pxa25x.c 6.0 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247
  1. /*
  2. * linux/arch/arm/mach-pxa/pxa25x.c
  3. *
  4. * Author: Nicolas Pitre
  5. * Created: Jun 15, 2001
  6. * Copyright: MontaVista Software Inc.
  7. *
  8. * Code specific to PXA21x/25x/26x variants.
  9. *
  10. * This program is free software; you can redistribute it and/or modify
  11. * it under the terms of the GNU General Public License version 2 as
  12. * published by the Free Software Foundation.
  13. *
  14. * Since this file should be linked before any other machine specific file,
  15. * the __initcall() here will be executed first. This serves as default
  16. * initialization stuff for PXA machines which can be overridden later if
  17. * need be.
  18. */
  19. #include <linux/module.h>
  20. #include <linux/kernel.h>
  21. #include <linux/init.h>
  22. #include <linux/platform_device.h>
  23. #include <linux/pm.h>
  24. #include <asm/hardware.h>
  25. #include <asm/arch/irqs.h>
  26. #include <asm/arch/pxa-regs.h>
  27. #include <asm/arch/pm.h>
  28. #include <asm/arch/dma.h>
  29. #include "generic.h"
  30. #include "devices.h"
  31. /*
  32. * Various clock factors driven by the CCCR register.
  33. */
  34. /* Crystal Frequency to Memory Frequency Multiplier (L) */
  35. static unsigned char L_clk_mult[32] = { 0, 27, 32, 36, 40, 45, 0, };
  36. /* Memory Frequency to Run Mode Frequency Multiplier (M) */
  37. static unsigned char M_clk_mult[4] = { 0, 1, 2, 4 };
  38. /* Run Mode Frequency to Turbo Mode Frequency Multiplier (N) */
  39. /* Note: we store the value N * 2 here. */
  40. static unsigned char N2_clk_mult[8] = { 0, 0, 2, 3, 4, 0, 6, 0 };
  41. /* Crystal clock */
  42. #define BASE_CLK 3686400
  43. /*
  44. * Get the clock frequency as reflected by CCCR and the turbo flag.
  45. * We assume these values have been applied via a fcs.
  46. * If info is not 0 we also display the current settings.
  47. */
  48. unsigned int get_clk_frequency_khz(int info)
  49. {
  50. unsigned long cccr, turbo;
  51. unsigned int l, L, m, M, n2, N;
  52. cccr = CCCR;
  53. asm( "mrc\tp14, 0, %0, c6, c0, 0" : "=r" (turbo) );
  54. l = L_clk_mult[(cccr >> 0) & 0x1f];
  55. m = M_clk_mult[(cccr >> 5) & 0x03];
  56. n2 = N2_clk_mult[(cccr >> 7) & 0x07];
  57. L = l * BASE_CLK;
  58. M = m * L;
  59. N = n2 * M / 2;
  60. if(info)
  61. {
  62. L += 5000;
  63. printk( KERN_INFO "Memory clock: %d.%02dMHz (*%d)\n",
  64. L / 1000000, (L % 1000000) / 10000, l );
  65. M += 5000;
  66. printk( KERN_INFO "Run Mode clock: %d.%02dMHz (*%d)\n",
  67. M / 1000000, (M % 1000000) / 10000, m );
  68. N += 5000;
  69. printk( KERN_INFO "Turbo Mode clock: %d.%02dMHz (*%d.%d, %sactive)\n",
  70. N / 1000000, (N % 1000000) / 10000, n2 / 2, (n2 % 2) * 5,
  71. (turbo & 1) ? "" : "in" );
  72. }
  73. return (turbo & 1) ? (N/1000) : (M/1000);
  74. }
  75. EXPORT_SYMBOL(get_clk_frequency_khz);
  76. /*
  77. * Return the current memory clock frequency in units of 10kHz
  78. */
  79. unsigned int get_memclk_frequency_10khz(void)
  80. {
  81. return L_clk_mult[(CCCR >> 0) & 0x1f] * BASE_CLK / 10000;
  82. }
  83. EXPORT_SYMBOL(get_memclk_frequency_10khz);
  84. /*
  85. * Return the current LCD clock frequency in units of 10kHz
  86. */
  87. unsigned int get_lcdclk_frequency_10khz(void)
  88. {
  89. return get_memclk_frequency_10khz();
  90. }
  91. EXPORT_SYMBOL(get_lcdclk_frequency_10khz);
  92. #ifdef CONFIG_PM
  93. #define SAVE(x) sleep_save[SLEEP_SAVE_##x] = x
  94. #define RESTORE(x) x = sleep_save[SLEEP_SAVE_##x]
  95. #define RESTORE_GPLEVEL(n) do { \
  96. GPSR##n = sleep_save[SLEEP_SAVE_GPLR##n]; \
  97. GPCR##n = ~sleep_save[SLEEP_SAVE_GPLR##n]; \
  98. } while (0)
  99. /*
  100. * List of global PXA peripheral registers to preserve.
  101. * More ones like CP and general purpose register values are preserved
  102. * with the stack pointer in sleep.S.
  103. */
  104. enum { SLEEP_SAVE_START = 0,
  105. SLEEP_SAVE_GPLR0, SLEEP_SAVE_GPLR1, SLEEP_SAVE_GPLR2,
  106. SLEEP_SAVE_GPDR0, SLEEP_SAVE_GPDR1, SLEEP_SAVE_GPDR2,
  107. SLEEP_SAVE_GRER0, SLEEP_SAVE_GRER1, SLEEP_SAVE_GRER2,
  108. SLEEP_SAVE_GFER0, SLEEP_SAVE_GFER1, SLEEP_SAVE_GFER2,
  109. SLEEP_SAVE_PGSR0, SLEEP_SAVE_PGSR1, SLEEP_SAVE_PGSR2,
  110. SLEEP_SAVE_GAFR0_L, SLEEP_SAVE_GAFR0_U,
  111. SLEEP_SAVE_GAFR1_L, SLEEP_SAVE_GAFR1_U,
  112. SLEEP_SAVE_GAFR2_L, SLEEP_SAVE_GAFR2_U,
  113. SLEEP_SAVE_PSTR,
  114. SLEEP_SAVE_ICMR,
  115. SLEEP_SAVE_CKEN,
  116. SLEEP_SAVE_SIZE
  117. };
  118. static void pxa25x_cpu_pm_save(unsigned long *sleep_save)
  119. {
  120. SAVE(GPLR0); SAVE(GPLR1); SAVE(GPLR2);
  121. SAVE(GPDR0); SAVE(GPDR1); SAVE(GPDR2);
  122. SAVE(GRER0); SAVE(GRER1); SAVE(GRER2);
  123. SAVE(GFER0); SAVE(GFER1); SAVE(GFER2);
  124. SAVE(PGSR0); SAVE(PGSR1); SAVE(PGSR2);
  125. SAVE(GAFR0_L); SAVE(GAFR0_U);
  126. SAVE(GAFR1_L); SAVE(GAFR1_U);
  127. SAVE(GAFR2_L); SAVE(GAFR2_U);
  128. SAVE(ICMR);
  129. SAVE(CKEN);
  130. SAVE(PSTR);
  131. }
  132. static void pxa25x_cpu_pm_restore(unsigned long *sleep_save)
  133. {
  134. /* restore registers */
  135. RESTORE_GPLEVEL(0); RESTORE_GPLEVEL(1); RESTORE_GPLEVEL(2);
  136. RESTORE(GPDR0); RESTORE(GPDR1); RESTORE(GPDR2);
  137. RESTORE(GAFR0_L); RESTORE(GAFR0_U);
  138. RESTORE(GAFR1_L); RESTORE(GAFR1_U);
  139. RESTORE(GAFR2_L); RESTORE(GAFR2_U);
  140. RESTORE(GRER0); RESTORE(GRER1); RESTORE(GRER2);
  141. RESTORE(GFER0); RESTORE(GFER1); RESTORE(GFER2);
  142. RESTORE(PGSR0); RESTORE(PGSR1); RESTORE(PGSR2);
  143. RESTORE(CKEN);
  144. RESTORE(ICMR);
  145. RESTORE(PSTR);
  146. }
  147. static void pxa25x_cpu_pm_enter(suspend_state_t state)
  148. {
  149. CKEN = 0;
  150. switch (state) {
  151. case PM_SUSPEND_MEM:
  152. /* set resume return address */
  153. PSPR = virt_to_phys(pxa_cpu_resume);
  154. pxa25x_cpu_suspend(PWRMODE_SLEEP);
  155. break;
  156. }
  157. }
  158. static struct pxa_cpu_pm_fns pxa25x_cpu_pm_fns = {
  159. .save_size = SLEEP_SAVE_SIZE,
  160. .valid = pm_valid_only_mem,
  161. .save = pxa25x_cpu_pm_save,
  162. .restore = pxa25x_cpu_pm_restore,
  163. .enter = pxa25x_cpu_pm_enter,
  164. };
  165. static void __init pxa25x_init_pm(void)
  166. {
  167. pxa_cpu_pm_fns = &pxa25x_cpu_pm_fns;
  168. }
  169. #endif
  170. void __init pxa25x_init_irq(void)
  171. {
  172. pxa_init_irq_low();
  173. pxa_init_irq_gpio(85);
  174. }
  175. static struct platform_device *pxa25x_devices[] __initdata = {
  176. &pxa_device_mci,
  177. &pxa_device_udc,
  178. &pxa_device_fb,
  179. &pxa_device_ffuart,
  180. &pxa_device_btuart,
  181. &pxa_device_stuart,
  182. &pxa_device_i2c,
  183. &pxa_device_i2s,
  184. &pxa_device_ficp,
  185. &pxa_device_rtc,
  186. };
  187. static int __init pxa25x_init(void)
  188. {
  189. int ret = 0;
  190. if (cpu_is_pxa21x() || cpu_is_pxa25x()) {
  191. if ((ret = pxa_init_dma(16)))
  192. return ret;
  193. #ifdef CONFIG_PM
  194. pxa25x_init_pm();
  195. #endif
  196. ret = platform_add_devices(pxa25x_devices,
  197. ARRAY_SIZE(pxa25x_devices));
  198. }
  199. /* Only add HWUART for PXA255/26x; PXA210/250/27x do not have it. */
  200. if (cpu_is_pxa25x())
  201. ret = platform_device_register(&pxa_device_hwuart);
  202. return ret;
  203. }
  204. subsys_initcall(pxa25x_init);