core.c 24 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976
  1. /*
  2. * linux/arch/arm/mach-versatile/core.c
  3. *
  4. * Copyright (C) 1999 - 2003 ARM Limited
  5. * Copyright (C) 2000 Deep Blue Solutions Ltd
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License as published by
  9. * the Free Software Foundation; either version 2 of the License, or
  10. * (at your option) any later version.
  11. *
  12. * This program is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  15. * GNU General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU General Public License
  18. * along with this program; if not, write to the Free Software
  19. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  20. */
  21. #include <linux/init.h>
  22. #include <linux/device.h>
  23. #include <linux/dma-mapping.h>
  24. #include <linux/platform_device.h>
  25. #include <linux/sysdev.h>
  26. #include <linux/interrupt.h>
  27. #include <linux/amba/bus.h>
  28. #include <linux/amba/clcd.h>
  29. #include <linux/clocksource.h>
  30. #include <linux/clockchips.h>
  31. #include <asm/cnt32_to_63.h>
  32. #include <asm/system.h>
  33. #include <asm/hardware.h>
  34. #include <asm/io.h>
  35. #include <asm/irq.h>
  36. #include <asm/leds.h>
  37. #include <asm/hardware/arm_timer.h>
  38. #include <asm/hardware/icst307.h>
  39. #include <asm/hardware/vic.h>
  40. #include <asm/mach-types.h>
  41. #include <asm/mach/arch.h>
  42. #include <asm/mach/flash.h>
  43. #include <asm/mach/irq.h>
  44. #include <asm/mach/time.h>
  45. #include <asm/mach/map.h>
  46. #include <asm/mach/mmc.h>
  47. #include "core.h"
  48. #include "clock.h"
  49. /*
  50. * All IO addresses are mapped onto VA 0xFFFx.xxxx, where x.xxxx
  51. * is the (PA >> 12).
  52. *
  53. * Setup a VA for the Versatile Vectored Interrupt Controller.
  54. */
  55. #define __io_address(n) __io(IO_ADDRESS(n))
  56. #define VA_VIC_BASE __io_address(VERSATILE_VIC_BASE)
  57. #define VA_SIC_BASE __io_address(VERSATILE_SIC_BASE)
  58. static void sic_mask_irq(unsigned int irq)
  59. {
  60. irq -= IRQ_SIC_START;
  61. writel(1 << irq, VA_SIC_BASE + SIC_IRQ_ENABLE_CLEAR);
  62. }
  63. static void sic_unmask_irq(unsigned int irq)
  64. {
  65. irq -= IRQ_SIC_START;
  66. writel(1 << irq, VA_SIC_BASE + SIC_IRQ_ENABLE_SET);
  67. }
  68. static struct irq_chip sic_chip = {
  69. .name = "SIC",
  70. .ack = sic_mask_irq,
  71. .mask = sic_mask_irq,
  72. .unmask = sic_unmask_irq,
  73. };
  74. static void
  75. sic_handle_irq(unsigned int irq, struct irq_desc *desc)
  76. {
  77. unsigned long status = readl(VA_SIC_BASE + SIC_IRQ_STATUS);
  78. if (status == 0) {
  79. do_bad_IRQ(irq, desc);
  80. return;
  81. }
  82. do {
  83. irq = ffs(status) - 1;
  84. status &= ~(1 << irq);
  85. irq += IRQ_SIC_START;
  86. desc = irq_desc + irq;
  87. desc_handle_irq(irq, desc);
  88. } while (status);
  89. }
  90. #if 1
  91. #define IRQ_MMCI0A IRQ_VICSOURCE22
  92. #define IRQ_AACI IRQ_VICSOURCE24
  93. #define IRQ_ETH IRQ_VICSOURCE25
  94. #define PIC_MASK 0xFFD00000
  95. #else
  96. #define IRQ_MMCI0A IRQ_SIC_MMCI0A
  97. #define IRQ_AACI IRQ_SIC_AACI
  98. #define IRQ_ETH IRQ_SIC_ETH
  99. #define PIC_MASK 0
  100. #endif
  101. void __init versatile_init_irq(void)
  102. {
  103. unsigned int i;
  104. vic_init(VA_VIC_BASE, IRQ_VIC_START, ~0);
  105. set_irq_chained_handler(IRQ_VICSOURCE31, sic_handle_irq);
  106. /* Do second interrupt controller */
  107. writel(~0, VA_SIC_BASE + SIC_IRQ_ENABLE_CLEAR);
  108. for (i = IRQ_SIC_START; i <= IRQ_SIC_END; i++) {
  109. if ((PIC_MASK & (1 << (i - IRQ_SIC_START))) == 0) {
  110. set_irq_chip(i, &sic_chip);
  111. set_irq_handler(i, handle_level_irq);
  112. set_irq_flags(i, IRQF_VALID | IRQF_PROBE);
  113. }
  114. }
  115. /*
  116. * Interrupts on secondary controller from 0 to 8 are routed to
  117. * source 31 on PIC.
  118. * Interrupts from 21 to 31 are routed directly to the VIC on
  119. * the corresponding number on primary controller. This is controlled
  120. * by setting PIC_ENABLEx.
  121. */
  122. writel(PIC_MASK, VA_SIC_BASE + SIC_INT_PIC_ENABLE);
  123. }
  124. static struct map_desc versatile_io_desc[] __initdata = {
  125. {
  126. .virtual = IO_ADDRESS(VERSATILE_SYS_BASE),
  127. .pfn = __phys_to_pfn(VERSATILE_SYS_BASE),
  128. .length = SZ_4K,
  129. .type = MT_DEVICE
  130. }, {
  131. .virtual = IO_ADDRESS(VERSATILE_SIC_BASE),
  132. .pfn = __phys_to_pfn(VERSATILE_SIC_BASE),
  133. .length = SZ_4K,
  134. .type = MT_DEVICE
  135. }, {
  136. .virtual = IO_ADDRESS(VERSATILE_VIC_BASE),
  137. .pfn = __phys_to_pfn(VERSATILE_VIC_BASE),
  138. .length = SZ_4K,
  139. .type = MT_DEVICE
  140. }, {
  141. .virtual = IO_ADDRESS(VERSATILE_SCTL_BASE),
  142. .pfn = __phys_to_pfn(VERSATILE_SCTL_BASE),
  143. .length = SZ_4K * 9,
  144. .type = MT_DEVICE
  145. },
  146. #ifdef CONFIG_MACH_VERSATILE_AB
  147. {
  148. .virtual = IO_ADDRESS(VERSATILE_GPIO0_BASE),
  149. .pfn = __phys_to_pfn(VERSATILE_GPIO0_BASE),
  150. .length = SZ_4K,
  151. .type = MT_DEVICE
  152. }, {
  153. .virtual = IO_ADDRESS(VERSATILE_IB2_BASE),
  154. .pfn = __phys_to_pfn(VERSATILE_IB2_BASE),
  155. .length = SZ_64M,
  156. .type = MT_DEVICE
  157. },
  158. #endif
  159. #ifdef CONFIG_DEBUG_LL
  160. {
  161. .virtual = IO_ADDRESS(VERSATILE_UART0_BASE),
  162. .pfn = __phys_to_pfn(VERSATILE_UART0_BASE),
  163. .length = SZ_4K,
  164. .type = MT_DEVICE
  165. },
  166. #endif
  167. #ifdef CONFIG_PCI
  168. {
  169. .virtual = IO_ADDRESS(VERSATILE_PCI_CORE_BASE),
  170. .pfn = __phys_to_pfn(VERSATILE_PCI_CORE_BASE),
  171. .length = SZ_4K,
  172. .type = MT_DEVICE
  173. }, {
  174. .virtual = (unsigned long)VERSATILE_PCI_VIRT_BASE,
  175. .pfn = __phys_to_pfn(VERSATILE_PCI_BASE),
  176. .length = VERSATILE_PCI_BASE_SIZE,
  177. .type = MT_DEVICE
  178. }, {
  179. .virtual = (unsigned long)VERSATILE_PCI_CFG_VIRT_BASE,
  180. .pfn = __phys_to_pfn(VERSATILE_PCI_CFG_BASE),
  181. .length = VERSATILE_PCI_CFG_BASE_SIZE,
  182. .type = MT_DEVICE
  183. },
  184. #if 0
  185. {
  186. .virtual = VERSATILE_PCI_VIRT_MEM_BASE0,
  187. .pfn = __phys_to_pfn(VERSATILE_PCI_MEM_BASE0),
  188. .length = SZ_16M,
  189. .type = MT_DEVICE
  190. }, {
  191. .virtual = VERSATILE_PCI_VIRT_MEM_BASE1,
  192. .pfn = __phys_to_pfn(VERSATILE_PCI_MEM_BASE1),
  193. .length = SZ_16M,
  194. .type = MT_DEVICE
  195. }, {
  196. .virtual = VERSATILE_PCI_VIRT_MEM_BASE2,
  197. .pfn = __phys_to_pfn(VERSATILE_PCI_MEM_BASE2),
  198. .length = SZ_16M,
  199. .type = MT_DEVICE
  200. },
  201. #endif
  202. #endif
  203. };
  204. void __init versatile_map_io(void)
  205. {
  206. iotable_init(versatile_io_desc, ARRAY_SIZE(versatile_io_desc));
  207. }
  208. #define VERSATILE_REFCOUNTER (__io_address(VERSATILE_SYS_BASE) + VERSATILE_SYS_24MHz_OFFSET)
  209. /*
  210. * This is the Versatile sched_clock implementation. This has
  211. * a resolution of 41.7ns, and a maximum value of about 35583 days.
  212. *
  213. * The return value is guaranteed to be monotonic in that range as
  214. * long as there is always less than 89 seconds between successive
  215. * calls to this function.
  216. */
  217. unsigned long long sched_clock(void)
  218. {
  219. unsigned long long v = cnt32_to_63(readl(VERSATILE_REFCOUNTER));
  220. /* the <<1 gets rid of the cnt_32_to_63 top bit saving on a bic insn */
  221. v *= 125<<1;
  222. do_div(v, 3<<1);
  223. return v;
  224. }
  225. #define VERSATILE_FLASHCTRL (__io_address(VERSATILE_SYS_BASE) + VERSATILE_SYS_FLASH_OFFSET)
  226. static int versatile_flash_init(void)
  227. {
  228. u32 val;
  229. val = __raw_readl(VERSATILE_FLASHCTRL);
  230. val &= ~VERSATILE_FLASHPROG_FLVPPEN;
  231. __raw_writel(val, VERSATILE_FLASHCTRL);
  232. return 0;
  233. }
  234. static void versatile_flash_exit(void)
  235. {
  236. u32 val;
  237. val = __raw_readl(VERSATILE_FLASHCTRL);
  238. val &= ~VERSATILE_FLASHPROG_FLVPPEN;
  239. __raw_writel(val, VERSATILE_FLASHCTRL);
  240. }
  241. static void versatile_flash_set_vpp(int on)
  242. {
  243. u32 val;
  244. val = __raw_readl(VERSATILE_FLASHCTRL);
  245. if (on)
  246. val |= VERSATILE_FLASHPROG_FLVPPEN;
  247. else
  248. val &= ~VERSATILE_FLASHPROG_FLVPPEN;
  249. __raw_writel(val, VERSATILE_FLASHCTRL);
  250. }
  251. static struct flash_platform_data versatile_flash_data = {
  252. .map_name = "cfi_probe",
  253. .width = 4,
  254. .init = versatile_flash_init,
  255. .exit = versatile_flash_exit,
  256. .set_vpp = versatile_flash_set_vpp,
  257. };
  258. static struct resource versatile_flash_resource = {
  259. .start = VERSATILE_FLASH_BASE,
  260. .end = VERSATILE_FLASH_BASE + VERSATILE_FLASH_SIZE - 1,
  261. .flags = IORESOURCE_MEM,
  262. };
  263. static struct platform_device versatile_flash_device = {
  264. .name = "armflash",
  265. .id = 0,
  266. .dev = {
  267. .platform_data = &versatile_flash_data,
  268. },
  269. .num_resources = 1,
  270. .resource = &versatile_flash_resource,
  271. };
  272. static struct resource smc91x_resources[] = {
  273. [0] = {
  274. .start = VERSATILE_ETH_BASE,
  275. .end = VERSATILE_ETH_BASE + SZ_64K - 1,
  276. .flags = IORESOURCE_MEM,
  277. },
  278. [1] = {
  279. .start = IRQ_ETH,
  280. .end = IRQ_ETH,
  281. .flags = IORESOURCE_IRQ,
  282. },
  283. };
  284. static struct platform_device smc91x_device = {
  285. .name = "smc91x",
  286. .id = 0,
  287. .num_resources = ARRAY_SIZE(smc91x_resources),
  288. .resource = smc91x_resources,
  289. };
  290. static struct resource versatile_i2c_resource = {
  291. .start = VERSATILE_I2C_BASE,
  292. .end = VERSATILE_I2C_BASE + SZ_4K - 1,
  293. .flags = IORESOURCE_MEM,
  294. };
  295. static struct platform_device versatile_i2c_device = {
  296. .name = "versatile-i2c",
  297. .id = -1,
  298. .num_resources = 1,
  299. .resource = &versatile_i2c_resource,
  300. };
  301. #define VERSATILE_SYSMCI (__io_address(VERSATILE_SYS_BASE) + VERSATILE_SYS_MCI_OFFSET)
  302. unsigned int mmc_status(struct device *dev)
  303. {
  304. struct amba_device *adev = container_of(dev, struct amba_device, dev);
  305. u32 mask;
  306. if (adev->res.start == VERSATILE_MMCI0_BASE)
  307. mask = 1;
  308. else
  309. mask = 2;
  310. return readl(VERSATILE_SYSMCI) & mask;
  311. }
  312. static struct mmc_platform_data mmc0_plat_data = {
  313. .ocr_mask = MMC_VDD_32_33|MMC_VDD_33_34,
  314. .status = mmc_status,
  315. };
  316. /*
  317. * Clock handling
  318. */
  319. static const struct icst307_params versatile_oscvco_params = {
  320. .ref = 24000,
  321. .vco_max = 200000,
  322. .vd_min = 4 + 8,
  323. .vd_max = 511 + 8,
  324. .rd_min = 1 + 2,
  325. .rd_max = 127 + 2,
  326. };
  327. static void versatile_oscvco_set(struct clk *clk, struct icst307_vco vco)
  328. {
  329. void __iomem *sys_lock = __io_address(VERSATILE_SYS_BASE) + VERSATILE_SYS_LOCK_OFFSET;
  330. void __iomem *sys_osc = __io_address(VERSATILE_SYS_BASE) + VERSATILE_SYS_OSCCLCD_OFFSET;
  331. u32 val;
  332. val = readl(sys_osc) & ~0x7ffff;
  333. val |= vco.v | (vco.r << 9) | (vco.s << 16);
  334. writel(0xa05f, sys_lock);
  335. writel(val, sys_osc);
  336. writel(0, sys_lock);
  337. }
  338. static struct clk versatile_clcd_clk = {
  339. .name = "CLCDCLK",
  340. .params = &versatile_oscvco_params,
  341. .setvco = versatile_oscvco_set,
  342. };
  343. /*
  344. * CLCD support.
  345. */
  346. #define SYS_CLCD_MODE_MASK (3 << 0)
  347. #define SYS_CLCD_MODE_888 (0 << 0)
  348. #define SYS_CLCD_MODE_5551 (1 << 0)
  349. #define SYS_CLCD_MODE_565_RLSB (2 << 0)
  350. #define SYS_CLCD_MODE_565_BLSB (3 << 0)
  351. #define SYS_CLCD_NLCDIOON (1 << 2)
  352. #define SYS_CLCD_VDDPOSSWITCH (1 << 3)
  353. #define SYS_CLCD_PWR3V5SWITCH (1 << 4)
  354. #define SYS_CLCD_ID_MASK (0x1f << 8)
  355. #define SYS_CLCD_ID_SANYO_3_8 (0x00 << 8)
  356. #define SYS_CLCD_ID_UNKNOWN_8_4 (0x01 << 8)
  357. #define SYS_CLCD_ID_EPSON_2_2 (0x02 << 8)
  358. #define SYS_CLCD_ID_SANYO_2_5 (0x07 << 8)
  359. #define SYS_CLCD_ID_VGA (0x1f << 8)
  360. static struct clcd_panel vga = {
  361. .mode = {
  362. .name = "VGA",
  363. .refresh = 60,
  364. .xres = 640,
  365. .yres = 480,
  366. .pixclock = 39721,
  367. .left_margin = 40,
  368. .right_margin = 24,
  369. .upper_margin = 32,
  370. .lower_margin = 11,
  371. .hsync_len = 96,
  372. .vsync_len = 2,
  373. .sync = 0,
  374. .vmode = FB_VMODE_NONINTERLACED,
  375. },
  376. .width = -1,
  377. .height = -1,
  378. .tim2 = TIM2_BCD | TIM2_IPC,
  379. .cntl = CNTL_LCDTFT | CNTL_LCDVCOMP(1),
  380. .bpp = 16,
  381. };
  382. static struct clcd_panel sanyo_3_8_in = {
  383. .mode = {
  384. .name = "Sanyo QVGA",
  385. .refresh = 116,
  386. .xres = 320,
  387. .yres = 240,
  388. .pixclock = 100000,
  389. .left_margin = 6,
  390. .right_margin = 6,
  391. .upper_margin = 5,
  392. .lower_margin = 5,
  393. .hsync_len = 6,
  394. .vsync_len = 6,
  395. .sync = 0,
  396. .vmode = FB_VMODE_NONINTERLACED,
  397. },
  398. .width = -1,
  399. .height = -1,
  400. .tim2 = TIM2_BCD,
  401. .cntl = CNTL_LCDTFT | CNTL_LCDVCOMP(1),
  402. .bpp = 16,
  403. };
  404. static struct clcd_panel sanyo_2_5_in = {
  405. .mode = {
  406. .name = "Sanyo QVGA Portrait",
  407. .refresh = 116,
  408. .xres = 240,
  409. .yres = 320,
  410. .pixclock = 100000,
  411. .left_margin = 20,
  412. .right_margin = 10,
  413. .upper_margin = 2,
  414. .lower_margin = 2,
  415. .hsync_len = 10,
  416. .vsync_len = 2,
  417. .sync = FB_SYNC_HOR_HIGH_ACT | FB_SYNC_VERT_HIGH_ACT,
  418. .vmode = FB_VMODE_NONINTERLACED,
  419. },
  420. .width = -1,
  421. .height = -1,
  422. .tim2 = TIM2_IVS | TIM2_IHS | TIM2_IPC,
  423. .cntl = CNTL_LCDTFT | CNTL_LCDVCOMP(1),
  424. .bpp = 16,
  425. };
  426. static struct clcd_panel epson_2_2_in = {
  427. .mode = {
  428. .name = "Epson QCIF",
  429. .refresh = 390,
  430. .xres = 176,
  431. .yres = 220,
  432. .pixclock = 62500,
  433. .left_margin = 3,
  434. .right_margin = 2,
  435. .upper_margin = 1,
  436. .lower_margin = 0,
  437. .hsync_len = 3,
  438. .vsync_len = 2,
  439. .sync = 0,
  440. .vmode = FB_VMODE_NONINTERLACED,
  441. },
  442. .width = -1,
  443. .height = -1,
  444. .tim2 = TIM2_BCD | TIM2_IPC,
  445. .cntl = CNTL_LCDTFT | CNTL_LCDVCOMP(1),
  446. .bpp = 16,
  447. };
  448. /*
  449. * Detect which LCD panel is connected, and return the appropriate
  450. * clcd_panel structure. Note: we do not have any information on
  451. * the required timings for the 8.4in panel, so we presently assume
  452. * VGA timings.
  453. */
  454. static struct clcd_panel *versatile_clcd_panel(void)
  455. {
  456. void __iomem *sys_clcd = __io_address(VERSATILE_SYS_BASE) + VERSATILE_SYS_CLCD_OFFSET;
  457. struct clcd_panel *panel = &vga;
  458. u32 val;
  459. val = readl(sys_clcd) & SYS_CLCD_ID_MASK;
  460. if (val == SYS_CLCD_ID_SANYO_3_8)
  461. panel = &sanyo_3_8_in;
  462. else if (val == SYS_CLCD_ID_SANYO_2_5)
  463. panel = &sanyo_2_5_in;
  464. else if (val == SYS_CLCD_ID_EPSON_2_2)
  465. panel = &epson_2_2_in;
  466. else if (val == SYS_CLCD_ID_VGA)
  467. panel = &vga;
  468. else {
  469. printk(KERN_ERR "CLCD: unknown LCD panel ID 0x%08x, using VGA\n",
  470. val);
  471. panel = &vga;
  472. }
  473. return panel;
  474. }
  475. /*
  476. * Disable all display connectors on the interface module.
  477. */
  478. static void versatile_clcd_disable(struct clcd_fb *fb)
  479. {
  480. void __iomem *sys_clcd = __io_address(VERSATILE_SYS_BASE) + VERSATILE_SYS_CLCD_OFFSET;
  481. u32 val;
  482. val = readl(sys_clcd);
  483. val &= ~SYS_CLCD_NLCDIOON | SYS_CLCD_PWR3V5SWITCH;
  484. writel(val, sys_clcd);
  485. #ifdef CONFIG_MACH_VERSATILE_AB
  486. /*
  487. * If the LCD is Sanyo 2x5 in on the IB2 board, turn the back-light off
  488. */
  489. if (machine_is_versatile_ab() && fb->panel == &sanyo_2_5_in) {
  490. void __iomem *versatile_ib2_ctrl = __io_address(VERSATILE_IB2_CTRL);
  491. unsigned long ctrl;
  492. ctrl = readl(versatile_ib2_ctrl);
  493. ctrl &= ~0x01;
  494. writel(ctrl, versatile_ib2_ctrl);
  495. }
  496. #endif
  497. }
  498. /*
  499. * Enable the relevant connector on the interface module.
  500. */
  501. static void versatile_clcd_enable(struct clcd_fb *fb)
  502. {
  503. void __iomem *sys_clcd = __io_address(VERSATILE_SYS_BASE) + VERSATILE_SYS_CLCD_OFFSET;
  504. u32 val;
  505. val = readl(sys_clcd);
  506. val &= ~SYS_CLCD_MODE_MASK;
  507. switch (fb->fb.var.green.length) {
  508. case 5:
  509. val |= SYS_CLCD_MODE_5551;
  510. break;
  511. case 6:
  512. val |= SYS_CLCD_MODE_565_RLSB;
  513. break;
  514. case 8:
  515. val |= SYS_CLCD_MODE_888;
  516. break;
  517. }
  518. /*
  519. * Set the MUX
  520. */
  521. writel(val, sys_clcd);
  522. /*
  523. * And now enable the PSUs
  524. */
  525. val |= SYS_CLCD_NLCDIOON | SYS_CLCD_PWR3V5SWITCH;
  526. writel(val, sys_clcd);
  527. #ifdef CONFIG_MACH_VERSATILE_AB
  528. /*
  529. * If the LCD is Sanyo 2x5 in on the IB2 board, turn the back-light on
  530. */
  531. if (machine_is_versatile_ab() && fb->panel == &sanyo_2_5_in) {
  532. void __iomem *versatile_ib2_ctrl = __io_address(VERSATILE_IB2_CTRL);
  533. unsigned long ctrl;
  534. ctrl = readl(versatile_ib2_ctrl);
  535. ctrl |= 0x01;
  536. writel(ctrl, versatile_ib2_ctrl);
  537. }
  538. #endif
  539. }
  540. static unsigned long framesize = SZ_1M;
  541. static int versatile_clcd_setup(struct clcd_fb *fb)
  542. {
  543. dma_addr_t dma;
  544. fb->panel = versatile_clcd_panel();
  545. fb->fb.screen_base = dma_alloc_writecombine(&fb->dev->dev, framesize,
  546. &dma, GFP_KERNEL);
  547. if (!fb->fb.screen_base) {
  548. printk(KERN_ERR "CLCD: unable to map framebuffer\n");
  549. return -ENOMEM;
  550. }
  551. fb->fb.fix.smem_start = dma;
  552. fb->fb.fix.smem_len = framesize;
  553. return 0;
  554. }
  555. static int versatile_clcd_mmap(struct clcd_fb *fb, struct vm_area_struct *vma)
  556. {
  557. return dma_mmap_writecombine(&fb->dev->dev, vma,
  558. fb->fb.screen_base,
  559. fb->fb.fix.smem_start,
  560. fb->fb.fix.smem_len);
  561. }
  562. static void versatile_clcd_remove(struct clcd_fb *fb)
  563. {
  564. dma_free_writecombine(&fb->dev->dev, fb->fb.fix.smem_len,
  565. fb->fb.screen_base, fb->fb.fix.smem_start);
  566. }
  567. static struct clcd_board clcd_plat_data = {
  568. .name = "Versatile",
  569. .check = clcdfb_check,
  570. .decode = clcdfb_decode,
  571. .disable = versatile_clcd_disable,
  572. .enable = versatile_clcd_enable,
  573. .setup = versatile_clcd_setup,
  574. .mmap = versatile_clcd_mmap,
  575. .remove = versatile_clcd_remove,
  576. };
  577. #define AACI_IRQ { IRQ_AACI, NO_IRQ }
  578. #define AACI_DMA { 0x80, 0x81 }
  579. #define MMCI0_IRQ { IRQ_MMCI0A,IRQ_SIC_MMCI0B }
  580. #define MMCI0_DMA { 0x84, 0 }
  581. #define KMI0_IRQ { IRQ_SIC_KMI0, NO_IRQ }
  582. #define KMI0_DMA { 0, 0 }
  583. #define KMI1_IRQ { IRQ_SIC_KMI1, NO_IRQ }
  584. #define KMI1_DMA { 0, 0 }
  585. /*
  586. * These devices are connected directly to the multi-layer AHB switch
  587. */
  588. #define SMC_IRQ { NO_IRQ, NO_IRQ }
  589. #define SMC_DMA { 0, 0 }
  590. #define MPMC_IRQ { NO_IRQ, NO_IRQ }
  591. #define MPMC_DMA { 0, 0 }
  592. #define CLCD_IRQ { IRQ_CLCDINT, NO_IRQ }
  593. #define CLCD_DMA { 0, 0 }
  594. #define DMAC_IRQ { IRQ_DMAINT, NO_IRQ }
  595. #define DMAC_DMA { 0, 0 }
  596. /*
  597. * These devices are connected via the core APB bridge
  598. */
  599. #define SCTL_IRQ { NO_IRQ, NO_IRQ }
  600. #define SCTL_DMA { 0, 0 }
  601. #define WATCHDOG_IRQ { IRQ_WDOGINT, NO_IRQ }
  602. #define WATCHDOG_DMA { 0, 0 }
  603. #define GPIO0_IRQ { IRQ_GPIOINT0, NO_IRQ }
  604. #define GPIO0_DMA { 0, 0 }
  605. #define GPIO1_IRQ { IRQ_GPIOINT1, NO_IRQ }
  606. #define GPIO1_DMA { 0, 0 }
  607. #define RTC_IRQ { IRQ_RTCINT, NO_IRQ }
  608. #define RTC_DMA { 0, 0 }
  609. /*
  610. * These devices are connected via the DMA APB bridge
  611. */
  612. #define SCI_IRQ { IRQ_SCIINT, NO_IRQ }
  613. #define SCI_DMA { 7, 6 }
  614. #define UART0_IRQ { IRQ_UARTINT0, NO_IRQ }
  615. #define UART0_DMA { 15, 14 }
  616. #define UART1_IRQ { IRQ_UARTINT1, NO_IRQ }
  617. #define UART1_DMA { 13, 12 }
  618. #define UART2_IRQ { IRQ_UARTINT2, NO_IRQ }
  619. #define UART2_DMA { 11, 10 }
  620. #define SSP_IRQ { IRQ_SSPINT, NO_IRQ }
  621. #define SSP_DMA { 9, 8 }
  622. /* FPGA Primecells */
  623. AMBA_DEVICE(aaci, "fpga:04", AACI, NULL);
  624. AMBA_DEVICE(mmc0, "fpga:05", MMCI0, &mmc0_plat_data);
  625. AMBA_DEVICE(kmi0, "fpga:06", KMI0, NULL);
  626. AMBA_DEVICE(kmi1, "fpga:07", KMI1, NULL);
  627. /* DevChip Primecells */
  628. AMBA_DEVICE(smc, "dev:00", SMC, NULL);
  629. AMBA_DEVICE(mpmc, "dev:10", MPMC, NULL);
  630. AMBA_DEVICE(clcd, "dev:20", CLCD, &clcd_plat_data);
  631. AMBA_DEVICE(dmac, "dev:30", DMAC, NULL);
  632. AMBA_DEVICE(sctl, "dev:e0", SCTL, NULL);
  633. AMBA_DEVICE(wdog, "dev:e1", WATCHDOG, NULL);
  634. AMBA_DEVICE(gpio0, "dev:e4", GPIO0, NULL);
  635. AMBA_DEVICE(gpio1, "dev:e5", GPIO1, NULL);
  636. AMBA_DEVICE(rtc, "dev:e8", RTC, NULL);
  637. AMBA_DEVICE(sci0, "dev:f0", SCI, NULL);
  638. AMBA_DEVICE(uart0, "dev:f1", UART0, NULL);
  639. AMBA_DEVICE(uart1, "dev:f2", UART1, NULL);
  640. AMBA_DEVICE(uart2, "dev:f3", UART2, NULL);
  641. AMBA_DEVICE(ssp0, "dev:f4", SSP, NULL);
  642. static struct amba_device *amba_devs[] __initdata = {
  643. &dmac_device,
  644. &uart0_device,
  645. &uart1_device,
  646. &uart2_device,
  647. &smc_device,
  648. &mpmc_device,
  649. &clcd_device,
  650. &sctl_device,
  651. &wdog_device,
  652. &gpio0_device,
  653. &gpio1_device,
  654. &rtc_device,
  655. &sci0_device,
  656. &ssp0_device,
  657. &aaci_device,
  658. &mmc0_device,
  659. &kmi0_device,
  660. &kmi1_device,
  661. };
  662. #ifdef CONFIG_LEDS
  663. #define VA_LEDS_BASE (__io_address(VERSATILE_SYS_BASE) + VERSATILE_SYS_LED_OFFSET)
  664. static void versatile_leds_event(led_event_t ledevt)
  665. {
  666. unsigned long flags;
  667. u32 val;
  668. local_irq_save(flags);
  669. val = readl(VA_LEDS_BASE);
  670. switch (ledevt) {
  671. case led_idle_start:
  672. val = val & ~VERSATILE_SYS_LED0;
  673. break;
  674. case led_idle_end:
  675. val = val | VERSATILE_SYS_LED0;
  676. break;
  677. case led_timer:
  678. val = val ^ VERSATILE_SYS_LED1;
  679. break;
  680. case led_halted:
  681. val = 0;
  682. break;
  683. default:
  684. break;
  685. }
  686. writel(val, VA_LEDS_BASE);
  687. local_irq_restore(flags);
  688. }
  689. #endif /* CONFIG_LEDS */
  690. void __init versatile_init(void)
  691. {
  692. int i;
  693. clk_register(&versatile_clcd_clk);
  694. platform_device_register(&versatile_flash_device);
  695. platform_device_register(&versatile_i2c_device);
  696. platform_device_register(&smc91x_device);
  697. for (i = 0; i < ARRAY_SIZE(amba_devs); i++) {
  698. struct amba_device *d = amba_devs[i];
  699. amba_device_register(d, &iomem_resource);
  700. }
  701. #ifdef CONFIG_LEDS
  702. leds_event = versatile_leds_event;
  703. #endif
  704. }
  705. /*
  706. * Where is the timer (VA)?
  707. */
  708. #define TIMER0_VA_BASE __io_address(VERSATILE_TIMER0_1_BASE)
  709. #define TIMER1_VA_BASE (__io_address(VERSATILE_TIMER0_1_BASE) + 0x20)
  710. #define TIMER2_VA_BASE __io_address(VERSATILE_TIMER2_3_BASE)
  711. #define TIMER3_VA_BASE (__io_address(VERSATILE_TIMER2_3_BASE) + 0x20)
  712. #define VA_IC_BASE __io_address(VERSATILE_VIC_BASE)
  713. /*
  714. * How long is the timer interval?
  715. */
  716. #define TIMER_INTERVAL (TICKS_PER_uSEC * mSEC_10)
  717. #if TIMER_INTERVAL >= 0x100000
  718. #define TIMER_RELOAD (TIMER_INTERVAL >> 8)
  719. #define TIMER_DIVISOR (TIMER_CTRL_DIV256)
  720. #define TICKS2USECS(x) (256 * (x) / TICKS_PER_uSEC)
  721. #elif TIMER_INTERVAL >= 0x10000
  722. #define TIMER_RELOAD (TIMER_INTERVAL >> 4) /* Divide by 16 */
  723. #define TIMER_DIVISOR (TIMER_CTRL_DIV16)
  724. #define TICKS2USECS(x) (16 * (x) / TICKS_PER_uSEC)
  725. #else
  726. #define TIMER_RELOAD (TIMER_INTERVAL)
  727. #define TIMER_DIVISOR (TIMER_CTRL_DIV1)
  728. #define TICKS2USECS(x) ((x) / TICKS_PER_uSEC)
  729. #endif
  730. static void timer_set_mode(enum clock_event_mode mode,
  731. struct clock_event_device *clk)
  732. {
  733. unsigned long ctrl;
  734. switch(mode) {
  735. case CLOCK_EVT_MODE_PERIODIC:
  736. writel(TIMER_RELOAD, TIMER0_VA_BASE + TIMER_LOAD);
  737. ctrl = TIMER_CTRL_PERIODIC;
  738. ctrl |= TIMER_CTRL_32BIT | TIMER_CTRL_IE | TIMER_CTRL_ENABLE;
  739. break;
  740. case CLOCK_EVT_MODE_ONESHOT:
  741. /* period set, and timer enabled in 'next_event' hook */
  742. ctrl = TIMER_CTRL_ONESHOT;
  743. ctrl |= TIMER_CTRL_32BIT | TIMER_CTRL_IE;
  744. break;
  745. case CLOCK_EVT_MODE_UNUSED:
  746. case CLOCK_EVT_MODE_SHUTDOWN:
  747. default:
  748. ctrl = 0;
  749. }
  750. writel(ctrl, TIMER0_VA_BASE + TIMER_CTRL);
  751. }
  752. static int timer_set_next_event(unsigned long evt,
  753. struct clock_event_device *unused)
  754. {
  755. unsigned long ctrl = readl(TIMER0_VA_BASE + TIMER_CTRL);
  756. writel(evt, TIMER0_VA_BASE + TIMER_LOAD);
  757. writel(ctrl | TIMER_CTRL_ENABLE, TIMER0_VA_BASE + TIMER_CTRL);
  758. return 0;
  759. }
  760. static struct clock_event_device timer0_clockevent = {
  761. .name = "timer0",
  762. .shift = 32,
  763. .features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT,
  764. .set_mode = timer_set_mode,
  765. .set_next_event = timer_set_next_event,
  766. };
  767. /*
  768. * IRQ handler for the timer
  769. */
  770. static irqreturn_t versatile_timer_interrupt(int irq, void *dev_id)
  771. {
  772. struct clock_event_device *evt = &timer0_clockevent;
  773. writel(1, TIMER0_VA_BASE + TIMER_INTCLR);
  774. evt->event_handler(evt);
  775. return IRQ_HANDLED;
  776. }
  777. static struct irqaction versatile_timer_irq = {
  778. .name = "Versatile Timer Tick",
  779. .flags = IRQF_DISABLED | IRQF_TIMER | IRQF_IRQPOLL,
  780. .handler = versatile_timer_interrupt,
  781. };
  782. static cycle_t versatile_get_cycles(void)
  783. {
  784. return ~readl(TIMER3_VA_BASE + TIMER_VALUE);
  785. }
  786. static struct clocksource clocksource_versatile = {
  787. .name = "timer3",
  788. .rating = 200,
  789. .read = versatile_get_cycles,
  790. .mask = CLOCKSOURCE_MASK(32),
  791. .shift = 20,
  792. .flags = CLOCK_SOURCE_IS_CONTINUOUS,
  793. };
  794. static int __init versatile_clocksource_init(void)
  795. {
  796. /* setup timer3 as free-running clocksource */
  797. writel(0, TIMER3_VA_BASE + TIMER_CTRL);
  798. writel(0xffffffff, TIMER3_VA_BASE + TIMER_LOAD);
  799. writel(0xffffffff, TIMER3_VA_BASE + TIMER_VALUE);
  800. writel(TIMER_CTRL_32BIT | TIMER_CTRL_ENABLE | TIMER_CTRL_PERIODIC,
  801. TIMER3_VA_BASE + TIMER_CTRL);
  802. clocksource_versatile.mult =
  803. clocksource_khz2mult(1000, clocksource_versatile.shift);
  804. clocksource_register(&clocksource_versatile);
  805. return 0;
  806. }
  807. /*
  808. * Set up timer interrupt, and return the current time in seconds.
  809. */
  810. static void __init versatile_timer_init(void)
  811. {
  812. u32 val;
  813. /*
  814. * set clock frequency:
  815. * VERSATILE_REFCLK is 32KHz
  816. * VERSATILE_TIMCLK is 1MHz
  817. */
  818. val = readl(__io_address(VERSATILE_SCTL_BASE));
  819. writel((VERSATILE_TIMCLK << VERSATILE_TIMER1_EnSel) |
  820. (VERSATILE_TIMCLK << VERSATILE_TIMER2_EnSel) |
  821. (VERSATILE_TIMCLK << VERSATILE_TIMER3_EnSel) |
  822. (VERSATILE_TIMCLK << VERSATILE_TIMER4_EnSel) | val,
  823. __io_address(VERSATILE_SCTL_BASE));
  824. /*
  825. * Initialise to a known state (all timers off)
  826. */
  827. writel(0, TIMER0_VA_BASE + TIMER_CTRL);
  828. writel(0, TIMER1_VA_BASE + TIMER_CTRL);
  829. writel(0, TIMER2_VA_BASE + TIMER_CTRL);
  830. writel(0, TIMER3_VA_BASE + TIMER_CTRL);
  831. /*
  832. * Make irqs happen for the system timer
  833. */
  834. setup_irq(IRQ_TIMERINT0_1, &versatile_timer_irq);
  835. versatile_clocksource_init();
  836. timer0_clockevent.mult =
  837. div_sc(1000000, NSEC_PER_SEC, timer0_clockevent.shift);
  838. timer0_clockevent.max_delta_ns =
  839. clockevent_delta2ns(0xffffffff, &timer0_clockevent);
  840. timer0_clockevent.min_delta_ns =
  841. clockevent_delta2ns(0xf, &timer0_clockevent);
  842. timer0_clockevent.cpumask = cpumask_of_cpu(0);
  843. clockevents_register_device(&timer0_clockevent);
  844. }
  845. struct sys_timer versatile_timer = {
  846. .init = versatile_timer_init,
  847. };