pxa27x.c 8.4 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360
  1. /*
  2. * linux/arch/arm/mach-pxa/pxa27x.c
  3. *
  4. * Author: Nicolas Pitre
  5. * Created: Nov 05, 2002
  6. * Copyright: MontaVista Software Inc.
  7. *
  8. * Code specific to PXA27x aka Bulverde.
  9. *
  10. * This program is free software; you can redistribute it and/or modify
  11. * it under the terms of the GNU General Public License version 2 as
  12. * published by the Free Software Foundation.
  13. */
  14. #include <linux/module.h>
  15. #include <linux/kernel.h>
  16. #include <linux/init.h>
  17. #include <linux/pm.h>
  18. #include <linux/platform_device.h>
  19. #include <asm/hardware.h>
  20. #include <asm/irq.h>
  21. #include <asm/arch/irqs.h>
  22. #include <asm/arch/pxa-regs.h>
  23. #include <asm/arch/ohci.h>
  24. #include <asm/arch/pm.h>
  25. #include <asm/arch/dma.h>
  26. #include "generic.h"
  27. #include "devices.h"
  28. /* Crystal clock: 13MHz */
  29. #define BASE_CLK 13000000
  30. /*
  31. * Get the clock frequency as reflected by CCSR and the turbo flag.
  32. * We assume these values have been applied via a fcs.
  33. * If info is not 0 we also display the current settings.
  34. */
  35. unsigned int get_clk_frequency_khz( int info)
  36. {
  37. unsigned long ccsr, clkcfg;
  38. unsigned int l, L, m, M, n2, N, S;
  39. int cccr_a, t, ht, b;
  40. ccsr = CCSR;
  41. cccr_a = CCCR & (1 << 25);
  42. /* Read clkcfg register: it has turbo, b, half-turbo (and f) */
  43. asm( "mrc\tp14, 0, %0, c6, c0, 0" : "=r" (clkcfg) );
  44. t = clkcfg & (1 << 0);
  45. ht = clkcfg & (1 << 2);
  46. b = clkcfg & (1 << 3);
  47. l = ccsr & 0x1f;
  48. n2 = (ccsr>>7) & 0xf;
  49. m = (l <= 10) ? 1 : (l <= 20) ? 2 : 4;
  50. L = l * BASE_CLK;
  51. N = (L * n2) / 2;
  52. M = (!cccr_a) ? (L/m) : ((b) ? L : (L/2));
  53. S = (b) ? L : (L/2);
  54. if (info) {
  55. printk( KERN_INFO "Run Mode clock: %d.%02dMHz (*%d)\n",
  56. L / 1000000, (L % 1000000) / 10000, l );
  57. printk( KERN_INFO "Turbo Mode clock: %d.%02dMHz (*%d.%d, %sactive)\n",
  58. N / 1000000, (N % 1000000)/10000, n2 / 2, (n2 % 2)*5,
  59. (t) ? "" : "in" );
  60. printk( KERN_INFO "Memory clock: %d.%02dMHz (/%d)\n",
  61. M / 1000000, (M % 1000000) / 10000, m );
  62. printk( KERN_INFO "System bus clock: %d.%02dMHz \n",
  63. S / 1000000, (S % 1000000) / 10000 );
  64. }
  65. return (t) ? (N/1000) : (L/1000);
  66. }
  67. /*
  68. * Return the current mem clock frequency in units of 10kHz as
  69. * reflected by CCCR[A], B, and L
  70. */
  71. unsigned int get_memclk_frequency_10khz(void)
  72. {
  73. unsigned long ccsr, clkcfg;
  74. unsigned int l, L, m, M;
  75. int cccr_a, b;
  76. ccsr = CCSR;
  77. cccr_a = CCCR & (1 << 25);
  78. /* Read clkcfg register: it has turbo, b, half-turbo (and f) */
  79. asm( "mrc\tp14, 0, %0, c6, c0, 0" : "=r" (clkcfg) );
  80. b = clkcfg & (1 << 3);
  81. l = ccsr & 0x1f;
  82. m = (l <= 10) ? 1 : (l <= 20) ? 2 : 4;
  83. L = l * BASE_CLK;
  84. M = (!cccr_a) ? (L/m) : ((b) ? L : (L/2));
  85. return (M / 10000);
  86. }
  87. /*
  88. * Return the current LCD clock frequency in units of 10kHz as
  89. */
  90. unsigned int get_lcdclk_frequency_10khz(void)
  91. {
  92. unsigned long ccsr;
  93. unsigned int l, L, k, K;
  94. ccsr = CCSR;
  95. l = ccsr & 0x1f;
  96. k = (l <= 7) ? 1 : (l <= 16) ? 2 : 4;
  97. L = l * BASE_CLK;
  98. K = L / k;
  99. return (K / 10000);
  100. }
  101. EXPORT_SYMBOL(get_clk_frequency_khz);
  102. EXPORT_SYMBOL(get_memclk_frequency_10khz);
  103. EXPORT_SYMBOL(get_lcdclk_frequency_10khz);
  104. #ifdef CONFIG_PM
  105. #define SAVE(x) sleep_save[SLEEP_SAVE_##x] = x
  106. #define RESTORE(x) x = sleep_save[SLEEP_SAVE_##x]
  107. #define RESTORE_GPLEVEL(n) do { \
  108. GPSR##n = sleep_save[SLEEP_SAVE_GPLR##n]; \
  109. GPCR##n = ~sleep_save[SLEEP_SAVE_GPLR##n]; \
  110. } while (0)
  111. /*
  112. * List of global PXA peripheral registers to preserve.
  113. * More ones like CP and general purpose register values are preserved
  114. * with the stack pointer in sleep.S.
  115. */
  116. enum { SLEEP_SAVE_START = 0,
  117. SLEEP_SAVE_GPLR0, SLEEP_SAVE_GPLR1, SLEEP_SAVE_GPLR2, SLEEP_SAVE_GPLR3,
  118. SLEEP_SAVE_GPDR0, SLEEP_SAVE_GPDR1, SLEEP_SAVE_GPDR2, SLEEP_SAVE_GPDR3,
  119. SLEEP_SAVE_GRER0, SLEEP_SAVE_GRER1, SLEEP_SAVE_GRER2, SLEEP_SAVE_GRER3,
  120. SLEEP_SAVE_GFER0, SLEEP_SAVE_GFER1, SLEEP_SAVE_GFER2, SLEEP_SAVE_GFER3,
  121. SLEEP_SAVE_PGSR0, SLEEP_SAVE_PGSR1, SLEEP_SAVE_PGSR2, SLEEP_SAVE_PGSR3,
  122. SLEEP_SAVE_GAFR0_L, SLEEP_SAVE_GAFR0_U,
  123. SLEEP_SAVE_GAFR1_L, SLEEP_SAVE_GAFR1_U,
  124. SLEEP_SAVE_GAFR2_L, SLEEP_SAVE_GAFR2_U,
  125. SLEEP_SAVE_GAFR3_L, SLEEP_SAVE_GAFR3_U,
  126. SLEEP_SAVE_PSTR,
  127. SLEEP_SAVE_ICMR,
  128. SLEEP_SAVE_CKEN,
  129. SLEEP_SAVE_MDREFR,
  130. SLEEP_SAVE_PWER, SLEEP_SAVE_PCFR, SLEEP_SAVE_PRER,
  131. SLEEP_SAVE_PFER, SLEEP_SAVE_PKWR,
  132. SLEEP_SAVE_SIZE
  133. };
  134. void pxa27x_cpu_pm_save(unsigned long *sleep_save)
  135. {
  136. SAVE(GPLR0); SAVE(GPLR1); SAVE(GPLR2); SAVE(GPLR3);
  137. SAVE(GPDR0); SAVE(GPDR1); SAVE(GPDR2); SAVE(GPDR3);
  138. SAVE(GRER0); SAVE(GRER1); SAVE(GRER2); SAVE(GRER3);
  139. SAVE(GFER0); SAVE(GFER1); SAVE(GFER2); SAVE(GFER3);
  140. SAVE(PGSR0); SAVE(PGSR1); SAVE(PGSR2); SAVE(PGSR3);
  141. SAVE(GAFR0_L); SAVE(GAFR0_U);
  142. SAVE(GAFR1_L); SAVE(GAFR1_U);
  143. SAVE(GAFR2_L); SAVE(GAFR2_U);
  144. SAVE(GAFR3_L); SAVE(GAFR3_U);
  145. SAVE(MDREFR);
  146. SAVE(PWER); SAVE(PCFR); SAVE(PRER);
  147. SAVE(PFER); SAVE(PKWR);
  148. SAVE(ICMR); ICMR = 0;
  149. SAVE(CKEN);
  150. SAVE(PSTR);
  151. /* Clear GPIO transition detect bits */
  152. GEDR0 = GEDR0; GEDR1 = GEDR1; GEDR2 = GEDR2; GEDR3 = GEDR3;
  153. }
  154. void pxa27x_cpu_pm_restore(unsigned long *sleep_save)
  155. {
  156. /* ensure not to come back here if it wasn't intended */
  157. PSPR = 0;
  158. /* restore registers */
  159. RESTORE_GPLEVEL(0); RESTORE_GPLEVEL(1);
  160. RESTORE_GPLEVEL(2); RESTORE_GPLEVEL(3);
  161. RESTORE(GPDR0); RESTORE(GPDR1); RESTORE(GPDR2); RESTORE(GPDR3);
  162. RESTORE(GAFR0_L); RESTORE(GAFR0_U);
  163. RESTORE(GAFR1_L); RESTORE(GAFR1_U);
  164. RESTORE(GAFR2_L); RESTORE(GAFR2_U);
  165. RESTORE(GAFR3_L); RESTORE(GAFR3_U);
  166. RESTORE(GRER0); RESTORE(GRER1); RESTORE(GRER2); RESTORE(GRER3);
  167. RESTORE(GFER0); RESTORE(GFER1); RESTORE(GFER2); RESTORE(GFER3);
  168. RESTORE(PGSR0); RESTORE(PGSR1); RESTORE(PGSR2); RESTORE(PGSR3);
  169. RESTORE(MDREFR);
  170. RESTORE(PWER); RESTORE(PCFR); RESTORE(PRER);
  171. RESTORE(PFER); RESTORE(PKWR);
  172. PSSR = PSSR_RDH | PSSR_PH;
  173. RESTORE(CKEN);
  174. ICLR = 0;
  175. ICCR = 1;
  176. RESTORE(ICMR);
  177. RESTORE(PSTR);
  178. }
  179. void pxa27x_cpu_pm_enter(suspend_state_t state)
  180. {
  181. extern void pxa_cpu_standby(void);
  182. if (state == PM_SUSPEND_STANDBY)
  183. CKEN = (1 << CKEN_MEMC) | (1 << CKEN_OSTIMER) |
  184. (1 << CKEN_LCD) | (1 << CKEN_PWM0);
  185. else
  186. CKEN = (1 << CKEN_MEMC) | (1 << CKEN_OSTIMER);
  187. /* ensure voltage-change sequencer not initiated, which hangs */
  188. PCFR &= ~PCFR_FVC;
  189. /* Clear edge-detect status register. */
  190. PEDR = 0xDF12FE1B;
  191. switch (state) {
  192. case PM_SUSPEND_STANDBY:
  193. pxa_cpu_standby();
  194. break;
  195. case PM_SUSPEND_MEM:
  196. /* set resume return address */
  197. PSPR = virt_to_phys(pxa_cpu_resume);
  198. pxa27x_cpu_suspend(PWRMODE_SLEEP);
  199. break;
  200. }
  201. }
  202. static int pxa27x_cpu_pm_valid(suspend_state_t state)
  203. {
  204. return state == PM_SUSPEND_MEM || state == PM_SUSPEND_STANDBY;
  205. }
  206. static struct pxa_cpu_pm_fns pxa27x_cpu_pm_fns = {
  207. .save_size = SLEEP_SAVE_SIZE,
  208. .save = pxa27x_cpu_pm_save,
  209. .restore = pxa27x_cpu_pm_restore,
  210. .valid = pxa27x_cpu_pm_valid,
  211. .enter = pxa27x_cpu_pm_enter,
  212. };
  213. static void __init pxa27x_init_pm(void)
  214. {
  215. pxa_cpu_pm_fns = &pxa27x_cpu_pm_fns;
  216. }
  217. #endif
  218. /*
  219. * device registration specific to PXA27x.
  220. */
  221. static u64 pxa27x_dmamask = 0xffffffffUL;
  222. static struct resource pxa27x_ohci_resources[] = {
  223. [0] = {
  224. .start = 0x4C000000,
  225. .end = 0x4C00ff6f,
  226. .flags = IORESOURCE_MEM,
  227. },
  228. [1] = {
  229. .start = IRQ_USBH1,
  230. .end = IRQ_USBH1,
  231. .flags = IORESOURCE_IRQ,
  232. },
  233. };
  234. static struct platform_device pxa27x_device_ohci = {
  235. .name = "pxa27x-ohci",
  236. .id = -1,
  237. .dev = {
  238. .dma_mask = &pxa27x_dmamask,
  239. .coherent_dma_mask = 0xffffffff,
  240. },
  241. .num_resources = ARRAY_SIZE(pxa27x_ohci_resources),
  242. .resource = pxa27x_ohci_resources,
  243. };
  244. void __init pxa_set_ohci_info(struct pxaohci_platform_data *info)
  245. {
  246. pxa27x_device_ohci.dev.platform_data = info;
  247. }
  248. static struct resource i2c_power_resources[] = {
  249. {
  250. .start = 0x40f00180,
  251. .end = 0x40f001a3,
  252. .flags = IORESOURCE_MEM,
  253. }, {
  254. .start = IRQ_PWRI2C,
  255. .end = IRQ_PWRI2C,
  256. .flags = IORESOURCE_IRQ,
  257. },
  258. };
  259. static struct platform_device pxa27x_device_i2c_power = {
  260. .name = "pxa2xx-i2c",
  261. .id = 1,
  262. .resource = i2c_power_resources,
  263. .num_resources = ARRAY_SIZE(i2c_power_resources),
  264. };
  265. static struct platform_device *devices[] __initdata = {
  266. &pxa_device_mci,
  267. &pxa_device_udc,
  268. &pxa_device_fb,
  269. &pxa_device_ffuart,
  270. &pxa_device_btuart,
  271. &pxa_device_stuart,
  272. &pxa_device_i2c,
  273. &pxa_device_i2s,
  274. &pxa_device_ficp,
  275. &pxa_device_rtc,
  276. &pxa27x_device_i2c_power,
  277. &pxa27x_device_ohci,
  278. };
  279. void __init pxa27x_init_irq(void)
  280. {
  281. pxa_init_irq_low();
  282. pxa_init_irq_high();
  283. pxa_init_irq_gpio(128);
  284. }
  285. static int __init pxa27x_init(void)
  286. {
  287. int ret = 0;
  288. if (cpu_is_pxa27x()) {
  289. if ((ret = pxa_init_dma(32)))
  290. return ret;
  291. #ifdef CONFIG_PM
  292. pxa27x_init_pm();
  293. #endif
  294. ret = platform_add_devices(devices, ARRAY_SIZE(devices));
  295. }
  296. return ret;
  297. }
  298. subsys_initcall(pxa27x_init);