init.c 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505
  1. /*
  2. * linux/arch/arm/mm/init.c
  3. *
  4. * Copyright (C) 1995-2005 Russell King
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License version 2 as
  8. * published by the Free Software Foundation.
  9. */
  10. #include <linux/kernel.h>
  11. #include <linux/errno.h>
  12. #include <linux/swap.h>
  13. #include <linux/init.h>
  14. #include <linux/bootmem.h>
  15. #include <linux/mman.h>
  16. #include <linux/nodemask.h>
  17. #include <linux/initrd.h>
  18. #include <asm/mach-types.h>
  19. #include <asm/setup.h>
  20. #include <asm/sizes.h>
  21. #include <asm/tlb.h>
  22. #include <asm/mach/arch.h>
  23. #include <asm/mach/map.h>
  24. #include "mm.h"
  25. extern void _text, _etext, __data_start, _end, __init_begin, __init_end;
  26. extern unsigned long phys_initrd_start;
  27. extern unsigned long phys_initrd_size;
  28. /*
  29. * This is used to pass memory configuration data from paging_init
  30. * to mem_init, and by show_mem() to skip holes in the memory map.
  31. */
  32. static struct meminfo meminfo = { 0, };
  33. #define for_each_nodebank(iter,mi,no) \
  34. for (iter = 0; iter < mi->nr_banks; iter++) \
  35. if (mi->bank[iter].node == no)
  36. void show_mem(void)
  37. {
  38. int free = 0, total = 0, reserved = 0;
  39. int shared = 0, cached = 0, slab = 0, node, i;
  40. struct meminfo * mi = &meminfo;
  41. printk("Mem-info:\n");
  42. show_free_areas();
  43. printk("Free swap: %6ldkB\n", nr_swap_pages<<(PAGE_SHIFT-10));
  44. for_each_online_node(node) {
  45. pg_data_t *n = NODE_DATA(node);
  46. struct page *map = n->node_mem_map - n->node_start_pfn;
  47. for_each_nodebank (i,mi,node) {
  48. unsigned int pfn1, pfn2;
  49. struct page *page, *end;
  50. pfn1 = __phys_to_pfn(mi->bank[i].start);
  51. pfn2 = __phys_to_pfn(mi->bank[i].size + mi->bank[i].start);
  52. page = map + pfn1;
  53. end = map + pfn2;
  54. do {
  55. total++;
  56. if (PageReserved(page))
  57. reserved++;
  58. else if (PageSwapCache(page))
  59. cached++;
  60. else if (PageSlab(page))
  61. slab++;
  62. else if (!page_count(page))
  63. free++;
  64. else
  65. shared += page_count(page) - 1;
  66. page++;
  67. } while (page < end);
  68. }
  69. }
  70. printk("%d pages of RAM\n", total);
  71. printk("%d free pages\n", free);
  72. printk("%d reserved pages\n", reserved);
  73. printk("%d slab pages\n", slab);
  74. printk("%d pages shared\n", shared);
  75. printk("%d pages swap cached\n", cached);
  76. }
  77. /*
  78. * FIXME: We really want to avoid allocating the bootmap bitmap
  79. * over the top of the initrd. Hopefully, this is located towards
  80. * the start of a bank, so if we allocate the bootmap bitmap at
  81. * the end, we won't clash.
  82. */
  83. static unsigned int __init
  84. find_bootmap_pfn(int node, struct meminfo *mi, unsigned int bootmap_pages)
  85. {
  86. unsigned int start_pfn, bank, bootmap_pfn;
  87. start_pfn = PAGE_ALIGN(__pa(&_end)) >> PAGE_SHIFT;
  88. bootmap_pfn = 0;
  89. for_each_nodebank(bank, mi, node) {
  90. unsigned int start, end;
  91. start = mi->bank[bank].start >> PAGE_SHIFT;
  92. end = (mi->bank[bank].size +
  93. mi->bank[bank].start) >> PAGE_SHIFT;
  94. if (end < start_pfn)
  95. continue;
  96. if (start < start_pfn)
  97. start = start_pfn;
  98. if (end <= start)
  99. continue;
  100. if (end - start >= bootmap_pages) {
  101. bootmap_pfn = start;
  102. break;
  103. }
  104. }
  105. if (bootmap_pfn == 0)
  106. BUG();
  107. return bootmap_pfn;
  108. }
  109. static int __init check_initrd(struct meminfo *mi)
  110. {
  111. int initrd_node = -2;
  112. #ifdef CONFIG_BLK_DEV_INITRD
  113. unsigned long end = phys_initrd_start + phys_initrd_size;
  114. /*
  115. * Make sure that the initrd is within a valid area of
  116. * memory.
  117. */
  118. if (phys_initrd_size) {
  119. unsigned int i;
  120. initrd_node = -1;
  121. for (i = 0; i < mi->nr_banks; i++) {
  122. unsigned long bank_end;
  123. bank_end = mi->bank[i].start + mi->bank[i].size;
  124. if (mi->bank[i].start <= phys_initrd_start &&
  125. end <= bank_end)
  126. initrd_node = mi->bank[i].node;
  127. }
  128. }
  129. if (initrd_node == -1) {
  130. printk(KERN_ERR "initrd (0x%08lx - 0x%08lx) extends beyond "
  131. "physical memory - disabling initrd\n",
  132. phys_initrd_start, end);
  133. phys_initrd_start = phys_initrd_size = 0;
  134. }
  135. #endif
  136. return initrd_node;
  137. }
  138. static inline void map_memory_bank(struct membank *bank)
  139. {
  140. #ifdef CONFIG_MMU
  141. struct map_desc map;
  142. map.pfn = __phys_to_pfn(bank->start);
  143. map.virtual = __phys_to_virt(bank->start);
  144. map.length = bank->size;
  145. map.type = MT_MEMORY;
  146. create_mapping(&map);
  147. #endif
  148. }
  149. static unsigned long __init
  150. bootmem_init_node(int node, int initrd_node, struct meminfo *mi)
  151. {
  152. unsigned long zone_size[MAX_NR_ZONES], zhole_size[MAX_NR_ZONES];
  153. unsigned long start_pfn, end_pfn, boot_pfn;
  154. unsigned int boot_pages;
  155. pg_data_t *pgdat;
  156. int i;
  157. start_pfn = -1UL;
  158. end_pfn = 0;
  159. /*
  160. * Calculate the pfn range, and map the memory banks for this node.
  161. */
  162. for_each_nodebank(i, mi, node) {
  163. struct membank *bank = &mi->bank[i];
  164. unsigned long start, end;
  165. start = bank->start >> PAGE_SHIFT;
  166. end = (bank->start + bank->size) >> PAGE_SHIFT;
  167. if (start_pfn > start)
  168. start_pfn = start;
  169. if (end_pfn < end)
  170. end_pfn = end;
  171. map_memory_bank(bank);
  172. }
  173. /*
  174. * If there is no memory in this node, ignore it.
  175. */
  176. if (end_pfn == 0)
  177. return end_pfn;
  178. /*
  179. * Allocate the bootmem bitmap page.
  180. */
  181. boot_pages = bootmem_bootmap_pages(end_pfn - start_pfn);
  182. boot_pfn = find_bootmap_pfn(node, mi, boot_pages);
  183. /*
  184. * Initialise the bootmem allocator for this node, handing the
  185. * memory banks over to bootmem.
  186. */
  187. node_set_online(node);
  188. pgdat = NODE_DATA(node);
  189. init_bootmem_node(pgdat, boot_pfn, start_pfn, end_pfn);
  190. for_each_nodebank(i, mi, node)
  191. free_bootmem_node(pgdat, mi->bank[i].start, mi->bank[i].size);
  192. /*
  193. * Reserve the bootmem bitmap for this node.
  194. */
  195. reserve_bootmem_node(pgdat, boot_pfn << PAGE_SHIFT,
  196. boot_pages << PAGE_SHIFT);
  197. #ifdef CONFIG_BLK_DEV_INITRD
  198. /*
  199. * If the initrd is in this node, reserve its memory.
  200. */
  201. if (node == initrd_node) {
  202. reserve_bootmem_node(pgdat, phys_initrd_start,
  203. phys_initrd_size);
  204. initrd_start = __phys_to_virt(phys_initrd_start);
  205. initrd_end = initrd_start + phys_initrd_size;
  206. }
  207. #endif
  208. /*
  209. * Finally, reserve any node zero regions.
  210. */
  211. if (node == 0)
  212. reserve_node_zero(pgdat);
  213. /*
  214. * initialise the zones within this node.
  215. */
  216. memset(zone_size, 0, sizeof(zone_size));
  217. memset(zhole_size, 0, sizeof(zhole_size));
  218. /*
  219. * The size of this node has already been determined. If we need
  220. * to do anything fancy with the allocation of this memory to the
  221. * zones, now is the time to do it.
  222. */
  223. zone_size[0] = end_pfn - start_pfn;
  224. /*
  225. * For each bank in this node, calculate the size of the holes.
  226. * holes = node_size - sum(bank_sizes_in_node)
  227. */
  228. zhole_size[0] = zone_size[0];
  229. for_each_nodebank(i, mi, node)
  230. zhole_size[0] -= mi->bank[i].size >> PAGE_SHIFT;
  231. /*
  232. * Adjust the sizes according to any special requirements for
  233. * this machine type.
  234. */
  235. arch_adjust_zones(node, zone_size, zhole_size);
  236. free_area_init_node(node, pgdat, zone_size, start_pfn, zhole_size);
  237. return end_pfn;
  238. }
  239. void __init bootmem_init(struct meminfo *mi)
  240. {
  241. unsigned long memend_pfn = 0;
  242. int node, initrd_node, i;
  243. /*
  244. * Invalidate the node number for empty or invalid memory banks
  245. */
  246. for (i = 0; i < mi->nr_banks; i++)
  247. if (mi->bank[i].size == 0 || mi->bank[i].node >= MAX_NUMNODES)
  248. mi->bank[i].node = -1;
  249. memcpy(&meminfo, mi, sizeof(meminfo));
  250. /*
  251. * Locate which node contains the ramdisk image, if any.
  252. */
  253. initrd_node = check_initrd(mi);
  254. /*
  255. * Run through each node initialising the bootmem allocator.
  256. */
  257. for_each_node(node) {
  258. unsigned long end_pfn;
  259. end_pfn = bootmem_init_node(node, initrd_node, mi);
  260. /*
  261. * Remember the highest memory PFN.
  262. */
  263. if (end_pfn > memend_pfn)
  264. memend_pfn = end_pfn;
  265. }
  266. high_memory = __va(memend_pfn << PAGE_SHIFT);
  267. /*
  268. * This doesn't seem to be used by the Linux memory manager any
  269. * more, but is used by ll_rw_block. If we can get rid of it, we
  270. * also get rid of some of the stuff above as well.
  271. *
  272. * Note: max_low_pfn and max_pfn reflect the number of _pages_ in
  273. * the system, not the maximum PFN.
  274. */
  275. max_pfn = max_low_pfn = memend_pfn - PHYS_PFN_OFFSET;
  276. }
  277. static inline void free_area(unsigned long addr, unsigned long end, char *s)
  278. {
  279. unsigned int size = (end - addr) >> 10;
  280. for (; addr < end; addr += PAGE_SIZE) {
  281. struct page *page = virt_to_page(addr);
  282. ClearPageReserved(page);
  283. init_page_count(page);
  284. free_page(addr);
  285. totalram_pages++;
  286. }
  287. if (size && s)
  288. printk(KERN_INFO "Freeing %s memory: %dK\n", s, size);
  289. }
  290. static inline void
  291. free_memmap(int node, unsigned long start_pfn, unsigned long end_pfn)
  292. {
  293. struct page *start_pg, *end_pg;
  294. unsigned long pg, pgend;
  295. /*
  296. * Convert start_pfn/end_pfn to a struct page pointer.
  297. */
  298. start_pg = pfn_to_page(start_pfn);
  299. end_pg = pfn_to_page(end_pfn);
  300. /*
  301. * Convert to physical addresses, and
  302. * round start upwards and end downwards.
  303. */
  304. pg = PAGE_ALIGN(__pa(start_pg));
  305. pgend = __pa(end_pg) & PAGE_MASK;
  306. /*
  307. * If there are free pages between these,
  308. * free the section of the memmap array.
  309. */
  310. if (pg < pgend)
  311. free_bootmem_node(NODE_DATA(node), pg, pgend - pg);
  312. }
  313. /*
  314. * The mem_map array can get very big. Free the unused area of the memory map.
  315. */
  316. static void __init free_unused_memmap_node(int node, struct meminfo *mi)
  317. {
  318. unsigned long bank_start, prev_bank_end = 0;
  319. unsigned int i;
  320. /*
  321. * [FIXME] This relies on each bank being in address order. This
  322. * may not be the case, especially if the user has provided the
  323. * information on the command line.
  324. */
  325. for_each_nodebank(i, mi, node) {
  326. bank_start = mi->bank[i].start >> PAGE_SHIFT;
  327. if (bank_start < prev_bank_end) {
  328. printk(KERN_ERR "MEM: unordered memory banks. "
  329. "Not freeing memmap.\n");
  330. break;
  331. }
  332. /*
  333. * If we had a previous bank, and there is a space
  334. * between the current bank and the previous, free it.
  335. */
  336. if (prev_bank_end && prev_bank_end != bank_start)
  337. free_memmap(node, prev_bank_end, bank_start);
  338. prev_bank_end = (mi->bank[i].start +
  339. mi->bank[i].size) >> PAGE_SHIFT;
  340. }
  341. }
  342. /*
  343. * mem_init() marks the free areas in the mem_map and tells us how much
  344. * memory is free. This is done after various parts of the system have
  345. * claimed their memory after the kernel image.
  346. */
  347. void __init mem_init(void)
  348. {
  349. unsigned int codepages, datapages, initpages;
  350. int i, node;
  351. codepages = &_etext - &_text;
  352. datapages = &_end - &__data_start;
  353. initpages = &__init_end - &__init_begin;
  354. #ifndef CONFIG_DISCONTIGMEM
  355. max_mapnr = virt_to_page(high_memory) - mem_map;
  356. #endif
  357. /* this will put all unused low memory onto the freelists */
  358. for_each_online_node(node) {
  359. pg_data_t *pgdat = NODE_DATA(node);
  360. free_unused_memmap_node(node, &meminfo);
  361. if (pgdat->node_spanned_pages != 0)
  362. totalram_pages += free_all_bootmem_node(pgdat);
  363. }
  364. #ifdef CONFIG_SA1111
  365. /* now that our DMA memory is actually so designated, we can free it */
  366. free_area(PAGE_OFFSET, (unsigned long)swapper_pg_dir, NULL);
  367. #endif
  368. /*
  369. * Since our memory may not be contiguous, calculate the
  370. * real number of pages we have in this system
  371. */
  372. printk(KERN_INFO "Memory:");
  373. num_physpages = 0;
  374. for (i = 0; i < meminfo.nr_banks; i++) {
  375. num_physpages += meminfo.bank[i].size >> PAGE_SHIFT;
  376. printk(" %ldMB", meminfo.bank[i].size >> 20);
  377. }
  378. printk(" = %luMB total\n", num_physpages >> (20 - PAGE_SHIFT));
  379. printk(KERN_NOTICE "Memory: %luKB available (%dK code, "
  380. "%dK data, %dK init)\n",
  381. (unsigned long) nr_free_pages() << (PAGE_SHIFT-10),
  382. codepages >> 10, datapages >> 10, initpages >> 10);
  383. if (PAGE_SIZE >= 16384 && num_physpages <= 128) {
  384. extern int sysctl_overcommit_memory;
  385. /*
  386. * On a machine this small we won't get
  387. * anywhere without overcommit, so turn
  388. * it on by default.
  389. */
  390. sysctl_overcommit_memory = OVERCOMMIT_ALWAYS;
  391. }
  392. }
  393. void free_initmem(void)
  394. {
  395. if (!machine_is_integrator() && !machine_is_cintegrator()) {
  396. free_area((unsigned long)(&__init_begin),
  397. (unsigned long)(&__init_end),
  398. "init");
  399. }
  400. }
  401. #ifdef CONFIG_BLK_DEV_INITRD
  402. static int keep_initrd;
  403. void free_initrd_mem(unsigned long start, unsigned long end)
  404. {
  405. if (!keep_initrd)
  406. free_area(start, end, "initrd");
  407. }
  408. static int __init keepinitrd_setup(char *__unused)
  409. {
  410. keep_initrd = 1;
  411. return 1;
  412. }
  413. __setup("keepinitrd", keepinitrd_setup);
  414. #endif