn;
  285. #endif
  286. max_low_pfn = PFN_DOWN(HIGHMEM_START);
  287. }
  288. /*
  289. * Initialize the boot-time allocator with low memory only.
  290. */
  291. bootmap_size = init_bootmem_node(NODE_DATA(0), mapstart,
  292. min_low_pfn, max_low_pfn);
  293. /*
  294. * Register fully available low RAM pages with the bootmem allocator.
  295. */
  296. for (i = 0; i < boot_mem_map.nr_map; i++) {
  297. unsigned long start, end, size;
  298. /*
  299. * Reserve usable memory.
  300. */
  301. if (boot_mem_map.map[i].type != BOOT_MEM_RAM)
  302. continue;
  303. start = PFN_UP(boot_mem_map.map[i].addr);
  304. end = PFN_DOWN(boot_mem_map.map[i].addr
  305. + boot_mem_map.map[i].size);
  306. /*
  307. * We are rounding up the start address of usable memory
  308. * and at the end of the usable range downwards.
  309. */
  310. if (start >= max_low_pfn)
  311. continue;
  312. if (start < reserved_end)
  313. start = reserved_end;
  314. if (end > max_low_pfn)
  315. end = max_low_pfn;
  316. /*
  317. * ... finally, is the area going away?
  318. */
  319. if (end <= start)
  320. continue;
  321. size = end - start;
  322. /* Register lowmem ranges */
  323. free_bootmem(PFN_PHYS(start), size << PAGE_SHIFT);
  324. memory_present(0, start, end);
  325. }
  326. /*
  327. * Reserve the bootmap memory.
  328. */
  329. reserve_bootmem(PFN_PHYS(mapstart), bootmap_size);
  330. /*
  331. * Reserve initrd memory if needed.
  332. */
  333. finalize_initrd();
  334. }
  335. #endif /* CONFIG_SGI_IP27 */
  336. /*
  337. * arch_mem_init - initialize memory managment subsystem
  338. *
  339. * o plat_mem_setup() detects the memory configuration and will record detected
  340. * memory areas using add_memory_region.
  341. *
  342. * At this stage the memory configuration of the system is known to the
  343. * kernel but generic memory managment system is still entirely uninitialized.
  344. *
  345. * o bootmem_init()
  346. * o sparse_init()
  347. * o paging_init()
  348. *
  349. * At this stage the bootmem allocator is ready to use.
  350. *
  351. * NOTE: historically plat_mem_setup did the entire platform initialization.
  352. * This was rather impractical because it meant plat_mem_setup had to
  353. * get away without any kind of memory allocator. To keep old code from
  354. * breaking plat_setup was just renamed to plat_setup and a second platform
  355. * initialization hook for anything else was introduced.
  356. */
  357. static int usermem __initdata = 0;
  358. static int __init early_parse_mem(char *p)
  359. {
  360. unsigned long start, size;
  361. /*
  362. * If a user specifies memory size, we
  363. * blow away any automatically generated
  364. * size.
  365. */
  366. if (usermem == 0) {
  367. boot_mem_map.nr_map = 0;
  368. usermem = 1;
  369. }
  370. start = 0;
  371. size = memparse(p, &p);
  372. if (*p == '@')
  373. start = memparse(p + 1, &p);
  374. add_memory_region(start, size, BOOT_MEM_RAM);
  375. return 0;
  376. }
  377. early_param("mem", early_parse_mem);
  378. static void __init arch_mem_init(char **cmdline_p)
  379. {
  380. extern void plat_mem_setup(void);
  381. /* call board setup routine */
  382. plat_mem_setup();
  383. printk("Determined physical RAM map:\n");
  384. print_memory_map();
  385. strlcpy(command_line, arcs_cmdline, sizeof(command_line));
  386. strlcpy(boot_command_line, command_line, COMMAND_LINE_SIZE);
  387. *cmdline_p = command_line;
  388. parse_early_param();
  389. if (usermem) {
  390. printk("User-defined physical RAM map:\n");
  391. print_memory_map();
  392. }
  393. bootmem_init();
  394. sparse_init();
  395. paging_init();
  396. }
  397. static void __init resource_init(void)
  398. {
  399. int i;
  400. if (UNCAC_BASE != IO_BASE)
  401. return;
  402. code_resource.start = __pa_symbol(&_text);
  403. code_resource.end = __pa_symbol(&_etext) - 1;
  404. data_resource.start = __pa_symbol(&_etext);
  405. data_resource.end = __pa_symbol(&_edata) - 1;
  406. /*
  407. * Request address space for all standard RAM.
  408. */
  409. for (i = 0; i < boot_mem_map.nr_map; i++) {
  410. struct resource *res;
  411. unsigned long start, end;
  412. start = boot_mem_map.map[i].addr;
  413. end = boot_mem_map.map[i].addr + boot_mem_map.map[i].size - 1;
  414. if (start >= HIGHMEM_START)
  415. continue;
  416. if (end >= HIGHMEM_START)
  417. end = HIGHMEM_START - 1;
  418. res = alloc_bootmem(sizeof(struct resource));
  419. switch (boot_mem_map.map[i].type) {
  420. case BOOT_MEM_RAM:
  421. case BOOT_MEM_ROM_DATA:
  422. res->name = "System RAM";
  423. break;
  424. case BOOT_MEM_RESERVED:
  425. default:
  426. res->name = "reserved";
  427. }
  428. res->start = start;
  429. res->end = end;
  430. res->flags = IORESOURCE_MEM | IORESOURCE_BUSY;
  431. request_resource(&iomem_resource, res);
  432. /*
  433. * We don't know which RAM region contains kernel data,
  434. * so we try it repeatedly and let the resource manager
  435. * test it.
  436. */
  437. request_resource(res, &code_resource);
  438. request_resource(res, &data_resource);
  439. }
  440. }
  441. void __init setup_arch(char **cmdline_p)
  442. {
  443. cpu_probe();
  444. prom_init();
  445. #ifdef CONFIG_EARLY_PRINTK
  446. {
  447. extern void setup_early_printk(void);
  448. setup_early_printk();
  449. }
  450. #endif
  451. cpu_report();
  452. #if defined(CONFIG_VT)
  453. #if defined(CONFIG_VGA_CONSOLE)
  454. conswitchp = &vga_con;
  455. #elif defined(CONFIG_DUMMY_CONSOLE)
  456. conswitchp = &dummy_con;
  457. #endif
  458. #endif
  459. arch_mem_init(cmdline_p);
  460. resource_init();
  461. #ifdef CONFIG_SMP
  462. plat_smp_setup();
  463. #endif
  464. }
  465. static int __init fpu_disable(char *s)
  466. {
  467. int i;
  468. for (i = 0; i < NR_CPUS; i++)
  469. cpu_data[i].options &= ~MIPS_CPU_FPU;
  470. return 1;
  471. }
  472. __setup("nofpu", fpu_disable);
  473. static int __init dsp_disable(char *s)
  474. {
  475. cpu_data[0].ases &= ~MIPS_ASE_DSP;
  476. return 1;
  477. }
  478. __setup("nodsp", dsp_disable);
  479. unsigned long kernelsp[NR_CPUS];
  480. unsigned long fw_arg0, fw_arg1, fw_arg2, fw_arg3;
  481. #ifdef CONFIG_DEBUG_FS
  482. struct dentry *mips_debugfs_dir;
  483. static int __init debugfs_mips(void)
  484. {
  485. struct dentry *d;
  486. d = debugfs_create_dir("mips", NULL);
  487. if (IS_ERR(d))
  488. return PTR_ERR(d);
  489. mips_debugfs_dir = d;
  490. return 0;
  491. }
  492. arch_initcall(debugfs_mips);
  493. #endif