numa_32.c 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493
  1. /*
  2. * Written by: Patricia Gaughen <gone@us.ibm.com>, IBM Corporation
  3. * August 2002: added remote node KVA remap - Martin J. Bligh
  4. *
  5. * Copyright (C) 2002, IBM Corp.
  6. *
  7. * All rights reserved.
  8. *
  9. * This program is free software; you can redistribute it and/or modify
  10. * it under the terms of the GNU General Public License as published by
  11. * the Free Software Foundation; either version 2 of the License, or
  12. * (at your option) any later version.
  13. *
  14. * This program is distributed in the hope that it will be useful, but
  15. * WITHOUT ANY WARRANTY; without even the implied warranty of
  16. * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
  17. * NON INFRINGEMENT. See the GNU General Public License for more
  18. * details.
  19. *
  20. * You should have received a copy of the GNU General Public License
  21. * along with this program; if not, write to the Free Software
  22. * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  23. */
  24. #include <linux/mm.h>
  25. #include <linux/bootmem.h>
  26. #include <linux/memblock.h>
  27. #include <linux/mmzone.h>
  28. #include <linux/highmem.h>
  29. #include <linux/initrd.h>
  30. #include <linux/nodemask.h>
  31. #include <linux/module.h>
  32. #include <linux/kexec.h>
  33. #include <linux/pfn.h>
  34. #include <linux/swap.h>
  35. #include <linux/acpi.h>
  36. #include <asm/e820.h>
  37. #include <asm/setup.h>
  38. #include <asm/mmzone.h>
  39. #include <asm/bios_ebda.h>
  40. #include <asm/proto.h>
  41. /*
  42. * numa interface - we expect the numa architecture specific code to have
  43. * populated the following initialisation.
  44. *
  45. * 1) node_online_map - the map of all nodes configured (online) in the system
  46. * 2) node_start_pfn - the starting page frame number for a node
  47. * 3) node_end_pfn - the ending page fram number for a node
  48. */
  49. unsigned long node_start_pfn[MAX_NUMNODES] __read_mostly;
  50. unsigned long node_end_pfn[MAX_NUMNODES] __read_mostly;
  51. #ifdef CONFIG_DISCONTIGMEM
  52. /*
  53. * 4) physnode_map - the mapping between a pfn and owning node
  54. * physnode_map keeps track of the physical memory layout of a generic
  55. * numa node on a 64Mb break (each element of the array will
  56. * represent 64Mb of memory and will be marked by the node id. so,
  57. * if the first gig is on node 0, and the second gig is on node 1
  58. * physnode_map will contain:
  59. *
  60. * physnode_map[0-15] = 0;
  61. * physnode_map[16-31] = 1;
  62. * physnode_map[32- ] = -1;
  63. */
  64. s8 physnode_map[MAX_ELEMENTS] __read_mostly = { [0 ... (MAX_ELEMENTS - 1)] = -1};
  65. EXPORT_SYMBOL(physnode_map);
  66. void memory_present(int nid, unsigned long start, unsigned long end)
  67. {
  68. unsigned long pfn;
  69. printk(KERN_INFO "Node: %d, start_pfn: %lx, end_pfn: %lx\n",
  70. nid, start, end);
  71. printk(KERN_DEBUG " Setting physnode_map array to node %d for pfns:\n", nid);
  72. printk(KERN_DEBUG " ");
  73. for (pfn = start; pfn < end; pfn += PAGES_PER_ELEMENT) {
  74. physnode_map[pfn / PAGES_PER_ELEMENT] = nid;
  75. printk(KERN_CONT "%lx ", pfn);
  76. }
  77. printk(KERN_CONT "\n");
  78. }
  79. unsigned long node_memmap_size_bytes(int nid, unsigned long start_pfn,
  80. unsigned long end_pfn)
  81. {
  82. unsigned long nr_pages = end_pfn - start_pfn;
  83. if (!nr_pages)
  84. return 0;
  85. return (nr_pages + 1) * sizeof(struct page);
  86. }
  87. #endif
  88. extern unsigned long find_max_low_pfn(void);
  89. extern unsigned long highend_pfn, highstart_pfn;
  90. #define LARGE_PAGE_BYTES (PTRS_PER_PTE * PAGE_SIZE)
  91. static void *node_remap_start_vaddr[MAX_NUMNODES];
  92. void set_pmd_pfn(unsigned long vaddr, unsigned long pfn, pgprot_t flags);
  93. /*
  94. * FLAT - support for basic PC memory model with discontig enabled, essentially
  95. * a single node with all available processors in it with a flat
  96. * memory map.
  97. */
  98. static int __init get_memcfg_numa_flat(void)
  99. {
  100. printk(KERN_DEBUG "NUMA - single node, flat memory mode\n");
  101. node_start_pfn[0] = 0;
  102. node_end_pfn[0] = max_pfn;
  103. memblock_x86_register_active_regions(0, 0, max_pfn);
  104. /* Indicate there is one node available. */
  105. nodes_clear(node_online_map);
  106. node_set_online(0);
  107. return 1;
  108. }
  109. /*
  110. * Find the highest page frame number we have available for the node
  111. */
  112. static void __init propagate_e820_map_node(int nid)
  113. {
  114. if (node_end_pfn[nid] > max_pfn)
  115. node_end_pfn[nid] = max_pfn;
  116. /*
  117. * if a user has given mem=XXXX, then we need to make sure
  118. * that the node _starts_ before that, too, not just ends
  119. */
  120. if (node_start_pfn[nid] > max_pfn)
  121. node_start_pfn[nid] = max_pfn;
  122. BUG_ON(node_start_pfn[nid] > node_end_pfn[nid]);
  123. }
  124. /*
  125. * Allocate memory for the pg_data_t for this node via a crude pre-bootmem
  126. * method. For node zero take this from the bottom of memory, for
  127. * subsequent nodes place them at node_remap_start_vaddr which contains
  128. * node local data in physically node local memory. See setup_memory()
  129. * for details.
  130. */
  131. static void __init allocate_pgdat(int nid)
  132. {
  133. char buf[16];
  134. NODE_DATA(nid) = alloc_remap(nid, ALIGN(sizeof(pg_data_t), PAGE_SIZE));
  135. if (!NODE_DATA(nid)) {
  136. unsigned long pgdat_phys;
  137. pgdat_phys = memblock_find_in_range(min_low_pfn<<PAGE_SHIFT,
  138. max_pfn_mapped<<PAGE_SHIFT,
  139. sizeof(pg_data_t),
  140. PAGE_SIZE);
  141. NODE_DATA(nid) = (pg_data_t *)(pfn_to_kaddr(pgdat_phys>>PAGE_SHIFT));
  142. memset(buf, 0, sizeof(buf));
  143. sprintf(buf, "NODE_DATA %d", nid);
  144. memblock_x86_reserve_range(pgdat_phys, pgdat_phys + sizeof(pg_data_t), buf);
  145. }
  146. printk(KERN_DEBUG "allocate_pgdat: node %d NODE_DATA %08lx\n",
  147. nid, (unsigned long)NODE_DATA(nid));
  148. }
  149. /*
  150. * Remap memory allocator
  151. */
  152. static unsigned long node_remap_start_pfn[MAX_NUMNODES];
  153. static void *node_remap_end_vaddr[MAX_NUMNODES];
  154. static void *node_remap_alloc_vaddr[MAX_NUMNODES];
  155. /**
  156. * alloc_remap - Allocate remapped memory
  157. * @nid: NUMA node to allocate memory from
  158. * @size: The size of allocation
  159. *
  160. * Allocate @size bytes from the remap area of NUMA node @nid. The
  161. * size of the remap area is predetermined by init_alloc_remap() and
  162. * only the callers considered there should call this function. For
  163. * more info, please read the comment on top of init_alloc_remap().
  164. *
  165. * The caller must be ready to handle allocation failure from this
  166. * function and fall back to regular memory allocator in such cases.
  167. *
  168. * CONTEXT:
  169. * Single CPU early boot context.
  170. *
  171. * RETURNS:
  172. * Pointer to the allocated memory on success, %NULL on failure.
  173. */
  174. void *alloc_remap(int nid, unsigned long size)
  175. {
  176. void *allocation = node_remap_alloc_vaddr[nid];
  177. size = ALIGN(size, L1_CACHE_BYTES);
  178. if (!allocation || (allocation + size) > node_remap_end_vaddr[nid])
  179. return NULL;
  180. node_remap_alloc_vaddr[nid] += size;
  181. memset(allocation, 0, size);
  182. return allocation;
  183. }
  184. #ifdef CONFIG_HIBERNATION
  185. /**
  186. * resume_map_numa_kva - add KVA mapping to the temporary page tables created
  187. * during resume from hibernation
  188. * @pgd_base - temporary resume page directory
  189. */
  190. void resume_map_numa_kva(pgd_t *pgd_base)
  191. {
  192. int node;
  193. for_each_online_node(node) {
  194. unsigned long start_va, start_pfn, nr_pages, pfn;
  195. start_va = (unsigned long)node_remap_start_vaddr[node];
  196. start_pfn = node_remap_start_pfn[node];
  197. nr_pages = (node_remap_end_vaddr[node] -
  198. node_remap_start_vaddr[node]) >> PAGE_SHIFT;
  199. printk(KERN_DEBUG "%s: node %d\n", __func__, node);
  200. for (pfn = 0; pfn < nr_pages; pfn += PTRS_PER_PTE) {
  201. unsigned long vaddr = start_va + (pfn << PAGE_SHIFT);
  202. pgd_t *pgd = pgd_base + pgd_index(vaddr);
  203. pud_t *pud = pud_offset(pgd, vaddr);
  204. pmd_t *pmd = pmd_offset(pud, vaddr);
  205. set_pmd(pmd, pfn_pmd(start_pfn + pfn,
  206. PAGE_KERNEL_LARGE_EXEC));
  207. printk(KERN_DEBUG "%s: %08lx -> pfn %08lx\n",
  208. __func__, vaddr, start_pfn + pfn);
  209. }
  210. }
  211. }
  212. #endif
  213. /**
  214. * init_alloc_remap - Initialize remap allocator for a NUMA node
  215. * @nid: NUMA node to initizlie remap allocator for
  216. *
  217. * NUMA nodes may end up without any lowmem. As allocating pgdat and
  218. * memmap on a different node with lowmem is inefficient, a special
  219. * remap allocator is implemented which can be used by alloc_remap().
  220. *
  221. * For each node, the amount of memory which will be necessary for
  222. * pgdat and memmap is calculated and two memory areas of the size are
  223. * allocated - one in the node and the other in lowmem; then, the area
  224. * in the node is remapped to the lowmem area.
  225. *
  226. * As pgdat and memmap must be allocated in lowmem anyway, this
  227. * doesn't waste lowmem address space; however, the actual lowmem
  228. * which gets remapped over is wasted. The amount shouldn't be
  229. * problematic on machines this feature will be used.
  230. *
  231. * Initialization failure isn't fatal. alloc_remap() is used
  232. * opportunistically and the callers will fall back to other memory
  233. * allocation mechanisms on failure.
  234. */
  235. static __init void init_alloc_remap(int nid)
  236. {
  237. unsigned long size, pfn;
  238. u64 node_pa, remap_pa;
  239. void *remap_va;
  240. /*
  241. * The acpi/srat node info can show hot-add memroy zones where
  242. * memory could be added but not currently present.
  243. */
  244. printk(KERN_DEBUG "node %d pfn: [%lx - %lx]\n",
  245. nid, node_start_pfn[nid], node_end_pfn[nid]);
  246. if (node_start_pfn[nid] > max_pfn)
  247. return;
  248. if (!node_end_pfn[nid])
  249. return;
  250. if (node_end_pfn[nid] > max_pfn)
  251. node_end_pfn[nid] = max_pfn;
  252. /* calculate the necessary space aligned to large page size */
  253. size = node_memmap_size_bytes(nid, node_start_pfn[nid],
  254. min(node_end_pfn[nid], max_pfn));
  255. size += ALIGN(sizeof(pg_data_t), PAGE_SIZE);
  256. size = ALIGN(size, LARGE_PAGE_BYTES);
  257. /* allocate node memory and the lowmem remap area */
  258. node_pa = memblock_find_in_range(node_start_pfn[nid] << PAGE_SHIFT,
  259. (u64)node_end_pfn[nid] << PAGE_SHIFT,
  260. size, LARGE_PAGE_BYTES);
  261. if (node_pa == MEMBLOCK_ERROR) {
  262. pr_warning("remap_alloc: failed to allocate %lu bytes for node %d\n",
  263. size, nid);
  264. return;
  265. }
  266. memblock_x86_reserve_range(node_pa, node_pa + size, "KVA RAM");
  267. remap_pa = memblock_find_in_range(min_low_pfn << PAGE_SHIFT,
  268. max_low_pfn << PAGE_SHIFT,
  269. size, LARGE_PAGE_BYTES);
  270. if (remap_pa == MEMBLOCK_ERROR) {
  271. pr_warning("remap_alloc: failed to allocate %lu bytes remap area for node %d\n",
  272. size, nid);
  273. memblock_x86_free_range(node_pa, node_pa + size);
  274. return;
  275. }
  276. memblock_x86_reserve_range(remap_pa, remap_pa + size, "KVA PG");
  277. remap_va = phys_to_virt(remap_pa);
  278. /* perform actual remap */
  279. for (pfn = 0; pfn < size >> PAGE_SHIFT; pfn += PTRS_PER_PTE)
  280. set_pmd_pfn((unsigned long)remap_va + (pfn << PAGE_SHIFT),
  281. (node_pa >> PAGE_SHIFT) + pfn,
  282. PAGE_KERNEL_LARGE);
  283. /* initialize remap allocator parameters */
  284. node_remap_start_pfn[nid] = node_pa >> PAGE_SHIFT;
  285. node_remap_start_vaddr[nid] = remap_va;
  286. node_remap_end_vaddr[nid] = remap_va + size;
  287. node_remap_alloc_vaddr[nid] = remap_va;
  288. printk(KERN_DEBUG "remap_alloc: node %d [%08llx-%08llx) -> [%p-%p)\n",
  289. nid, node_pa, node_pa + size, remap_va, remap_va + size);
  290. }
  291. static int get_memcfg_numaq(void)
  292. {
  293. #ifdef CONFIG_X86_NUMAQ
  294. int nid;
  295. if (numa_off)
  296. return 0;
  297. if (numaq_numa_init() < 0) {
  298. nodes_clear(numa_nodes_parsed);
  299. remove_all_active_ranges();
  300. return 0;
  301. }
  302. for_each_node_mask(nid, numa_nodes_parsed)
  303. node_set_online(nid);
  304. sort_node_map();
  305. return 1;
  306. #else
  307. return 0;
  308. #endif
  309. }
  310. static int get_memcfg_from_srat(void)
  311. {
  312. #ifdef CONFIG_ACPI_NUMA
  313. int nid;
  314. if (numa_off)
  315. return 0;
  316. if (x86_acpi_numa_init() < 0) {
  317. nodes_clear(numa_nodes_parsed);
  318. remove_all_active_ranges();
  319. return 0;
  320. }
  321. for_each_node_mask(nid, numa_nodes_parsed)
  322. node_set_online(nid);
  323. sort_node_map();
  324. return 1;
  325. #else
  326. return 0;
  327. #endif
  328. }
  329. static void get_memcfg_numa(void)
  330. {
  331. if (get_memcfg_numaq())
  332. return;
  333. if (get_memcfg_from_srat())
  334. return;
  335. get_memcfg_numa_flat();
  336. }
  337. void __init initmem_init(void)
  338. {
  339. int nid;
  340. get_memcfg_numa();
  341. numa_init_array();
  342. for_each_online_node(nid)
  343. init_alloc_remap(nid);
  344. #ifdef CONFIG_HIGHMEM
  345. highstart_pfn = highend_pfn = max_pfn;
  346. if (max_pfn > max_low_pfn)
  347. highstart_pfn = max_low_pfn;
  348. printk(KERN_NOTICE "%ldMB HIGHMEM available.\n",
  349. pages_to_mb(highend_pfn - highstart_pfn));
  350. num_physpages = highend_pfn;
  351. high_memory = (void *) __va(highstart_pfn * PAGE_SIZE - 1) + 1;
  352. #else
  353. num_physpages = max_low_pfn;
  354. high_memory = (void *) __va(max_low_pfn * PAGE_SIZE - 1) + 1;
  355. #endif
  356. printk(KERN_NOTICE "%ldMB LOWMEM available.\n",
  357. pages_to_mb(max_low_pfn));
  358. printk(KERN_DEBUG "max_low_pfn = %lx, highstart_pfn = %lx\n",
  359. max_low_pfn, highstart_pfn);
  360. printk(KERN_DEBUG "Low memory ends at vaddr %08lx\n",
  361. (ulong) pfn_to_kaddr(max_low_pfn));
  362. for_each_online_node(nid)
  363. allocate_pgdat(nid);
  364. printk(KERN_DEBUG "High memory starts at vaddr %08lx\n",
  365. (ulong) pfn_to_kaddr(highstart_pfn));
  366. for_each_online_node(nid)
  367. propagate_e820_map_node(nid);
  368. for_each_online_node(nid) {
  369. memset(NODE_DATA(nid), 0, sizeof(struct pglist_data));
  370. NODE_DATA(nid)->node_id = nid;
  371. }
  372. setup_bootmem_allocator();
  373. }
  374. #ifdef CONFIG_MEMORY_HOTPLUG
  375. static int paddr_to_nid(u64 addr)
  376. {
  377. int nid;
  378. unsigned long pfn = PFN_DOWN(addr);
  379. for_each_node(nid)
  380. if (node_start_pfn[nid] <= pfn &&
  381. pfn < node_end_pfn[nid])
  382. return nid;
  383. return -1;
  384. }
  385. /*
  386. * This function is used to ask node id BEFORE memmap and mem_section's
  387. * initialization (pfn_to_nid() can't be used yet).
  388. * If _PXM is not defined on ACPI's DSDT, node id must be found by this.
  389. */
  390. int memory_add_physaddr_to_nid(u64 addr)
  391. {
  392. int nid = paddr_to_nid(addr);
  393. return (nid >= 0) ? nid : 0;
  394. }
  395. EXPORT_SYMBOL_GPL(memory_add_physaddr_to_nid);
  396. #endif
  397. /* temporary shim, will go away soon */
  398. int __init numa_add_memblk(int nid, u64 start, u64 end)
  399. {
  400. unsigned long start_pfn = start >> PAGE_SHIFT;
  401. unsigned long end_pfn = end >> PAGE_SHIFT;
  402. printk(KERN_DEBUG "nid %d start_pfn %08lx end_pfn %08lx\n",
  403. nid, start_pfn, end_pfn);
  404. if (start >= (u64)max_pfn << PAGE_SHIFT) {
  405. printk(KERN_INFO "Ignoring SRAT pfns: %08lx - %08lx\n",
  406. start_pfn, end_pfn);
  407. return 0;
  408. }
  409. node_set_online(nid);
  410. memblock_x86_register_active_regions(nid, start_pfn,
  411. min(end_pfn, max_pfn));
  412. if (!node_has_online_mem(nid)) {
  413. node_start_pfn[nid] = start_pfn;
  414. node_end_pfn[nid] = end_pfn;
  415. } else {
  416. node_start_pfn[nid] = min(node_start_pfn[nid], start_pfn);
  417. node_end_pfn[nid] = max(node_end_pfn[nid], end_pfn);
  418. }
  419. return 0;
  420. }
  421. /* temporary shim, will go away soon */
  422. void __init numa_set_distance(int from, int to, int distance)
  423. {
  424. /* nada */
  425. }