t3_hw.c 118 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944
  1. /*
  2. * Copyright (c) 2003-2008 Chelsio, Inc. All rights reserved.
  3. *
  4. * This software is available to you under a choice of one of two
  5. * licenses. You may choose to be licensed under the terms of the GNU
  6. * General Public License (GPL) Version 2, available from the file
  7. * COPYING in the main directory of this source tree, or the
  8. * OpenIB.org BSD license below:
  9. *
  10. * Redistribution and use in source and binary forms, with or
  11. * without modification, are permitted provided that the following
  12. * conditions are met:
  13. *
  14. * - Redistributions of source code must retain the above
  15. * copyright notice, this list of conditions and the following
  16. * disclaimer.
  17. *
  18. * - Redistributions in binary form must reproduce the above
  19. * copyright notice, this list of conditions and the following
  20. * disclaimer in the documentation and/or other materials
  21. * provided with the distribution.
  22. *
  23. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
  24. * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  25. * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
  26. * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
  27. * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
  28. * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
  29. * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  30. * SOFTWARE.
  31. */
  32. #include "common.h"
  33. #include "regs.h"
  34. #include "sge_defs.h"
  35. #include "firmware_exports.h"
  36. /**
  37. * t3_wait_op_done_val - wait until an operation is completed
  38. * @adapter: the adapter performing the operation
  39. * @reg: the register to check for completion
  40. * @mask: a single-bit field within @reg that indicates completion
  41. * @polarity: the value of the field when the operation is completed
  42. * @attempts: number of check iterations
  43. * @delay: delay in usecs between iterations
  44. * @valp: where to store the value of the register at completion time
  45. *
  46. * Wait until an operation is completed by checking a bit in a register
  47. * up to @attempts times. If @valp is not NULL the value of the register
  48. * at the time it indicated completion is stored there. Returns 0 if the
  49. * operation completes and -EAGAIN otherwise.
  50. */
  51. int t3_wait_op_done_val(struct adapter *adapter, int reg, u32 mask,
  52. int polarity, int attempts, int delay, u32 *valp)
  53. {
  54. while (1) {
  55. u32 val = t3_read_reg(adapter, reg);
  56. if (!!(val & mask) == polarity) {
  57. if (valp)
  58. *valp = val;
  59. return 0;
  60. }
  61. if (--attempts == 0)
  62. return -EAGAIN;
  63. if (delay)
  64. udelay(delay);
  65. }
  66. }
  67. /**
  68. * t3_write_regs - write a bunch of registers
  69. * @adapter: the adapter to program
  70. * @p: an array of register address/register value pairs
  71. * @n: the number of address/value pairs
  72. * @offset: register address offset
  73. *
  74. * Takes an array of register address/register value pairs and writes each
  75. * value to the corresponding register. Register addresses are adjusted
  76. * by the supplied offset.
  77. */
  78. void t3_write_regs(struct adapter *adapter, const struct addr_val_pair *p,
  79. int n, unsigned int offset)
  80. {
  81. while (n--) {
  82. t3_write_reg(adapter, p->reg_addr + offset, p->val);
  83. p++;
  84. }
  85. }
  86. /**
  87. * t3_set_reg_field - set a register field to a value
  88. * @adapter: the adapter to program
  89. * @addr: the register address
  90. * @mask: specifies the portion of the register to modify
  91. * @val: the new value for the register field
  92. *
  93. * Sets a register field specified by the supplied mask to the
  94. * given value.
  95. */
  96. void t3_set_reg_field(struct adapter *adapter, unsigned int addr, u32 mask,
  97. u32 val)
  98. {
  99. u32 v = t3_read_reg(adapter, addr) & ~mask;
  100. t3_write_reg(adapter, addr, v | val);
  101. t3_read_reg(adapter, addr); /* flush */
  102. }
  103. /**
  104. * t3_read_indirect - read indirectly addressed registers
  105. * @adap: the adapter
  106. * @addr_reg: register holding the indirect address
  107. * @data_reg: register holding the value of the indirect register
  108. * @vals: where the read register values are stored
  109. * @start_idx: index of first indirect register to read
  110. * @nregs: how many indirect registers to read
  111. *
  112. * Reads registers that are accessed indirectly through an address/data
  113. * register pair.
  114. */
  115. static void t3_read_indirect(struct adapter *adap, unsigned int addr_reg,
  116. unsigned int data_reg, u32 *vals,
  117. unsigned int nregs, unsigned int start_idx)
  118. {
  119. while (nregs--) {
  120. t3_write_reg(adap, addr_reg, start_idx);
  121. *vals++ = t3_read_reg(adap, data_reg);
  122. start_idx++;
  123. }
  124. }
  125. /**
  126. * t3_mc7_bd_read - read from MC7 through backdoor accesses
  127. * @mc7: identifies MC7 to read from
  128. * @start: index of first 64-bit word to read
  129. * @n: number of 64-bit words to read
  130. * @buf: where to store the read result
  131. *
  132. * Read n 64-bit words from MC7 starting at word start, using backdoor
  133. * accesses.
  134. */
  135. int t3_mc7_bd_read(struct mc7 *mc7, unsigned int start, unsigned int n,
  136. u64 *buf)
  137. {
  138. static const int shift[] = { 0, 0, 16, 24 };
  139. static const int step[] = { 0, 32, 16, 8 };
  140. unsigned int size64 = mc7->size / 8; /* # of 64-bit words */
  141. struct adapter *adap = mc7->adapter;
  142. if (start >= size64 || start + n > size64)
  143. return -EINVAL;
  144. start *= (8 << mc7->width);
  145. while (n--) {
  146. int i;
  147. u64 val64 = 0;
  148. for (i = (1 << mc7->width) - 1; i >= 0; --i) {
  149. int attempts = 10;
  150. u32 val;
  151. t3_write_reg(adap, mc7->offset + A_MC7_BD_ADDR, start);
  152. t3_write_reg(adap, mc7->offset + A_MC7_BD_OP, 0);
  153. val = t3_read_reg(adap, mc7->offset + A_MC7_BD_OP);
  154. while ((val & F_BUSY) && attempts--)
  155. val = t3_read_reg(adap,
  156. mc7->offset + A_MC7_BD_OP);
  157. if (val & F_BUSY)
  158. return -EIO;
  159. val = t3_read_reg(adap, mc7->offset + A_MC7_BD_DATA1);
  160. if (mc7->width == 0) {
  161. val64 = t3_read_reg(adap,
  162. mc7->offset +
  163. A_MC7_BD_DATA0);
  164. val64 |= (u64) val << 32;
  165. } else {
  166. if (mc7->width > 1)
  167. val >>= shift[mc7->width];
  168. val64 |= (u64) val << (step[mc7->width] * i);
  169. }
  170. start += 8;
  171. }
  172. *buf++ = val64;
  173. }
  174. return 0;
  175. }
  176. /*
  177. * Initialize MI1.
  178. */
  179. static void mi1_init(struct adapter *adap, const struct adapter_info *ai)
  180. {
  181. u32 clkdiv = adap->params.vpd.cclk / (2 * adap->params.vpd.mdc) - 1;
  182. u32 val = F_PREEN | V_CLKDIV(clkdiv);
  183. t3_write_reg(adap, A_MI1_CFG, val);
  184. }
  185. #define MDIO_ATTEMPTS 20
  186. /*
  187. * MI1 read/write operations for clause 22 PHYs.
  188. */
  189. static int t3_mi1_read(struct net_device *dev, int phy_addr, int mmd_addr,
  190. u16 reg_addr)
  191. {
  192. struct port_info *pi = netdev_priv(dev);
  193. struct adapter *adapter = pi->adapter;
  194. int ret;
  195. u32 addr = V_REGADDR(reg_addr) | V_PHYADDR(phy_addr);
  196. mutex_lock(&adapter->mdio_lock);
  197. t3_set_reg_field(adapter, A_MI1_CFG, V_ST(M_ST), V_ST(1));
  198. t3_write_reg(adapter, A_MI1_ADDR, addr);
  199. t3_write_reg(adapter, A_MI1_OP, V_MDI_OP(2));
  200. ret = t3_wait_op_done(adapter, A_MI1_OP, F_BUSY, 0, MDIO_ATTEMPTS, 10);
  201. if (!ret)
  202. ret = t3_read_reg(adapter, A_MI1_DATA);
  203. mutex_unlock(&adapter->mdio_lock);
  204. return ret;
  205. }
  206. static int t3_mi1_write(struct net_device *dev, int phy_addr, int mmd_addr,
  207. u16 reg_addr, u16 val)
  208. {
  209. struct port_info *pi = netdev_priv(dev);
  210. struct adapter *adapter = pi->adapter;
  211. int ret;
  212. u32 addr = V_REGADDR(reg_addr) | V_PHYADDR(phy_addr);
  213. mutex_lock(&adapter->mdio_lock);
  214. t3_set_reg_field(adapter, A_MI1_CFG, V_ST(M_ST), V_ST(1));
  215. t3_write_reg(adapter, A_MI1_ADDR, addr);
  216. t3_write_reg(adapter, A_MI1_DATA, val);
  217. t3_write_reg(adapter, A_MI1_OP, V_MDI_OP(1));
  218. ret = t3_wait_op_done(adapter, A_MI1_OP, F_BUSY, 0, MDIO_ATTEMPTS, 10);
  219. mutex_unlock(&adapter->mdio_lock);
  220. return ret;
  221. }
  222. static const struct mdio_ops mi1_mdio_ops = {
  223. .read = t3_mi1_read,
  224. .write = t3_mi1_write,
  225. .mode_support = MDIO_SUPPORTS_C22
  226. };
  227. /*
  228. * Performs the address cycle for clause 45 PHYs.
  229. * Must be called with the MDIO_LOCK held.
  230. */
  231. static int mi1_wr_addr(struct adapter *adapter, int phy_addr, int mmd_addr,
  232. int reg_addr)
  233. {
  234. u32 addr = V_REGADDR(mmd_addr) | V_PHYADDR(phy_addr);
  235. t3_set_reg_field(adapter, A_MI1_CFG, V_ST(M_ST), 0);
  236. t3_write_reg(adapter, A_MI1_ADDR, addr);
  237. t3_write_reg(adapter, A_MI1_DATA, reg_addr);
  238. t3_write_reg(adapter, A_MI1_OP, V_MDI_OP(0));
  239. return t3_wait_op_done(adapter, A_MI1_OP, F_BUSY, 0,
  240. MDIO_ATTEMPTS, 10);
  241. }
  242. /*
  243. * MI1 read/write operations for indirect-addressed PHYs.
  244. */
  245. static int mi1_ext_read(struct net_device *dev, int phy_addr, int mmd_addr,
  246. u16 reg_addr)
  247. {
  248. struct port_info *pi = netdev_priv(dev);
  249. struct adapter *adapter = pi->adapter;
  250. int ret;
  251. mutex_lock(&adapter->mdio_lock);
  252. ret = mi1_wr_addr(adapter, phy_addr, mmd_addr, reg_addr);
  253. if (!ret) {
  254. t3_write_reg(adapter, A_MI1_OP, V_MDI_OP(3));
  255. ret = t3_wait_op_done(adapter, A_MI1_OP, F_BUSY, 0,
  256. MDIO_ATTEMPTS, 10);
  257. if (!ret)
  258. ret = t3_read_reg(adapter, A_MI1_DATA);
  259. }
  260. mutex_unlock(&adapter->mdio_lock);
  261. return ret;
  262. }
  263. static int mi1_ext_write(struct net_device *dev, int phy_addr, int mmd_addr,
  264. u16 reg_addr, u16 val)
  265. {
  266. struct port_info *pi = netdev_priv(dev);
  267. struct adapter *adapter = pi->adapter;
  268. int ret;
  269. mutex_lock(&adapter->mdio_lock);
  270. ret = mi1_wr_addr(adapter, phy_addr, mmd_addr, reg_addr);
  271. if (!ret) {
  272. t3_write_reg(adapter, A_MI1_DATA, val);
  273. t3_write_reg(adapter, A_MI1_OP, V_MDI_OP(1));
  274. ret = t3_wait_op_done(adapter, A_MI1_OP, F_BUSY, 0,
  275. MDIO_ATTEMPTS, 10);
  276. }
  277. mutex_unlock(&adapter->mdio_lock);
  278. return ret;
  279. }
  280. static const struct mdio_ops mi1_mdio_ext_ops = {
  281. .read = mi1_ext_read,
  282. .write = mi1_ext_write,
  283. .mode_support = MDIO_SUPPORTS_C45 | MDIO_EMULATE_C22
  284. };
  285. /**
  286. * t3_mdio_change_bits - modify the value of a PHY register
  287. * @phy: the PHY to operate on
  288. * @mmd: the device address
  289. * @reg: the register address
  290. * @clear: what part of the register value to mask off
  291. * @set: what part of the register value to set
  292. *
  293. * Changes the value of a PHY register by applying a mask to its current
  294. * value and ORing the result with a new value.
  295. */
  296. int t3_mdio_change_bits(struct cphy *phy, int mmd, int reg, unsigned int clear,
  297. unsigned int set)
  298. {
  299. int ret;
  300. unsigned int val;
  301. ret = t3_mdio_read(phy, mmd, reg, &val);
  302. if (!ret) {
  303. val &= ~clear;
  304. ret = t3_mdio_write(phy, mmd, reg, val | set);
  305. }
  306. return ret;
  307. }
  308. /**
  309. * t3_phy_reset - reset a PHY block
  310. * @phy: the PHY to operate on
  311. * @mmd: the device address of the PHY block to reset
  312. * @wait: how long to wait for the reset to complete in 1ms increments
  313. *
  314. * Resets a PHY block and optionally waits for the reset to complete.
  315. * @mmd should be 0 for 10/100/1000 PHYs and the device address to reset
  316. * for 10G PHYs.
  317. */
  318. int t3_phy_reset(struct cphy *phy, int mmd, int wait)
  319. {
  320. int err;
  321. unsigned int ctl;
  322. err = t3_mdio_change_bits(phy, mmd, MDIO_CTRL1, MDIO_CTRL1_LPOWER,
  323. MDIO_CTRL1_RESET);
  324. if (err || !wait)
  325. return err;
  326. do {
  327. err = t3_mdio_read(phy, mmd, MDIO_CTRL1, &ctl);
  328. if (err)
  329. return err;
  330. ctl &= MDIO_CTRL1_RESET;
  331. if (ctl)
  332. msleep(1);
  333. } while (ctl && --wait);
  334. return ctl ? -1 : 0;
  335. }
  336. /**
  337. * t3_phy_advertise - set the PHY advertisement registers for autoneg
  338. * @phy: the PHY to operate on
  339. * @advert: bitmap of capabilities the PHY should advertise
  340. *
  341. * Sets a 10/100/1000 PHY's advertisement registers to advertise the
  342. * requested capabilities.
  343. */
  344. int t3_phy_advertise(struct cphy *phy, unsigned int advert)
  345. {
  346. int err;
  347. unsigned int val = 0;
  348. err = t3_mdio_read(phy, MDIO_DEVAD_NONE, MII_CTRL1000, &val);
  349. if (err)
  350. return err;
  351. val &= ~(ADVERTISE_1000HALF | ADVERTISE_1000FULL);
  352. if (advert & ADVERTISED_1000baseT_Half)
  353. val |= ADVERTISE_1000HALF;
  354. if (advert & ADVERTISED_1000baseT_Full)
  355. val |= ADVERTISE_1000FULL;
  356. err = t3_mdio_write(phy, MDIO_DEVAD_NONE, MII_CTRL1000, val);
  357. if (err)
  358. return err;
  359. val = 1;
  360. if (advert & ADVERTISED_10baseT_Half)
  361. val |= ADVERTISE_10HALF;
  362. if (advert & ADVERTISED_10baseT_Full)
  363. val |= ADVERTISE_10FULL;
  364. if (advert & ADVERTISED_100baseT_Half)
  365. val |= ADVERTISE_100HALF;
  366. if (advert & ADVERTISED_100baseT_Full)
  367. val |= ADVERTISE_100FULL;
  368. if (advert & ADVERTISED_Pause)
  369. val |= ADVERTISE_PAUSE_CAP;
  370. if (advert & ADVERTISED_Asym_Pause)
  371. val |= ADVERTISE_PAUSE_ASYM;
  372. return t3_mdio_write(phy, MDIO_DEVAD_NONE, MII_ADVERTISE, val);
  373. }
  374. /**
  375. * t3_phy_advertise_fiber - set fiber PHY advertisement register
  376. * @phy: the PHY to operate on
  377. * @advert: bitmap of capabilities the PHY should advertise
  378. *
  379. * Sets a fiber PHY's advertisement register to advertise the
  380. * requested capabilities.
  381. */
  382. int t3_phy_advertise_fiber(struct cphy *phy, unsigned int advert)
  383. {
  384. unsigned int val = 0;
  385. if (advert & ADVERTISED_1000baseT_Half)
  386. val |= ADVERTISE_1000XHALF;
  387. if (advert & ADVERTISED_1000baseT_Full)
  388. val |= ADVERTISE_1000XFULL;
  389. if (advert & ADVERTISED_Pause)
  390. val |= ADVERTISE_1000XPAUSE;
  391. if (advert & ADVERTISED_Asym_Pause)
  392. val |= ADVERTISE_1000XPSE_ASYM;
  393. return t3_mdio_write(phy, MDIO_DEVAD_NONE, MII_ADVERTISE, val);
  394. }
  395. /**
  396. * t3_set_phy_speed_duplex - force PHY speed and duplex
  397. * @phy: the PHY to operate on
  398. * @speed: requested PHY speed
  399. * @duplex: requested PHY duplex
  400. *
  401. * Force a 10/100/1000 PHY's speed and duplex. This also disables
  402. * auto-negotiation except for GigE, where auto-negotiation is mandatory.
  403. */
  404. int t3_set_phy_speed_duplex(struct cphy *phy, int speed, int duplex)
  405. {
  406. int err;
  407. unsigned int ctl;
  408. err = t3_mdio_read(phy, MDIO_DEVAD_NONE, MII_BMCR, &ctl);
  409. if (err)
  410. return err;
  411. if (speed >= 0) {
  412. ctl &= ~(BMCR_SPEED100 | BMCR_SPEED1000 | BMCR_ANENABLE);
  413. if (speed == SPEED_100)
  414. ctl |= BMCR_SPEED100;
  415. else if (speed == SPEED_1000)
  416. ctl |= BMCR_SPEED1000;
  417. }
  418. if (duplex >= 0) {
  419. ctl &= ~(BMCR_FULLDPLX | BMCR_ANENABLE);
  420. if (duplex == DUPLEX_FULL)
  421. ctl |= BMCR_FULLDPLX;
  422. }
  423. if (ctl & BMCR_SPEED1000) /* auto-negotiation required for GigE */
  424. ctl |= BMCR_ANENABLE;
  425. return t3_mdio_write(phy, MDIO_DEVAD_NONE, MII_BMCR, ctl);
  426. }
  427. int t3_phy_lasi_intr_enable(struct cphy *phy)
  428. {
  429. return t3_mdio_write(phy, MDIO_MMD_PMAPMD, MDIO_PMA_LASI_CTRL,
  430. MDIO_PMA_LASI_LSALARM);
  431. }
  432. int t3_phy_lasi_intr_disable(struct cphy *phy)
  433. {
  434. return t3_mdio_write(phy, MDIO_MMD_PMAPMD, MDIO_PMA_LASI_CTRL, 0);
  435. }
  436. int t3_phy_lasi_intr_clear(struct cphy *phy)
  437. {
  438. u32 val;
  439. return t3_mdio_read(phy, MDIO_MMD_PMAPMD, MDIO_PMA_LASI_STAT, &val);
  440. }
  441. int t3_phy_lasi_intr_handler(struct cphy *phy)
  442. {
  443. unsigned int status;
  444. int err = t3_mdio_read(phy, MDIO_MMD_PMAPMD, MDIO_PMA_LASI_STAT,
  445. &status);
  446. if (err)
  447. return err;
  448. return (status & MDIO_PMA_LASI_LSALARM) ? cphy_cause_link_change : 0;
  449. }
  450. static const struct adapter_info t3_adap_info[] = {
  451. {1, 1, 0,
  452. F_GPIO2_OEN | F_GPIO4_OEN |
  453. F_GPIO2_OUT_VAL | F_GPIO4_OUT_VAL, { S_GPIO3, S_GPIO5 }, 0,
  454. &mi1_mdio_ops, "Chelsio PE9000"},
  455. {1, 1, 0,
  456. F_GPIO2_OEN | F_GPIO4_OEN |
  457. F_GPIO2_OUT_VAL | F_GPIO4_OUT_VAL, { S_GPIO3, S_GPIO5 }, 0,
  458. &mi1_mdio_ops, "Chelsio T302"},
  459. {1, 0, 0,
  460. F_GPIO1_OEN | F_GPIO6_OEN | F_GPIO7_OEN | F_GPIO10_OEN |
  461. F_GPIO11_OEN | F_GPIO1_OUT_VAL | F_GPIO6_OUT_VAL | F_GPIO10_OUT_VAL,
  462. { 0 }, SUPPORTED_10000baseT_Full | SUPPORTED_AUI,
  463. &mi1_mdio_ext_ops, "Chelsio T310"},
  464. {1, 1, 0,
  465. F_GPIO1_OEN | F_GPIO2_OEN | F_GPIO4_OEN | F_GPIO5_OEN | F_GPIO6_OEN |
  466. F_GPIO7_OEN | F_GPIO10_OEN | F_GPIO11_OEN | F_GPIO1_OUT_VAL |
  467. F_GPIO5_OUT_VAL | F_GPIO6_OUT_VAL | F_GPIO10_OUT_VAL,
  468. { S_GPIO9, S_GPIO3 }, SUPPORTED_10000baseT_Full | SUPPORTED_AUI,
  469. &mi1_mdio_ext_ops, "Chelsio T320"},
  470. {},
  471. {},
  472. {1, 0, 0,
  473. F_GPIO1_OEN | F_GPIO2_OEN | F_GPIO4_OEN | F_GPIO6_OEN | F_GPIO7_OEN |
  474. F_GPIO10_OEN | F_GPIO1_OUT_VAL | F_GPIO6_OUT_VAL | F_GPIO10_OUT_VAL,
  475. { S_GPIO9 }, SUPPORTED_10000baseT_Full | SUPPORTED_AUI,
  476. &mi1_mdio_ext_ops, "Chelsio T310" },
  477. {1, 0, 0,
  478. F_GPIO1_OEN | F_GPIO6_OEN | F_GPIO7_OEN |
  479. F_GPIO1_OUT_VAL | F_GPIO6_OUT_VAL,
  480. { S_GPIO9 }, SUPPORTED_10000baseT_Full | SUPPORTED_AUI,
  481. &mi1_mdio_ext_ops, "Chelsio N320E-G2" },
  482. };
  483. /*
  484. * Return the adapter_info structure with a given index. Out-of-range indices
  485. * return NULL.
  486. */
  487. const struct adapter_info *t3_get_adapter_info(unsigned int id)
  488. {
  489. return id < ARRAY_SIZE(t3_adap_info) ? &t3_adap_info[id] : NULL;
  490. }
  491. struct port_type_info {
  492. int (*phy_prep)(struct cphy *phy, struct adapter *adapter,
  493. int phy_addr, const struct mdio_ops *ops);
  494. };
  495. static const struct port_type_info port_types[] = {
  496. { NULL },
  497. { t3_ael1002_phy_prep },
  498. { t3_vsc8211_phy_prep },
  499. { NULL},
  500. { t3_xaui_direct_phy_prep },
  501. { t3_ael2005_phy_prep },
  502. { t3_qt2045_phy_prep },
  503. { t3_ael1006_phy_prep },
  504. { NULL },
  505. { NULL },
  506. { t3_ael2020_phy_prep },
  507. };
  508. #define VPD_ENTRY(name, len) \
  509. u8 name##_kword[2]; u8 name##_len; u8 name##_data[len]
  510. /*
  511. * Partial EEPROM Vital Product Data structure. Includes only the ID and
  512. * VPD-R sections.
  513. */
  514. struct t3_vpd {
  515. u8 id_tag;
  516. u8 id_len[2];
  517. u8 id_data[16];
  518. u8 vpdr_tag;
  519. u8 vpdr_len[2];
  520. VPD_ENTRY(pn, 16); /* part number */
  521. VPD_ENTRY(ec, 16); /* EC level */
  522. VPD_ENTRY(sn, SERNUM_LEN); /* serial number */
  523. VPD_ENTRY(na, 12); /* MAC address base */
  524. VPD_ENTRY(cclk, 6); /* core clock */
  525. VPD_ENTRY(mclk, 6); /* mem clock */
  526. VPD_ENTRY(uclk, 6); /* uP clk */
  527. VPD_ENTRY(mdc, 6); /* MDIO clk */
  528. VPD_ENTRY(mt, 2); /* mem timing */
  529. VPD_ENTRY(xaui0cfg, 6); /* XAUI0 config */
  530. VPD_ENTRY(xaui1cfg, 6); /* XAUI1 config */
  531. VPD_ENTRY(port0, 2); /* PHY0 complex */
  532. VPD_ENTRY(port1, 2); /* PHY1 complex */
  533. VPD_ENTRY(port2, 2); /* PHY2 complex */
  534. VPD_ENTRY(port3, 2); /* PHY3 complex */
  535. VPD_ENTRY(rv, 1); /* csum */
  536. u32 pad; /* for multiple-of-4 sizing and alignment */
  537. };
  538. #define EEPROM_MAX_POLL 40
  539. #define EEPROM_STAT_ADDR 0x4000
  540. #define VPD_BASE 0xc00
  541. /**
  542. * t3_seeprom_read - read a VPD EEPROM location
  543. * @adapter: adapter to read
  544. * @addr: EEPROM address
  545. * @data: where to store the read data
  546. *
  547. * Read a 32-bit word from a location in VPD EEPROM using the card's PCI
  548. * VPD ROM capability. A zero is written to the flag bit when the
  549. * addres is written to the control register. The hardware device will
  550. * set the flag to 1 when 4 bytes have been read into the data register.
  551. */
  552. int t3_seeprom_read(struct adapter *adapter, u32 addr, __le32 *data)
  553. {
  554. u16 val;
  555. int attempts = EEPROM_MAX_POLL;
  556. u32 v;
  557. unsigned int base = adapter->params.pci.vpd_cap_addr;
  558. if ((addr >= EEPROMSIZE && addr != EEPROM_STAT_ADDR) || (addr & 3))
  559. return -EINVAL;
  560. pci_write_config_word(adapter->pdev, base + PCI_VPD_ADDR, addr);
  561. do {
  562. udelay(10);
  563. pci_read_config_word(adapter->pdev, base + PCI_VPD_ADDR, &val);
  564. } while (!(val & PCI_VPD_ADDR_F) && --attempts);
  565. if (!(val & PCI_VPD_ADDR_F)) {
  566. CH_ERR(adapter, "reading EEPROM address 0x%x failed\n", addr);
  567. return -EIO;
  568. }
  569. pci_read_config_dword(adapter->pdev, base + PCI_VPD_DATA, &v);
  570. *data = cpu_to_le32(v);
  571. return 0;
  572. }
  573. /**
  574. * t3_seeprom_write - write a VPD EEPROM location
  575. * @adapter: adapter to write
  576. * @addr: EEPROM address
  577. * @data: value to write
  578. *
  579. * Write a 32-bit word to a location in VPD EEPROM using the card's PCI
  580. * VPD ROM capability.
  581. */
  582. int t3_seeprom_write(struct adapter *adapter, u32 addr, __le32 data)
  583. {
  584. u16 val;
  585. int attempts = EEPROM_MAX_POLL;
  586. unsigned int base = adapter->params.pci.vpd_cap_addr;
  587. if ((addr >= EEPROMSIZE && addr != EEPROM_STAT_ADDR) || (addr & 3))
  588. return -EINVAL;
  589. pci_write_config_dword(adapter->pdev, base + PCI_VPD_DATA,
  590. le32_to_cpu(data));
  591. pci_write_config_word(adapter->pdev,base + PCI_VPD_ADDR,
  592. addr | PCI_VPD_ADDR_F);
  593. do {
  594. msleep(1);
  595. pci_read_config_word(adapter->pdev, base + PCI_VPD_ADDR, &val);
  596. } while ((val & PCI_VPD_ADDR_F) && --attempts);
  597. if (val & PCI_VPD_ADDR_F) {
  598. CH_ERR(adapter, "write to EEPROM address 0x%x failed\n", addr);
  599. return -EIO;
  600. }
  601. return 0;
  602. }
  603. /**
  604. * t3_seeprom_wp - enable/disable EEPROM write protection
  605. * @adapter: the adapter
  606. * @enable: 1 to enable write protection, 0 to disable it
  607. *
  608. * Enables or disables write protection on the serial EEPROM.
  609. */
  610. int t3_seeprom_wp(struct adapter *adapter, int enable)
  611. {
  612. return t3_seeprom_write(adapter, EEPROM_STAT_ADDR, enable ? 0xc : 0);
  613. }
  614. /*
  615. * Convert a character holding a hex digit to a number.
  616. */
  617. static unsigned int hex2int(unsigned char c)
  618. {
  619. return isdigit(c) ? c - '0' : toupper(c) - 'A' + 10;
  620. }
  621. /**
  622. * get_vpd_params - read VPD parameters from VPD EEPROM
  623. * @adapter: adapter to read
  624. * @p: where to store the parameters
  625. *
  626. * Reads card parameters stored in VPD EEPROM.
  627. */
  628. static int get_vpd_params(struct adapter *adapter, struct vpd_params *p)
  629. {
  630. int i, addr, ret;
  631. struct t3_vpd vpd;
  632. /*
  633. * Card information is normally at VPD_BASE but some early cards had
  634. * it at 0.
  635. */
  636. ret = t3_seeprom_read(adapter, VPD_BASE, (__le32 *)&vpd);
  637. if (ret)
  638. return ret;
  639. addr = vpd.id_tag == 0x82 ? VPD_BASE : 0;
  640. for (i = 0; i < sizeof(vpd); i += 4) {
  641. ret = t3_seeprom_read(adapter, addr + i,
  642. (__le32 *)((u8 *)&vpd + i));
  643. if (ret)
  644. return ret;
  645. }
  646. p->cclk = simple_strtoul(vpd.cclk_data, NULL, 10);
  647. p->mclk = simple_strtoul(vpd.mclk_data, NULL, 10);
  648. p->uclk = simple_strtoul(vpd.uclk_data, NULL, 10);
  649. p->mdc = simple_strtoul(vpd.mdc_data, NULL, 10);
  650. p->mem_timing = simple_strtoul(vpd.mt_data, NULL, 10);
  651. memcpy(p->sn, vpd.sn_data, SERNUM_LEN);
  652. /* Old eeproms didn't have port information */
  653. if (adapter->params.rev == 0 && !vpd.port0_data[0]) {
  654. p->port_type[0] = uses_xaui(adapter) ? 1 : 2;
  655. p->port_type[1] = uses_xaui(adapter) ? 6 : 2;
  656. } else {
  657. p->port_type[0] = hex2int(vpd.port0_data[0]);
  658. p->port_type[1] = hex2int(vpd.port1_data[0]);
  659. p->xauicfg[0] = simple_strtoul(vpd.xaui0cfg_data, NULL, 16);
  660. p->xauicfg[1] = simple_strtoul(vpd.xaui1cfg_data, NULL, 16);
  661. }
  662. for (i = 0; i < 6; i++)
  663. p->eth_base[i] = hex2int(vpd.na_data[2 * i]) * 16 +
  664. hex2int(vpd.na_data[2 * i + 1]);
  665. return 0;
  666. }
  667. /* serial flash and firmware constants */
  668. enum {
  669. SF_ATTEMPTS = 5, /* max retries for SF1 operations */
  670. SF_SEC_SIZE = 64 * 1024, /* serial flash sector size */
  671. SF_SIZE = SF_SEC_SIZE * 8, /* serial flash size */
  672. /* flash command opcodes */
  673. SF_PROG_PAGE = 2, /* program page */
  674. SF_WR_DISABLE = 4, /* disable writes */
  675. SF_RD_STATUS = 5, /* read status register */
  676. SF_WR_ENABLE = 6, /* enable writes */
  677. SF_RD_DATA_FAST = 0xb, /* read flash */
  678. SF_ERASE_SECTOR = 0xd8, /* erase sector */
  679. FW_FLASH_BOOT_ADDR = 0x70000, /* start address of FW in flash */
  680. FW_VERS_ADDR = 0x7fffc, /* flash address holding FW version */
  681. FW_MIN_SIZE = 8 /* at least version and csum */
  682. };
  683. /**
  684. * sf1_read - read data from the serial flash
  685. * @adapter: the adapter
  686. * @byte_cnt: number of bytes to read
  687. * @cont: whether another operation will be chained
  688. * @valp: where to store the read data
  689. *
  690. * Reads up to 4 bytes of data from the serial flash. The location of
  691. * the read needs to be specified prior to calling this by issuing the
  692. * appropriate commands to the serial flash.
  693. */
  694. static int sf1_read(struct adapter *adapter, unsigned int byte_cnt, int cont,
  695. u32 *valp)
  696. {
  697. int ret;
  698. if (!byte_cnt || byte_cnt > 4)
  699. return -EINVAL;
  700. if (t3_read_reg(adapter, A_SF_OP) & F_BUSY)
  701. return -EBUSY;
  702. t3_write_reg(adapter, A_SF_OP, V_CONT(cont) | V_BYTECNT(byte_cnt - 1));
  703. ret = t3_wait_op_done(adapter, A_SF_OP, F_BUSY, 0, SF_ATTEMPTS, 10);
  704. if (!ret)
  705. *valp = t3_read_reg(adapter, A_SF_DATA);
  706. return ret;
  707. }
  708. /**
  709. * sf1_write - write data to the serial flash
  710. * @adapter: the adapter
  711. * @byte_cnt: number of bytes to write
  712. * @cont: whether another operation will be chained
  713. * @val: value to write
  714. *
  715. * Writes up to 4 bytes of data to the serial flash. The location of
  716. * the write needs to be specified prior to calling this by issuing the
  717. * appropriate commands to the serial flash.
  718. */
  719. static int sf1_write(struct adapter *adapter, unsigned int byte_cnt, int cont,
  720. u32 val)
  721. {
  722. if (!byte_cnt || byte_cnt > 4)
  723. return -EINVAL;
  724. if (t3_read_reg(adapter, A_SF_OP) & F_BUSY)
  725. return -EBUSY;
  726. t3_write_reg(adapter, A_SF_DATA, val);
  727. t3_write_reg(adapter, A_SF_OP,
  728. V_CONT(cont) | V_BYTECNT(byte_cnt - 1) | V_OP(1));
  729. return t3_wait_op_done(adapter, A_SF_OP, F_BUSY, 0, SF_ATTEMPTS, 10);
  730. }
  731. /**
  732. * flash_wait_op - wait for a flash operation to complete
  733. * @adapter: the adapter
  734. * @attempts: max number of polls of the status register
  735. * @delay: delay between polls in ms
  736. *
  737. * Wait for a flash operation to complete by polling the status register.
  738. */
  739. static int flash_wait_op(struct adapter *adapter, int attempts, int delay)
  740. {
  741. int ret;
  742. u32 status;
  743. while (1) {
  744. if ((ret = sf1_write(adapter, 1, 1, SF_RD_STATUS)) != 0 ||
  745. (ret = sf1_read(adapter, 1, 0, &status)) != 0)
  746. return ret;
  747. if (!(status & 1))
  748. return 0;
  749. if (--attempts == 0)
  750. return -EAGAIN;
  751. if (delay)
  752. msleep(delay);
  753. }
  754. }
  755. /**
  756. * t3_read_flash - read words from serial flash
  757. * @adapter: the adapter
  758. * @addr: the start address for the read
  759. * @nwords: how many 32-bit words to read
  760. * @data: where to store the read data
  761. * @byte_oriented: whether to store data as bytes or as words
  762. *
  763. * Read the specified number of 32-bit words from the serial flash.
  764. * If @byte_oriented is set the read data is stored as a byte array
  765. * (i.e., big-endian), otherwise as 32-bit words in the platform's
  766. * natural endianess.
  767. */
  768. int t3_read_flash(struct adapter *adapter, unsigned int addr,
  769. unsigned int nwords, u32 *data, int byte_oriented)
  770. {
  771. int ret;
  772. if (addr + nwords * sizeof(u32) > SF_SIZE || (addr & 3))
  773. return -EINVAL;
  774. addr = swab32(addr) | SF_RD_DATA_FAST;
  775. if ((ret = sf1_write(adapter, 4, 1, addr)) != 0 ||
  776. (ret = sf1_read(adapter, 1, 1, data)) != 0)
  777. return ret;
  778. for (; nwords; nwords--, data++) {
  779. ret = sf1_read(adapter, 4, nwords > 1, data);
  780. if (ret)
  781. return ret;
  782. if (byte_oriented)
  783. *data = htonl(*data);
  784. }
  785. return 0;
  786. }
  787. /**
  788. * t3_write_flash - write up to a page of data to the serial flash
  789. * @adapter: the adapter
  790. * @addr: the start address to write
  791. * @n: length of data to write
  792. * @data: the data to write
  793. *
  794. * Writes up to a page of data (256 bytes) to the serial flash starting
  795. * at the given address.
  796. */
  797. static int t3_write_flash(struct adapter *adapter, unsigned int addr,
  798. unsigned int n, const u8 *data)
  799. {
  800. int ret;
  801. u32 buf[64];
  802. unsigned int i, c, left, val, offset = addr & 0xff;
  803. if (addr + n > SF_SIZE || offset + n > 256)
  804. return -EINVAL;
  805. val = swab32(addr) | SF_PROG_PAGE;
  806. if ((ret = sf1_write(adapter, 1, 0, SF_WR_ENABLE)) != 0 ||
  807. (ret = sf1_write(adapter, 4, 1, val)) != 0)
  808. return ret;
  809. for (left = n; left; left -= c) {
  810. c = min(left, 4U);
  811. for (val = 0, i = 0; i < c; ++i)
  812. val = (val << 8) + *data++;
  813. ret = sf1_write(adapter, c, c != left, val);
  814. if (ret)
  815. return ret;
  816. }
  817. if ((ret = flash_wait_op(adapter, 5, 1)) != 0)
  818. return ret;
  819. /* Read the page to verify the write succeeded */
  820. ret = t3_read_flash(adapter, addr & ~0xff, ARRAY_SIZE(buf), buf, 1);
  821. if (ret)
  822. return ret;
  823. if (memcmp(data - n, (u8 *) buf + offset, n))
  824. return -EIO;
  825. return 0;
  826. }
  827. /**
  828. * t3_get_tp_version - read the tp sram version
  829. * @adapter: the adapter
  830. * @vers: where to place the version
  831. *
  832. * Reads the protocol sram version from sram.
  833. */
  834. int t3_get_tp_version(struct adapter *adapter, u32 *vers)
  835. {
  836. int ret;
  837. /* Get version loaded in SRAM */
  838. t3_write_reg(adapter, A_TP_EMBED_OP_FIELD0, 0);
  839. ret = t3_wait_op_done(adapter, A_TP_EMBED_OP_FIELD0,
  840. 1, 1, 5, 1);
  841. if (ret)
  842. return ret;
  843. *vers = t3_read_reg(adapter, A_TP_EMBED_OP_FIELD1);
  844. return 0;
  845. }
  846. /**
  847. * t3_check_tpsram_version - read the tp sram version
  848. * @adapter: the adapter
  849. *
  850. * Reads the protocol sram version from flash.
  851. */
  852. int t3_check_tpsram_version(struct adapter *adapter)
  853. {
  854. int ret;
  855. u32 vers;
  856. unsigned int major, minor;
  857. if (adapter->params.rev == T3_REV_A)
  858. return 0;
  859. ret = t3_get_tp_version(adapter, &vers);
  860. if (ret)
  861. return ret;
  862. major = G_TP_VERSION_MAJOR(vers);
  863. minor = G_TP_VERSION_MINOR(vers);
  864. if (major == TP_VERSION_MAJOR && minor == TP_VERSION_MINOR)
  865. return 0;
  866. else {
  867. CH_ERR(adapter, "found wrong TP version (%u.%u), "
  868. "driver compiled for version %d.%d\n", major, minor,
  869. TP_VERSION_MAJOR, TP_VERSION_MINOR);
  870. }
  871. return -EINVAL;
  872. }
  873. /**
  874. * t3_check_tpsram - check if provided protocol SRAM
  875. * is compatible with this driver
  876. * @adapter: the adapter
  877. * @tp_sram: the firmware image to write
  878. * @size: image size
  879. *
  880. * Checks if an adapter's tp sram is compatible with the driver.
  881. * Returns 0 if the versions are compatible, a negative error otherwise.
  882. */
  883. int t3_check_tpsram(struct adapter *adapter, const u8 *tp_sram,
  884. unsigned int size)
  885. {
  886. u32 csum;
  887. unsigned int i;
  888. const __be32 *p = (const __be32 *)tp_sram;
  889. /* Verify checksum */
  890. for (csum = 0, i = 0; i < size / sizeof(csum); i++)
  891. csum += ntohl(p[i]);
  892. if (csum != 0xffffffff) {
  893. CH_ERR(adapter, "corrupted protocol SRAM image, checksum %u\n",
  894. csum);
  895. return -EINVAL;
  896. }
  897. return 0;
  898. }
  899. enum fw_version_type {
  900. FW_VERSION_N3,
  901. FW_VERSION_T3
  902. };
  903. /**
  904. * t3_get_fw_version - read the firmware version
  905. * @adapter: the adapter
  906. * @vers: where to place the version
  907. *
  908. * Reads the FW version from flash.
  909. */
  910. int t3_get_fw_version(struct adapter *adapter, u32 *vers)
  911. {
  912. return t3_read_flash(adapter, FW_VERS_ADDR, 1, vers, 0);
  913. }
  914. /**
  915. * t3_check_fw_version - check if the FW is compatible with this driver
  916. * @adapter: the adapter
  917. *
  918. * Checks if an adapter's FW is compatible with the driver. Returns 0
  919. * if the versions are compatible, a negative error otherwise.
  920. */
  921. int t3_check_fw_version(struct adapter *adapter)
  922. {
  923. int ret;
  924. u32 vers;
  925. unsigned int type, major, minor;
  926. ret = t3_get_fw_version(adapter, &vers);
  927. if (ret)
  928. return ret;
  929. type = G_FW_VERSION_TYPE(vers);
  930. major = G_FW_VERSION_MAJOR(vers);
  931. minor = G_FW_VERSION_MINOR(vers);
  932. if (type == FW_VERSION_T3 && major == FW_VERSION_MAJOR &&
  933. minor == FW_VERSION_MINOR)
  934. return 0;
  935. else if (major != FW_VERSION_MAJOR || minor < FW_VERSION_MINOR)
  936. CH_WARN(adapter, "found old FW minor version(%u.%u), "
  937. "driver compiled for version %u.%u\n", major, minor,
  938. FW_VERSION_MAJOR, FW_VERSION_MINOR);
  939. else {
  940. CH_WARN(adapter, "found newer FW version(%u.%u), "
  941. "driver compiled for version %u.%u\n", major, minor,
  942. FW_VERSION_MAJOR, FW_VERSION_MINOR);
  943. return 0;
  944. }
  945. return -EINVAL;
  946. }
  947. /**
  948. * t3_flash_erase_sectors - erase a range of flash sectors
  949. * @adapter: the adapter
  950. * @start: the first sector to erase
  951. * @end: the last sector to erase
  952. *
  953. * Erases the sectors in the given range.
  954. */
  955. static int t3_flash_erase_sectors(struct adapter *adapter, int start, int end)
  956. {
  957. while (start <= end) {
  958. int ret;
  959. if ((ret = sf1_write(adapter, 1, 0, SF_WR_ENABLE)) != 0 ||
  960. (ret = sf1_write(adapter, 4, 0,
  961. SF_ERASE_SECTOR | (start << 8))) != 0 ||
  962. (ret = flash_wait_op(adapter, 5, 500)) != 0)
  963. return ret;
  964. start++;
  965. }
  966. return 0;
  967. }
  968. /*
  969. * t3_load_fw - download firmware
  970. * @adapter: the adapter
  971. * @fw_data: the firmware image to write
  972. * @size: image size
  973. *
  974. * Write the supplied firmware image to the card's serial flash.
  975. * The FW image has the following sections: @size - 8 bytes of code and
  976. * data, followed by 4 bytes of FW version, followed by the 32-bit
  977. * 1's complement checksum of the whole image.
  978. */
  979. int t3_load_fw(struct adapter *adapter, const u8 *fw_data, unsigned int size)
  980. {
  981. u32 csum;
  982. unsigned int i;
  983. const __be32 *p = (const __be32 *)fw_data;
  984. int ret, addr, fw_sector = FW_FLASH_BOOT_ADDR >> 16;
  985. if ((size & 3) || size < FW_MIN_SIZE)
  986. return -EINVAL;
  987. if (size > FW_VERS_ADDR + 8 - FW_FLASH_BOOT_ADDR)
  988. return -EFBIG;
  989. for (csum = 0, i = 0; i < size / sizeof(csum); i++)
  990. csum += ntohl(p[i]);
  991. if (csum != 0xffffffff) {
  992. CH_ERR(adapter, "corrupted firmware image, checksum %u\n",
  993. csum);
  994. return -EINVAL;
  995. }
  996. ret = t3_flash_erase_sectors(adapter, fw_sector, fw_sector);
  997. if (ret)
  998. goto out;
  999. size -= 8; /* trim off version and checksum */
  1000. for (addr = FW_FLASH_BOOT_ADDR; size;) {
  1001. unsigned int chunk_size = min(size, 256U);
  1002. ret = t3_write_flash(adapter, addr, chunk_size, fw_data);
  1003. if (ret)
  1004. goto out;
  1005. addr += chunk_size;
  1006. fw_data += chunk_size;
  1007. size -= chunk_size;
  1008. }
  1009. ret = t3_write_flash(adapter, FW_VERS_ADDR, 4, fw_data);
  1010. out:
  1011. if (ret)
  1012. CH_ERR(adapter, "firmware download failed, error %d\n", ret);
  1013. return ret;
  1014. }
  1015. #define CIM_CTL_BASE 0x2000
  1016. /**
  1017. * t3_cim_ctl_blk_read - read a block from CIM control region
  1018. *
  1019. * @adap: the adapter
  1020. * @addr: the start address within the CIM control region
  1021. * @n: number of words to read
  1022. * @valp: where to store the result
  1023. *
  1024. * Reads a block of 4-byte words from the CIM control region.
  1025. */
  1026. int t3_cim_ctl_blk_read(struct adapter *adap, unsigned int addr,
  1027. unsigned int n, unsigned int *valp)
  1028. {
  1029. int ret = 0;
  1030. if (t3_read_reg(adap, A_CIM_HOST_ACC_CTRL) & F_HOSTBUSY)
  1031. return -EBUSY;
  1032. for ( ; !ret && n--; addr += 4) {
  1033. t3_write_reg(adap, A_CIM_HOST_ACC_CTRL, CIM_CTL_BASE + addr);
  1034. ret = t3_wait_op_done(adap, A_CIM_HOST_ACC_CTRL, F_HOSTBUSY,
  1035. 0, 5, 2);
  1036. if (!ret)
  1037. *valp++ = t3_read_reg(adap, A_CIM_HOST_ACC_DATA);
  1038. }
  1039. return ret;
  1040. }
  1041. static void t3_gate_rx_traffic(struct cmac *mac, u32 *rx_cfg,
  1042. u32 *rx_hash_high, u32 *rx_hash_low)
  1043. {
  1044. /* stop Rx unicast traffic */
  1045. t3_mac_disable_exact_filters(mac);
  1046. /* stop broadcast, multicast, promiscuous mode traffic */
  1047. *rx_cfg = t3_read_reg(mac->adapter, A_XGM_RX_CFG);
  1048. t3_set_reg_field(mac->adapter, A_XGM_RX_CFG,
  1049. F_ENHASHMCAST | F_DISBCAST | F_COPYALLFRAMES,
  1050. F_DISBCAST);
  1051. *rx_hash_high = t3_read_reg(mac->adapter, A_XGM_RX_HASH_HIGH);
  1052. t3_write_reg(mac->adapter, A_XGM_RX_HASH_HIGH, 0);
  1053. *rx_hash_low = t3_read_reg(mac->adapter, A_XGM_RX_HASH_LOW);
  1054. t3_write_reg(mac->adapter, A_XGM_RX_HASH_LOW, 0);
  1055. /* Leave time to drain max RX fifo */
  1056. msleep(1);
  1057. }
  1058. static void t3_open_rx_traffic(struct cmac *mac, u32 rx_cfg,
  1059. u32 rx_hash_high, u32 rx_hash_low)
  1060. {
  1061. t3_mac_enable_exact_filters(mac);
  1062. t3_set_reg_field(mac->adapter, A_XGM_RX_CFG,
  1063. F_ENHASHMCAST | F_DISBCAST | F_COPYALLFRAMES,
  1064. rx_cfg);
  1065. t3_write_reg(mac->adapter, A_XGM_RX_HASH_HIGH, rx_hash_high);
  1066. t3_write_reg(mac->adapter, A_XGM_RX_HASH_LOW, rx_hash_low);
  1067. }
  1068. /**
  1069. * t3_link_changed - handle interface link changes
  1070. * @adapter: the adapter
  1071. * @port_id: the port index that changed link state
  1072. *
  1073. * Called when a port's link settings change to propagate the new values
  1074. * to the associated PHY and MAC. After performing the common tasks it
  1075. * invokes an OS-specific handler.
  1076. */
  1077. void t3_link_changed(struct adapter *adapter, int port_id)
  1078. {
  1079. int link_ok, speed, duplex, fc;
  1080. struct port_info *pi = adap2pinfo(adapter, port_id);
  1081. struct cphy *phy = &pi->phy;
  1082. struct cmac *mac = &pi->mac;
  1083. struct link_config *lc = &pi->link_config;
  1084. phy->ops->get_link_status(phy, &link_ok, &speed, &duplex, &fc);
  1085. if (!lc->link_ok && link_ok) {
  1086. u32 rx_cfg, rx_hash_high, rx_hash_low;
  1087. u32 status;
  1088. t3_xgm_intr_enable(adapter, port_id);
  1089. t3_gate_rx_traffic(mac, &rx_cfg, &rx_hash_high, &rx_hash_low);
  1090. t3_write_reg(adapter, A_XGM_RX_CTRL + mac->offset, 0);
  1091. t3_mac_enable(mac, MAC_DIRECTION_RX);
  1092. status = t3_read_reg(adapter, A_XGM_INT_STATUS + mac->offset);
  1093. if (status & F_LINKFAULTCHANGE) {
  1094. mac->stats.link_faults++;
  1095. pi->link_fault = 1;
  1096. }
  1097. t3_open_rx_traffic(mac, rx_cfg, rx_hash_high, rx_hash_low);
  1098. }
  1099. if (lc->requested_fc & PAUSE_AUTONEG)
  1100. fc &= lc->requested_fc;
  1101. else
  1102. fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX);
  1103. if (link_ok == lc->link_ok && speed == lc->speed &&
  1104. duplex == lc->duplex && fc == lc->fc)
  1105. return; /* nothing changed */
  1106. if (link_ok != lc->link_ok && adapter->params.rev > 0 &&
  1107. uses_xaui(adapter)) {
  1108. if (link_ok)
  1109. t3b_pcs_reset(mac);
  1110. t3_write_reg(adapter, A_XGM_XAUI_ACT_CTRL + mac->offset,
  1111. link_ok ? F_TXACTENABLE | F_RXEN : 0);
  1112. }
  1113. lc->link_ok = link_ok;
  1114. lc->speed = speed < 0 ? SPEED_INVALID : speed;
  1115. lc->duplex = duplex < 0 ? DUPLEX_INVALID : duplex;
  1116. if (link_ok && speed >= 0 && lc->autoneg == AUTONEG_ENABLE) {
  1117. /* Set MAC speed, duplex, and flow control to match PHY. */
  1118. t3_mac_set_speed_duplex_fc(mac, speed, duplex, fc);
  1119. lc->fc = fc;
  1120. }
  1121. t3_os_link_changed(adapter, port_id, link_ok, speed, duplex, fc);
  1122. }
  1123. void t3_link_fault(struct adapter *adapter, int port_id)
  1124. {
  1125. struct port_info *pi = adap2pinfo(adapter, port_id);
  1126. struct cmac *mac = &pi->mac;
  1127. struct cphy *phy = &pi->phy;
  1128. struct link_config *lc = &pi->link_config;
  1129. int link_ok, speed, duplex, fc, link_fault;
  1130. u32 rx_cfg, rx_hash_high, rx_hash_low;
  1131. t3_gate_rx_traffic(mac, &rx_cfg, &rx_hash_high, &rx_hash_low);
  1132. if (adapter->params.rev > 0 && uses_xaui(adapter))
  1133. t3_write_reg(adapter, A_XGM_XAUI_ACT_CTRL + mac->offset, 0);
  1134. t3_write_reg(adapter, A_XGM_RX_CTRL + mac->offset, 0);
  1135. t3_mac_enable(mac, MAC_DIRECTION_RX);
  1136. t3_open_rx_traffic(mac, rx_cfg, rx_hash_high, rx_hash_low);
  1137. link_fault = t3_read_reg(adapter,
  1138. A_XGM_INT_STATUS + mac->offset);
  1139. link_fault &= F_LINKFAULTCHANGE;
  1140. phy->ops->get_link_status(phy, &link_ok, &speed, &duplex, &fc);
  1141. if (link_fault) {
  1142. lc->link_ok = 0;
  1143. lc->speed = SPEED_INVALID;
  1144. lc->duplex = DUPLEX_INVALID;
  1145. t3_os_link_fault(adapter, port_id, 0);
  1146. /* Account link faults only when the phy reports a link up */
  1147. if (link_ok)
  1148. mac->stats.link_faults++;
  1149. } else {
  1150. if (link_ok)
  1151. t3_write_reg(adapter, A_XGM_XAUI_ACT_CTRL + mac->offset,
  1152. F_TXACTENABLE | F_RXEN);
  1153. pi->link_fault = 0;
  1154. lc->link_ok = (unsigned char)link_ok;
  1155. lc->speed = speed < 0 ? SPEED_INVALID : speed;
  1156. lc->duplex = duplex < 0 ? DUPLEX_INVALID : duplex;
  1157. t3_os_link_fault(adapter, port_id, link_ok);
  1158. }
  1159. }
  1160. /**
  1161. * t3_link_start - apply link configuration to MAC/PHY
  1162. * @phy: the PHY to setup
  1163. * @mac: the MAC to setup
  1164. * @lc: the requested link configuration
  1165. *
  1166. * Set up a port's MAC and PHY according to a desired link configuration.
  1167. * - If the PHY can auto-negotiate first decide what to advertise, then
  1168. * enable/disable auto-negotiation as desired, and reset.
  1169. * - If the PHY does not auto-negotiate just reset it.
  1170. * - If auto-negotiation is off set the MAC to the proper speed/duplex/FC,
  1171. * otherwise do it later based on the outcome of auto-negotiation.
  1172. */
  1173. int t3_link_start(struct cphy *phy, struct cmac *mac, struct link_config *lc)
  1174. {
  1175. unsigned int fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX);
  1176. lc->link_ok = 0;
  1177. if (lc->supported & SUPPORTED_Autoneg) {
  1178. lc->advertising &= ~(ADVERTISED_Asym_Pause | ADVERTISED_Pause);
  1179. if (fc) {
  1180. lc->advertising |= ADVERTISED_Asym_Pause;
  1181. if (fc & PAUSE_RX)
  1182. lc->advertising |= ADVERTISED_Pause;
  1183. }
  1184. phy->ops->advertise(phy, lc->advertising);
  1185. if (lc->autoneg == AUTONEG_DISABLE) {
  1186. lc->speed = lc->requested_speed;
  1187. lc->duplex = lc->requested_duplex;
  1188. lc->fc = (unsigned char)fc;
  1189. t3_mac_set_speed_duplex_fc(mac, lc->speed, lc->duplex,
  1190. fc);
  1191. /* Also disables autoneg */
  1192. phy->ops->set_speed_duplex(phy, lc->speed, lc->duplex);
  1193. } else
  1194. phy->ops->autoneg_enable(phy);
  1195. } else {
  1196. t3_mac_set_speed_duplex_fc(mac, -1, -1, fc);
  1197. lc->fc = (unsigned char)fc;
  1198. phy->ops->reset(phy, 0);
  1199. }
  1200. return 0;
  1201. }
  1202. /**
  1203. * t3_set_vlan_accel - control HW VLAN extraction
  1204. * @adapter: the adapter
  1205. * @ports: bitmap of adapter ports to operate on
  1206. * @on: enable (1) or disable (0) HW VLAN extraction
  1207. *
  1208. * Enables or disables HW extraction of VLAN tags for the given port.
  1209. */
  1210. void t3_set_vlan_accel(struct adapter *adapter, unsigned int ports, int on)
  1211. {
  1212. t3_set_reg_field(adapter, A_TP_OUT_CONFIG,
  1213. ports << S_VLANEXTRACTIONENABLE,
  1214. on ? (ports << S_VLANEXTRACTIONENABLE) : 0);
  1215. }
  1216. struct intr_info {
  1217. unsigned int mask; /* bits to check in interrupt status */
  1218. const char *msg; /* message to print or NULL */
  1219. short stat_idx; /* stat counter to increment or -1 */
  1220. unsigned short fatal; /* whether the condition reported is fatal */
  1221. };
  1222. /**
  1223. * t3_handle_intr_status - table driven interrupt handler
  1224. * @adapter: the adapter that generated the interrupt
  1225. * @reg: the interrupt status register to process
  1226. * @mask: a mask to apply to the interrupt status
  1227. * @acts: table of interrupt actions
  1228. * @stats: statistics counters tracking interrupt occurences
  1229. *
  1230. * A table driven interrupt handler that applies a set of masks to an
  1231. * interrupt status word and performs the corresponding actions if the
  1232. * interrupts described by the mask have occured. The actions include
  1233. * optionally printing a warning or alert message, and optionally
  1234. * incrementing a stat counter. The table is terminated by an entry
  1235. * specifying mask 0. Returns the number of fatal interrupt conditions.
  1236. */
  1237. static int t3_handle_intr_status(struct adapter *adapter, unsigned int reg,
  1238. unsigned int mask,
  1239. const struct intr_info *acts,
  1240. unsigned long *stats)
  1241. {
  1242. int fatal = 0;
  1243. unsigned int status = t3_read_reg(adapter, reg) & mask;
  1244. for (; acts->mask; ++acts) {
  1245. if (!(status & acts->mask))
  1246. continue;
  1247. if (acts->fatal) {
  1248. fatal++;
  1249. CH_ALERT(adapter, "%s (0x%x)\n",
  1250. acts->msg, status & acts->mask);
  1251. } else if (acts->msg)
  1252. CH_WARN(adapter, "%s (0x%x)\n",
  1253. acts->msg, status & acts->mask);
  1254. if (acts->stat_idx >= 0)
  1255. stats[acts->stat_idx]++;
  1256. }
  1257. if (status) /* clear processed interrupts */
  1258. t3_write_reg(adapter, reg, status);
  1259. return fatal;
  1260. }
  1261. #define SGE_INTR_MASK (F_RSPQDISABLED | \
  1262. F_UC_REQ_FRAMINGERROR | F_R_REQ_FRAMINGERROR | \
  1263. F_CPPARITYERROR | F_OCPARITYERROR | F_RCPARITYERROR | \
  1264. F_IRPARITYERROR | V_ITPARITYERROR(M_ITPARITYERROR) | \
  1265. V_FLPARITYERROR(M_FLPARITYERROR) | F_LODRBPARITYERROR | \
  1266. F_HIDRBPARITYERROR | F_LORCQPARITYERROR | \
  1267. F_HIRCQPARITYERROR)
  1268. #define MC5_INTR_MASK (F_PARITYERR | F_ACTRGNFULL | F_UNKNOWNCMD | \
  1269. F_REQQPARERR | F_DISPQPARERR | F_DELACTEMPTY | \
  1270. F_NFASRCHFAIL)
  1271. #define MC7_INTR_MASK (F_AE | F_UE | F_CE | V_PE(M_PE))
  1272. #define XGM_INTR_MASK (V_TXFIFO_PRTY_ERR(M_TXFIFO_PRTY_ERR) | \
  1273. V_RXFIFO_PRTY_ERR(M_RXFIFO_PRTY_ERR) | \
  1274. F_TXFIFO_UNDERRUN)
  1275. #define PCIX_INTR_MASK (F_MSTDETPARERR | F_SIGTARABT | F_RCVTARABT | \
  1276. F_RCVMSTABT | F_SIGSYSERR | F_DETPARERR | \
  1277. F_SPLCMPDIS | F_UNXSPLCMP | F_RCVSPLCMPERR | \
  1278. F_DETCORECCERR | F_DETUNCECCERR | F_PIOPARERR | \
  1279. V_WFPARERR(M_WFPARERR) | V_RFPARERR(M_RFPARERR) | \
  1280. V_CFPARERR(M_CFPARERR) /* | V_MSIXPARERR(M_MSIXPARERR) */)
  1281. #define PCIE_INTR_MASK (F_UNXSPLCPLERRR | F_UNXSPLCPLERRC | F_PCIE_PIOPARERR |\
  1282. F_PCIE_WFPARERR | F_PCIE_RFPARERR | F_PCIE_CFPARERR | \
  1283. /* V_PCIE_MSIXPARERR(M_PCIE_MSIXPARERR) | */ \
  1284. F_RETRYBUFPARERR | F_RETRYLUTPARERR | F_RXPARERR | \
  1285. F_TXPARERR | V_BISTERR(M_BISTERR))
  1286. #define ULPRX_INTR_MASK (F_PARERRDATA | F_PARERRPCMD | F_ARBPF1PERR | \
  1287. F_ARBPF0PERR | F_ARBFPERR | F_PCMDMUXPERR | \
  1288. F_DATASELFRAMEERR1 | F_DATASELFRAMEERR0)
  1289. #define ULPTX_INTR_MASK 0xfc
  1290. #define CPLSW_INTR_MASK (F_CIM_OP_MAP_PERR | F_TP_FRAMING_ERROR | \
  1291. F_SGE_FRAMING_ERROR | F_CIM_FRAMING_ERROR | \
  1292. F_ZERO_SWITCH_ERROR)
  1293. #define CIM_INTR_MASK (F_BLKWRPLINT | F_BLKRDPLINT | F_BLKWRCTLINT | \
  1294. F_BLKRDCTLINT | F_BLKWRFLASHINT | F_BLKRDFLASHINT | \
  1295. F_SGLWRFLASHINT | F_WRBLKFLASHINT | F_BLKWRBOOTINT | \
  1296. F_FLASHRANGEINT | F_SDRAMRANGEINT | F_RSVDSPACEINT | \
  1297. F_DRAMPARERR | F_ICACHEPARERR | F_DCACHEPARERR | \
  1298. F_OBQSGEPARERR | F_OBQULPHIPARERR | F_OBQULPLOPARERR | \
  1299. F_IBQSGELOPARERR | F_IBQSGEHIPARERR | F_IBQULPPARERR | \
  1300. F_IBQTPPARERR | F_ITAGPARERR | F_DTAGPARERR)
  1301. #define PMTX_INTR_MASK (F_ZERO_C_CMD_ERROR | ICSPI_FRM_ERR | OESPI_FRM_ERR | \
  1302. V_ICSPI_PAR_ERROR(M_ICSPI_PAR_ERROR) | \
  1303. V_OESPI_PAR_ERROR(M_OESPI_PAR_ERROR))
  1304. #define PMRX_INTR_MASK (F_ZERO_E_CMD_ERROR | IESPI_FRM_ERR | OCSPI_FRM_ERR | \
  1305. V_IESPI_PAR_ERROR(M_IESPI_PAR_ERROR) | \
  1306. V_OCSPI_PAR_ERROR(M_OCSPI_PAR_ERROR))
  1307. #define MPS_INTR_MASK (V_TX0TPPARERRENB(M_TX0TPPARERRENB) | \
  1308. V_TX1TPPARERRENB(M_TX1TPPARERRENB) | \
  1309. V_RXTPPARERRENB(M_RXTPPARERRENB) | \
  1310. V_MCAPARERRENB(M_MCAPARERRENB))
  1311. #define XGM_EXTRA_INTR_MASK (F_LINKFAULTCHANGE)
  1312. #define PL_INTR_MASK (F_T3DBG | F_XGMAC0_0 | F_XGMAC0_1 | F_MC5A | F_PM1_TX | \
  1313. F_PM1_RX | F_ULP2_TX | F_ULP2_RX | F_TP1 | F_CIM | \
  1314. F_MC7_CM | F_MC7_PMTX | F_MC7_PMRX | F_SGE3 | F_PCIM0 | \
  1315. F_MPS0 | F_CPL_SWITCH)
  1316. /*
  1317. * Interrupt handler for the PCIX1 module.
  1318. */
  1319. static void pci_intr_handler(struct adapter *adapter)
  1320. {
  1321. static const struct intr_info pcix1_intr_info[] = {
  1322. {F_MSTDETPARERR, "PCI master detected parity error", -1, 1},
  1323. {F_SIGTARABT, "PCI signaled target abort", -1, 1},
  1324. {F_RCVTARABT, "PCI received target abort", -1, 1},
  1325. {F_RCVMSTABT, "PCI received master abort", -1, 1},
  1326. {F_SIGSYSERR, "PCI signaled system error", -1, 1},
  1327. {F_DETPARERR, "PCI detected parity error", -1, 1},
  1328. {F_SPLCMPDIS, "PCI split completion discarded", -1, 1},
  1329. {F_UNXSPLCMP, "PCI unexpected split completion error", -1, 1},
  1330. {F_RCVSPLCMPERR, "PCI received split completion error", -1,
  1331. 1},
  1332. {F_DETCORECCERR, "PCI correctable ECC error",
  1333. STAT_PCI_CORR_ECC, 0},
  1334. {F_DETUNCECCERR, "PCI uncorrectable ECC error", -1, 1},
  1335. {F_PIOPARERR, "PCI PIO FIFO parity error", -1, 1},
  1336. {V_WFPARERR(M_WFPARERR), "PCI write FIFO parity error", -1,
  1337. 1},
  1338. {V_RFPARERR(M_RFPARERR), "PCI read FIFO parity error", -1,
  1339. 1},
  1340. {V_CFPARERR(M_CFPARERR), "PCI command FIFO parity error", -1,
  1341. 1},
  1342. {V_MSIXPARERR(M_MSIXPARERR), "PCI MSI-X table/PBA parity "
  1343. "error", -1, 1},
  1344. {0}
  1345. };
  1346. if (t3_handle_intr_status(adapter, A_PCIX_INT_CAUSE, PCIX_INTR_MASK,
  1347. pcix1_intr_info, adapter->irq_stats))
  1348. t3_fatal_err(adapter);
  1349. }
  1350. /*
  1351. * Interrupt handler for the PCIE module.
  1352. */
  1353. static void pcie_intr_handler(struct adapter *adapter)
  1354. {
  1355. static const struct intr_info pcie_intr_info[] = {
  1356. {F_PEXERR, "PCI PEX error", -1, 1},
  1357. {F_UNXSPLCPLERRR,
  1358. "PCI unexpected split completion DMA read error", -1, 1},
  1359. {F_UNXSPLCPLERRC,
  1360. "PCI unexpected split completion DMA command error", -1, 1},
  1361. {F_PCIE_PIOPARERR, "PCI PIO FIFO parity error", -1, 1},
  1362. {F_PCIE_WFPARERR, "PCI write FIFO parity error", -1, 1},
  1363. {F_PCIE_RFPARERR, "PCI read FIFO parity error", -1, 1},
  1364. {F_PCIE_CFPARERR, "PCI command FIFO parity error", -1, 1},
  1365. {V_PCIE_MSIXPARERR(M_PCIE_MSIXPARERR),
  1366. "PCI MSI-X table/PBA parity error", -1, 1},
  1367. {F_RETRYBUFPARERR, "PCI retry buffer parity error", -1, 1},
  1368. {F_RETRYLUTPARERR, "PCI retry LUT parity error", -1, 1},
  1369. {F_RXPARERR, "PCI Rx parity error", -1, 1},
  1370. {F_TXPARERR, "PCI Tx parity error", -1, 1},
  1371. {V_BISTERR(M_BISTERR), "PCI BIST error", -1, 1},
  1372. {0}
  1373. };
  1374. if (t3_read_reg(adapter, A_PCIE_INT_CAUSE) & F_PEXERR)
  1375. CH_ALERT(adapter, "PEX error code 0x%x\n",
  1376. t3_read_reg(adapter, A_PCIE_PEX_ERR));
  1377. if (t3_handle_intr_status(adapter, A_PCIE_INT_CAUSE, PCIE_INTR_MASK,
  1378. pcie_intr_info, adapter->irq_stats))
  1379. t3_fatal_err(adapter);
  1380. }
  1381. /*
  1382. * TP interrupt handler.
  1383. */
  1384. static void tp_intr_handler(struct adapter *adapter)
  1385. {
  1386. static const struct intr_info tp_intr_info[] = {
  1387. {0xffffff, "TP parity error", -1, 1},
  1388. {0x1000000, "TP out of Rx pages", -1, 1},
  1389. {0x2000000, "TP out of Tx pages", -1, 1},
  1390. {0}
  1391. };
  1392. static struct intr_info tp_intr_info_t3c[] = {
  1393. {0x1fffffff, "TP parity error", -1, 1},
  1394. {F_FLMRXFLSTEMPTY, "TP out of Rx pages", -1, 1},
  1395. {F_FLMTXFLSTEMPTY, "TP out of Tx pages", -1, 1},
  1396. {0}
  1397. };
  1398. if (t3_handle_intr_status(adapter, A_TP_INT_CAUSE, 0xffffffff,
  1399. adapter->params.rev < T3_REV_C ?
  1400. tp_intr_info : tp_intr_info_t3c, NULL))
  1401. t3_fatal_err(adapter);
  1402. }
  1403. /*
  1404. * CIM interrupt handler.
  1405. */
  1406. static void cim_intr_handler(struct adapter *adapter)
  1407. {
  1408. static const struct intr_info cim_intr_info[] = {
  1409. {F_RSVDSPACEINT, "CIM reserved space write", -1, 1},
  1410. {F_SDRAMRANGEINT, "CIM SDRAM address out of range", -1, 1},
  1411. {F_FLASHRANGEINT, "CIM flash address out of range", -1, 1},
  1412. {F_BLKWRBOOTINT, "CIM block write to boot space", -1, 1},
  1413. {F_WRBLKFLASHINT, "CIM write to cached flash space", -1, 1},
  1414. {F_SGLWRFLASHINT, "CIM single write to flash space", -1, 1},
  1415. {F_BLKRDFLASHINT, "CIM block read from flash space", -1, 1},
  1416. {F_BLKWRFLASHINT, "CIM block write to flash space", -1, 1},
  1417. {F_BLKRDCTLINT, "CIM block read from CTL space", -1, 1},
  1418. {F_BLKWRCTLINT, "CIM block write to CTL space", -1, 1},
  1419. {F_BLKRDPLINT, "CIM block read from PL space", -1, 1},
  1420. {F_BLKWRPLINT, "CIM block write to PL space", -1, 1},
  1421. {F_DRAMPARERR, "CIM DRAM parity error", -1, 1},
  1422. {F_ICACHEPARERR, "CIM icache parity error", -1, 1},
  1423. {F_DCACHEPARERR, "CIM dcache parity error", -1, 1},
  1424. {F_OBQSGEPARERR, "CIM OBQ SGE parity error", -1, 1},
  1425. {F_OBQULPHIPARERR, "CIM OBQ ULPHI parity error", -1, 1},
  1426. {F_OBQULPLOPARERR, "CIM OBQ ULPLO parity error", -1, 1},
  1427. {F_IBQSGELOPARERR, "CIM IBQ SGELO parity error", -1, 1},
  1428. {F_IBQSGEHIPARERR, "CIM IBQ SGEHI parity error", -1, 1},
  1429. {F_IBQULPPARERR, "CIM IBQ ULP parity error", -1, 1},
  1430. {F_IBQTPPARERR, "CIM IBQ TP parity error", -1, 1},
  1431. {F_ITAGPARERR, "CIM itag parity error", -1, 1},
  1432. {F_DTAGPARERR, "CIM dtag parity error", -1, 1},
  1433. {0}
  1434. };
  1435. if (t3_handle_intr_status(adapter, A_CIM_HOST_INT_CAUSE, 0xffffffff,
  1436. cim_intr_info, NULL))
  1437. t3_fatal_err(adapter);
  1438. }
  1439. /*
  1440. * ULP RX interrupt handler.
  1441. */
  1442. static void ulprx_intr_handler(struct adapter *adapter)
  1443. {
  1444. static const struct intr_info ulprx_intr_info[] = {
  1445. {F_PARERRDATA, "ULP RX data parity error", -1, 1},
  1446. {F_PARERRPCMD, "ULP RX command parity error", -1, 1},
  1447. {F_ARBPF1PERR, "ULP RX ArbPF1 parity error", -1, 1},
  1448. {F_ARBPF0PERR, "ULP RX ArbPF0 parity error", -1, 1},
  1449. {F_ARBFPERR, "ULP RX ArbF parity error", -1, 1},
  1450. {F_PCMDMUXPERR, "ULP RX PCMDMUX parity error", -1, 1},
  1451. {F_DATASELFRAMEERR1, "ULP RX frame error", -1, 1},
  1452. {F_DATASELFRAMEERR0, "ULP RX frame error", -1, 1},
  1453. {0}
  1454. };
  1455. if (t3_handle_intr_status(adapter, A_ULPRX_INT_CAUSE, 0xffffffff,
  1456. ulprx_intr_info, NULL))
  1457. t3_fatal_err(adapter);
  1458. }
  1459. /*
  1460. * ULP TX interrupt handler.
  1461. */
  1462. static void ulptx_intr_handler(struct adapter *adapter)
  1463. {
  1464. static const struct intr_info ulptx_intr_info[] = {
  1465. {F_PBL_BOUND_ERR_CH0, "ULP TX channel 0 PBL out of bounds",
  1466. STAT_ULP_CH0_PBL_OOB, 0},
  1467. {F_PBL_BOUND_ERR_CH1, "ULP TX channel 1 PBL out of bounds",
  1468. STAT_ULP_CH1_PBL_OOB, 0},
  1469. {0xfc, "ULP TX parity error", -1, 1},
  1470. {0}
  1471. };
  1472. if (t3_handle_intr_status(adapter, A_ULPTX_INT_CAUSE, 0xffffffff,
  1473. ulptx_intr_info, adapter->irq_stats))
  1474. t3_fatal_err(adapter);
  1475. }
  1476. #define ICSPI_FRM_ERR (F_ICSPI0_FIFO2X_RX_FRAMING_ERROR | \
  1477. F_ICSPI1_FIFO2X_RX_FRAMING_ERROR | F_ICSPI0_RX_FRAMING_ERROR | \
  1478. F_ICSPI1_RX_FRAMING_ERROR | F_ICSPI0_TX_FRAMING_ERROR | \
  1479. F_ICSPI1_TX_FRAMING_ERROR)
  1480. #define OESPI_FRM_ERR (F_OESPI0_RX_FRAMING_ERROR | \
  1481. F_OESPI1_RX_FRAMING_ERROR | F_OESPI0_TX_FRAMING_ERROR | \
  1482. F_OESPI1_TX_FRAMING_ERROR | F_OESPI0_OFIFO2X_TX_FRAMING_ERROR | \
  1483. F_OESPI1_OFIFO2X_TX_FRAMING_ERROR)
  1484. /*
  1485. * PM TX interrupt handler.
  1486. */
  1487. static void pmtx_intr_handler(struct adapter *adapter)
  1488. {
  1489. static const struct intr_info pmtx_intr_info[] = {
  1490. {F_ZERO_C_CMD_ERROR, "PMTX 0-length pcmd", -1, 1},
  1491. {ICSPI_FRM_ERR, "PMTX ispi framing error", -1, 1},
  1492. {OESPI_FRM_ERR, "PMTX ospi framing error", -1, 1},
  1493. {V_ICSPI_PAR_ERROR(M_ICSPI_PAR_ERROR),
  1494. "PMTX ispi parity error", -1, 1},
  1495. {V_OESPI_PAR_ERROR(M_OESPI_PAR_ERROR),
  1496. "PMTX ospi parity error", -1, 1},
  1497. {0}
  1498. };
  1499. if (t3_handle_intr_status(adapter, A_PM1_TX_INT_CAUSE, 0xffffffff,
  1500. pmtx_intr_info, NULL))
  1501. t3_fatal_err(adapter);
  1502. }
  1503. #define IESPI_FRM_ERR (F_IESPI0_FIFO2X_RX_FRAMING_ERROR | \
  1504. F_IESPI1_FIFO2X_RX_FRAMING_ERROR | F_IESPI0_RX_FRAMING_ERROR | \
  1505. F_IESPI1_RX_FRAMING_ERROR | F_IESPI0_TX_FRAMING_ERROR | \
  1506. F_IESPI1_TX_FRAMING_ERROR)
  1507. #define OCSPI_FRM_ERR (F_OCSPI0_RX_FRAMING_ERROR | \
  1508. F_OCSPI1_RX_FRAMING_ERROR | F_OCSPI0_TX_FRAMING_ERROR | \
  1509. F_OCSPI1_TX_FRAMING_ERROR | F_OCSPI0_OFIFO2X_TX_FRAMING_ERROR | \
  1510. F_OCSPI1_OFIFO2X_TX_FRAMING_ERROR)
  1511. /*
  1512. * PM RX interrupt handler.
  1513. */
  1514. static void pmrx_intr_handler(struct adapter *adapter)
  1515. {
  1516. static const struct intr_info pmrx_intr_info[] = {
  1517. {F_ZERO_E_CMD_ERROR, "PMRX 0-length pcmd", -1, 1},
  1518. {IESPI_FRM_ERR, "PMRX ispi framing error", -1, 1},
  1519. {OCSPI_FRM_ERR, "PMRX ospi framing error", -1, 1},
  1520. {V_IESPI_PAR_ERROR(M_IESPI_PAR_ERROR),
  1521. "PMRX ispi parity error", -1, 1},
  1522. {V_OCSPI_PAR_ERROR(M_OCSPI_PAR_ERROR),
  1523. "PMRX ospi parity error", -1, 1},
  1524. {0}
  1525. };
  1526. if (t3_handle_intr_status(adapter, A_PM1_RX_INT_CAUSE, 0xffffffff,
  1527. pmrx_intr_info, NULL))
  1528. t3_fatal_err(adapter);
  1529. }
  1530. /*
  1531. * CPL switch interrupt handler.
  1532. */
  1533. static void cplsw_intr_handler(struct adapter *adapter)
  1534. {
  1535. static const struct intr_info cplsw_intr_info[] = {
  1536. {F_CIM_OP_MAP_PERR, "CPL switch CIM parity error", -1, 1},
  1537. {F_CIM_OVFL_ERROR, "CPL switch CIM overflow", -1, 1},
  1538. {F_TP_FRAMING_ERROR, "CPL switch TP framing error", -1, 1},
  1539. {F_SGE_FRAMING_ERROR, "CPL switch SGE framing error", -1, 1},
  1540. {F_CIM_FRAMING_ERROR, "CPL switch CIM framing error", -1, 1},
  1541. {F_ZERO_SWITCH_ERROR, "CPL switch no-switch error", -1, 1},
  1542. {0}
  1543. };
  1544. if (t3_handle_intr_status(adapter, A_CPL_INTR_CAUSE, 0xffffffff,
  1545. cplsw_intr_info, NULL))
  1546. t3_fatal_err(adapter);
  1547. }
  1548. /*
  1549. * MPS interrupt handler.
  1550. */
  1551. static void mps_intr_handler(struct adapter *adapter)
  1552. {
  1553. static const struct intr_info mps_intr_info[] = {
  1554. {0x1ff, "MPS parity error", -1, 1},
  1555. {0}
  1556. };
  1557. if (t3_handle_intr_status(adapter, A_MPS_INT_CAUSE, 0xffffffff,
  1558. mps_intr_info, NULL))
  1559. t3_fatal_err(adapter);
  1560. }
  1561. #define MC7_INTR_FATAL (F_UE | V_PE(M_PE) | F_AE)
  1562. /*
  1563. * MC7 interrupt handler.
  1564. */
  1565. static void mc7_intr_handler(struct mc7 *mc7)
  1566. {
  1567. struct adapter *adapter = mc7->adapter;
  1568. u32 cause = t3_read_reg(adapter, mc7->offset + A_MC7_INT_CAUSE);
  1569. if (cause & F_CE) {
  1570. mc7->stats.corr_err++;
  1571. CH_WARN(adapter, "%s MC7 correctable error at addr 0x%x, "
  1572. "data 0x%x 0x%x 0x%x\n", mc7->name,
  1573. t3_read_reg(adapter, mc7->offset + A_MC7_CE_ADDR),
  1574. t3_read_reg(adapter, mc7->offset + A_MC7_CE_DATA0),
  1575. t3_read_reg(adapter, mc7->offset + A_MC7_CE_DATA1),
  1576. t3_read_reg(adapter, mc7->offset + A_MC7_CE_DATA2));
  1577. }
  1578. if (cause & F_UE) {
  1579. mc7->stats.uncorr_err++;
  1580. CH_ALERT(adapter, "%s MC7 uncorrectable error at addr 0x%x, "
  1581. "data 0x%x 0x%x 0x%x\n", mc7->name,
  1582. t3_read_reg(adapter, mc7->offset + A_MC7_UE_ADDR),
  1583. t3_read_reg(adapter, mc7->offset + A_MC7_UE_DATA0),
  1584. t3_read_reg(adapter, mc7->offset + A_MC7_UE_DATA1),
  1585. t3_read_reg(adapter, mc7->offset + A_MC7_UE_DATA2));
  1586. }
  1587. if (G_PE(cause)) {
  1588. mc7->stats.parity_err++;
  1589. CH_ALERT(adapter, "%s MC7 parity error 0x%x\n",
  1590. mc7->name, G_PE(cause));
  1591. }
  1592. if (cause & F_AE) {
  1593. u32 addr = 0;
  1594. if (adapter->params.rev > 0)
  1595. addr = t3_read_reg(adapter,
  1596. mc7->offset + A_MC7_ERR_ADDR);
  1597. mc7->stats.addr_err++;
  1598. CH_ALERT(adapter, "%s MC7 address error: 0x%x\n",
  1599. mc7->name, addr);
  1600. }
  1601. if (cause & MC7_INTR_FATAL)
  1602. t3_fatal_err(adapter);
  1603. t3_write_reg(adapter, mc7->offset + A_MC7_INT_CAUSE, cause);
  1604. }
  1605. #define XGM_INTR_FATAL (V_TXFIFO_PRTY_ERR(M_TXFIFO_PRTY_ERR) | \
  1606. V_RXFIFO_PRTY_ERR(M_RXFIFO_PRTY_ERR))
  1607. /*
  1608. * XGMAC interrupt handler.
  1609. */
  1610. static int mac_intr_handler(struct adapter *adap, unsigned int idx)
  1611. {
  1612. struct cmac *mac = &adap2pinfo(adap, idx)->mac;
  1613. /*
  1614. * We mask out interrupt causes for which we're not taking interrupts.
  1615. * This allows us to use polling logic to monitor some of the other
  1616. * conditions when taking interrupts would impose too much load on the
  1617. * system.
  1618. */
  1619. u32 cause = t3_read_reg(adap, A_XGM_INT_CAUSE + mac->offset) &
  1620. ~F_RXFIFO_OVERFLOW;
  1621. if (cause & V_TXFIFO_PRTY_ERR(M_TXFIFO_PRTY_ERR)) {
  1622. mac->stats.tx_fifo_parity_err++;
  1623. CH_ALERT(adap, "port%d: MAC TX FIFO parity error\n", idx);
  1624. }
  1625. if (cause & V_RXFIFO_PRTY_ERR(M_RXFIFO_PRTY_ERR)) {
  1626. mac->stats.rx_fifo_parity_err++;
  1627. CH_ALERT(adap, "port%d: MAC RX FIFO parity error\n", idx);
  1628. }
  1629. if (cause & F_TXFIFO_UNDERRUN)
  1630. mac->stats.tx_fifo_urun++;
  1631. if (cause & F_RXFIFO_OVERFLOW)
  1632. mac->stats.rx_fifo_ovfl++;
  1633. if (cause & V_SERDES_LOS(M_SERDES_LOS))
  1634. mac->stats.serdes_signal_loss++;
  1635. if (cause & F_XAUIPCSCTCERR)
  1636. mac->stats.xaui_pcs_ctc_err++;
  1637. if (cause & F_XAUIPCSALIGNCHANGE)
  1638. mac->stats.xaui_pcs_align_change++;
  1639. if (cause & F_XGM_INT) {
  1640. t3_set_reg_field(adap,
  1641. A_XGM_INT_ENABLE + mac->offset,
  1642. F_XGM_INT, 0);
  1643. mac->stats.link_faults++;
  1644. t3_os_link_fault_handler(adap, idx);
  1645. }
  1646. t3_write_reg(adap, A_XGM_INT_CAUSE + mac->offset, cause);
  1647. if (cause & XGM_INTR_FATAL)
  1648. t3_fatal_err(adap);
  1649. return cause != 0;
  1650. }
  1651. /*
  1652. * Interrupt handler for PHY events.
  1653. */
  1654. int t3_phy_intr_handler(struct adapter *adapter)
  1655. {
  1656. u32 i, cause = t3_read_reg(adapter, A_T3DBG_INT_CAUSE);
  1657. for_each_port(adapter, i) {
  1658. struct port_info *p = adap2pinfo(adapter, i);
  1659. if (!(p->phy.caps & SUPPORTED_IRQ))
  1660. continue;
  1661. if (cause & (1 << adapter_info(adapter)->gpio_intr[i])) {
  1662. int phy_cause = p->phy.ops->intr_handler(&p->phy);
  1663. if (phy_cause & cphy_cause_link_change)
  1664. t3_link_changed(adapter, i);
  1665. if (phy_cause & cphy_cause_fifo_error)
  1666. p->phy.fifo_errors++;
  1667. if (phy_cause & cphy_cause_module_change)
  1668. t3_os_phymod_changed(adapter, i);
  1669. }
  1670. }
  1671. t3_write_reg(adapter, A_T3DBG_INT_CAUSE, cause);
  1672. return 0;
  1673. }
  1674. /*
  1675. * T3 slow path (non-data) interrupt handler.
  1676. */
  1677. int t3_slow_intr_handler(struct adapter *adapter)
  1678. {
  1679. u32 cause = t3_read_reg(adapter, A_PL_INT_CAUSE0);
  1680. cause &= adapter->slow_intr_mask;
  1681. if (!cause)
  1682. return 0;
  1683. if (cause & F_PCIM0) {
  1684. if (is_pcie(adapter))
  1685. pcie_intr_handler(adapter);
  1686. else
  1687. pci_intr_handler(adapter);
  1688. }
  1689. if (cause & F_SGE3)
  1690. t3_sge_err_intr_handler(adapter);
  1691. if (cause & F_MC7_PMRX)
  1692. mc7_intr_handler(&adapter->pmrx);
  1693. if (cause & F_MC7_PMTX)
  1694. mc7_intr_handler(&adapter->pmtx);
  1695. if (cause & F_MC7_CM)
  1696. mc7_intr_handler(&adapter->cm);
  1697. if (cause & F_CIM)
  1698. cim_intr_handler(adapter);
  1699. if (cause & F_TP1)
  1700. tp_intr_handler(adapter);
  1701. if (cause & F_ULP2_RX)
  1702. ulprx_intr_handler(adapter);
  1703. if (cause & F_ULP2_TX)
  1704. ulptx_intr_handler(adapter);
  1705. if (cause & F_PM1_RX)
  1706. pmrx_intr_handler(adapter);
  1707. if (cause & F_PM1_TX)
  1708. pmtx_intr_handler(adapter);
  1709. if (cause & F_CPL_SWITCH)
  1710. cplsw_intr_handler(adapter);
  1711. if (cause & F_MPS0)
  1712. mps_intr_handler(adapter);
  1713. if (cause & F_MC5A)
  1714. t3_mc5_intr_handler(&adapter->mc5);
  1715. if (cause & F_XGMAC0_0)
  1716. mac_intr_handler(adapter, 0);
  1717. if (cause & F_XGMAC0_1)
  1718. mac_intr_handler(adapter, 1);
  1719. if (cause & F_T3DBG)
  1720. t3_os_ext_intr_handler(adapter);
  1721. /* Clear the interrupts just processed. */
  1722. t3_write_reg(adapter, A_PL_INT_CAUSE0, cause);
  1723. t3_read_reg(adapter, A_PL_INT_CAUSE0); /* flush */
  1724. return 1;
  1725. }
  1726. static unsigned int calc_gpio_intr(struct adapter *adap)
  1727. {
  1728. unsigned int i, gpi_intr = 0;
  1729. for_each_port(adap, i)
  1730. if ((adap2pinfo(adap, i)->phy.caps & SUPPORTED_IRQ) &&
  1731. adapter_info(adap)->gpio_intr[i])
  1732. gpi_intr |= 1 << adapter_info(adap)->gpio_intr[i];
  1733. return gpi_intr;
  1734. }
  1735. /**
  1736. * t3_intr_enable - enable interrupts
  1737. * @adapter: the adapter whose interrupts should be enabled
  1738. *
  1739. * Enable interrupts by setting the interrupt enable registers of the
  1740. * various HW modules and then enabling the top-level interrupt
  1741. * concentrator.
  1742. */
  1743. void t3_intr_enable(struct adapter *adapter)
  1744. {
  1745. static const struct addr_val_pair intr_en_avp[] = {
  1746. {A_SG_INT_ENABLE, SGE_INTR_MASK},
  1747. {A_MC7_INT_ENABLE, MC7_INTR_MASK},
  1748. {A_MC7_INT_ENABLE - MC7_PMRX_BASE_ADDR + MC7_PMTX_BASE_ADDR,
  1749. MC7_INTR_MASK},
  1750. {A_MC7_INT_ENABLE - MC7_PMRX_BASE_ADDR + MC7_CM_BASE_ADDR,
  1751. MC7_INTR_MASK},
  1752. {A_MC5_DB_INT_ENABLE, MC5_INTR_MASK},
  1753. {A_ULPRX_INT_ENABLE, ULPRX_INTR_MASK},
  1754. {A_PM1_TX_INT_ENABLE, PMTX_INTR_MASK},
  1755. {A_PM1_RX_INT_ENABLE, PMRX_INTR_MASK},
  1756. {A_CIM_HOST_INT_ENABLE, CIM_INTR_MASK},
  1757. {A_MPS_INT_ENABLE, MPS_INTR_MASK},
  1758. };
  1759. adapter->slow_intr_mask = PL_INTR_MASK;
  1760. t3_write_regs(adapter, intr_en_avp, ARRAY_SIZE(intr_en_avp), 0);
  1761. t3_write_reg(adapter, A_TP_INT_ENABLE,
  1762. adapter->params.rev >= T3_REV_C ? 0x2bfffff : 0x3bfffff);
  1763. if (adapter->params.rev > 0) {
  1764. t3_write_reg(adapter, A_CPL_INTR_ENABLE,
  1765. CPLSW_INTR_MASK | F_CIM_OVFL_ERROR);
  1766. t3_write_reg(adapter, A_ULPTX_INT_ENABLE,
  1767. ULPTX_INTR_MASK | F_PBL_BOUND_ERR_CH0 |
  1768. F_PBL_BOUND_ERR_CH1);
  1769. } else {
  1770. t3_write_reg(adapter, A_CPL_INTR_ENABLE, CPLSW_INTR_MASK);
  1771. t3_write_reg(adapter, A_ULPTX_INT_ENABLE, ULPTX_INTR_MASK);
  1772. }
  1773. t3_write_reg(adapter, A_T3DBG_INT_ENABLE, calc_gpio_intr(adapter));
  1774. if (is_pcie(adapter))
  1775. t3_write_reg(adapter, A_PCIE_INT_ENABLE, PCIE_INTR_MASK);
  1776. else
  1777. t3_write_reg(adapter, A_PCIX_INT_ENABLE, PCIX_INTR_MASK);
  1778. t3_write_reg(adapter, A_PL_INT_ENABLE0, adapter->slow_intr_mask);
  1779. t3_read_reg(adapter, A_PL_INT_ENABLE0); /* flush */
  1780. }
  1781. /**
  1782. * t3_intr_disable - disable a card's interrupts
  1783. * @adapter: the adapter whose interrupts should be disabled
  1784. *
  1785. * Disable interrupts. We only disable the top-level interrupt
  1786. * concentrator and the SGE data interrupts.
  1787. */
  1788. void t3_intr_disable(struct adapter *adapter)
  1789. {
  1790. t3_write_reg(adapter, A_PL_INT_ENABLE0, 0);
  1791. t3_read_reg(adapter, A_PL_INT_ENABLE0); /* flush */
  1792. adapter->slow_intr_mask = 0;
  1793. }
  1794. /**
  1795. * t3_intr_clear - clear all interrupts
  1796. * @adapter: the adapter whose interrupts should be cleared
  1797. *
  1798. * Clears all interrupts.
  1799. */
  1800. void t3_intr_clear(struct adapter *adapter)
  1801. {
  1802. static const unsigned int cause_reg_addr[] = {
  1803. A_SG_INT_CAUSE,
  1804. A_SG_RSPQ_FL_STATUS,
  1805. A_PCIX_INT_CAUSE,
  1806. A_MC7_INT_CAUSE,
  1807. A_MC7_INT_CAUSE - MC7_PMRX_BASE_ADDR + MC7_PMTX_BASE_ADDR,
  1808. A_MC7_INT_CAUSE - MC7_PMRX_BASE_ADDR + MC7_CM_BASE_ADDR,
  1809. A_CIM_HOST_INT_CAUSE,
  1810. A_TP_INT_CAUSE,
  1811. A_MC5_DB_INT_CAUSE,
  1812. A_ULPRX_INT_CAUSE,
  1813. A_ULPTX_INT_CAUSE,
  1814. A_CPL_INTR_CAUSE,
  1815. A_PM1_TX_INT_CAUSE,
  1816. A_PM1_RX_INT_CAUSE,
  1817. A_MPS_INT_CAUSE,
  1818. A_T3DBG_INT_CAUSE,
  1819. };
  1820. unsigned int i;
  1821. /* Clear PHY and MAC interrupts for each port. */
  1822. for_each_port(adapter, i)
  1823. t3_port_intr_clear(adapter, i);
  1824. for (i = 0; i < ARRAY_SIZE(cause_reg_addr); ++i)
  1825. t3_write_reg(adapter, cause_reg_addr[i], 0xffffffff);
  1826. if (is_pcie(adapter))
  1827. t3_write_reg(adapter, A_PCIE_PEX_ERR, 0xffffffff);
  1828. t3_write_reg(adapter, A_PL_INT_CAUSE0, 0xffffffff);
  1829. t3_read_reg(adapter, A_PL_INT_CAUSE0); /* flush */
  1830. }
  1831. void t3_xgm_intr_enable(struct adapter *adapter, int idx)
  1832. {
  1833. struct port_info *pi = adap2pinfo(adapter, idx);
  1834. t3_write_reg(adapter, A_XGM_XGM_INT_ENABLE + pi->mac.offset,
  1835. XGM_EXTRA_INTR_MASK);
  1836. }
  1837. void t3_xgm_intr_disable(struct adapter *adapter, int idx)
  1838. {
  1839. struct port_info *pi = adap2pinfo(adapter, idx);
  1840. t3_write_reg(adapter, A_XGM_XGM_INT_DISABLE + pi->mac.offset,
  1841. 0x7ff);
  1842. }
  1843. /**
  1844. * t3_port_intr_enable - enable port-specific interrupts
  1845. * @adapter: associated adapter
  1846. * @idx: index of port whose interrupts should be enabled
  1847. *
  1848. * Enable port-specific (i.e., MAC and PHY) interrupts for the given
  1849. * adapter port.
  1850. */
  1851. void t3_port_intr_enable(struct adapter *adapter, int idx)
  1852. {
  1853. struct cphy *phy = &adap2pinfo(adapter, idx)->phy;
  1854. t3_write_reg(adapter, XGM_REG(A_XGM_INT_ENABLE, idx), XGM_INTR_MASK);
  1855. t3_read_reg(adapter, XGM_REG(A_XGM_INT_ENABLE, idx)); /* flush */
  1856. phy->ops->intr_enable(phy);
  1857. }
  1858. /**
  1859. * t3_port_intr_disable - disable port-specific interrupts
  1860. * @adapter: associated adapter
  1861. * @idx: index of port whose interrupts should be disabled
  1862. *
  1863. * Disable port-specific (i.e., MAC and PHY) interrupts for the given
  1864. * adapter port.
  1865. */
  1866. void t3_port_intr_disable(struct adapter *adapter, int idx)
  1867. {
  1868. struct cphy *phy = &adap2pinfo(adapter, idx)->phy;
  1869. t3_write_reg(adapter, XGM_REG(A_XGM_INT_ENABLE, idx), 0);
  1870. t3_read_reg(adapter, XGM_REG(A_XGM_INT_ENABLE, idx)); /* flush */
  1871. phy->ops->intr_disable(phy);
  1872. }
  1873. /**
  1874. * t3_port_intr_clear - clear port-specific interrupts
  1875. * @adapter: associated adapter
  1876. * @idx: index of port whose interrupts to clear
  1877. *
  1878. * Clear port-specific (i.e., MAC and PHY) interrupts for the given
  1879. * adapter port.
  1880. */
  1881. void t3_port_intr_clear(struct adapter *adapter, int idx)
  1882. {
  1883. struct cphy *phy = &adap2pinfo(adapter, idx)->phy;
  1884. t3_write_reg(adapter, XGM_REG(A_XGM_INT_CAUSE, idx), 0xffffffff);
  1885. t3_read_reg(adapter, XGM_REG(A_XGM_INT_CAUSE, idx)); /* flush */
  1886. phy->ops->intr_clear(phy);
  1887. }
  1888. #define SG_CONTEXT_CMD_ATTEMPTS 100
  1889. /**
  1890. * t3_sge_write_context - write an SGE context
  1891. * @adapter: the adapter
  1892. * @id: the context id
  1893. * @type: the context type
  1894. *
  1895. * Program an SGE context with the values already loaded in the
  1896. * CONTEXT_DATA? registers.
  1897. */
  1898. static int t3_sge_write_context(struct adapter *adapter, unsigned int id,
  1899. unsigned int type)
  1900. {
  1901. if (type == F_RESPONSEQ) {
  1902. /*
  1903. * Can't write the Response Queue Context bits for
  1904. * Interrupt Armed or the Reserve bits after the chip
  1905. * has been initialized out of reset. Writing to these
  1906. * bits can confuse the hardware.
  1907. */
  1908. t3_write_reg(adapter, A_SG_CONTEXT_MASK0, 0xffffffff);
  1909. t3_write_reg(adapter, A_SG_CONTEXT_MASK1, 0xffffffff);
  1910. t3_write_reg(adapter, A_SG_CONTEXT_MASK2, 0x17ffffff);
  1911. t3_write_reg(adapter, A_SG_CONTEXT_MASK3, 0xffffffff);
  1912. } else {
  1913. t3_write_reg(adapter, A_SG_CONTEXT_MASK0, 0xffffffff);
  1914. t3_write_reg(adapter, A_SG_CONTEXT_MASK1, 0xffffffff);
  1915. t3_write_reg(adapter, A_SG_CONTEXT_MASK2, 0xffffffff);
  1916. t3_write_reg(adapter, A_SG_CONTEXT_MASK3, 0xffffffff);
  1917. }
  1918. t3_write_reg(adapter, A_SG_CONTEXT_CMD,
  1919. V_CONTEXT_CMD_OPCODE(1) | type | V_CONTEXT(id));
  1920. return t3_wait_op_done(adapter, A_SG_CONTEXT_CMD, F_CONTEXT_CMD_BUSY,
  1921. 0, SG_CONTEXT_CMD_ATTEMPTS, 1);
  1922. }
  1923. /**
  1924. * clear_sge_ctxt - completely clear an SGE context
  1925. * @adapter: the adapter
  1926. * @id: the context id
  1927. * @type: the context type
  1928. *
  1929. * Completely clear an SGE context. Used predominantly at post-reset
  1930. * initialization. Note in particular that we don't skip writing to any
  1931. * "sensitive bits" in the contexts the way that t3_sge_write_context()
  1932. * does ...
  1933. */
  1934. static int clear_sge_ctxt(struct adapter *adap, unsigned int id,
  1935. unsigned int type)
  1936. {
  1937. t3_write_reg(adap, A_SG_CONTEXT_DATA0, 0);
  1938. t3_write_reg(adap, A_SG_CONTEXT_DATA1, 0);
  1939. t3_write_reg(adap, A_SG_CONTEXT_DATA2, 0);
  1940. t3_write_reg(adap, A_SG_CONTEXT_DATA3, 0);
  1941. t3_write_reg(adap, A_SG_CONTEXT_MASK0, 0xffffffff);
  1942. t3_write_reg(adap, A_SG_CONTEXT_MASK1, 0xffffffff);
  1943. t3_write_reg(adap, A_SG_CONTEXT_MASK2, 0xffffffff);
  1944. t3_write_reg(adap, A_SG_CONTEXT_MASK3, 0xffffffff);
  1945. t3_write_reg(adap, A_SG_CONTEXT_CMD,
  1946. V_CONTEXT_CMD_OPCODE(1) | type | V_CONTEXT(id));
  1947. return t3_wait_op_done(adap, A_SG_CONTEXT_CMD, F_CONTEXT_CMD_BUSY,
  1948. 0, SG_CONTEXT_CMD_ATTEMPTS, 1);
  1949. }
  1950. /**
  1951. * t3_sge_init_ecntxt - initialize an SGE egress context
  1952. * @adapter: the adapter to configure
  1953. * @id: the context id
  1954. * @gts_enable: whether to enable GTS for the context
  1955. * @type: the egress context type
  1956. * @respq: associated response queue
  1957. * @base_addr: base address of queue
  1958. * @size: number of queue entries
  1959. * @token: uP token
  1960. * @gen: initial generation value for the context
  1961. * @cidx: consumer pointer
  1962. *
  1963. * Initialize an SGE egress context and make it ready for use. If the
  1964. * platform allows concurrent context operations, the caller is
  1965. * responsible for appropriate locking.
  1966. */
  1967. int t3_sge_init_ecntxt(struct adapter *adapter, unsigned int id, int gts_enable,
  1968. enum sge_context_type type, int respq, u64 base_addr,
  1969. unsigned int size, unsigned int token, int gen,
  1970. unsigned int cidx)
  1971. {
  1972. unsigned int credits = type == SGE_CNTXT_OFLD ? 0 : FW_WR_NUM;
  1973. if (base_addr & 0xfff) /* must be 4K aligned */
  1974. return -EINVAL;
  1975. if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY)
  1976. return -EBUSY;
  1977. base_addr >>= 12;
  1978. t3_write_reg(adapter, A_SG_CONTEXT_DATA0, V_EC_INDEX(cidx) |
  1979. V_EC_CREDITS(credits) | V_EC_GTS(gts_enable));
  1980. t3_write_reg(adapter, A_SG_CONTEXT_DATA1, V_EC_SIZE(size) |
  1981. V_EC_BASE_LO(base_addr & 0xffff));
  1982. base_addr >>= 16;
  1983. t3_write_reg(adapter, A_SG_CONTEXT_DATA2, base_addr);
  1984. base_addr >>= 32;
  1985. t3_write_reg(adapter, A_SG_CONTEXT_DATA3,
  1986. V_EC_BASE_HI(base_addr & 0xf) | V_EC_RESPQ(respq) |
  1987. V_EC_TYPE(type) | V_EC_GEN(gen) | V_EC_UP_TOKEN(token) |
  1988. F_EC_VALID);
  1989. return t3_sge_write_context(adapter, id, F_EGRESS);
  1990. }
  1991. /**
  1992. * t3_sge_init_flcntxt - initialize an SGE free-buffer list context
  1993. * @adapter: the adapter to configure
  1994. * @id: the context id
  1995. * @gts_enable: whether to enable GTS for the context
  1996. * @base_addr: base address of queue
  1997. * @size: number of queue entries
  1998. * @bsize: size of each buffer for this queue
  1999. * @cong_thres: threshold to signal congestion to upstream producers
  2000. * @gen: initial generation value for the context
  2001. * @cidx: consumer pointer
  2002. *
  2003. * Initialize an SGE free list context and make it ready for use. The
  2004. * caller is responsible for ensuring only one context operation occurs
  2005. * at a time.
  2006. */
  2007. int t3_sge_init_flcntxt(struct adapter *adapter, unsigned int id,
  2008. int gts_enable, u64 base_addr, unsigned int size,
  2009. unsigned int bsize, unsigned int cong_thres, int gen,
  2010. unsigned int cidx)
  2011. {
  2012. if (base_addr & 0xfff) /* must be 4K aligned */
  2013. return -EINVAL;
  2014. if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY)
  2015. return -EBUSY;
  2016. base_addr >>= 12;
  2017. t3_write_reg(adapter, A_SG_CONTEXT_DATA0, base_addr);
  2018. base_addr >>= 32;
  2019. t3_write_reg(adapter, A_SG_CONTEXT_DATA1,
  2020. V_FL_BASE_HI((u32) base_addr) |
  2021. V_FL_INDEX_LO(cidx & M_FL_INDEX_LO));
  2022. t3_write_reg(adapter, A_SG_CONTEXT_DATA2, V_FL_SIZE(size) |
  2023. V_FL_GEN(gen) | V_FL_INDEX_HI(cidx >> 12) |
  2024. V_FL_ENTRY_SIZE_LO(bsize & M_FL_ENTRY_SIZE_LO));
  2025. t3_write_reg(adapter, A_SG_CONTEXT_DATA3,
  2026. V_FL_ENTRY_SIZE_HI(bsize >> (32 - S_FL_ENTRY_SIZE_LO)) |
  2027. V_FL_CONG_THRES(cong_thres) | V_FL_GTS(gts_enable));
  2028. return t3_sge_write_context(adapter, id, F_FREELIST);
  2029. }
  2030. /**
  2031. * t3_sge_init_rspcntxt - initialize an SGE response queue context
  2032. * @adapter: the adapter to configure
  2033. * @id: the context id
  2034. * @irq_vec_idx: MSI-X interrupt vector index, 0 if no MSI-X, -1 if no IRQ
  2035. * @base_addr: base address of queue
  2036. * @size: number of queue entries
  2037. * @fl_thres: threshold for selecting the normal or jumbo free list
  2038. * @gen: initial generation value for the context
  2039. * @cidx: consumer pointer
  2040. *
  2041. * Initialize an SGE response queue context and make it ready for use.
  2042. * The caller is responsible for ensuring only one context operation
  2043. * occurs at a time.
  2044. */
  2045. int t3_sge_init_rspcntxt(struct adapter *adapter, unsigned int id,
  2046. int irq_vec_idx, u64 base_addr, unsigned int size,
  2047. unsigned int fl_thres, int gen, unsigned int cidx)
  2048. {
  2049. unsigned int intr = 0;
  2050. if (base_addr & 0xfff) /* must be 4K aligned */
  2051. return -EINVAL;
  2052. if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY)
  2053. return -EBUSY;
  2054. base_addr >>= 12;
  2055. t3_write_reg(adapter, A_SG_CONTEXT_DATA0, V_CQ_SIZE(size) |
  2056. V_CQ_INDEX(cidx));
  2057. t3_write_reg(adapter, A_SG_CONTEXT_DATA1, base_addr);
  2058. base_addr >>= 32;
  2059. if (irq_vec_idx >= 0)
  2060. intr = V_RQ_MSI_VEC(irq_vec_idx) | F_RQ_INTR_EN;
  2061. t3_write_reg(adapter, A_SG_CONTEXT_DATA2,
  2062. V_CQ_BASE_HI((u32) base_addr) | intr | V_RQ_GEN(gen));
  2063. t3_write_reg(adapter, A_SG_CONTEXT_DATA3, fl_thres);
  2064. return t3_sge_write_context(adapter, id, F_RESPONSEQ);
  2065. }
  2066. /**
  2067. * t3_sge_init_cqcntxt - initialize an SGE completion queue context
  2068. * @adapter: the adapter to configure
  2069. * @id: the context id
  2070. * @base_addr: base address of queue
  2071. * @size: number of queue entries
  2072. * @rspq: response queue for async notifications
  2073. * @ovfl_mode: CQ overflow mode
  2074. * @credits: completion queue credits
  2075. * @credit_thres: the credit threshold
  2076. *
  2077. * Initialize an SGE completion queue context and make it ready for use.
  2078. * The caller is responsible for ensuring only one context operation
  2079. * occurs at a time.
  2080. */
  2081. int t3_sge_init_cqcntxt(struct adapter *adapter, unsigned int id, u64 base_addr,
  2082. unsigned int size, int rspq, int ovfl_mode,
  2083. unsigned int credits, unsigned int credit_thres)
  2084. {
  2085. if (base_addr & 0xfff) /* must be 4K aligned */
  2086. return -EINVAL;
  2087. if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY)
  2088. return -EBUSY;
  2089. base_addr >>= 12;
  2090. t3_write_reg(adapter, A_SG_CONTEXT_DATA0, V_CQ_SIZE(size));
  2091. t3_write_reg(adapter, A_SG_CONTEXT_DATA1, base_addr);
  2092. base_addr >>= 32;
  2093. t3_write_reg(adapter, A_SG_CONTEXT_DATA2,
  2094. V_CQ_BASE_HI((u32) base_addr) | V_CQ_RSPQ(rspq) |
  2095. V_CQ_GEN(1) | V_CQ_OVERFLOW_MODE(ovfl_mode) |
  2096. V_CQ_ERR(ovfl_mode));
  2097. t3_write_reg(adapter, A_SG_CONTEXT_DATA3, V_CQ_CREDITS(credits) |
  2098. V_CQ_CREDIT_THRES(credit_thres));
  2099. return t3_sge_write_context(adapter, id, F_CQ);
  2100. }
  2101. /**
  2102. * t3_sge_enable_ecntxt - enable/disable an SGE egress context
  2103. * @adapter: the adapter
  2104. * @id: the egress context id
  2105. * @enable: enable (1) or disable (0) the context
  2106. *
  2107. * Enable or disable an SGE egress context. The caller is responsible for
  2108. * ensuring only one context operation occurs at a time.
  2109. */
  2110. int t3_sge_enable_ecntxt(struct adapter *adapter, unsigned int id, int enable)
  2111. {
  2112. if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY)
  2113. return -EBUSY;
  2114. t3_write_reg(adapter, A_SG_CONTEXT_MASK0, 0);
  2115. t3_write_reg(adapter, A_SG_CONTEXT_MASK1, 0);
  2116. t3_write_reg(adapter, A_SG_CONTEXT_MASK2, 0);
  2117. t3_write_reg(adapter, A_SG_CONTEXT_MASK3, F_EC_VALID);
  2118. t3_write_reg(adapter, A_SG_CONTEXT_DATA3, V_EC_VALID(enable));
  2119. t3_write_reg(adapter, A_SG_CONTEXT_CMD,
  2120. V_CONTEXT_CMD_OPCODE(1) | F_EGRESS | V_CONTEXT(id));
  2121. return t3_wait_op_done(adapter, A_SG_CONTEXT_CMD, F_CONTEXT_CMD_BUSY,
  2122. 0, SG_CONTEXT_CMD_ATTEMPTS, 1);
  2123. }
  2124. /**
  2125. * t3_sge_disable_fl - disable an SGE free-buffer list
  2126. * @adapter: the adapter
  2127. * @id: the free list context id
  2128. *
  2129. * Disable an SGE free-buffer list. The caller is responsible for
  2130. * ensuring only one context operation occurs at a time.
  2131. */
  2132. int t3_sge_disable_fl(struct adapter *adapter, unsigned int id)
  2133. {
  2134. if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY)
  2135. return -EBUSY;
  2136. t3_write_reg(adapter, A_SG_CONTEXT_MASK0, 0);
  2137. t3_write_reg(adapter, A_SG_CONTEXT_MASK1, 0);
  2138. t3_write_reg(adapter, A_SG_CONTEXT_MASK2, V_FL_SIZE(M_FL_SIZE));
  2139. t3_write_reg(adapter, A_SG_CONTEXT_MASK3, 0);
  2140. t3_write_reg(adapter, A_SG_CONTEXT_DATA2, 0);
  2141. t3_write_reg(adapter, A_SG_CONTEXT_CMD,
  2142. V_CONTEXT_CMD_OPCODE(1) | F_FREELIST | V_CONTEXT(id));
  2143. return t3_wait_op_done(adapter, A_SG_CONTEXT_CMD, F_CONTEXT_CMD_BUSY,
  2144. 0, SG_CONTEXT_CMD_ATTEMPTS, 1);
  2145. }
  2146. /**
  2147. * t3_sge_disable_rspcntxt - disable an SGE response queue
  2148. * @adapter: the adapter
  2149. * @id: the response queue context id
  2150. *
  2151. * Disable an SGE response queue. The caller is responsible for
  2152. * ensuring only one context operation occurs at a time.
  2153. */
  2154. int t3_sge_disable_rspcntxt(struct adapter *adapter, unsigned int id)
  2155. {
  2156. if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY)
  2157. return -EBUSY;
  2158. t3_write_reg(adapter, A_SG_CONTEXT_MASK0, V_CQ_SIZE(M_CQ_SIZE));
  2159. t3_write_reg(adapter, A_SG_CONTEXT_MASK1, 0);
  2160. t3_write_reg(adapter, A_SG_CONTEXT_MASK2, 0);
  2161. t3_write_reg(adapter, A_SG_CONTEXT_MASK3, 0);
  2162. t3_write_reg(adapter, A_SG_CONTEXT_DATA0, 0);
  2163. t3_write_reg(adapter, A_SG_CONTEXT_CMD,
  2164. V_CONTEXT_CMD_OPCODE(1) | F_RESPONSEQ | V_CONTEXT(id));
  2165. return t3_wait_op_done(adapter, A_SG_CONTEXT_CMD, F_CONTEXT_CMD_BUSY,
  2166. 0, SG_CONTEXT_CMD_ATTEMPTS, 1);
  2167. }
  2168. /**
  2169. * t3_sge_disable_cqcntxt - disable an SGE completion queue
  2170. * @adapter: the adapter
  2171. * @id: the completion queue context id
  2172. *
  2173. * Disable an SGE completion queue. The caller is responsible for
  2174. * ensuring only one context operation occurs at a time.
  2175. */
  2176. int t3_sge_disable_cqcntxt(struct adapter *adapter, unsigned int id)
  2177. {
  2178. if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY)
  2179. return -EBUSY;
  2180. t3_write_reg(adapter, A_SG_CONTEXT_MASK0, V_CQ_SIZE(M_CQ_SIZE));
  2181. t3_write_reg(adapter, A_SG_CONTEXT_MASK1, 0);
  2182. t3_write_reg(adapter, A_SG_CONTEXT_MASK2, 0);
  2183. t3_write_reg(adapter, A_SG_CONTEXT_MASK3, 0);
  2184. t3_write_reg(adapter, A_SG_CONTEXT_DATA0, 0);
  2185. t3_write_reg(adapter, A_SG_CONTEXT_CMD,
  2186. V_CONTEXT_CMD_OPCODE(1) | F_CQ | V_CONTEXT(id));
  2187. return t3_wait_op_done(adapter, A_SG_CONTEXT_CMD, F_CONTEXT_CMD_BUSY,
  2188. 0, SG_CONTEXT_CMD_ATTEMPTS, 1);
  2189. }
  2190. /**
  2191. * t3_sge_cqcntxt_op - perform an operation on a completion queue context
  2192. * @adapter: the adapter
  2193. * @id: the context id
  2194. * @op: the operation to perform
  2195. *
  2196. * Perform the selected operation on an SGE completion queue context.
  2197. * The caller is responsible for ensuring only one context operation
  2198. * occurs at a time.
  2199. */
  2200. int t3_sge_cqcntxt_op(struct adapter *adapter, unsigned int id, unsigned int op,
  2201. unsigned int credits)
  2202. {
  2203. u32 val;
  2204. if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY)
  2205. return -EBUSY;
  2206. t3_write_reg(adapter, A_SG_CONTEXT_DATA0, credits << 16);
  2207. t3_write_reg(adapter, A_SG_CONTEXT_CMD, V_CONTEXT_CMD_OPCODE(op) |
  2208. V_CONTEXT(id) | F_CQ);
  2209. if (t3_wait_op_done_val(adapter, A_SG_CONTEXT_CMD, F_CONTEXT_CMD_BUSY,
  2210. 0, SG_CONTEXT_CMD_ATTEMPTS, 1, &val))
  2211. return -EIO;
  2212. if (op >= 2 && op < 7) {
  2213. if (adapter->params.rev > 0)
  2214. return G_CQ_INDEX(val);
  2215. t3_write_reg(adapter, A_SG_CONTEXT_CMD,
  2216. V_CONTEXT_CMD_OPCODE(0) | F_CQ | V_CONTEXT(id));
  2217. if (t3_wait_op_done(adapter, A_SG_CONTEXT_CMD,
  2218. F_CONTEXT_CMD_BUSY, 0,
  2219. SG_CONTEXT_CMD_ATTEMPTS, 1))
  2220. return -EIO;
  2221. return G_CQ_INDEX(t3_read_reg(adapter, A_SG_CONTEXT_DATA0));
  2222. }
  2223. return 0;
  2224. }
  2225. /**
  2226. * t3_sge_read_context - read an SGE context
  2227. * @type: the context type
  2228. * @adapter: the adapter
  2229. * @id: the context id
  2230. * @data: holds the retrieved context
  2231. *
  2232. * Read an SGE egress context. The caller is responsible for ensuring
  2233. * only one context operation occurs at a time.
  2234. */
  2235. static int t3_sge_read_context(unsigned int type, struct adapter *adapter,
  2236. unsigned int id, u32 data[4])
  2237. {
  2238. if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY)
  2239. return -EBUSY;
  2240. t3_write_reg(adapter, A_SG_CONTEXT_CMD,
  2241. V_CONTEXT_CMD_OPCODE(0) | type | V_CONTEXT(id));
  2242. if (t3_wait_op_done(adapter, A_SG_CONTEXT_CMD, F_CONTEXT_CMD_BUSY, 0,
  2243. SG_CONTEXT_CMD_ATTEMPTS, 1))
  2244. return -EIO;
  2245. data[0] = t3_read_reg(adapter, A_SG_CONTEXT_DATA0);
  2246. data[1] = t3_read_reg(adapter, A_SG_CONTEXT_DATA1);
  2247. data[2] = t3_read_reg(adapter, A_SG_CONTEXT_DATA2);
  2248. data[3] = t3_read_reg(adapter, A_SG_CONTEXT_DATA3);
  2249. return 0;
  2250. }
  2251. /**
  2252. * t3_sge_read_ecntxt - read an SGE egress context
  2253. * @adapter: the adapter
  2254. * @id: the context id
  2255. * @data: holds the retrieved context
  2256. *
  2257. * Read an SGE egress context. The caller is responsible for ensuring
  2258. * only one context operation occurs at a time.
  2259. */
  2260. int t3_sge_read_ecntxt(struct adapter *adapter, unsigned int id, u32 data[4])
  2261. {
  2262. if (id >= 65536)
  2263. return -EINVAL;
  2264. return t3_sge_read_context(F_EGRESS, adapter, id, data);
  2265. }
  2266. /**
  2267. * t3_sge_read_cq - read an SGE CQ context
  2268. * @adapter: the adapter
  2269. * @id: the context id
  2270. * @data: holds the retrieved context
  2271. *
  2272. * Read an SGE CQ context. The caller is responsible for ensuring
  2273. * only one context operation occurs at a time.
  2274. */
  2275. int t3_sge_read_cq(struct adapter *adapter, unsigned int id, u32 data[4])
  2276. {
  2277. if (id >= 65536)
  2278. return -EINVAL;
  2279. return t3_sge_read_context(F_CQ, adapter, id, data);
  2280. }
  2281. /**
  2282. * t3_sge_read_fl - read an SGE free-list context
  2283. * @adapter: the adapter
  2284. * @id: the context id
  2285. * @data: holds the retrieved context
  2286. *
  2287. * Read an SGE free-list context. The caller is responsible for ensuring
  2288. * only one context operation occurs at a time.
  2289. */
  2290. int t3_sge_read_fl(struct adapter *adapter, unsigned int id, u32 data[4])
  2291. {
  2292. if (id >= SGE_QSETS * 2)
  2293. return -EINVAL;
  2294. return t3_sge_read_context(F_FREELIST, adapter, id, data);
  2295. }
  2296. /**
  2297. * t3_sge_read_rspq - read an SGE response queue context
  2298. * @adapter: the adapter
  2299. * @id: the context id
  2300. * @data: holds the retrieved context
  2301. *
  2302. * Read an SGE response queue context. The caller is responsible for
  2303. * ensuring only one context operation occurs at a time.
  2304. */
  2305. int t3_sge_read_rspq(struct adapter *adapter, unsigned int id, u32 data[4])
  2306. {
  2307. if (id >= SGE_QSETS)
  2308. return -EINVAL;
  2309. return t3_sge_read_context(F_RESPONSEQ, adapter, id, data);
  2310. }
  2311. /**
  2312. * t3_config_rss - configure Rx packet steering
  2313. * @adapter: the adapter
  2314. * @rss_config: RSS settings (written to TP_RSS_CONFIG)
  2315. * @cpus: values for the CPU lookup table (0xff terminated)
  2316. * @rspq: values for the response queue lookup table (0xffff terminated)
  2317. *
  2318. * Programs the receive packet steering logic. @cpus and @rspq provide
  2319. * the values for the CPU and response queue lookup tables. If they
  2320. * provide fewer values than the size of the tables the supplied values
  2321. * are used repeatedly until the tables are fully populated.
  2322. */
  2323. void t3_config_rss(struct adapter *adapter, unsigned int rss_config,
  2324. const u8 * cpus, const u16 *rspq)
  2325. {
  2326. int i, j, cpu_idx = 0, q_idx = 0;
  2327. if (cpus)
  2328. for (i = 0; i < RSS_TABLE_SIZE; ++i) {
  2329. u32 val = i << 16;
  2330. for (j = 0; j < 2; ++j) {
  2331. val |= (cpus[cpu_idx++] & 0x3f) << (8 * j);
  2332. if (cpus[cpu_idx] == 0xff)
  2333. cpu_idx = 0;
  2334. }
  2335. t3_write_reg(adapter, A_TP_RSS_LKP_TABLE, val);
  2336. }
  2337. if (rspq)
  2338. for (i = 0; i < RSS_TABLE_SIZE; ++i) {
  2339. t3_write_reg(adapter, A_TP_RSS_MAP_TABLE,
  2340. (i << 16) | rspq[q_idx++]);
  2341. if (rspq[q_idx] == 0xffff)
  2342. q_idx = 0;
  2343. }
  2344. t3_write_reg(adapter, A_TP_RSS_CONFIG, rss_config);
  2345. }
  2346. /**
  2347. * t3_read_rss - read the contents of the RSS tables
  2348. * @adapter: the adapter
  2349. * @lkup: holds the contents of the RSS lookup table
  2350. * @map: holds the contents of the RSS map table
  2351. *
  2352. * Reads the contents of the receive packet steering tables.
  2353. */
  2354. int t3_read_rss(struct adapter *adapter, u8 * lkup, u16 *map)
  2355. {
  2356. int i;
  2357. u32 val;
  2358. if (lkup)
  2359. for (i = 0; i < RSS_TABLE_SIZE; ++i) {
  2360. t3_write_reg(adapter, A_TP_RSS_LKP_TABLE,
  2361. 0xffff0000 | i);
  2362. val = t3_read_reg(adapter, A_TP_RSS_LKP_TABLE);
  2363. if (!(val & 0x80000000))
  2364. return -EAGAIN;
  2365. *lkup++ = val;
  2366. *lkup++ = (val >> 8);
  2367. }
  2368. if (map)
  2369. for (i = 0; i < RSS_TABLE_SIZE; ++i) {
  2370. t3_write_reg(adapter, A_TP_RSS_MAP_TABLE,
  2371. 0xffff0000 | i);
  2372. val = t3_read_reg(adapter, A_TP_RSS_MAP_TABLE);
  2373. if (!(val & 0x80000000))
  2374. return -EAGAIN;
  2375. *map++ = val;
  2376. }
  2377. return 0;
  2378. }
  2379. /**
  2380. * t3_tp_set_offload_mode - put TP in NIC/offload mode
  2381. * @adap: the adapter
  2382. * @enable: 1 to select offload mode, 0 for regular NIC
  2383. *
  2384. * Switches TP to NIC/offload mode.
  2385. */
  2386. void t3_tp_set_offload_mode(struct adapter *adap, int enable)
  2387. {
  2388. if (is_offload(adap) || !enable)
  2389. t3_set_reg_field(adap, A_TP_IN_CONFIG, F_NICMODE,
  2390. V_NICMODE(!enable));
  2391. }
  2392. /**
  2393. * pm_num_pages - calculate the number of pages of the payload memory
  2394. * @mem_size: the size of the payload memory
  2395. * @pg_size: the size of each payload memory page
  2396. *
  2397. * Calculate the number of pages, each of the given size, that fit in a
  2398. * memory of the specified size, respecting the HW requirement that the
  2399. * number of pages must be a multiple of 24.
  2400. */
  2401. static inline unsigned int pm_num_pages(unsigned int mem_size,
  2402. unsigned int pg_size)
  2403. {
  2404. unsigned int n = mem_size / pg_size;
  2405. return n - n % 24;
  2406. }
  2407. #define mem_region(adap, start, size, reg) \
  2408. t3_write_reg((adap), A_ ## reg, (start)); \
  2409. start += size
  2410. /**
  2411. * partition_mem - partition memory and configure TP memory settings
  2412. * @adap: the adapter
  2413. * @p: the TP parameters
  2414. *
  2415. * Partitions context and payload memory and configures TP's memory
  2416. * registers.
  2417. */
  2418. static void partition_mem(struct adapter *adap, const struct tp_params *p)
  2419. {
  2420. unsigned int m, pstructs, tids = t3_mc5_size(&adap->mc5);
  2421. unsigned int timers = 0, timers_shift = 22;
  2422. if (adap->params.rev > 0) {
  2423. if (tids <= 16 * 1024) {
  2424. timers = 1;
  2425. timers_shift = 16;
  2426. } else if (tids <= 64 * 1024) {
  2427. timers = 2;
  2428. timers_shift = 18;
  2429. } else if (tids <= 256 * 1024) {
  2430. timers = 3;
  2431. timers_shift = 20;
  2432. }
  2433. }
  2434. t3_write_reg(adap, A_TP_PMM_SIZE,
  2435. p->chan_rx_size | (p->chan_tx_size >> 16));
  2436. t3_write_reg(adap, A_TP_PMM_TX_BASE, 0);
  2437. t3_write_reg(adap, A_TP_PMM_TX_PAGE_SIZE, p->tx_pg_size);
  2438. t3_write_reg(adap, A_TP_PMM_TX_MAX_PAGE, p->tx_num_pgs);
  2439. t3_set_reg_field(adap, A_TP_PARA_REG3, V_TXDATAACKIDX(M_TXDATAACKIDX),
  2440. V_TXDATAACKIDX(fls(p->tx_pg_size) - 12));
  2441. t3_write_reg(adap, A_TP_PMM_RX_BASE, 0);
  2442. t3_write_reg(adap, A_TP_PMM_RX_PAGE_SIZE, p->rx_pg_size);
  2443. t3_write_reg(adap, A_TP_PMM_RX_MAX_PAGE, p->rx_num_pgs);
  2444. pstructs = p->rx_num_pgs + p->tx_num_pgs;
  2445. /* Add a bit of headroom and make multiple of 24 */
  2446. pstructs += 48;
  2447. pstructs -= pstructs % 24;
  2448. t3_write_reg(adap, A_TP_CMM_MM_MAX_PSTRUCT, pstructs);
  2449. m = tids * TCB_SIZE;
  2450. mem_region(adap, m, (64 << 10) * 64, SG_EGR_CNTX_BADDR);
  2451. mem_region(adap, m, (64 << 10) * 64, SG_CQ_CONTEXT_BADDR);
  2452. t3_write_reg(adap, A_TP_CMM_TIMER_BASE, V_CMTIMERMAXNUM(timers) | m);
  2453. m += ((p->ntimer_qs - 1) << timers_shift) + (1 << 22);
  2454. mem_region(adap, m, pstructs * 64, TP_CMM_MM_BASE);
  2455. mem_region(adap, m, 64 * (pstructs / 24), TP_CMM_MM_PS_FLST_BASE);
  2456. mem_region(adap, m, 64 * (p->rx_num_pgs / 24), TP_CMM_MM_RX_FLST_BASE);
  2457. mem_region(adap, m, 64 * (p->tx_num_pgs / 24), TP_CMM_MM_TX_FLST_BASE);
  2458. m = (m + 4095) & ~0xfff;
  2459. t3_write_reg(adap, A_CIM_SDRAM_BASE_ADDR, m);
  2460. t3_write_reg(adap, A_CIM_SDRAM_ADDR_SIZE, p->cm_size - m);
  2461. tids = (p->cm_size - m - (3 << 20)) / 3072 - 32;
  2462. m = t3_mc5_size(&adap->mc5) - adap->params.mc5.nservers -
  2463. adap->params.mc5.nfilters - adap->params.mc5.nroutes;
  2464. if (tids < m)
  2465. adap->params.mc5.nservers += m - tids;
  2466. }
  2467. static inline void tp_wr_indirect(struct adapter *adap, unsigned int addr,
  2468. u32 val)
  2469. {
  2470. t3_write_reg(adap, A_TP_PIO_ADDR, addr);
  2471. t3_write_reg(adap, A_TP_PIO_DATA, val);
  2472. }
  2473. static void tp_config(struct adapter *adap, const struct tp_params *p)
  2474. {
  2475. t3_write_reg(adap, A_TP_GLOBAL_CONFIG, F_TXPACINGENABLE | F_PATHMTU |
  2476. F_IPCHECKSUMOFFLOAD | F_UDPCHECKSUMOFFLOAD |
  2477. F_TCPCHECKSUMOFFLOAD | V_IPTTL(64));
  2478. t3_write_reg(adap, A_TP_TCP_OPTIONS, V_MTUDEFAULT(576) |
  2479. F_MTUENABLE | V_WINDOWSCALEMODE(1) |
  2480. V_TIMESTAMPSMODE(1) | V_SACKMODE(1) | V_SACKRX(1));
  2481. t3_write_reg(adap, A_TP_DACK_CONFIG, V_AUTOSTATE3(1) |
  2482. V_AUTOSTATE2(1) | V_AUTOSTATE1(0) |
  2483. V_BYTETHRESHOLD(26880) | V_MSSTHRESHOLD(2) |
  2484. F_AUTOCAREFUL | F_AUTOENABLE | V_DACK_MODE(1));
  2485. t3_set_reg_field(adap, A_TP_IN_CONFIG, F_RXFBARBPRIO | F_TXFBARBPRIO,
  2486. F_IPV6ENABLE | F_NICMODE);
  2487. t3_write_reg(adap, A_TP_TX_RESOURCE_LIMIT, 0x18141814);
  2488. t3_write_reg(adap, A_TP_PARA_REG4, 0x5050105);
  2489. t3_set_reg_field(adap, A_TP_PARA_REG6, 0,
  2490. adap->params.rev > 0 ? F_ENABLEESND :
  2491. F_T3A_ENABLEESND);
  2492. t3_set_reg_field(adap, A_TP_PC_CONFIG,
  2493. F_ENABLEEPCMDAFULL,
  2494. F_ENABLEOCSPIFULL |F_TXDEFERENABLE | F_HEARBEATDACK |
  2495. F_TXCONGESTIONMODE | F_RXCONGESTIONMODE);
  2496. t3_set_reg_field(adap, A_TP_PC_CONFIG2, F_CHDRAFULL,
  2497. F_ENABLEIPV6RSS | F_ENABLENONOFDTNLSYN |
  2498. F_ENABLEARPMISS | F_DISBLEDAPARBIT0);
  2499. t3_write_reg(adap, A_TP_PROXY_FLOW_CNTL, 1080);
  2500. t3_write_reg(adap, A_TP_PROXY_FLOW_CNTL, 1000);
  2501. if (adap->params.rev > 0) {
  2502. tp_wr_indirect(adap, A_TP_EGRESS_CONFIG, F_REWRITEFORCETOSIZE);
  2503. t3_set_reg_field(adap, A_TP_PARA_REG3, F_TXPACEAUTO,
  2504. F_TXPACEAUTO);
  2505. t3_set_reg_field(adap, A_TP_PC_CONFIG, F_LOCKTID, F_LOCKTID);
  2506. t3_set_reg_field(adap, A_TP_PARA_REG3, 0, F_TXPACEAUTOSTRICT);
  2507. } else
  2508. t3_set_reg_field(adap, A_TP_PARA_REG3, 0, F_TXPACEFIXED);
  2509. if (adap->params.rev == T3_REV_C)
  2510. t3_set_reg_field(adap, A_TP_PC_CONFIG,
  2511. V_TABLELATENCYDELTA(M_TABLELATENCYDELTA),
  2512. V_TABLELATENCYDELTA(4));
  2513. t3_write_reg(adap, A_TP_TX_MOD_QUEUE_WEIGHT1, 0);
  2514. t3_write_reg(adap, A_TP_TX_MOD_QUEUE_WEIGHT0, 0);
  2515. t3_write_reg(adap, A_TP_MOD_CHANNEL_WEIGHT, 0);
  2516. t3_write_reg(adap, A_TP_MOD_RATE_LIMIT, 0xf2200000);
  2517. }
  2518. /* Desired TP timer resolution in usec */
  2519. #define TP_TMR_RES 50
  2520. /* TCP timer values in ms */
  2521. #define TP_DACK_TIMER 50
  2522. #define TP_RTO_MIN 250
  2523. /**
  2524. * tp_set_timers - set TP timing parameters
  2525. * @adap: the adapter to set
  2526. * @core_clk: the core clock frequency in Hz
  2527. *
  2528. * Set TP's timing parameters, such as the various timer resolutions and
  2529. * the TCP timer values.
  2530. */
  2531. static void tp_set_timers(struct adapter *adap, unsigned int core_clk)
  2532. {
  2533. unsigned int tre = fls(core_clk / (1000000 / TP_TMR_RES)) - 1;
  2534. unsigned int dack_re = fls(core_clk / 5000) - 1; /* 200us */
  2535. unsigned int tstamp_re = fls(core_clk / 1000); /* 1ms, at least */
  2536. unsigned int tps = core_clk >> tre;
  2537. t3_write_reg(adap, A_TP_TIMER_RESOLUTION, V_TIMERRESOLUTION(tre) |
  2538. V_DELAYEDACKRESOLUTION(dack_re) |
  2539. V_TIMESTAMPRESOLUTION(tstamp_re));
  2540. t3_write_reg(adap, A_TP_DACK_TIMER,
  2541. (core_clk >> dack_re) / (1000 / TP_DACK_TIMER));
  2542. t3_write_reg(adap, A_TP_TCP_BACKOFF_REG0, 0x3020100);
  2543. t3_write_reg(adap, A_TP_TCP_BACKOFF_REG1, 0x7060504);
  2544. t3_write_reg(adap, A_TP_TCP_BACKOFF_REG2, 0xb0a0908);
  2545. t3_write_reg(adap, A_TP_TCP_BACKOFF_REG3, 0xf0e0d0c);
  2546. t3_write_reg(adap, A_TP_SHIFT_CNT, V_SYNSHIFTMAX(6) |
  2547. V_RXTSHIFTMAXR1(4) | V_RXTSHIFTMAXR2(15) |
  2548. V_PERSHIFTBACKOFFMAX(8) | V_PERSHIFTMAX(8) |
  2549. V_KEEPALIVEMAX(9));
  2550. #define SECONDS * tps
  2551. t3_write_reg(adap, A_TP_MSL, adap->params.rev > 0 ? 0 : 2 SECONDS);
  2552. t3_write_reg(adap, A_TP_RXT_MIN, tps / (1000 / TP_RTO_MIN));
  2553. t3_write_reg(adap, A_TP_RXT_MAX, 64 SECONDS);
  2554. t3_write_reg(adap, A_TP_PERS_MIN, 5 SECONDS);
  2555. t3_write_reg(adap, A_TP_PERS_MAX, 64 SECONDS);
  2556. t3_write_reg(adap, A_TP_KEEP_IDLE, 7200 SECONDS);
  2557. t3_write_reg(adap, A_TP_KEEP_INTVL, 75 SECONDS);
  2558. t3_write_reg(adap, A_TP_INIT_SRTT, 3 SECONDS);
  2559. t3_write_reg(adap, A_TP_FINWAIT2_TIMER, 600 SECONDS);
  2560. #undef SECONDS
  2561. }
  2562. /**
  2563. * t3_tp_set_coalescing_size - set receive coalescing size
  2564. * @adap: the adapter
  2565. * @size: the receive coalescing size
  2566. * @psh: whether a set PSH bit should deliver coalesced data
  2567. *
  2568. * Set the receive coalescing size and PSH bit handling.
  2569. */
  2570. int t3_tp_set_coalescing_size(struct adapter *adap, unsigned int size, int psh)
  2571. {
  2572. u32 val;
  2573. if (size > MAX_RX_COALESCING_LEN)
  2574. return -EINVAL;
  2575. val = t3_read_reg(adap, A_TP_PARA_REG3);
  2576. val &= ~(F_RXCOALESCEENABLE | F_RXCOALESCEPSHEN);
  2577. if (size) {
  2578. val |= F_RXCOALESCEENABLE;
  2579. if (psh)
  2580. val |= F_RXCOALESCEPSHEN;
  2581. size = min(MAX_RX_COALESCING_LEN, size);
  2582. t3_write_reg(adap, A_TP_PARA_REG2, V_RXCOALESCESIZE(size) |
  2583. V_MAXRXDATA(MAX_RX_COALESCING_LEN));
  2584. }
  2585. t3_write_reg(adap, A_TP_PARA_REG3, val);
  2586. return 0;
  2587. }
  2588. /**
  2589. * t3_tp_set_max_rxsize - set the max receive size
  2590. * @adap: the adapter
  2591. * @size: the max receive size
  2592. *
  2593. * Set TP's max receive size. This is the limit that applies when
  2594. * receive coalescing is disabled.
  2595. */
  2596. void t3_tp_set_max_rxsize(struct adapter *adap, unsigned int size)
  2597. {
  2598. t3_write_reg(adap, A_TP_PARA_REG7,
  2599. V_PMMAXXFERLEN0(size) | V_PMMAXXFERLEN1(size));
  2600. }
  2601. static void init_mtus(unsigned short mtus[])
  2602. {
  2603. /*
  2604. * See draft-mathis-plpmtud-00.txt for the values. The min is 88 so
  2605. * it can accomodate max size TCP/IP headers when SACK and timestamps
  2606. * are enabled and still have at least 8 bytes of payload.
  2607. */
  2608. mtus[0] = 88;
  2609. mtus[1] = 88;
  2610. mtus[2] = 256;
  2611. mtus[3] = 512;
  2612. mtus[4] = 576;
  2613. mtus[5] = 1024;
  2614. mtus[6] = 1280;
  2615. mtus[7] = 1492;
  2616. mtus[8] = 1500;
  2617. mtus[9] = 2002;
  2618. mtus[10] = 2048;
  2619. mtus[11] = 4096;
  2620. mtus[12] = 4352;
  2621. mtus[13] = 8192;
  2622. mtus[14] = 9000;
  2623. mtus[15] = 9600;
  2624. }
  2625. /*
  2626. * Initial congestion control parameters.
  2627. */
  2628. static void init_cong_ctrl(unsigned short *a, unsigned short *b)
  2629. {
  2630. a[0] = a[1] = a[2] = a[3] = a[4] = a[5] = a[6] = a[7] = a[8] = 1;
  2631. a[9] = 2;
  2632. a[10] = 3;
  2633. a[11] = 4;
  2634. a[12] = 5;
  2635. a[13] = 6;
  2636. a[14] = 7;
  2637. a[15] = 8;
  2638. a[16] = 9;
  2639. a[17] = 10;
  2640. a[18] = 14;
  2641. a[19] = 17;
  2642. a[20] = 21;
  2643. a[21] = 25;
  2644. a[22] = 30;
  2645. a[23] = 35;
  2646. a[24] = 45;
  2647. a[25] = 60;
  2648. a[26] = 80;
  2649. a[27] = 100;
  2650. a[28] = 200;
  2651. a[29] = 300;
  2652. a[30] = 400;
  2653. a[31] = 500;
  2654. b[0] = b[1] = b[2] = b[3] = b[4] = b[5] = b[6] = b[7] = b[8] = 0;
  2655. b[9] = b[10] = 1;
  2656. b[11] = b[12] = 2;
  2657. b[13] = b[14] = b[15] = b[16] = 3;
  2658. b[17] = b[18] = b[19] = b[20] = b[21] = 4;
  2659. b[22] = b[23] = b[24] = b[25] = b[26] = b[27] = 5;
  2660. b[28] = b[29] = 6;
  2661. b[30] = b[31] = 7;
  2662. }
  2663. /* The minimum additive increment value for the congestion control table */
  2664. #define CC_MIN_INCR 2U
  2665. /**
  2666. * t3_load_mtus - write the MTU and congestion control HW tables
  2667. * @adap: the adapter
  2668. * @mtus: the unrestricted values for the MTU table
  2669. * @alphs: the values for the congestion control alpha parameter
  2670. * @beta: the values for the congestion control beta parameter
  2671. * @mtu_cap: the maximum permitted effective MTU
  2672. *
  2673. * Write the MTU table with the supplied MTUs capping each at &mtu_cap.
  2674. * Update the high-speed congestion control table with the supplied alpha,
  2675. * beta, and MTUs.
  2676. */
  2677. void t3_load_mtus(struct adapter *adap, unsigned short mtus[NMTUS],
  2678. unsigned short alpha[NCCTRL_WIN],
  2679. unsigned short beta[NCCTRL_WIN], unsigned short mtu_cap)
  2680. {
  2681. static const unsigned int avg_pkts[NCCTRL_WIN] = {
  2682. 2, 6, 10, 14, 20, 28, 40, 56, 80, 112, 160, 224, 320, 448, 640,
  2683. 896, 1281, 1792, 2560, 3584, 5120, 7168, 10240, 14336, 20480,
  2684. 28672, 40960, 57344, 81920, 114688, 163840, 229376
  2685. };
  2686. unsigned int i, w;
  2687. for (i = 0; i < NMTUS; ++i) {
  2688. unsigned int mtu = min(mtus[i], mtu_cap);
  2689. unsigned int log2 = fls(mtu);
  2690. if (!(mtu & ((1 << log2) >> 2))) /* round */
  2691. log2--;
  2692. t3_write_reg(adap, A_TP_MTU_TABLE,
  2693. (i << 24) | (log2 << 16) | mtu);
  2694. for (w = 0; w < NCCTRL_WIN; ++w) {
  2695. unsigned int inc;
  2696. inc = max(((mtu - 40) * alpha[w]) / avg_pkts[w],
  2697. CC_MIN_INCR);
  2698. t3_write_reg(adap, A_TP_CCTRL_TABLE, (i << 21) |
  2699. (w << 16) | (beta[w] << 13) | inc);
  2700. }
  2701. }
  2702. }
  2703. /**
  2704. * t3_read_hw_mtus - returns the values in the HW MTU table
  2705. * @adap: the adapter
  2706. * @mtus: where to store the HW MTU values
  2707. *
  2708. * Reads the HW MTU table.
  2709. */
  2710. void t3_read_hw_mtus(struct adapter *adap, unsigned short mtus[NMTUS])
  2711. {
  2712. int i;
  2713. for (i = 0; i < NMTUS; ++i) {
  2714. unsigned int val;
  2715. t3_write_reg(adap, A_TP_MTU_TABLE, 0xff000000 | i);
  2716. val = t3_read_reg(adap, A_TP_MTU_TABLE);
  2717. mtus[i] = val & 0x3fff;
  2718. }
  2719. }
  2720. /**
  2721. * t3_get_cong_cntl_tab - reads the congestion control table
  2722. * @adap: the adapter
  2723. * @incr: where to store the alpha values
  2724. *
  2725. * Reads the additive increments programmed into the HW congestion
  2726. * control table.
  2727. */
  2728. void t3_get_cong_cntl_tab(struct adapter *adap,
  2729. unsigned short incr[NMTUS][NCCTRL_WIN])
  2730. {
  2731. unsigned int mtu, w;
  2732. for (mtu = 0; mtu < NMTUS; ++mtu)
  2733. for (w = 0; w < NCCTRL_WIN; ++w) {
  2734. t3_write_reg(adap, A_TP_CCTRL_TABLE,
  2735. 0xffff0000 | (mtu << 5) | w);
  2736. incr[mtu][w] = t3_read_reg(adap, A_TP_CCTRL_TABLE) &
  2737. 0x1fff;
  2738. }
  2739. }
  2740. /**
  2741. * t3_tp_get_mib_stats - read TP's MIB counters
  2742. * @adap: the adapter
  2743. * @tps: holds the returned counter values
  2744. *
  2745. * Returns the values of TP's MIB counters.
  2746. */
  2747. void t3_tp_get_mib_stats(struct adapter *adap, struct tp_mib_stats *tps)
  2748. {
  2749. t3_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_RDATA, (u32 *) tps,
  2750. sizeof(*tps) / sizeof(u32), 0);
  2751. }
  2752. #define ulp_region(adap, name, start, len) \
  2753. t3_write_reg((adap), A_ULPRX_ ## name ## _LLIMIT, (start)); \
  2754. t3_write_reg((adap), A_ULPRX_ ## name ## _ULIMIT, \
  2755. (start) + (len) - 1); \
  2756. start += len
  2757. #define ulptx_region(adap, name, start, len) \
  2758. t3_write_reg((adap), A_ULPTX_ ## name ## _LLIMIT, (start)); \
  2759. t3_write_reg((adap), A_ULPTX_ ## name ## _ULIMIT, \
  2760. (start) + (len) - 1)
  2761. static void ulp_config(struct adapter *adap, const struct tp_params *p)
  2762. {
  2763. unsigned int m = p->chan_rx_size;
  2764. ulp_region(adap, ISCSI, m, p->chan_rx_size / 8);
  2765. ulp_region(adap, TDDP, m, p->chan_rx_size / 8);
  2766. ulptx_region(adap, TPT, m, p->chan_rx_size / 4);
  2767. ulp_region(adap, STAG, m, p->chan_rx_size / 4);
  2768. ulp_region(adap, RQ, m, p->chan_rx_size / 4);
  2769. ulptx_region(adap, PBL, m, p->chan_rx_size / 4);
  2770. ulp_region(adap, PBL, m, p->chan_rx_size / 4);
  2771. t3_write_reg(adap, A_ULPRX_TDDP_TAGMASK, 0xffffffff);
  2772. }
  2773. /**
  2774. * t3_set_proto_sram - set the contents of the protocol sram
  2775. * @adapter: the adapter
  2776. * @data: the protocol image
  2777. *
  2778. * Write the contents of the protocol SRAM.
  2779. */
  2780. int t3_set_proto_sram(struct adapter *adap, const u8 *data)
  2781. {
  2782. int i;
  2783. const __be32 *buf = (const __be32 *)data;
  2784. for (i = 0; i < PROTO_SRAM_LINES; i++) {
  2785. t3_write_reg(adap, A_TP_EMBED_OP_FIELD5, be32_to_cpu(*buf++));
  2786. t3_write_reg(adap, A_TP_EMBED_OP_FIELD4, be32_to_cpu(*buf++));
  2787. t3_write_reg(adap, A_TP_EMBED_OP_FIELD3, be32_to_cpu(*buf++));
  2788. t3_write_reg(adap, A_TP_EMBED_OP_FIELD2, be32_to_cpu(*buf++));
  2789. t3_write_reg(adap, A_TP_EMBED_OP_FIELD1, be32_to_cpu(*buf++));
  2790. t3_write_reg(adap, A_TP_EMBED_OP_FIELD0, i << 1 | 1 << 31);
  2791. if (t3_wait_op_done(adap, A_TP_EMBED_OP_FIELD0, 1, 1, 5, 1))
  2792. return -EIO;
  2793. }
  2794. t3_write_reg(adap, A_TP_EMBED_OP_FIELD0, 0);
  2795. return 0;
  2796. }
  2797. void t3_config_trace_filter(struct adapter *adapter,
  2798. const struct trace_params *tp, int filter_index,
  2799. int invert, int enable)
  2800. {
  2801. u32 addr, key[4], mask[4];
  2802. key[0] = tp->sport | (tp->sip << 16);
  2803. key[1] = (tp->sip >> 16) | (tp->dport << 16);
  2804. key[2] = tp->dip;
  2805. key[3] = tp->proto | (tp->vlan << 8) | (tp->intf << 20);
  2806. mask[0] = tp->sport_mask | (tp->sip_mask << 16);
  2807. mask[1] = (tp->sip_mask >> 16) | (tp->dport_mask << 16);
  2808. mask[2] = tp->dip_mask;
  2809. mask[3] = tp->proto_mask | (tp->vlan_mask << 8) | (tp->intf_mask << 20);
  2810. if (invert)
  2811. key[3] |= (1 << 29);
  2812. if (enable)
  2813. key[3] |= (1 << 28);
  2814. addr = filter_index ? A_TP_RX_TRC_KEY0 : A_TP_TX_TRC_KEY0;
  2815. tp_wr_indirect(adapter, addr++, key[0]);
  2816. tp_wr_indirect(adapter, addr++, mask[0]);
  2817. tp_wr_indirect(adapter, addr++, key[1]);
  2818. tp_wr_indirect(adapter, addr++, mask[1]);
  2819. tp_wr_indirect(adapter, addr++, key[2]);
  2820. tp_wr_indirect(adapter, addr++, mask[2]);
  2821. tp_wr_indirect(adapter, addr++, key[3]);
  2822. tp_wr_indirect(adapter, addr, mask[3]);
  2823. t3_read_reg(adapter, A_TP_PIO_DATA);
  2824. }
  2825. /**
  2826. * t3_config_sched - configure a HW traffic scheduler
  2827. * @adap: the adapter
  2828. * @kbps: target rate in Kbps
  2829. * @sched: the scheduler index
  2830. *
  2831. * Configure a HW scheduler for the target rate
  2832. */
  2833. int t3_config_sched(struct adapter *adap, unsigned int kbps, int sched)
  2834. {
  2835. unsigned int v, tps, cpt, bpt, delta, mindelta = ~0;
  2836. unsigned int clk = adap->params.vpd.cclk * 1000;
  2837. unsigned int selected_cpt = 0, selected_bpt = 0;
  2838. if (kbps > 0) {
  2839. kbps *= 125; /* -> bytes */
  2840. for (cpt = 1; cpt <= 255; cpt++) {
  2841. tps = clk / cpt;
  2842. bpt = (kbps + tps / 2) / tps;
  2843. if (bpt > 0 && bpt <= 255) {
  2844. v = bpt * tps;
  2845. delta = v >= kbps ? v - kbps : kbps - v;
  2846. if (delta <= mindelta) {
  2847. mindelta = delta;
  2848. selected_cpt = cpt;
  2849. selected_bpt = bpt;
  2850. }
  2851. } else if (selected_cpt)
  2852. break;
  2853. }
  2854. if (!selected_cpt)
  2855. return -EINVAL;
  2856. }
  2857. t3_write_reg(adap, A_TP_TM_PIO_ADDR,
  2858. A_TP_TX_MOD_Q1_Q0_RATE_LIMIT - sched / 2);
  2859. v = t3_read_reg(adap, A_TP_TM_PIO_DATA);
  2860. if (sched & 1)
  2861. v = (v & 0xffff) | (selected_cpt << 16) | (selected_bpt << 24);
  2862. else
  2863. v = (v & 0xffff0000) | selected_cpt | (selected_bpt << 8);
  2864. t3_write_reg(adap, A_TP_TM_PIO_DATA, v);
  2865. return 0;
  2866. }
  2867. static int tp_init(struct adapter *adap, const struct tp_params *p)
  2868. {
  2869. int busy = 0;
  2870. tp_config(adap, p);
  2871. t3_set_vlan_accel(adap, 3, 0);
  2872. if (is_offload(adap)) {
  2873. tp_set_timers(adap, adap->params.vpd.cclk * 1000);
  2874. t3_write_reg(adap, A_TP_RESET, F_FLSTINITENABLE);
  2875. busy = t3_wait_op_done(adap, A_TP_RESET, F_FLSTINITENABLE,
  2876. 0, 1000, 5);
  2877. if (busy)
  2878. CH_ERR(adap, "TP initialization timed out\n");
  2879. }
  2880. if (!busy)
  2881. t3_write_reg(adap, A_TP_RESET, F_TPRESET);
  2882. return busy;
  2883. }
  2884. int t3_mps_set_active_ports(struct adapter *adap, unsigned int port_mask)
  2885. {
  2886. if (port_mask & ~((1 << adap->params.nports) - 1))
  2887. return -EINVAL;
  2888. t3_set_reg_field(adap, A_MPS_CFG, F_PORT1ACTIVE | F_PORT0ACTIVE,
  2889. port_mask << S_PORT0ACTIVE);
  2890. return 0;
  2891. }
  2892. /*
  2893. * Perform the bits of HW initialization that are dependent on the Tx
  2894. * channels being used.
  2895. */
  2896. static void chan_init_hw(struct adapter *adap, unsigned int chan_map)
  2897. {
  2898. int i;
  2899. if (chan_map != 3) { /* one channel */
  2900. t3_set_reg_field(adap, A_ULPRX_CTL, F_ROUND_ROBIN, 0);
  2901. t3_set_reg_field(adap, A_ULPTX_CONFIG, F_CFG_RR_ARB, 0);
  2902. t3_write_reg(adap, A_MPS_CFG, F_TPRXPORTEN | F_ENFORCEPKT |
  2903. (chan_map == 1 ? F_TPTXPORT0EN | F_PORT0ACTIVE :
  2904. F_TPTXPORT1EN | F_PORT1ACTIVE));
  2905. t3_write_reg(adap, A_PM1_TX_CFG,
  2906. chan_map == 1 ? 0xffffffff : 0);
  2907. } else { /* two channels */
  2908. t3_set_reg_field(adap, A_ULPRX_CTL, 0, F_ROUND_ROBIN);
  2909. t3_set_reg_field(adap, A_ULPTX_CONFIG, 0, F_CFG_RR_ARB);
  2910. t3_write_reg(adap, A_ULPTX_DMA_WEIGHT,
  2911. V_D1_WEIGHT(16) | V_D0_WEIGHT(16));
  2912. t3_write_reg(adap, A_MPS_CFG, F_TPTXPORT0EN | F_TPTXPORT1EN |
  2913. F_TPRXPORTEN | F_PORT0ACTIVE | F_PORT1ACTIVE |
  2914. F_ENFORCEPKT);
  2915. t3_write_reg(adap, A_PM1_TX_CFG, 0x80008000);
  2916. t3_set_reg_field(adap, A_TP_PC_CONFIG, 0, F_TXTOSQUEUEMAPMODE);
  2917. t3_write_reg(adap, A_TP_TX_MOD_QUEUE_REQ_MAP,
  2918. V_TX_MOD_QUEUE_REQ_MAP(0xaa));
  2919. for (i = 0; i < 16; i++)
  2920. t3_write_reg(adap, A_TP_TX_MOD_QUE_TABLE,
  2921. (i << 16) | 0x1010);
  2922. }
  2923. }
  2924. static int calibrate_xgm(struct adapter *adapter)
  2925. {
  2926. if (uses_xaui(adapter)) {
  2927. unsigned int v, i;
  2928. for (i = 0; i < 5; ++i) {
  2929. t3_write_reg(adapter, A_XGM_XAUI_IMP, 0);
  2930. t3_read_reg(adapter, A_XGM_XAUI_IMP);
  2931. msleep(1);
  2932. v = t3_read_reg(adapter, A_XGM_XAUI_IMP);
  2933. if (!(v & (F_XGM_CALFAULT | F_CALBUSY))) {
  2934. t3_write_reg(adapter, A_XGM_XAUI_IMP,
  2935. V_XAUIIMP(G_CALIMP(v) >> 2));
  2936. return 0;
  2937. }
  2938. }
  2939. CH_ERR(adapter, "MAC calibration failed\n");
  2940. return -1;
  2941. } else {
  2942. t3_write_reg(adapter, A_XGM_RGMII_IMP,
  2943. V_RGMIIIMPPD(2) | V_RGMIIIMPPU(3));
  2944. t3_set_reg_field(adapter, A_XGM_RGMII_IMP, F_XGM_IMPSETUPDATE,
  2945. F_XGM_IMPSETUPDATE);
  2946. }
  2947. return 0;
  2948. }
  2949. static void calibrate_xgm_t3b(struct adapter *adapter)
  2950. {
  2951. if (!uses_xaui(adapter)) {
  2952. t3_write_reg(adapter, A_XGM_RGMII_IMP, F_CALRESET |
  2953. F_CALUPDATE | V_RGMIIIMPPD(2) | V_RGMIIIMPPU(3));
  2954. t3_set_reg_field(adapter, A_XGM_RGMII_IMP, F_CALRESET, 0);
  2955. t3_set_reg_field(adapter, A_XGM_RGMII_IMP, 0,
  2956. F_XGM_IMPSETUPDATE);
  2957. t3_set_reg_field(adapter, A_XGM_RGMII_IMP, F_XGM_IMPSETUPDATE,
  2958. 0);
  2959. t3_set_reg_field(adapter, A_XGM_RGMII_IMP, F_CALUPDATE, 0);
  2960. t3_set_reg_field(adapter, A_XGM_RGMII_IMP, 0, F_CALUPDATE);
  2961. }
  2962. }
  2963. struct mc7_timing_params {
  2964. unsigned char ActToPreDly;
  2965. unsigned char ActToRdWrDly;
  2966. unsigned char PreCyc;
  2967. unsigned char RefCyc[5];
  2968. unsigned char BkCyc;
  2969. unsigned char WrToRdDly;
  2970. unsigned char RdToWrDly;
  2971. };
  2972. /*
  2973. * Write a value to a register and check that the write completed. These
  2974. * writes normally complete in a cycle or two, so one read should suffice.
  2975. * The very first read exists to flush the posted write to the device.
  2976. */
  2977. static int wrreg_wait(struct adapter *adapter, unsigned int addr, u32 val)
  2978. {
  2979. t3_write_reg(adapter, addr, val);
  2980. t3_read_reg(adapter, addr); /* flush */
  2981. if (!(t3_read_reg(adapter, addr) & F_BUSY))
  2982. return 0;
  2983. CH_ERR(adapter, "write to MC7 register 0x%x timed out\n", addr);
  2984. return -EIO;
  2985. }
  2986. static int mc7_init(struct mc7 *mc7, unsigned int mc7_clock, int mem_type)
  2987. {
  2988. static const unsigned int mc7_mode[] = {
  2989. 0x632, 0x642, 0x652, 0x432, 0x442
  2990. };
  2991. static const struct mc7_timing_params mc7_timings[] = {
  2992. {12, 3, 4, {20, 28, 34, 52, 0}, 15, 6, 4},
  2993. {12, 4, 5, {20, 28, 34, 52, 0}, 16, 7, 4},
  2994. {12, 5, 6, {20, 28, 34, 52, 0}, 17, 8, 4},
  2995. {9, 3, 4, {15, 21, 26, 39, 0}, 12, 6, 4},
  2996. {9, 4, 5, {15, 21, 26, 39, 0}, 13, 7, 4}
  2997. };
  2998. u32 val;
  2999. unsigned int width, density, slow, attempts;
  3000. struct adapter *adapter = mc7->adapter;
  3001. const struct mc7_timing_params *p = &mc7_timings[mem_type];
  3002. if (!mc7->size)
  3003. return 0;
  3004. val = t3_read_reg(adapter, mc7->offset + A_MC7_CFG);
  3005. slow = val & F_SLOW;
  3006. width = G_WIDTH(val);
  3007. density = G_DEN(val);
  3008. t3_write_reg(adapter, mc7->offset + A_MC7_CFG, val | F_IFEN);
  3009. val = t3_read_reg(adapter, mc7->offset + A_MC7_CFG); /* flush */
  3010. msleep(1);
  3011. if (!slow) {
  3012. t3_write_reg(adapter, mc7->offset + A_MC7_CAL, F_SGL_CAL_EN);
  3013. t3_read_reg(adapter, mc7->offset + A_MC7_CAL);
  3014. msleep(1);
  3015. if (t3_read_reg(adapter, mc7->offset + A_MC7_CAL) &
  3016. (F_BUSY | F_SGL_CAL_EN | F_CAL_FAULT)) {
  3017. CH_ERR(adapter, "%s MC7 calibration timed out\n",
  3018. mc7->name);
  3019. goto out_fail;
  3020. }
  3021. }
  3022. t3_write_reg(adapter, mc7->offset + A_MC7_PARM,
  3023. V_ACTTOPREDLY(p->ActToPreDly) |
  3024. V_ACTTORDWRDLY(p->ActToRdWrDly) | V_PRECYC(p->PreCyc) |
  3025. V_REFCYC(p->RefCyc[density]) | V_BKCYC(p->BkCyc) |
  3026. V_WRTORDDLY(p->WrToRdDly) | V_RDTOWRDLY(p->RdToWrDly));
  3027. t3_write_reg(adapter, mc7->offset + A_MC7_CFG,
  3028. val | F_CLKEN | F_TERM150);
  3029. t3_read_reg(adapter, mc7->offset + A_MC7_CFG); /* flush */
  3030. if (!slow)
  3031. t3_set_reg_field(adapter, mc7->offset + A_MC7_DLL, F_DLLENB,
  3032. F_DLLENB);
  3033. udelay(1);
  3034. val = slow ? 3 : 6;
  3035. if (wrreg_wait(adapter, mc7->offset + A_MC7_PRE, 0) ||
  3036. wrreg_wait(adapter, mc7->offset + A_MC7_EXT_MODE2, 0) ||
  3037. wrreg_wait(adapter, mc7->offset + A_MC7_EXT_MODE3, 0) ||
  3038. wrreg_wait(adapter, mc7->offset + A_MC7_EXT_MODE1, val))
  3039. goto out_fail;
  3040. if (!slow) {
  3041. t3_write_reg(adapter, mc7->offset + A_MC7_MODE, 0x100);
  3042. t3_set_reg_field(adapter, mc7->offset + A_MC7_DLL, F_DLLRST, 0);
  3043. udelay(5);
  3044. }
  3045. if (wrreg_wait(adapter, mc7->offset + A_MC7_PRE, 0) ||
  3046. wrreg_wait(adapter, mc7->offset + A_MC7_REF, 0) ||
  3047. wrreg_wait(adapter, mc7->offset + A_MC7_REF, 0) ||
  3048. wrreg_wait(adapter, mc7->offset + A_MC7_MODE,
  3049. mc7_mode[mem_type]) ||
  3050. wrreg_wait(adapter, mc7->offset + A_MC7_EXT_MODE1, val | 0x380) ||
  3051. wrreg_wait(adapter, mc7->offset + A_MC7_EXT_MODE1, val))
  3052. goto out_fail;
  3053. /* clock value is in KHz */
  3054. mc7_clock = mc7_clock * 7812 + mc7_clock / 2; /* ns */
  3055. mc7_clock /= 1000000; /* KHz->MHz, ns->us */
  3056. t3_write_reg(adapter, mc7->offset + A_MC7_REF,
  3057. F_PERREFEN | V_PREREFDIV(mc7_clock));
  3058. t3_read_reg(adapter, mc7->offset + A_MC7_REF); /* flush */
  3059. t3_write_reg(adapter, mc7->offset + A_MC7_ECC, F_ECCGENEN | F_ECCCHKEN);
  3060. t3_write_reg(adapter, mc7->offset + A_MC7_BIST_DATA, 0);
  3061. t3_write_reg(adapter, mc7->offset + A_MC7_BIST_ADDR_BEG, 0);
  3062. t3_write_reg(adapter, mc7->offset + A_MC7_BIST_ADDR_END,
  3063. (mc7->size << width) - 1);
  3064. t3_write_reg(adapter, mc7->offset + A_MC7_BIST_OP, V_OP(1));
  3065. t3_read_reg(adapter, mc7->offset + A_MC7_BIST_OP); /* flush */
  3066. attempts = 50;
  3067. do {
  3068. msleep(250);
  3069. val = t3_read_reg(adapter, mc7->offset + A_MC7_BIST_OP);
  3070. } while ((val & F_BUSY) && --attempts);
  3071. if (val & F_BUSY) {
  3072. CH_ERR(adapter, "%s MC7 BIST timed out\n", mc7->name);
  3073. goto out_fail;
  3074. }
  3075. /* Enable normal memory accesses. */
  3076. t3_set_reg_field(adapter, mc7->offset + A_MC7_CFG, 0, F_RDY);
  3077. return 0;
  3078. out_fail:
  3079. return -1;
  3080. }
  3081. static void config_pcie(struct adapter *adap)
  3082. {
  3083. static const u16 ack_lat[4][6] = {
  3084. {237, 416, 559, 1071, 2095, 4143},
  3085. {128, 217, 289, 545, 1057, 2081},
  3086. {73, 118, 154, 282, 538, 1050},
  3087. {67, 107, 86, 150, 278, 534}
  3088. };
  3089. static const u16 rpl_tmr[4][6] = {
  3090. {711, 1248, 1677, 3213, 6285, 12429},
  3091. {384, 651, 867, 1635, 3171, 6243},
  3092. {219, 354, 462, 846, 1614, 3150},
  3093. {201, 321, 258, 450, 834, 1602}
  3094. };
  3095. u16 val;
  3096. unsigned int log2_width, pldsize;
  3097. unsigned int fst_trn_rx, fst_trn_tx, acklat, rpllmt;
  3098. pci_read_config_word(adap->pdev,
  3099. adap->params.pci.pcie_cap_addr + PCI_EXP_DEVCTL,
  3100. &val);
  3101. pldsize = (val & PCI_EXP_DEVCTL_PAYLOAD) >> 5;
  3102. pci_read_config_word(adap->pdev,
  3103. adap->params.pci.pcie_cap_addr + PCI_EXP_LNKCTL,
  3104. &val);
  3105. fst_trn_tx = G_NUMFSTTRNSEQ(t3_read_reg(adap, A_PCIE_PEX_CTRL0));
  3106. fst_trn_rx = adap->params.rev == 0 ? fst_trn_tx :
  3107. G_NUMFSTTRNSEQRX(t3_read_reg(adap, A_PCIE_MODE));
  3108. log2_width = fls(adap->params.pci.width) - 1;
  3109. acklat = ack_lat[log2_width][pldsize];
  3110. if (val & 1) /* check LOsEnable */
  3111. acklat += fst_trn_tx * 4;
  3112. rpllmt = rpl_tmr[log2_width][pldsize] + fst_trn_rx * 4;
  3113. if (adap->params.rev == 0)
  3114. t3_set_reg_field(adap, A_PCIE_PEX_CTRL1,
  3115. V_T3A_ACKLAT(M_T3A_ACKLAT),
  3116. V_T3A_ACKLAT(acklat));
  3117. else
  3118. t3_set_reg_field(adap, A_PCIE_PEX_CTRL1, V_ACKLAT(M_ACKLAT),
  3119. V_ACKLAT(acklat));
  3120. t3_set_reg_field(adap, A_PCIE_PEX_CTRL0, V_REPLAYLMT(M_REPLAYLMT),
  3121. V_REPLAYLMT(rpllmt));
  3122. t3_write_reg(adap, A_PCIE_PEX_ERR, 0xffffffff);
  3123. t3_set_reg_field(adap, A_PCIE_CFG, 0,
  3124. F_ENABLELINKDWNDRST | F_ENABLELINKDOWNRST |
  3125. F_PCIE_DMASTOPEN | F_PCIE_CLIDECEN);
  3126. }
  3127. /*
  3128. * Initialize and configure T3 HW modules. This performs the
  3129. * initialization steps that need to be done once after a card is reset.
  3130. * MAC and PHY initialization is handled separarely whenever a port is enabled.
  3131. *
  3132. * fw_params are passed to FW and their value is platform dependent. Only the
  3133. * top 8 bits are available for use, the rest must be 0.
  3134. */
  3135. int t3_init_hw(struct adapter *adapter, u32 fw_params)
  3136. {
  3137. int err = -EIO, attempts, i;
  3138. const struct vpd_params *vpd = &adapter->params.vpd;
  3139. if (adapter->params.rev > 0)
  3140. calibrate_xgm_t3b(adapter);
  3141. else if (calibrate_xgm(adapter))
  3142. goto out_err;
  3143. if (vpd->mclk) {
  3144. partition_mem(adapter, &adapter->params.tp);
  3145. if (mc7_init(&adapter->pmrx, vpd->mclk, vpd->mem_timing) ||
  3146. mc7_init(&adapter->pmtx, vpd->mclk, vpd->mem_timing) ||
  3147. mc7_init(&adapter->cm, vpd->mclk, vpd->mem_timing) ||
  3148. t3_mc5_init(&adapter->mc5, adapter->params.mc5.nservers,
  3149. adapter->params.mc5.nfilters,
  3150. adapter->params.mc5.nroutes))
  3151. goto out_err;
  3152. for (i = 0; i < 32; i++)
  3153. if (clear_sge_ctxt(adapter, i, F_CQ))
  3154. goto out_err;
  3155. }
  3156. if (tp_init(adapter, &adapter->params.tp))
  3157. goto out_err;
  3158. t3_tp_set_coalescing_size(adapter,
  3159. min(adapter->params.sge.max_pkt_size,
  3160. MAX_RX_COALESCING_LEN), 1);
  3161. t3_tp_set_max_rxsize(adapter,
  3162. min(adapter->params.sge.max_pkt_size, 16384U));
  3163. ulp_config(adapter, &adapter->params.tp);
  3164. if (is_pcie(adapter))
  3165. config_pcie(adapter);
  3166. else
  3167. t3_set_reg_field(adapter, A_PCIX_CFG, 0,
  3168. F_DMASTOPEN | F_CLIDECEN);
  3169. if (adapter->params.rev == T3_REV_C)
  3170. t3_set_reg_field(adapter, A_ULPTX_CONFIG, 0,
  3171. F_CFG_CQE_SOP_MASK);
  3172. t3_write_reg(adapter, A_PM1_RX_CFG, 0xffffffff);
  3173. t3_write_reg(adapter, A_PM1_RX_MODE, 0);
  3174. t3_write_reg(adapter, A_PM1_TX_MODE, 0);
  3175. chan_init_hw(adapter, adapter->params.chan_map);
  3176. t3_sge_init(adapter, &adapter->params.sge);
  3177. t3_write_reg(adapter, A_T3DBG_GPIO_ACT_LOW, calc_gpio_intr(adapter));
  3178. t3_write_reg(adapter, A_CIM_HOST_ACC_DATA, vpd->uclk | fw_params);
  3179. t3_write_reg(adapter, A_CIM_BOOT_CFG,
  3180. V_BOOTADDR(FW_FLASH_BOOT_ADDR >> 2));
  3181. t3_read_reg(adapter, A_CIM_BOOT_CFG); /* flush */
  3182. attempts = 100;
  3183. do { /* wait for uP to initialize */
  3184. msleep(20);
  3185. } while (t3_read_reg(adapter, A_CIM_HOST_ACC_DATA) && --attempts);
  3186. if (!attempts) {
  3187. CH_ERR(adapter, "uP initialization timed out\n");
  3188. goto out_err;
  3189. }
  3190. err = 0;
  3191. out_err:
  3192. return err;
  3193. }
  3194. /**
  3195. * get_pci_mode - determine a card's PCI mode
  3196. * @adapter: the adapter
  3197. * @p: where to store the PCI settings
  3198. *
  3199. * Determines a card's PCI mode and associated parameters, such as speed
  3200. * and width.
  3201. */
  3202. static void get_pci_mode(struct adapter *adapter, struct pci_params *p)
  3203. {
  3204. static unsigned short speed_map[] = { 33, 66, 100, 133 };
  3205. u32 pci_mode, pcie_cap;
  3206. pcie_cap = pci_find_capability(adapter->pdev, PCI_CAP_ID_EXP);
  3207. if (pcie_cap) {
  3208. u16 val;
  3209. p->variant = PCI_VARIANT_PCIE;
  3210. p->pcie_cap_addr = pcie_cap;
  3211. pci_read_config_word(adapter->pdev, pcie_cap + PCI_EXP_LNKSTA,
  3212. &val);
  3213. p->width = (val >> 4) & 0x3f;
  3214. return;
  3215. }
  3216. pci_mode = t3_read_reg(adapter, A_PCIX_MODE);
  3217. p->speed = speed_map[G_PCLKRANGE(pci_mode)];
  3218. p->width = (pci_mode & F_64BIT) ? 64 : 32;
  3219. pci_mode = G_PCIXINITPAT(pci_mode);
  3220. if (pci_mode == 0)
  3221. p->variant = PCI_VARIANT_PCI;
  3222. else if (pci_mode < 4)
  3223. p->variant = PCI_VARIANT_PCIX_MODE1_PARITY;
  3224. else if (pci_mode < 8)
  3225. p->variant = PCI_VARIANT_PCIX_MODE1_ECC;
  3226. else
  3227. p->variant = PCI_VARIANT_PCIX_266_MODE2;
  3228. }
  3229. /**
  3230. * init_link_config - initialize a link's SW state
  3231. * @lc: structure holding the link state
  3232. * @ai: information about the current card
  3233. *
  3234. * Initializes the SW state maintained for each link, including the link's
  3235. * capabilities and default speed/duplex/flow-control/autonegotiation
  3236. * settings.
  3237. */
  3238. static void init_link_config(struct link_config *lc, unsigned int caps)
  3239. {
  3240. lc->supported = caps;
  3241. lc->requested_speed = lc->speed = SPEED_INVALID;
  3242. lc->requested_duplex = lc->duplex = DUPLEX_INVALID;
  3243. lc->requested_fc = lc->fc = PAUSE_RX | PAUSE_TX;
  3244. if (lc->supported & SUPPORTED_Autoneg) {
  3245. lc->advertising = lc->supported;
  3246. lc->autoneg = AUTONEG_ENABLE;
  3247. lc->requested_fc |= PAUSE_AUTONEG;
  3248. } else {
  3249. lc->advertising = 0;
  3250. lc->autoneg = AUTONEG_DISABLE;
  3251. }
  3252. }
  3253. /**
  3254. * mc7_calc_size - calculate MC7 memory size
  3255. * @cfg: the MC7 configuration
  3256. *
  3257. * Calculates the size of an MC7 memory in bytes from the value of its
  3258. * configuration register.
  3259. */
  3260. static unsigned int mc7_calc_size(u32 cfg)
  3261. {
  3262. unsigned int width = G_WIDTH(cfg);
  3263. unsigned int banks = !!(cfg & F_BKS) + 1;
  3264. unsigned int org = !!(cfg & F_ORG) + 1;
  3265. unsigned int density = G_DEN(cfg);
  3266. unsigned int MBs = ((256 << density) * banks) / (org << width);
  3267. return MBs << 20;
  3268. }
  3269. static void mc7_prep(struct adapter *adapter, struct mc7 *mc7,
  3270. unsigned int base_addr, const char *name)
  3271. {
  3272. u32 cfg;
  3273. mc7->adapter = adapter;
  3274. mc7->name = name;
  3275. mc7->offset = base_addr - MC7_PMRX_BASE_ADDR;
  3276. cfg = t3_read_reg(adapter, mc7->offset + A_MC7_CFG);
  3277. mc7->size = mc7->size = G_DEN(cfg) == M_DEN ? 0 : mc7_calc_size(cfg);
  3278. mc7->width = G_WIDTH(cfg);
  3279. }
  3280. void mac_prep(struct cmac *mac, struct adapter *adapter, int index)
  3281. {
  3282. mac->adapter = adapter;
  3283. mac->offset = (XGMAC0_1_BASE_ADDR - XGMAC0_0_BASE_ADDR) * index;
  3284. mac->nucast = 1;
  3285. if (adapter->params.rev == 0 && uses_xaui(adapter)) {
  3286. t3_write_reg(adapter, A_XGM_SERDES_CTRL + mac->offset,
  3287. is_10G(adapter) ? 0x2901c04 : 0x2301c04);
  3288. t3_set_reg_field(adapter, A_XGM_PORT_CFG + mac->offset,
  3289. F_ENRGMII, 0);
  3290. }
  3291. }
  3292. void early_hw_init(struct adapter *adapter, const struct adapter_info *ai)
  3293. {
  3294. u32 val = V_PORTSPEED(is_10G(adapter) ? 3 : 2);
  3295. mi1_init(adapter, ai);
  3296. t3_write_reg(adapter, A_I2C_CFG, /* set for 80KHz */
  3297. V_I2C_CLKDIV(adapter->params.vpd.cclk / 80 - 1));
  3298. t3_write_reg(adapter, A_T3DBG_GPIO_EN,
  3299. ai->gpio_out | F_GPIO0_OEN | F_GPIO0_OUT_VAL);
  3300. t3_write_reg(adapter, A_MC5_DB_SERVER_INDEX, 0);
  3301. t3_write_reg(adapter, A_SG_OCO_BASE, V_BASE1(0xfff));
  3302. if (adapter->params.rev == 0 || !uses_xaui(adapter))
  3303. val |= F_ENRGMII;
  3304. /* Enable MAC clocks so we can access the registers */
  3305. t3_write_reg(adapter, A_XGM_PORT_CFG, val);
  3306. t3_read_reg(adapter, A_XGM_PORT_CFG);
  3307. val |= F_CLKDIVRESET_;
  3308. t3_write_reg(adapter, A_XGM_PORT_CFG, val);
  3309. t3_read_reg(adapter, A_XGM_PORT_CFG);
  3310. t3_write_reg(adapter, XGM_REG(A_XGM_PORT_CFG, 1), val);
  3311. t3_read_reg(adapter, A_XGM_PORT_CFG);
  3312. }
  3313. /*
  3314. * Reset the adapter.
  3315. * Older PCIe cards lose their config space during reset, PCI-X
  3316. * ones don't.
  3317. */
  3318. int t3_reset_adapter(struct adapter *adapter)
  3319. {
  3320. int i, save_and_restore_pcie =
  3321. adapter->params.rev < T3_REV_B2 && is_pcie(adapter);
  3322. uint16_t devid = 0;
  3323. if (save_and_restore_pcie)
  3324. pci_save_state(adapter->pdev);
  3325. t3_write_reg(adapter, A_PL_RST, F_CRSTWRM | F_CRSTWRMMODE);
  3326. /*
  3327. * Delay. Give Some time to device to reset fully.
  3328. * XXX The delay time should be modified.
  3329. */
  3330. for (i = 0; i < 10; i++) {
  3331. msleep(50);
  3332. pci_read_config_word(adapter->pdev, 0x00, &devid);
  3333. if (devid == 0x1425)
  3334. break;
  3335. }
  3336. if (devid != 0x1425)
  3337. return -1;
  3338. if (save_and_restore_pcie)
  3339. pci_restore_state(adapter->pdev);
  3340. return 0;
  3341. }
  3342. static int init_parity(struct adapter *adap)
  3343. {
  3344. int i, err, addr;
  3345. if (t3_read_reg(adap, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY)
  3346. return -EBUSY;
  3347. for (err = i = 0; !err && i < 16; i++)
  3348. err = clear_sge_ctxt(adap, i, F_EGRESS);
  3349. for (i = 0xfff0; !err && i <= 0xffff; i++)
  3350. err = clear_sge_ctxt(adap, i, F_EGRESS);
  3351. for (i = 0; !err && i < SGE_QSETS; i++)
  3352. err = clear_sge_ctxt(adap, i, F_RESPONSEQ);
  3353. if (err)
  3354. return err;
  3355. t3_write_reg(adap, A_CIM_IBQ_DBG_DATA, 0);
  3356. for (i = 0; i < 4; i++)
  3357. for (addr = 0; addr <= M_IBQDBGADDR; addr++) {
  3358. t3_write_reg(adap, A_CIM_IBQ_DBG_CFG, F_IBQDBGEN |
  3359. F_IBQDBGWR | V_IBQDBGQID(i) |
  3360. V_IBQDBGADDR(addr));
  3361. err = t3_wait_op_done(adap, A_CIM_IBQ_DBG_CFG,
  3362. F_IBQDBGBUSY, 0, 2, 1);
  3363. if (err)
  3364. return err;
  3365. }
  3366. return 0;
  3367. }
  3368. /*
  3369. * Initialize adapter SW state for the various HW modules, set initial values
  3370. * for some adapter tunables, take PHYs out of reset, and initialize the MDIO
  3371. * interface.
  3372. */
  3373. int t3_prep_adapter(struct adapter *adapter, const struct adapter_info *ai,
  3374. int reset)
  3375. {
  3376. int ret;
  3377. unsigned int i, j = -1;
  3378. get_pci_mode(adapter, &adapter->params.pci);
  3379. adapter->params.info = ai;
  3380. adapter->params.nports = ai->nports0 + ai->nports1;
  3381. adapter->params.chan_map = (!!ai->nports0) | (!!ai->nports1 << 1);
  3382. adapter->params.rev = t3_read_reg(adapter, A_PL_REV);
  3383. /*
  3384. * We used to only run the "adapter check task" once a second if
  3385. * we had PHYs which didn't support interrupts (we would check
  3386. * their link status once a second). Now we check other conditions
  3387. * in that routine which could potentially impose a very high
  3388. * interrupt load on the system. As such, we now always scan the
  3389. * adapter state once a second ...
  3390. */
  3391. adapter->params.linkpoll_period = 10;
  3392. adapter->params.stats_update_period = is_10G(adapter) ?
  3393. MAC_STATS_ACCUM_SECS : (MAC_STATS_ACCUM_SECS * 10);
  3394. adapter->params.pci.vpd_cap_addr =
  3395. pci_find_capability(adapter->pdev, PCI_CAP_ID_VPD);
  3396. ret = get_vpd_params(adapter, &adapter->params.vpd);
  3397. if (ret < 0)
  3398. return ret;
  3399. if (reset && t3_reset_adapter(adapter))
  3400. return -1;
  3401. t3_sge_prep(adapter, &adapter->params.sge);
  3402. if (adapter->params.vpd.mclk) {
  3403. struct tp_params *p = &adapter->params.tp;
  3404. mc7_prep(adapter, &adapter->pmrx, MC7_PMRX_BASE_ADDR, "PMRX");
  3405. mc7_prep(adapter, &adapter->pmtx, MC7_PMTX_BASE_ADDR, "PMTX");
  3406. mc7_prep(adapter, &adapter->cm, MC7_CM_BASE_ADDR, "CM");
  3407. p->nchan = adapter->params.chan_map == 3 ? 2 : 1;
  3408. p->pmrx_size = t3_mc7_size(&adapter->pmrx);
  3409. p->pmtx_size = t3_mc7_size(&adapter->pmtx);
  3410. p->cm_size = t3_mc7_size(&adapter->cm);
  3411. p->chan_rx_size = p->pmrx_size / 2; /* only 1 Rx channel */
  3412. p->chan_tx_size = p->pmtx_size / p->nchan;
  3413. p->rx_pg_size = 64 * 1024;
  3414. p->tx_pg_size = is_10G(adapter) ? 64 * 1024 : 16 * 1024;
  3415. p->rx_num_pgs = pm_num_pages(p->chan_rx_size, p->rx_pg_size);
  3416. p->tx_num_pgs = pm_num_pages(p->chan_tx_size, p->tx_pg_size);
  3417. p->ntimer_qs = p->cm_size >= (128 << 20) ||
  3418. adapter->params.rev > 0 ? 12 : 6;
  3419. }
  3420. adapter->params.offload = t3_mc7_size(&adapter->pmrx) &&
  3421. t3_mc7_size(&adapter->pmtx) &&
  3422. t3_mc7_size(&adapter->cm);
  3423. if (is_offload(adapter)) {
  3424. adapter->params.mc5.nservers = DEFAULT_NSERVERS;
  3425. adapter->params.mc5.nfilters = adapter->params.rev > 0 ?
  3426. DEFAULT_NFILTERS : 0;
  3427. adapter->params.mc5.nroutes = 0;
  3428. t3_mc5_prep(adapter, &adapter->mc5, MC5_MODE_144_BIT);
  3429. init_mtus(adapter->params.mtus);
  3430. init_cong_ctrl(adapter->params.a_wnd, adapter->params.b_wnd);
  3431. }
  3432. early_hw_init(adapter, ai);
  3433. ret = init_parity(adapter);
  3434. if (ret)
  3435. return ret;
  3436. for_each_port(adapter, i) {
  3437. u8 hw_addr[6];
  3438. const struct port_type_info *pti;
  3439. struct port_info *p = adap2pinfo(adapter, i);
  3440. while (!adapter->params.vpd.port_type[++j])
  3441. ;
  3442. pti = &port_types[adapter->params.vpd.port_type[j]];
  3443. if (!pti->phy_prep) {
  3444. CH_ALERT(adapter, "Invalid port type index %d\n",
  3445. adapter->params.vpd.port_type[j]);
  3446. return -EINVAL;
  3447. }
  3448. p->phy.mdio.dev = adapter->port[i];
  3449. ret = pti->phy_prep(&p->phy, adapter, ai->phy_base_addr + j,
  3450. ai->mdio_ops);
  3451. if (ret)
  3452. return ret;
  3453. mac_prep(&p->mac, adapter, j);
  3454. /*
  3455. * The VPD EEPROM stores the base Ethernet address for the
  3456. * card. A port's address is derived from the base by adding
  3457. * the port's index to the base's low octet.
  3458. */
  3459. memcpy(hw_addr, adapter->params.vpd.eth_base, 5);
  3460. hw_addr[5] = adapter->params.vpd.eth_base[5] + i;
  3461. memcpy(adapter->port[i]->dev_addr, hw_addr,
  3462. ETH_ALEN);
  3463. memcpy(adapter->port[i]->perm_addr, hw_addr,
  3464. ETH_ALEN);
  3465. init_link_config(&p->link_config, p->phy.caps);
  3466. p->phy.ops->power_down(&p->phy, 1);
  3467. /*
  3468. * If the PHY doesn't support interrupts for link status
  3469. * changes, schedule a scan of the adapter links at least
  3470. * once a second.
  3471. */
  3472. if (!(p->phy.caps & SUPPORTED_IRQ) &&
  3473. adapter->params.linkpoll_period > 10)
  3474. adapter->params.linkpoll_period = 10;
  3475. }
  3476. return 0;
  3477. }
  3478. void t3_led_ready(struct adapter *adapter)
  3479. {
  3480. t3_set_reg_field(adapter, A_T3DBG_GPIO_EN, F_GPIO0_OUT_VAL,
  3481. F_GPIO0_OUT_VAL);
  3482. }
  3483. int t3_replay_prep_adapter(struct adapter *adapter)
  3484. {
  3485. const struct adapter_info *ai = adapter->params.info;
  3486. unsigned int i, j = -1;
  3487. int ret;
  3488. early_hw_init(adapter, ai);
  3489. ret = init_parity(adapter);
  3490. if (ret)
  3491. return ret;
  3492. for_each_port(adapter, i) {
  3493. const struct port_type_info *pti;
  3494. struct port_info *p = adap2pinfo(adapter, i);
  3495. while (!adapter->params.vpd.port_type[++j])
  3496. ;
  3497. pti = &port_types[adapter->params.vpd.port_type[j]];
  3498. ret = pti->phy_prep(&p->phy, adapter, p->phy.mdio.prtad, NULL);
  3499. if (ret)
  3500. return ret;
  3501. p->phy.ops->power_down(&p->phy, 1);
  3502. }
  3503. return 0;
  3504. }