bnx2fc_io.c 53 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989
  1. /* bnx2fc_io.c: Broadcom NetXtreme II Linux FCoE offload driver.
  2. * IO manager and SCSI IO processing.
  3. *
  4. * Copyright (c) 2008 - 2010 Broadcom Corporation
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License as published by
  8. * the Free Software Foundation.
  9. *
  10. * Written by: Bhanu Prakash Gollapudi (bprakash@broadcom.com)
  11. */
  12. #include "bnx2fc.h"
  13. #define RESERVE_FREE_LIST_INDEX num_possible_cpus()
  14. static int bnx2fc_split_bd(struct bnx2fc_cmd *io_req, u64 addr, int sg_len,
  15. int bd_index);
  16. static int bnx2fc_map_sg(struct bnx2fc_cmd *io_req);
  17. static void bnx2fc_build_bd_list_from_sg(struct bnx2fc_cmd *io_req);
  18. static void bnx2fc_unmap_sg_list(struct bnx2fc_cmd *io_req);
  19. static void bnx2fc_free_mp_resc(struct bnx2fc_cmd *io_req);
  20. static void bnx2fc_parse_fcp_rsp(struct bnx2fc_cmd *io_req,
  21. struct fcoe_fcp_rsp_payload *fcp_rsp,
  22. u8 num_rq);
  23. void bnx2fc_cmd_timer_set(struct bnx2fc_cmd *io_req,
  24. unsigned int timer_msec)
  25. {
  26. struct bnx2fc_interface *interface = io_req->port->priv;
  27. if (queue_delayed_work(interface->timer_work_queue,
  28. &io_req->timeout_work,
  29. msecs_to_jiffies(timer_msec)))
  30. kref_get(&io_req->refcount);
  31. }
  32. static void bnx2fc_cmd_timeout(struct work_struct *work)
  33. {
  34. struct bnx2fc_cmd *io_req = container_of(work, struct bnx2fc_cmd,
  35. timeout_work.work);
  36. struct fc_lport *lport;
  37. struct fc_rport_priv *rdata;
  38. u8 cmd_type = io_req->cmd_type;
  39. struct bnx2fc_rport *tgt = io_req->tgt;
  40. int logo_issued;
  41. int rc;
  42. BNX2FC_IO_DBG(io_req, "cmd_timeout, cmd_type = %d,"
  43. "req_flags = %lx\n", cmd_type, io_req->req_flags);
  44. spin_lock_bh(&tgt->tgt_lock);
  45. if (test_and_clear_bit(BNX2FC_FLAG_ISSUE_RRQ, &io_req->req_flags)) {
  46. clear_bit(BNX2FC_FLAG_RETIRE_OXID, &io_req->req_flags);
  47. /*
  48. * ideally we should hold the io_req until RRQ complets,
  49. * and release io_req from timeout hold.
  50. */
  51. spin_unlock_bh(&tgt->tgt_lock);
  52. bnx2fc_send_rrq(io_req);
  53. return;
  54. }
  55. if (test_and_clear_bit(BNX2FC_FLAG_RETIRE_OXID, &io_req->req_flags)) {
  56. BNX2FC_IO_DBG(io_req, "IO ready for reuse now\n");
  57. goto done;
  58. }
  59. switch (cmd_type) {
  60. case BNX2FC_SCSI_CMD:
  61. if (test_and_clear_bit(BNX2FC_FLAG_EH_ABORT,
  62. &io_req->req_flags)) {
  63. /* Handle eh_abort timeout */
  64. BNX2FC_IO_DBG(io_req, "eh_abort timed out\n");
  65. complete(&io_req->tm_done);
  66. } else if (test_bit(BNX2FC_FLAG_ISSUE_ABTS,
  67. &io_req->req_flags)) {
  68. /* Handle internally generated ABTS timeout */
  69. BNX2FC_IO_DBG(io_req, "ABTS timed out refcnt = %d\n",
  70. io_req->refcount.refcount.counter);
  71. if (!(test_and_set_bit(BNX2FC_FLAG_ABTS_DONE,
  72. &io_req->req_flags))) {
  73. lport = io_req->port->lport;
  74. rdata = io_req->tgt->rdata;
  75. logo_issued = test_and_set_bit(
  76. BNX2FC_FLAG_EXPL_LOGO,
  77. &tgt->flags);
  78. kref_put(&io_req->refcount, bnx2fc_cmd_release);
  79. spin_unlock_bh(&tgt->tgt_lock);
  80. /* Explicitly logo the target */
  81. if (!logo_issued) {
  82. BNX2FC_IO_DBG(io_req, "Explicit "
  83. "logo - tgt flags = 0x%lx\n",
  84. tgt->flags);
  85. mutex_lock(&lport->disc.disc_mutex);
  86. lport->tt.rport_logoff(rdata);
  87. mutex_unlock(&lport->disc.disc_mutex);
  88. }
  89. return;
  90. }
  91. } else {
  92. /* Hanlde IO timeout */
  93. BNX2FC_IO_DBG(io_req, "IO timed out. issue ABTS\n");
  94. if (test_and_set_bit(BNX2FC_FLAG_IO_COMPL,
  95. &io_req->req_flags)) {
  96. BNX2FC_IO_DBG(io_req, "IO completed before "
  97. " timer expiry\n");
  98. goto done;
  99. }
  100. if (!test_and_set_bit(BNX2FC_FLAG_ISSUE_ABTS,
  101. &io_req->req_flags)) {
  102. rc = bnx2fc_initiate_abts(io_req);
  103. if (rc == SUCCESS)
  104. goto done;
  105. /*
  106. * Explicitly logo the target if
  107. * abts initiation fails
  108. */
  109. lport = io_req->port->lport;
  110. rdata = io_req->tgt->rdata;
  111. logo_issued = test_and_set_bit(
  112. BNX2FC_FLAG_EXPL_LOGO,
  113. &tgt->flags);
  114. kref_put(&io_req->refcount, bnx2fc_cmd_release);
  115. spin_unlock_bh(&tgt->tgt_lock);
  116. if (!logo_issued) {
  117. BNX2FC_IO_DBG(io_req, "Explicit "
  118. "logo - tgt flags = 0x%lx\n",
  119. tgt->flags);
  120. mutex_lock(&lport->disc.disc_mutex);
  121. lport->tt.rport_logoff(rdata);
  122. mutex_unlock(&lport->disc.disc_mutex);
  123. }
  124. return;
  125. } else {
  126. BNX2FC_IO_DBG(io_req, "IO already in "
  127. "ABTS processing\n");
  128. }
  129. }
  130. break;
  131. case BNX2FC_ELS:
  132. if (test_bit(BNX2FC_FLAG_ISSUE_ABTS, &io_req->req_flags)) {
  133. BNX2FC_IO_DBG(io_req, "ABTS for ELS timed out\n");
  134. if (!test_and_set_bit(BNX2FC_FLAG_ABTS_DONE,
  135. &io_req->req_flags)) {
  136. lport = io_req->port->lport;
  137. rdata = io_req->tgt->rdata;
  138. logo_issued = test_and_set_bit(
  139. BNX2FC_FLAG_EXPL_LOGO,
  140. &tgt->flags);
  141. kref_put(&io_req->refcount, bnx2fc_cmd_release);
  142. spin_unlock_bh(&tgt->tgt_lock);
  143. /* Explicitly logo the target */
  144. if (!logo_issued) {
  145. BNX2FC_IO_DBG(io_req, "Explicitly logo"
  146. "(els)\n");
  147. mutex_lock(&lport->disc.disc_mutex);
  148. lport->tt.rport_logoff(rdata);
  149. mutex_unlock(&lport->disc.disc_mutex);
  150. }
  151. return;
  152. }
  153. } else {
  154. /*
  155. * Handle ELS timeout.
  156. * tgt_lock is used to sync compl path and timeout
  157. * path. If els compl path is processing this IO, we
  158. * have nothing to do here, just release the timer hold
  159. */
  160. BNX2FC_IO_DBG(io_req, "ELS timed out\n");
  161. if (test_and_set_bit(BNX2FC_FLAG_ELS_DONE,
  162. &io_req->req_flags))
  163. goto done;
  164. /* Indicate the cb_func that this ELS is timed out */
  165. set_bit(BNX2FC_FLAG_ELS_TIMEOUT, &io_req->req_flags);
  166. if ((io_req->cb_func) && (io_req->cb_arg)) {
  167. io_req->cb_func(io_req->cb_arg);
  168. io_req->cb_arg = NULL;
  169. }
  170. }
  171. break;
  172. default:
  173. printk(KERN_ERR PFX "cmd_timeout: invalid cmd_type %d\n",
  174. cmd_type);
  175. break;
  176. }
  177. done:
  178. /* release the cmd that was held when timer was set */
  179. kref_put(&io_req->refcount, bnx2fc_cmd_release);
  180. spin_unlock_bh(&tgt->tgt_lock);
  181. }
  182. static void bnx2fc_scsi_done(struct bnx2fc_cmd *io_req, int err_code)
  183. {
  184. /* Called with host lock held */
  185. struct scsi_cmnd *sc_cmd = io_req->sc_cmd;
  186. /*
  187. * active_cmd_queue may have other command types as well,
  188. * and during flush operation, we want to error back only
  189. * scsi commands.
  190. */
  191. if (io_req->cmd_type != BNX2FC_SCSI_CMD)
  192. return;
  193. BNX2FC_IO_DBG(io_req, "scsi_done. err_code = 0x%x\n", err_code);
  194. if (test_bit(BNX2FC_FLAG_CMD_LOST, &io_req->req_flags)) {
  195. /* Do not call scsi done for this IO */
  196. return;
  197. }
  198. bnx2fc_unmap_sg_list(io_req);
  199. io_req->sc_cmd = NULL;
  200. if (!sc_cmd) {
  201. printk(KERN_ERR PFX "scsi_done - sc_cmd NULL. "
  202. "IO(0x%x) already cleaned up\n",
  203. io_req->xid);
  204. return;
  205. }
  206. sc_cmd->result = err_code << 16;
  207. BNX2FC_IO_DBG(io_req, "sc=%p, result=0x%x, retries=%d, allowed=%d\n",
  208. sc_cmd, host_byte(sc_cmd->result), sc_cmd->retries,
  209. sc_cmd->allowed);
  210. scsi_set_resid(sc_cmd, scsi_bufflen(sc_cmd));
  211. sc_cmd->SCp.ptr = NULL;
  212. sc_cmd->scsi_done(sc_cmd);
  213. }
  214. struct bnx2fc_cmd_mgr *bnx2fc_cmd_mgr_alloc(struct bnx2fc_hba *hba,
  215. u16 min_xid, u16 max_xid)
  216. {
  217. struct bnx2fc_cmd_mgr *cmgr;
  218. struct io_bdt *bdt_info;
  219. struct bnx2fc_cmd *io_req;
  220. size_t len;
  221. u32 mem_size;
  222. u16 xid;
  223. int i;
  224. int num_ios, num_pri_ios;
  225. size_t bd_tbl_sz;
  226. int arr_sz = num_possible_cpus() + 1;
  227. if (max_xid <= min_xid || max_xid == FC_XID_UNKNOWN) {
  228. printk(KERN_ERR PFX "cmd_mgr_alloc: Invalid min_xid 0x%x \
  229. and max_xid 0x%x\n", min_xid, max_xid);
  230. return NULL;
  231. }
  232. BNX2FC_MISC_DBG("min xid 0x%x, max xid 0x%x\n", min_xid, max_xid);
  233. num_ios = max_xid - min_xid + 1;
  234. len = (num_ios * (sizeof(struct bnx2fc_cmd *)));
  235. len += sizeof(struct bnx2fc_cmd_mgr);
  236. cmgr = kzalloc(len, GFP_KERNEL);
  237. if (!cmgr) {
  238. printk(KERN_ERR PFX "failed to alloc cmgr\n");
  239. return NULL;
  240. }
  241. cmgr->free_list = kzalloc(sizeof(*cmgr->free_list) *
  242. arr_sz, GFP_KERNEL);
  243. if (!cmgr->free_list) {
  244. printk(KERN_ERR PFX "failed to alloc free_list\n");
  245. goto mem_err;
  246. }
  247. cmgr->free_list_lock = kzalloc(sizeof(*cmgr->free_list_lock) *
  248. arr_sz, GFP_KERNEL);
  249. if (!cmgr->free_list_lock) {
  250. printk(KERN_ERR PFX "failed to alloc free_list_lock\n");
  251. goto mem_err;
  252. }
  253. cmgr->hba = hba;
  254. cmgr->cmds = (struct bnx2fc_cmd **)(cmgr + 1);
  255. for (i = 0; i < arr_sz; i++) {
  256. INIT_LIST_HEAD(&cmgr->free_list[i]);
  257. spin_lock_init(&cmgr->free_list_lock[i]);
  258. }
  259. /*
  260. * Pre-allocated pool of bnx2fc_cmds.
  261. * Last entry in the free list array is the free list
  262. * of slow path requests.
  263. */
  264. xid = BNX2FC_MIN_XID;
  265. num_pri_ios = num_ios - BNX2FC_ELSTM_XIDS;
  266. for (i = 0; i < num_ios; i++) {
  267. io_req = kzalloc(sizeof(*io_req), GFP_KERNEL);
  268. if (!io_req) {
  269. printk(KERN_ERR PFX "failed to alloc io_req\n");
  270. goto mem_err;
  271. }
  272. INIT_LIST_HEAD(&io_req->link);
  273. INIT_DELAYED_WORK(&io_req->timeout_work, bnx2fc_cmd_timeout);
  274. io_req->xid = xid++;
  275. if (i < num_pri_ios)
  276. list_add_tail(&io_req->link,
  277. &cmgr->free_list[io_req->xid %
  278. num_possible_cpus()]);
  279. else
  280. list_add_tail(&io_req->link,
  281. &cmgr->free_list[num_possible_cpus()]);
  282. io_req++;
  283. }
  284. /* Allocate pool of io_bdts - one for each bnx2fc_cmd */
  285. mem_size = num_ios * sizeof(struct io_bdt *);
  286. cmgr->io_bdt_pool = kmalloc(mem_size, GFP_KERNEL);
  287. if (!cmgr->io_bdt_pool) {
  288. printk(KERN_ERR PFX "failed to alloc io_bdt_pool\n");
  289. goto mem_err;
  290. }
  291. mem_size = sizeof(struct io_bdt);
  292. for (i = 0; i < num_ios; i++) {
  293. cmgr->io_bdt_pool[i] = kmalloc(mem_size, GFP_KERNEL);
  294. if (!cmgr->io_bdt_pool[i]) {
  295. printk(KERN_ERR PFX "failed to alloc "
  296. "io_bdt_pool[%d]\n", i);
  297. goto mem_err;
  298. }
  299. }
  300. /* Allocate an map fcoe_bdt_ctx structures */
  301. bd_tbl_sz = BNX2FC_MAX_BDS_PER_CMD * sizeof(struct fcoe_bd_ctx);
  302. for (i = 0; i < num_ios; i++) {
  303. bdt_info = cmgr->io_bdt_pool[i];
  304. bdt_info->bd_tbl = dma_alloc_coherent(&hba->pcidev->dev,
  305. bd_tbl_sz,
  306. &bdt_info->bd_tbl_dma,
  307. GFP_KERNEL);
  308. if (!bdt_info->bd_tbl) {
  309. printk(KERN_ERR PFX "failed to alloc "
  310. "bdt_tbl[%d]\n", i);
  311. goto mem_err;
  312. }
  313. }
  314. return cmgr;
  315. mem_err:
  316. bnx2fc_cmd_mgr_free(cmgr);
  317. return NULL;
  318. }
  319. void bnx2fc_cmd_mgr_free(struct bnx2fc_cmd_mgr *cmgr)
  320. {
  321. struct io_bdt *bdt_info;
  322. struct bnx2fc_hba *hba = cmgr->hba;
  323. size_t bd_tbl_sz;
  324. u16 min_xid = BNX2FC_MIN_XID;
  325. u16 max_xid = BNX2FC_MAX_XID;
  326. int num_ios;
  327. int i;
  328. num_ios = max_xid - min_xid + 1;
  329. /* Free fcoe_bdt_ctx structures */
  330. if (!cmgr->io_bdt_pool)
  331. goto free_cmd_pool;
  332. bd_tbl_sz = BNX2FC_MAX_BDS_PER_CMD * sizeof(struct fcoe_bd_ctx);
  333. for (i = 0; i < num_ios; i++) {
  334. bdt_info = cmgr->io_bdt_pool[i];
  335. if (bdt_info->bd_tbl) {
  336. dma_free_coherent(&hba->pcidev->dev, bd_tbl_sz,
  337. bdt_info->bd_tbl,
  338. bdt_info->bd_tbl_dma);
  339. bdt_info->bd_tbl = NULL;
  340. }
  341. }
  342. /* Destroy io_bdt pool */
  343. for (i = 0; i < num_ios; i++) {
  344. kfree(cmgr->io_bdt_pool[i]);
  345. cmgr->io_bdt_pool[i] = NULL;
  346. }
  347. kfree(cmgr->io_bdt_pool);
  348. cmgr->io_bdt_pool = NULL;
  349. free_cmd_pool:
  350. kfree(cmgr->free_list_lock);
  351. /* Destroy cmd pool */
  352. if (!cmgr->free_list)
  353. goto free_cmgr;
  354. for (i = 0; i < num_possible_cpus() + 1; i++) {
  355. struct list_head *list;
  356. struct list_head *tmp;
  357. list_for_each_safe(list, tmp, &cmgr->free_list[i]) {
  358. struct bnx2fc_cmd *io_req = (struct bnx2fc_cmd *)list;
  359. list_del(&io_req->link);
  360. kfree(io_req);
  361. }
  362. }
  363. kfree(cmgr->free_list);
  364. free_cmgr:
  365. /* Free command manager itself */
  366. kfree(cmgr);
  367. }
  368. struct bnx2fc_cmd *bnx2fc_elstm_alloc(struct bnx2fc_rport *tgt, int type)
  369. {
  370. struct fcoe_port *port = tgt->port;
  371. struct bnx2fc_interface *interface = port->priv;
  372. struct bnx2fc_cmd_mgr *cmd_mgr = interface->hba->cmd_mgr;
  373. struct bnx2fc_cmd *io_req;
  374. struct list_head *listp;
  375. struct io_bdt *bd_tbl;
  376. int index = RESERVE_FREE_LIST_INDEX;
  377. u32 free_sqes;
  378. u32 max_sqes;
  379. u16 xid;
  380. max_sqes = tgt->max_sqes;
  381. switch (type) {
  382. case BNX2FC_TASK_MGMT_CMD:
  383. max_sqes = BNX2FC_TM_MAX_SQES;
  384. break;
  385. case BNX2FC_ELS:
  386. max_sqes = BNX2FC_ELS_MAX_SQES;
  387. break;
  388. default:
  389. break;
  390. }
  391. /*
  392. * NOTE: Free list insertions and deletions are protected with
  393. * cmgr lock
  394. */
  395. spin_lock_bh(&cmd_mgr->free_list_lock[index]);
  396. free_sqes = atomic_read(&tgt->free_sqes);
  397. if ((list_empty(&(cmd_mgr->free_list[index]))) ||
  398. (tgt->num_active_ios.counter >= max_sqes) ||
  399. (free_sqes + max_sqes <= BNX2FC_SQ_WQES_MAX)) {
  400. BNX2FC_TGT_DBG(tgt, "No free els_tm cmds available "
  401. "ios(%d):sqes(%d)\n",
  402. tgt->num_active_ios.counter, tgt->max_sqes);
  403. if (list_empty(&(cmd_mgr->free_list[index])))
  404. printk(KERN_ERR PFX "elstm_alloc: list_empty\n");
  405. spin_unlock_bh(&cmd_mgr->free_list_lock[index]);
  406. return NULL;
  407. }
  408. listp = (struct list_head *)
  409. cmd_mgr->free_list[index].next;
  410. list_del_init(listp);
  411. io_req = (struct bnx2fc_cmd *) listp;
  412. xid = io_req->xid;
  413. cmd_mgr->cmds[xid] = io_req;
  414. atomic_inc(&tgt->num_active_ios);
  415. atomic_dec(&tgt->free_sqes);
  416. spin_unlock_bh(&cmd_mgr->free_list_lock[index]);
  417. INIT_LIST_HEAD(&io_req->link);
  418. io_req->port = port;
  419. io_req->cmd_mgr = cmd_mgr;
  420. io_req->req_flags = 0;
  421. io_req->cmd_type = type;
  422. /* Bind io_bdt for this io_req */
  423. /* Have a static link between io_req and io_bdt_pool */
  424. bd_tbl = io_req->bd_tbl = cmd_mgr->io_bdt_pool[xid];
  425. bd_tbl->io_req = io_req;
  426. /* Hold the io_req against deletion */
  427. kref_init(&io_req->refcount);
  428. return io_req;
  429. }
  430. struct bnx2fc_cmd *bnx2fc_cmd_alloc(struct bnx2fc_rport *tgt)
  431. {
  432. struct fcoe_port *port = tgt->port;
  433. struct bnx2fc_interface *interface = port->priv;
  434. struct bnx2fc_cmd_mgr *cmd_mgr = interface->hba->cmd_mgr;
  435. struct bnx2fc_cmd *io_req;
  436. struct list_head *listp;
  437. struct io_bdt *bd_tbl;
  438. u32 free_sqes;
  439. u32 max_sqes;
  440. u16 xid;
  441. int index = get_cpu();
  442. max_sqes = BNX2FC_SCSI_MAX_SQES;
  443. /*
  444. * NOTE: Free list insertions and deletions are protected with
  445. * cmgr lock
  446. */
  447. spin_lock_bh(&cmd_mgr->free_list_lock[index]);
  448. free_sqes = atomic_read(&tgt->free_sqes);
  449. if ((list_empty(&cmd_mgr->free_list[index])) ||
  450. (tgt->num_active_ios.counter >= max_sqes) ||
  451. (free_sqes + max_sqes <= BNX2FC_SQ_WQES_MAX)) {
  452. spin_unlock_bh(&cmd_mgr->free_list_lock[index]);
  453. put_cpu();
  454. return NULL;
  455. }
  456. listp = (struct list_head *)
  457. cmd_mgr->free_list[index].next;
  458. list_del_init(listp);
  459. io_req = (struct bnx2fc_cmd *) listp;
  460. xid = io_req->xid;
  461. cmd_mgr->cmds[xid] = io_req;
  462. atomic_inc(&tgt->num_active_ios);
  463. atomic_dec(&tgt->free_sqes);
  464. spin_unlock_bh(&cmd_mgr->free_list_lock[index]);
  465. put_cpu();
  466. INIT_LIST_HEAD(&io_req->link);
  467. io_req->port = port;
  468. io_req->cmd_mgr = cmd_mgr;
  469. io_req->req_flags = 0;
  470. /* Bind io_bdt for this io_req */
  471. /* Have a static link between io_req and io_bdt_pool */
  472. bd_tbl = io_req->bd_tbl = cmd_mgr->io_bdt_pool[xid];
  473. bd_tbl->io_req = io_req;
  474. /* Hold the io_req against deletion */
  475. kref_init(&io_req->refcount);
  476. return io_req;
  477. }
  478. void bnx2fc_cmd_release(struct kref *ref)
  479. {
  480. struct bnx2fc_cmd *io_req = container_of(ref,
  481. struct bnx2fc_cmd, refcount);
  482. struct bnx2fc_cmd_mgr *cmd_mgr = io_req->cmd_mgr;
  483. int index;
  484. if (io_req->cmd_type == BNX2FC_SCSI_CMD)
  485. index = io_req->xid % num_possible_cpus();
  486. else
  487. index = RESERVE_FREE_LIST_INDEX;
  488. spin_lock_bh(&cmd_mgr->free_list_lock[index]);
  489. if (io_req->cmd_type != BNX2FC_SCSI_CMD)
  490. bnx2fc_free_mp_resc(io_req);
  491. cmd_mgr->cmds[io_req->xid] = NULL;
  492. /* Delete IO from retire queue */
  493. list_del_init(&io_req->link);
  494. /* Add it to the free list */
  495. list_add(&io_req->link,
  496. &cmd_mgr->free_list[index]);
  497. atomic_dec(&io_req->tgt->num_active_ios);
  498. spin_unlock_bh(&cmd_mgr->free_list_lock[index]);
  499. }
  500. static void bnx2fc_free_mp_resc(struct bnx2fc_cmd *io_req)
  501. {
  502. struct bnx2fc_mp_req *mp_req = &(io_req->mp_req);
  503. struct bnx2fc_interface *interface = io_req->port->priv;
  504. struct bnx2fc_hba *hba = interface->hba;
  505. size_t sz = sizeof(struct fcoe_bd_ctx);
  506. /* clear tm flags */
  507. mp_req->tm_flags = 0;
  508. if (mp_req->mp_req_bd) {
  509. dma_free_coherent(&hba->pcidev->dev, sz,
  510. mp_req->mp_req_bd,
  511. mp_req->mp_req_bd_dma);
  512. mp_req->mp_req_bd = NULL;
  513. }
  514. if (mp_req->mp_resp_bd) {
  515. dma_free_coherent(&hba->pcidev->dev, sz,
  516. mp_req->mp_resp_bd,
  517. mp_req->mp_resp_bd_dma);
  518. mp_req->mp_resp_bd = NULL;
  519. }
  520. if (mp_req->req_buf) {
  521. dma_free_coherent(&hba->pcidev->dev, PAGE_SIZE,
  522. mp_req->req_buf,
  523. mp_req->req_buf_dma);
  524. mp_req->req_buf = NULL;
  525. }
  526. if (mp_req->resp_buf) {
  527. dma_free_coherent(&hba->pcidev->dev, PAGE_SIZE,
  528. mp_req->resp_buf,
  529. mp_req->resp_buf_dma);
  530. mp_req->resp_buf = NULL;
  531. }
  532. }
  533. int bnx2fc_init_mp_req(struct bnx2fc_cmd *io_req)
  534. {
  535. struct bnx2fc_mp_req *mp_req;
  536. struct fcoe_bd_ctx *mp_req_bd;
  537. struct fcoe_bd_ctx *mp_resp_bd;
  538. struct bnx2fc_interface *interface = io_req->port->priv;
  539. struct bnx2fc_hba *hba = interface->hba;
  540. dma_addr_t addr;
  541. size_t sz;
  542. mp_req = (struct bnx2fc_mp_req *)&(io_req->mp_req);
  543. memset(mp_req, 0, sizeof(struct bnx2fc_mp_req));
  544. mp_req->req_len = sizeof(struct fcp_cmnd);
  545. io_req->data_xfer_len = mp_req->req_len;
  546. mp_req->req_buf = dma_alloc_coherent(&hba->pcidev->dev, PAGE_SIZE,
  547. &mp_req->req_buf_dma,
  548. GFP_ATOMIC);
  549. if (!mp_req->req_buf) {
  550. printk(KERN_ERR PFX "unable to alloc MP req buffer\n");
  551. bnx2fc_free_mp_resc(io_req);
  552. return FAILED;
  553. }
  554. mp_req->resp_buf = dma_alloc_coherent(&hba->pcidev->dev, PAGE_SIZE,
  555. &mp_req->resp_buf_dma,
  556. GFP_ATOMIC);
  557. if (!mp_req->resp_buf) {
  558. printk(KERN_ERR PFX "unable to alloc TM resp buffer\n");
  559. bnx2fc_free_mp_resc(io_req);
  560. return FAILED;
  561. }
  562. memset(mp_req->req_buf, 0, PAGE_SIZE);
  563. memset(mp_req->resp_buf, 0, PAGE_SIZE);
  564. /* Allocate and map mp_req_bd and mp_resp_bd */
  565. sz = sizeof(struct fcoe_bd_ctx);
  566. mp_req->mp_req_bd = dma_alloc_coherent(&hba->pcidev->dev, sz,
  567. &mp_req->mp_req_bd_dma,
  568. GFP_ATOMIC);
  569. if (!mp_req->mp_req_bd) {
  570. printk(KERN_ERR PFX "unable to alloc MP req bd\n");
  571. bnx2fc_free_mp_resc(io_req);
  572. return FAILED;
  573. }
  574. mp_req->mp_resp_bd = dma_alloc_coherent(&hba->pcidev->dev, sz,
  575. &mp_req->mp_resp_bd_dma,
  576. GFP_ATOMIC);
  577. if (!mp_req->mp_req_bd) {
  578. printk(KERN_ERR PFX "unable to alloc MP resp bd\n");
  579. bnx2fc_free_mp_resc(io_req);
  580. return FAILED;
  581. }
  582. /* Fill bd table */
  583. addr = mp_req->req_buf_dma;
  584. mp_req_bd = mp_req->mp_req_bd;
  585. mp_req_bd->buf_addr_lo = (u32)addr & 0xffffffff;
  586. mp_req_bd->buf_addr_hi = (u32)((u64)addr >> 32);
  587. mp_req_bd->buf_len = PAGE_SIZE;
  588. mp_req_bd->flags = 0;
  589. /*
  590. * MP buffer is either a task mgmt command or an ELS.
  591. * So the assumption is that it consumes a single bd
  592. * entry in the bd table
  593. */
  594. mp_resp_bd = mp_req->mp_resp_bd;
  595. addr = mp_req->resp_buf_dma;
  596. mp_resp_bd->buf_addr_lo = (u32)addr & 0xffffffff;
  597. mp_resp_bd->buf_addr_hi = (u32)((u64)addr >> 32);
  598. mp_resp_bd->buf_len = PAGE_SIZE;
  599. mp_resp_bd->flags = 0;
  600. return SUCCESS;
  601. }
  602. static int bnx2fc_initiate_tmf(struct scsi_cmnd *sc_cmd, u8 tm_flags)
  603. {
  604. struct fc_lport *lport;
  605. struct fc_rport *rport = starget_to_rport(scsi_target(sc_cmd->device));
  606. struct fc_rport_libfc_priv *rp = rport->dd_data;
  607. struct fcoe_port *port;
  608. struct bnx2fc_interface *interface;
  609. struct bnx2fc_rport *tgt;
  610. struct bnx2fc_cmd *io_req;
  611. struct bnx2fc_mp_req *tm_req;
  612. struct fcoe_task_ctx_entry *task;
  613. struct fcoe_task_ctx_entry *task_page;
  614. struct Scsi_Host *host = sc_cmd->device->host;
  615. struct fc_frame_header *fc_hdr;
  616. struct fcp_cmnd *fcp_cmnd;
  617. int task_idx, index;
  618. int rc = SUCCESS;
  619. u16 xid;
  620. u32 sid, did;
  621. unsigned long start = jiffies;
  622. lport = shost_priv(host);
  623. port = lport_priv(lport);
  624. interface = port->priv;
  625. if (rport == NULL) {
  626. printk(KERN_ERR PFX "device_reset: rport is NULL\n");
  627. rc = FAILED;
  628. goto tmf_err;
  629. }
  630. rc = fc_block_scsi_eh(sc_cmd);
  631. if (rc)
  632. return rc;
  633. if (lport->state != LPORT_ST_READY || !(lport->link_up)) {
  634. printk(KERN_ERR PFX "device_reset: link is not ready\n");
  635. rc = FAILED;
  636. goto tmf_err;
  637. }
  638. /* rport and tgt are allocated together, so tgt should be non-NULL */
  639. tgt = (struct bnx2fc_rport *)&rp[1];
  640. if (!(test_bit(BNX2FC_FLAG_SESSION_READY, &tgt->flags))) {
  641. printk(KERN_ERR PFX "device_reset: tgt not offloaded\n");
  642. rc = FAILED;
  643. goto tmf_err;
  644. }
  645. retry_tmf:
  646. io_req = bnx2fc_elstm_alloc(tgt, BNX2FC_TASK_MGMT_CMD);
  647. if (!io_req) {
  648. if (time_after(jiffies, start + HZ)) {
  649. printk(KERN_ERR PFX "tmf: Failed TMF");
  650. rc = FAILED;
  651. goto tmf_err;
  652. }
  653. msleep(20);
  654. goto retry_tmf;
  655. }
  656. /* Initialize rest of io_req fields */
  657. io_req->sc_cmd = sc_cmd;
  658. io_req->port = port;
  659. io_req->tgt = tgt;
  660. tm_req = (struct bnx2fc_mp_req *)&(io_req->mp_req);
  661. rc = bnx2fc_init_mp_req(io_req);
  662. if (rc == FAILED) {
  663. printk(KERN_ERR PFX "Task mgmt MP request init failed\n");
  664. kref_put(&io_req->refcount, bnx2fc_cmd_release);
  665. goto tmf_err;
  666. }
  667. /* Set TM flags */
  668. io_req->io_req_flags = 0;
  669. tm_req->tm_flags = tm_flags;
  670. /* Fill FCP_CMND */
  671. bnx2fc_build_fcp_cmnd(io_req, (struct fcp_cmnd *)tm_req->req_buf);
  672. fcp_cmnd = (struct fcp_cmnd *)tm_req->req_buf;
  673. memset(fcp_cmnd->fc_cdb, 0, sc_cmd->cmd_len);
  674. fcp_cmnd->fc_dl = 0;
  675. /* Fill FC header */
  676. fc_hdr = &(tm_req->req_fc_hdr);
  677. sid = tgt->sid;
  678. did = rport->port_id;
  679. __fc_fill_fc_hdr(fc_hdr, FC_RCTL_DD_UNSOL_CMD, did, sid,
  680. FC_TYPE_FCP, FC_FC_FIRST_SEQ | FC_FC_END_SEQ |
  681. FC_FC_SEQ_INIT, 0);
  682. /* Obtain exchange id */
  683. xid = io_req->xid;
  684. BNX2FC_TGT_DBG(tgt, "Initiate TMF - xid = 0x%x\n", xid);
  685. task_idx = xid/BNX2FC_TASKS_PER_PAGE;
  686. index = xid % BNX2FC_TASKS_PER_PAGE;
  687. /* Initialize task context for this IO request */
  688. task_page = (struct fcoe_task_ctx_entry *)
  689. interface->hba->task_ctx[task_idx];
  690. task = &(task_page[index]);
  691. bnx2fc_init_mp_task(io_req, task);
  692. sc_cmd->SCp.ptr = (char *)io_req;
  693. /* Obtain free SQ entry */
  694. spin_lock_bh(&tgt->tgt_lock);
  695. bnx2fc_add_2_sq(tgt, xid);
  696. /* Enqueue the io_req to active_tm_queue */
  697. io_req->on_tmf_queue = 1;
  698. list_add_tail(&io_req->link, &tgt->active_tm_queue);
  699. init_completion(&io_req->tm_done);
  700. io_req->wait_for_comp = 1;
  701. /* Ring doorbell */
  702. bnx2fc_ring_doorbell(tgt);
  703. spin_unlock_bh(&tgt->tgt_lock);
  704. rc = wait_for_completion_timeout(&io_req->tm_done,
  705. BNX2FC_TM_TIMEOUT * HZ);
  706. spin_lock_bh(&tgt->tgt_lock);
  707. io_req->wait_for_comp = 0;
  708. if (!(test_bit(BNX2FC_FLAG_TM_COMPL, &io_req->req_flags)))
  709. set_bit(BNX2FC_FLAG_TM_TIMEOUT, &io_req->req_flags);
  710. spin_unlock_bh(&tgt->tgt_lock);
  711. if (!rc) {
  712. BNX2FC_TGT_DBG(tgt, "task mgmt command failed...\n");
  713. rc = FAILED;
  714. } else {
  715. BNX2FC_TGT_DBG(tgt, "task mgmt command success...\n");
  716. rc = SUCCESS;
  717. }
  718. tmf_err:
  719. return rc;
  720. }
  721. int bnx2fc_initiate_abts(struct bnx2fc_cmd *io_req)
  722. {
  723. struct fc_lport *lport;
  724. struct bnx2fc_rport *tgt = io_req->tgt;
  725. struct fc_rport *rport = tgt->rport;
  726. struct fc_rport_priv *rdata = tgt->rdata;
  727. struct bnx2fc_interface *interface;
  728. struct fcoe_port *port;
  729. struct bnx2fc_cmd *abts_io_req;
  730. struct fcoe_task_ctx_entry *task;
  731. struct fcoe_task_ctx_entry *task_page;
  732. struct fc_frame_header *fc_hdr;
  733. struct bnx2fc_mp_req *abts_req;
  734. int task_idx, index;
  735. u32 sid, did;
  736. u16 xid;
  737. int rc = SUCCESS;
  738. u32 r_a_tov = rdata->r_a_tov;
  739. /* called with tgt_lock held */
  740. BNX2FC_IO_DBG(io_req, "Entered bnx2fc_initiate_abts\n");
  741. port = io_req->port;
  742. interface = port->priv;
  743. lport = port->lport;
  744. if (!test_bit(BNX2FC_FLAG_SESSION_READY, &tgt->flags)) {
  745. printk(KERN_ERR PFX "initiate_abts: tgt not offloaded\n");
  746. rc = FAILED;
  747. goto abts_err;
  748. }
  749. if (rport == NULL) {
  750. printk(KERN_ERR PFX "initiate_abts: rport is NULL\n");
  751. rc = FAILED;
  752. goto abts_err;
  753. }
  754. if (lport->state != LPORT_ST_READY || !(lport->link_up)) {
  755. printk(KERN_ERR PFX "initiate_abts: link is not ready\n");
  756. rc = FAILED;
  757. goto abts_err;
  758. }
  759. abts_io_req = bnx2fc_elstm_alloc(tgt, BNX2FC_ABTS);
  760. if (!abts_io_req) {
  761. printk(KERN_ERR PFX "abts: couldnt allocate cmd\n");
  762. rc = FAILED;
  763. goto abts_err;
  764. }
  765. /* Initialize rest of io_req fields */
  766. abts_io_req->sc_cmd = NULL;
  767. abts_io_req->port = port;
  768. abts_io_req->tgt = tgt;
  769. abts_io_req->data_xfer_len = 0; /* No data transfer for ABTS */
  770. abts_req = (struct bnx2fc_mp_req *)&(abts_io_req->mp_req);
  771. memset(abts_req, 0, sizeof(struct bnx2fc_mp_req));
  772. /* Fill FC header */
  773. fc_hdr = &(abts_req->req_fc_hdr);
  774. /* Obtain oxid and rxid for the original exchange to be aborted */
  775. fc_hdr->fh_ox_id = htons(io_req->xid);
  776. fc_hdr->fh_rx_id = htons(io_req->task->rxwr_txrd.var_ctx.rx_id);
  777. sid = tgt->sid;
  778. did = rport->port_id;
  779. __fc_fill_fc_hdr(fc_hdr, FC_RCTL_BA_ABTS, did, sid,
  780. FC_TYPE_BLS, FC_FC_FIRST_SEQ | FC_FC_END_SEQ |
  781. FC_FC_SEQ_INIT, 0);
  782. xid = abts_io_req->xid;
  783. BNX2FC_IO_DBG(abts_io_req, "ABTS io_req\n");
  784. task_idx = xid/BNX2FC_TASKS_PER_PAGE;
  785. index = xid % BNX2FC_TASKS_PER_PAGE;
  786. /* Initialize task context for this IO request */
  787. task_page = (struct fcoe_task_ctx_entry *)
  788. interface->hba->task_ctx[task_idx];
  789. task = &(task_page[index]);
  790. bnx2fc_init_mp_task(abts_io_req, task);
  791. /*
  792. * ABTS task is a temporary task that will be cleaned up
  793. * irrespective of ABTS response. We need to start the timer
  794. * for the original exchange, as the CQE is posted for the original
  795. * IO request.
  796. *
  797. * Timer for ABTS is started only when it is originated by a
  798. * TM request. For the ABTS issued as part of ULP timeout,
  799. * scsi-ml maintains the timers.
  800. */
  801. /* if (test_bit(BNX2FC_FLAG_ISSUE_ABTS, &io_req->req_flags))*/
  802. bnx2fc_cmd_timer_set(io_req, 2 * r_a_tov);
  803. /* Obtain free SQ entry */
  804. bnx2fc_add_2_sq(tgt, xid);
  805. /* Ring doorbell */
  806. bnx2fc_ring_doorbell(tgt);
  807. abts_err:
  808. return rc;
  809. }
  810. int bnx2fc_initiate_seq_cleanup(struct bnx2fc_cmd *orig_io_req, u32 offset,
  811. enum fc_rctl r_ctl)
  812. {
  813. struct fc_lport *lport;
  814. struct bnx2fc_rport *tgt = orig_io_req->tgt;
  815. struct bnx2fc_interface *interface;
  816. struct fcoe_port *port;
  817. struct bnx2fc_cmd *seq_clnp_req;
  818. struct fcoe_task_ctx_entry *task;
  819. struct fcoe_task_ctx_entry *task_page;
  820. struct bnx2fc_els_cb_arg *cb_arg = NULL;
  821. int task_idx, index;
  822. u16 xid;
  823. int rc = 0;
  824. BNX2FC_IO_DBG(orig_io_req, "bnx2fc_initiate_seq_cleanup xid = 0x%x\n",
  825. orig_io_req->xid);
  826. kref_get(&orig_io_req->refcount);
  827. port = orig_io_req->port;
  828. interface = port->priv;
  829. lport = port->lport;
  830. cb_arg = kzalloc(sizeof(struct bnx2fc_els_cb_arg), GFP_ATOMIC);
  831. if (!cb_arg) {
  832. printk(KERN_ERR PFX "Unable to alloc cb_arg for seq clnup\n");
  833. rc = -ENOMEM;
  834. goto cleanup_err;
  835. }
  836. seq_clnp_req = bnx2fc_elstm_alloc(tgt, BNX2FC_SEQ_CLEANUP);
  837. if (!seq_clnp_req) {
  838. printk(KERN_ERR PFX "cleanup: couldnt allocate cmd\n");
  839. rc = -ENOMEM;
  840. kfree(cb_arg);
  841. goto cleanup_err;
  842. }
  843. /* Initialize rest of io_req fields */
  844. seq_clnp_req->sc_cmd = NULL;
  845. seq_clnp_req->port = port;
  846. seq_clnp_req->tgt = tgt;
  847. seq_clnp_req->data_xfer_len = 0; /* No data transfer for cleanup */
  848. xid = seq_clnp_req->xid;
  849. task_idx = xid/BNX2FC_TASKS_PER_PAGE;
  850. index = xid % BNX2FC_TASKS_PER_PAGE;
  851. /* Initialize task context for this IO request */
  852. task_page = (struct fcoe_task_ctx_entry *)
  853. interface->hba->task_ctx[task_idx];
  854. task = &(task_page[index]);
  855. cb_arg->aborted_io_req = orig_io_req;
  856. cb_arg->io_req = seq_clnp_req;
  857. cb_arg->r_ctl = r_ctl;
  858. cb_arg->offset = offset;
  859. seq_clnp_req->cb_arg = cb_arg;
  860. printk(KERN_ERR PFX "call init_seq_cleanup_task\n");
  861. bnx2fc_init_seq_cleanup_task(seq_clnp_req, task, orig_io_req, offset);
  862. /* Obtain free SQ entry */
  863. bnx2fc_add_2_sq(tgt, xid);
  864. /* Ring doorbell */
  865. bnx2fc_ring_doorbell(tgt);
  866. cleanup_err:
  867. return rc;
  868. }
  869. int bnx2fc_initiate_cleanup(struct bnx2fc_cmd *io_req)
  870. {
  871. struct fc_lport *lport;
  872. struct bnx2fc_rport *tgt = io_req->tgt;
  873. struct bnx2fc_interface *interface;
  874. struct fcoe_port *port;
  875. struct bnx2fc_cmd *cleanup_io_req;
  876. struct fcoe_task_ctx_entry *task;
  877. struct fcoe_task_ctx_entry *task_page;
  878. int task_idx, index;
  879. u16 xid, orig_xid;
  880. int rc = 0;
  881. /* ASSUMPTION: called with tgt_lock held */
  882. BNX2FC_IO_DBG(io_req, "Entered bnx2fc_initiate_cleanup\n");
  883. port = io_req->port;
  884. interface = port->priv;
  885. lport = port->lport;
  886. cleanup_io_req = bnx2fc_elstm_alloc(tgt, BNX2FC_CLEANUP);
  887. if (!cleanup_io_req) {
  888. printk(KERN_ERR PFX "cleanup: couldnt allocate cmd\n");
  889. rc = -1;
  890. goto cleanup_err;
  891. }
  892. /* Initialize rest of io_req fields */
  893. cleanup_io_req->sc_cmd = NULL;
  894. cleanup_io_req->port = port;
  895. cleanup_io_req->tgt = tgt;
  896. cleanup_io_req->data_xfer_len = 0; /* No data transfer for cleanup */
  897. xid = cleanup_io_req->xid;
  898. task_idx = xid/BNX2FC_TASKS_PER_PAGE;
  899. index = xid % BNX2FC_TASKS_PER_PAGE;
  900. /* Initialize task context for this IO request */
  901. task_page = (struct fcoe_task_ctx_entry *)
  902. interface->hba->task_ctx[task_idx];
  903. task = &(task_page[index]);
  904. orig_xid = io_req->xid;
  905. BNX2FC_IO_DBG(io_req, "CLEANUP io_req xid = 0x%x\n", xid);
  906. bnx2fc_init_cleanup_task(cleanup_io_req, task, orig_xid);
  907. /* Obtain free SQ entry */
  908. bnx2fc_add_2_sq(tgt, xid);
  909. /* Ring doorbell */
  910. bnx2fc_ring_doorbell(tgt);
  911. cleanup_err:
  912. return rc;
  913. }
  914. /**
  915. * bnx2fc_eh_target_reset: Reset a target
  916. *
  917. * @sc_cmd: SCSI command
  918. *
  919. * Set from SCSI host template to send task mgmt command to the target
  920. * and wait for the response
  921. */
  922. int bnx2fc_eh_target_reset(struct scsi_cmnd *sc_cmd)
  923. {
  924. return bnx2fc_initiate_tmf(sc_cmd, FCP_TMF_TGT_RESET);
  925. }
  926. /**
  927. * bnx2fc_eh_device_reset - Reset a single LUN
  928. *
  929. * @sc_cmd: SCSI command
  930. *
  931. * Set from SCSI host template to send task mgmt command to the target
  932. * and wait for the response
  933. */
  934. int bnx2fc_eh_device_reset(struct scsi_cmnd *sc_cmd)
  935. {
  936. return bnx2fc_initiate_tmf(sc_cmd, FCP_TMF_LUN_RESET);
  937. }
  938. /**
  939. * bnx2fc_eh_abort - eh_abort_handler api to abort an outstanding
  940. * SCSI command
  941. *
  942. * @sc_cmd: SCSI_ML command pointer
  943. *
  944. * SCSI abort request handler
  945. */
  946. int bnx2fc_eh_abort(struct scsi_cmnd *sc_cmd)
  947. {
  948. struct fc_rport *rport = starget_to_rport(scsi_target(sc_cmd->device));
  949. struct fc_rport_libfc_priv *rp = rport->dd_data;
  950. struct bnx2fc_cmd *io_req;
  951. struct fc_lport *lport;
  952. struct bnx2fc_rport *tgt;
  953. int rc = FAILED;
  954. rc = fc_block_scsi_eh(sc_cmd);
  955. if (rc)
  956. return rc;
  957. lport = shost_priv(sc_cmd->device->host);
  958. if ((lport->state != LPORT_ST_READY) || !(lport->link_up)) {
  959. printk(KERN_ERR PFX "eh_abort: link not ready\n");
  960. return rc;
  961. }
  962. tgt = (struct bnx2fc_rport *)&rp[1];
  963. BNX2FC_TGT_DBG(tgt, "Entered bnx2fc_eh_abort\n");
  964. spin_lock_bh(&tgt->tgt_lock);
  965. io_req = (struct bnx2fc_cmd *)sc_cmd->SCp.ptr;
  966. if (!io_req) {
  967. /* Command might have just completed */
  968. printk(KERN_ERR PFX "eh_abort: io_req is NULL\n");
  969. spin_unlock_bh(&tgt->tgt_lock);
  970. return SUCCESS;
  971. }
  972. BNX2FC_IO_DBG(io_req, "eh_abort - refcnt = %d\n",
  973. io_req->refcount.refcount.counter);
  974. /* Hold IO request across abort processing */
  975. kref_get(&io_req->refcount);
  976. BUG_ON(tgt != io_req->tgt);
  977. /* Remove the io_req from the active_q. */
  978. /*
  979. * Task Mgmt functions (LUN RESET & TGT RESET) will not
  980. * issue an ABTS on this particular IO req, as the
  981. * io_req is no longer in the active_q.
  982. */
  983. if (tgt->flush_in_prog) {
  984. printk(KERN_ERR PFX "eh_abort: io_req (xid = 0x%x) "
  985. "flush in progress\n", io_req->xid);
  986. kref_put(&io_req->refcount, bnx2fc_cmd_release);
  987. spin_unlock_bh(&tgt->tgt_lock);
  988. return SUCCESS;
  989. }
  990. if (io_req->on_active_queue == 0) {
  991. printk(KERN_ERR PFX "eh_abort: io_req (xid = 0x%x) "
  992. "not on active_q\n", io_req->xid);
  993. /*
  994. * This condition can happen only due to the FW bug,
  995. * where we do not receive cleanup response from
  996. * the FW. Handle this case gracefully by erroring
  997. * back the IO request to SCSI-ml
  998. */
  999. bnx2fc_scsi_done(io_req, DID_ABORT);
  1000. kref_put(&io_req->refcount, bnx2fc_cmd_release);
  1001. spin_unlock_bh(&tgt->tgt_lock);
  1002. return SUCCESS;
  1003. }
  1004. /*
  1005. * Only eh_abort processing will remove the IO from
  1006. * active_cmd_q before processing the request. this is
  1007. * done to avoid race conditions between IOs aborted
  1008. * as part of task management completion and eh_abort
  1009. * processing
  1010. */
  1011. list_del_init(&io_req->link);
  1012. io_req->on_active_queue = 0;
  1013. /* Move IO req to retire queue */
  1014. list_add_tail(&io_req->link, &tgt->io_retire_queue);
  1015. init_completion(&io_req->tm_done);
  1016. io_req->wait_for_comp = 1;
  1017. if (!test_and_set_bit(BNX2FC_FLAG_ISSUE_ABTS, &io_req->req_flags)) {
  1018. /* Cancel the current timer running on this io_req */
  1019. if (cancel_delayed_work(&io_req->timeout_work))
  1020. kref_put(&io_req->refcount,
  1021. bnx2fc_cmd_release); /* drop timer hold */
  1022. set_bit(BNX2FC_FLAG_EH_ABORT, &io_req->req_flags);
  1023. rc = bnx2fc_initiate_abts(io_req);
  1024. } else {
  1025. printk(KERN_ERR PFX "eh_abort: io_req (xid = 0x%x) "
  1026. "already in abts processing\n", io_req->xid);
  1027. kref_put(&io_req->refcount, bnx2fc_cmd_release);
  1028. spin_unlock_bh(&tgt->tgt_lock);
  1029. return SUCCESS;
  1030. }
  1031. if (rc == FAILED) {
  1032. kref_put(&io_req->refcount, bnx2fc_cmd_release);
  1033. spin_unlock_bh(&tgt->tgt_lock);
  1034. return rc;
  1035. }
  1036. spin_unlock_bh(&tgt->tgt_lock);
  1037. wait_for_completion(&io_req->tm_done);
  1038. spin_lock_bh(&tgt->tgt_lock);
  1039. io_req->wait_for_comp = 0;
  1040. if (!(test_and_set_bit(BNX2FC_FLAG_ABTS_DONE,
  1041. &io_req->req_flags))) {
  1042. /* Let the scsi-ml try to recover this command */
  1043. printk(KERN_ERR PFX "abort failed, xid = 0x%x\n",
  1044. io_req->xid);
  1045. rc = FAILED;
  1046. } else {
  1047. /*
  1048. * We come here even when there was a race condition
  1049. * between timeout and abts completion, and abts
  1050. * completion happens just in time.
  1051. */
  1052. BNX2FC_IO_DBG(io_req, "abort succeeded\n");
  1053. rc = SUCCESS;
  1054. bnx2fc_scsi_done(io_req, DID_ABORT);
  1055. kref_put(&io_req->refcount, bnx2fc_cmd_release);
  1056. }
  1057. /* release the reference taken in eh_abort */
  1058. kref_put(&io_req->refcount, bnx2fc_cmd_release);
  1059. spin_unlock_bh(&tgt->tgt_lock);
  1060. return rc;
  1061. }
  1062. void bnx2fc_process_seq_cleanup_compl(struct bnx2fc_cmd *seq_clnp_req,
  1063. struct fcoe_task_ctx_entry *task,
  1064. u8 rx_state)
  1065. {
  1066. struct bnx2fc_els_cb_arg *cb_arg = seq_clnp_req->cb_arg;
  1067. struct bnx2fc_cmd *orig_io_req = cb_arg->aborted_io_req;
  1068. u32 offset = cb_arg->offset;
  1069. enum fc_rctl r_ctl = cb_arg->r_ctl;
  1070. int rc = 0;
  1071. struct bnx2fc_rport *tgt = orig_io_req->tgt;
  1072. BNX2FC_IO_DBG(orig_io_req, "Entered process_cleanup_compl xid = 0x%x"
  1073. "cmd_type = %d\n",
  1074. seq_clnp_req->xid, seq_clnp_req->cmd_type);
  1075. if (rx_state == FCOE_TASK_RX_STATE_IGNORED_SEQUENCE_CLEANUP) {
  1076. printk(KERN_ERR PFX "seq cleanup ignored - xid = 0x%x\n",
  1077. seq_clnp_req->xid);
  1078. goto free_cb_arg;
  1079. }
  1080. kref_get(&orig_io_req->refcount);
  1081. spin_unlock_bh(&tgt->tgt_lock);
  1082. rc = bnx2fc_send_srr(orig_io_req, offset, r_ctl);
  1083. spin_lock_bh(&tgt->tgt_lock);
  1084. if (rc)
  1085. printk(KERN_ERR PFX "clnup_compl: Unable to send SRR"
  1086. " IO will abort\n");
  1087. seq_clnp_req->cb_arg = NULL;
  1088. kref_put(&orig_io_req->refcount, bnx2fc_cmd_release);
  1089. free_cb_arg:
  1090. kfree(cb_arg);
  1091. return;
  1092. }
  1093. void bnx2fc_process_cleanup_compl(struct bnx2fc_cmd *io_req,
  1094. struct fcoe_task_ctx_entry *task,
  1095. u8 num_rq)
  1096. {
  1097. BNX2FC_IO_DBG(io_req, "Entered process_cleanup_compl "
  1098. "refcnt = %d, cmd_type = %d\n",
  1099. io_req->refcount.refcount.counter, io_req->cmd_type);
  1100. bnx2fc_scsi_done(io_req, DID_ERROR);
  1101. kref_put(&io_req->refcount, bnx2fc_cmd_release);
  1102. }
  1103. void bnx2fc_process_abts_compl(struct bnx2fc_cmd *io_req,
  1104. struct fcoe_task_ctx_entry *task,
  1105. u8 num_rq)
  1106. {
  1107. u32 r_ctl;
  1108. u32 r_a_tov = FC_DEF_R_A_TOV;
  1109. u8 issue_rrq = 0;
  1110. struct bnx2fc_rport *tgt = io_req->tgt;
  1111. BNX2FC_IO_DBG(io_req, "Entered process_abts_compl xid = 0x%x"
  1112. "refcnt = %d, cmd_type = %d\n",
  1113. io_req->xid,
  1114. io_req->refcount.refcount.counter, io_req->cmd_type);
  1115. if (test_and_set_bit(BNX2FC_FLAG_ABTS_DONE,
  1116. &io_req->req_flags)) {
  1117. BNX2FC_IO_DBG(io_req, "Timer context finished processing"
  1118. " this io\n");
  1119. return;
  1120. }
  1121. /* Do not issue RRQ as this IO is already cleanedup */
  1122. if (test_and_set_bit(BNX2FC_FLAG_IO_CLEANUP,
  1123. &io_req->req_flags))
  1124. goto io_compl;
  1125. /*
  1126. * For ABTS issued due to SCSI eh_abort_handler, timeout
  1127. * values are maintained by scsi-ml itself. Cancel timeout
  1128. * in case ABTS issued as part of task management function
  1129. * or due to FW error.
  1130. */
  1131. if (test_bit(BNX2FC_FLAG_ISSUE_ABTS, &io_req->req_flags))
  1132. if (cancel_delayed_work(&io_req->timeout_work))
  1133. kref_put(&io_req->refcount,
  1134. bnx2fc_cmd_release); /* drop timer hold */
  1135. r_ctl = (u8)task->rxwr_only.union_ctx.comp_info.abts_rsp.r_ctl;
  1136. switch (r_ctl) {
  1137. case FC_RCTL_BA_ACC:
  1138. /*
  1139. * Dont release this cmd yet. It will be relesed
  1140. * after we get RRQ response
  1141. */
  1142. BNX2FC_IO_DBG(io_req, "ABTS response - ACC Send RRQ\n");
  1143. issue_rrq = 1;
  1144. break;
  1145. case FC_RCTL_BA_RJT:
  1146. BNX2FC_IO_DBG(io_req, "ABTS response - RJT\n");
  1147. break;
  1148. default:
  1149. printk(KERN_ERR PFX "Unknown ABTS response\n");
  1150. break;
  1151. }
  1152. if (issue_rrq) {
  1153. BNX2FC_IO_DBG(io_req, "Issue RRQ after R_A_TOV\n");
  1154. set_bit(BNX2FC_FLAG_ISSUE_RRQ, &io_req->req_flags);
  1155. }
  1156. set_bit(BNX2FC_FLAG_RETIRE_OXID, &io_req->req_flags);
  1157. bnx2fc_cmd_timer_set(io_req, r_a_tov);
  1158. io_compl:
  1159. if (io_req->wait_for_comp) {
  1160. if (test_and_clear_bit(BNX2FC_FLAG_EH_ABORT,
  1161. &io_req->req_flags))
  1162. complete(&io_req->tm_done);
  1163. } else {
  1164. /*
  1165. * We end up here when ABTS is issued as
  1166. * in asynchronous context, i.e., as part
  1167. * of task management completion, or
  1168. * when FW error is received or when the
  1169. * ABTS is issued when the IO is timed
  1170. * out.
  1171. */
  1172. if (io_req->on_active_queue) {
  1173. list_del_init(&io_req->link);
  1174. io_req->on_active_queue = 0;
  1175. /* Move IO req to retire queue */
  1176. list_add_tail(&io_req->link, &tgt->io_retire_queue);
  1177. }
  1178. bnx2fc_scsi_done(io_req, DID_ERROR);
  1179. kref_put(&io_req->refcount, bnx2fc_cmd_release);
  1180. }
  1181. }
  1182. static void bnx2fc_lun_reset_cmpl(struct bnx2fc_cmd *io_req)
  1183. {
  1184. struct scsi_cmnd *sc_cmd = io_req->sc_cmd;
  1185. struct bnx2fc_rport *tgt = io_req->tgt;
  1186. struct list_head *list;
  1187. struct list_head *tmp;
  1188. struct bnx2fc_cmd *cmd;
  1189. int tm_lun = sc_cmd->device->lun;
  1190. int rc = 0;
  1191. int lun;
  1192. /* called with tgt_lock held */
  1193. BNX2FC_IO_DBG(io_req, "Entered bnx2fc_lun_reset_cmpl\n");
  1194. /*
  1195. * Walk thru the active_ios queue and ABORT the IO
  1196. * that matches with the LUN that was reset
  1197. */
  1198. list_for_each_safe(list, tmp, &tgt->active_cmd_queue) {
  1199. BNX2FC_TGT_DBG(tgt, "LUN RST cmpl: scan for pending IOs\n");
  1200. cmd = (struct bnx2fc_cmd *)list;
  1201. lun = cmd->sc_cmd->device->lun;
  1202. if (lun == tm_lun) {
  1203. /* Initiate ABTS on this cmd */
  1204. if (!test_and_set_bit(BNX2FC_FLAG_ISSUE_ABTS,
  1205. &cmd->req_flags)) {
  1206. /* cancel the IO timeout */
  1207. if (cancel_delayed_work(&io_req->timeout_work))
  1208. kref_put(&io_req->refcount,
  1209. bnx2fc_cmd_release);
  1210. /* timer hold */
  1211. rc = bnx2fc_initiate_abts(cmd);
  1212. /* abts shouldn't fail in this context */
  1213. WARN_ON(rc != SUCCESS);
  1214. } else
  1215. printk(KERN_ERR PFX "lun_rst: abts already in"
  1216. " progress for this IO 0x%x\n",
  1217. cmd->xid);
  1218. }
  1219. }
  1220. }
  1221. static void bnx2fc_tgt_reset_cmpl(struct bnx2fc_cmd *io_req)
  1222. {
  1223. struct bnx2fc_rport *tgt = io_req->tgt;
  1224. struct list_head *list;
  1225. struct list_head *tmp;
  1226. struct bnx2fc_cmd *cmd;
  1227. int rc = 0;
  1228. /* called with tgt_lock held */
  1229. BNX2FC_IO_DBG(io_req, "Entered bnx2fc_tgt_reset_cmpl\n");
  1230. /*
  1231. * Walk thru the active_ios queue and ABORT the IO
  1232. * that matches with the LUN that was reset
  1233. */
  1234. list_for_each_safe(list, tmp, &tgt->active_cmd_queue) {
  1235. BNX2FC_TGT_DBG(tgt, "TGT RST cmpl: scan for pending IOs\n");
  1236. cmd = (struct bnx2fc_cmd *)list;
  1237. /* Initiate ABTS */
  1238. if (!test_and_set_bit(BNX2FC_FLAG_ISSUE_ABTS,
  1239. &cmd->req_flags)) {
  1240. /* cancel the IO timeout */
  1241. if (cancel_delayed_work(&io_req->timeout_work))
  1242. kref_put(&io_req->refcount,
  1243. bnx2fc_cmd_release); /* timer hold */
  1244. rc = bnx2fc_initiate_abts(cmd);
  1245. /* abts shouldn't fail in this context */
  1246. WARN_ON(rc != SUCCESS);
  1247. } else
  1248. printk(KERN_ERR PFX "tgt_rst: abts already in progress"
  1249. " for this IO 0x%x\n", cmd->xid);
  1250. }
  1251. }
  1252. void bnx2fc_process_tm_compl(struct bnx2fc_cmd *io_req,
  1253. struct fcoe_task_ctx_entry *task, u8 num_rq)
  1254. {
  1255. struct bnx2fc_mp_req *tm_req;
  1256. struct fc_frame_header *fc_hdr;
  1257. struct scsi_cmnd *sc_cmd = io_req->sc_cmd;
  1258. u64 *hdr;
  1259. u64 *temp_hdr;
  1260. void *rsp_buf;
  1261. /* Called with tgt_lock held */
  1262. BNX2FC_IO_DBG(io_req, "Entered process_tm_compl\n");
  1263. if (!(test_bit(BNX2FC_FLAG_TM_TIMEOUT, &io_req->req_flags)))
  1264. set_bit(BNX2FC_FLAG_TM_COMPL, &io_req->req_flags);
  1265. else {
  1266. /* TM has already timed out and we got
  1267. * delayed completion. Ignore completion
  1268. * processing.
  1269. */
  1270. return;
  1271. }
  1272. tm_req = &(io_req->mp_req);
  1273. fc_hdr = &(tm_req->resp_fc_hdr);
  1274. hdr = (u64 *)fc_hdr;
  1275. temp_hdr = (u64 *)
  1276. &task->rxwr_only.union_ctx.comp_info.mp_rsp.fc_hdr;
  1277. hdr[0] = cpu_to_be64(temp_hdr[0]);
  1278. hdr[1] = cpu_to_be64(temp_hdr[1]);
  1279. hdr[2] = cpu_to_be64(temp_hdr[2]);
  1280. tm_req->resp_len =
  1281. task->rxwr_only.union_ctx.comp_info.mp_rsp.mp_payload_len;
  1282. rsp_buf = tm_req->resp_buf;
  1283. if (fc_hdr->fh_r_ctl == FC_RCTL_DD_CMD_STATUS) {
  1284. bnx2fc_parse_fcp_rsp(io_req,
  1285. (struct fcoe_fcp_rsp_payload *)
  1286. rsp_buf, num_rq);
  1287. if (io_req->fcp_rsp_code == 0) {
  1288. /* TM successful */
  1289. if (tm_req->tm_flags & FCP_TMF_LUN_RESET)
  1290. bnx2fc_lun_reset_cmpl(io_req);
  1291. else if (tm_req->tm_flags & FCP_TMF_TGT_RESET)
  1292. bnx2fc_tgt_reset_cmpl(io_req);
  1293. }
  1294. } else {
  1295. printk(KERN_ERR PFX "tmf's fc_hdr r_ctl = 0x%x\n",
  1296. fc_hdr->fh_r_ctl);
  1297. }
  1298. if (!sc_cmd->SCp.ptr) {
  1299. printk(KERN_ERR PFX "tm_compl: SCp.ptr is NULL\n");
  1300. return;
  1301. }
  1302. switch (io_req->fcp_status) {
  1303. case FC_GOOD:
  1304. if (io_req->cdb_status == 0) {
  1305. /* Good IO completion */
  1306. sc_cmd->result = DID_OK << 16;
  1307. } else {
  1308. /* Transport status is good, SCSI status not good */
  1309. sc_cmd->result = (DID_OK << 16) | io_req->cdb_status;
  1310. }
  1311. if (io_req->fcp_resid)
  1312. scsi_set_resid(sc_cmd, io_req->fcp_resid);
  1313. break;
  1314. default:
  1315. BNX2FC_IO_DBG(io_req, "process_tm_compl: fcp_status = %d\n",
  1316. io_req->fcp_status);
  1317. break;
  1318. }
  1319. sc_cmd = io_req->sc_cmd;
  1320. io_req->sc_cmd = NULL;
  1321. /* check if the io_req exists in tgt's tmf_q */
  1322. if (io_req->on_tmf_queue) {
  1323. list_del_init(&io_req->link);
  1324. io_req->on_tmf_queue = 0;
  1325. } else {
  1326. printk(KERN_ERR PFX "Command not on active_cmd_queue!\n");
  1327. return;
  1328. }
  1329. sc_cmd->SCp.ptr = NULL;
  1330. sc_cmd->scsi_done(sc_cmd);
  1331. kref_put(&io_req->refcount, bnx2fc_cmd_release);
  1332. if (io_req->wait_for_comp) {
  1333. BNX2FC_IO_DBG(io_req, "tm_compl - wake up the waiter\n");
  1334. complete(&io_req->tm_done);
  1335. }
  1336. }
  1337. static int bnx2fc_split_bd(struct bnx2fc_cmd *io_req, u64 addr, int sg_len,
  1338. int bd_index)
  1339. {
  1340. struct fcoe_bd_ctx *bd = io_req->bd_tbl->bd_tbl;
  1341. int frag_size, sg_frags;
  1342. sg_frags = 0;
  1343. while (sg_len) {
  1344. if (sg_len >= BNX2FC_BD_SPLIT_SZ)
  1345. frag_size = BNX2FC_BD_SPLIT_SZ;
  1346. else
  1347. frag_size = sg_len;
  1348. bd[bd_index + sg_frags].buf_addr_lo = addr & 0xffffffff;
  1349. bd[bd_index + sg_frags].buf_addr_hi = addr >> 32;
  1350. bd[bd_index + sg_frags].buf_len = (u16)frag_size;
  1351. bd[bd_index + sg_frags].flags = 0;
  1352. addr += (u64) frag_size;
  1353. sg_frags++;
  1354. sg_len -= frag_size;
  1355. }
  1356. return sg_frags;
  1357. }
  1358. static int bnx2fc_map_sg(struct bnx2fc_cmd *io_req)
  1359. {
  1360. struct scsi_cmnd *sc = io_req->sc_cmd;
  1361. struct fcoe_bd_ctx *bd = io_req->bd_tbl->bd_tbl;
  1362. struct scatterlist *sg;
  1363. int byte_count = 0;
  1364. int sg_count = 0;
  1365. int bd_count = 0;
  1366. int sg_frags;
  1367. unsigned int sg_len;
  1368. u64 addr;
  1369. int i;
  1370. sg_count = scsi_dma_map(sc);
  1371. scsi_for_each_sg(sc, sg, sg_count, i) {
  1372. sg_len = sg_dma_len(sg);
  1373. addr = sg_dma_address(sg);
  1374. if (sg_len > BNX2FC_MAX_BD_LEN) {
  1375. sg_frags = bnx2fc_split_bd(io_req, addr, sg_len,
  1376. bd_count);
  1377. } else {
  1378. sg_frags = 1;
  1379. bd[bd_count].buf_addr_lo = addr & 0xffffffff;
  1380. bd[bd_count].buf_addr_hi = addr >> 32;
  1381. bd[bd_count].buf_len = (u16)sg_len;
  1382. bd[bd_count].flags = 0;
  1383. }
  1384. bd_count += sg_frags;
  1385. byte_count += sg_len;
  1386. }
  1387. if (byte_count != scsi_bufflen(sc))
  1388. printk(KERN_ERR PFX "byte_count = %d != scsi_bufflen = %d, "
  1389. "task_id = 0x%x\n", byte_count, scsi_bufflen(sc),
  1390. io_req->xid);
  1391. return bd_count;
  1392. }
  1393. static void bnx2fc_build_bd_list_from_sg(struct bnx2fc_cmd *io_req)
  1394. {
  1395. struct scsi_cmnd *sc = io_req->sc_cmd;
  1396. struct fcoe_bd_ctx *bd = io_req->bd_tbl->bd_tbl;
  1397. int bd_count;
  1398. if (scsi_sg_count(sc))
  1399. bd_count = bnx2fc_map_sg(io_req);
  1400. else {
  1401. bd_count = 0;
  1402. bd[0].buf_addr_lo = bd[0].buf_addr_hi = 0;
  1403. bd[0].buf_len = bd[0].flags = 0;
  1404. }
  1405. io_req->bd_tbl->bd_valid = bd_count;
  1406. }
  1407. static void bnx2fc_unmap_sg_list(struct bnx2fc_cmd *io_req)
  1408. {
  1409. struct scsi_cmnd *sc = io_req->sc_cmd;
  1410. if (io_req->bd_tbl->bd_valid && sc) {
  1411. scsi_dma_unmap(sc);
  1412. io_req->bd_tbl->bd_valid = 0;
  1413. }
  1414. }
  1415. void bnx2fc_build_fcp_cmnd(struct bnx2fc_cmd *io_req,
  1416. struct fcp_cmnd *fcp_cmnd)
  1417. {
  1418. struct scsi_cmnd *sc_cmd = io_req->sc_cmd;
  1419. char tag[2];
  1420. memset(fcp_cmnd, 0, sizeof(struct fcp_cmnd));
  1421. int_to_scsilun(sc_cmd->device->lun,
  1422. (struct scsi_lun *) fcp_cmnd->fc_lun);
  1423. fcp_cmnd->fc_dl = htonl(io_req->data_xfer_len);
  1424. memcpy(fcp_cmnd->fc_cdb, sc_cmd->cmnd, sc_cmd->cmd_len);
  1425. fcp_cmnd->fc_cmdref = 0;
  1426. fcp_cmnd->fc_pri_ta = 0;
  1427. fcp_cmnd->fc_tm_flags = io_req->mp_req.tm_flags;
  1428. fcp_cmnd->fc_flags = io_req->io_req_flags;
  1429. if (scsi_populate_tag_msg(sc_cmd, tag)) {
  1430. switch (tag[0]) {
  1431. case HEAD_OF_QUEUE_TAG:
  1432. fcp_cmnd->fc_pri_ta = FCP_PTA_HEADQ;
  1433. break;
  1434. case ORDERED_QUEUE_TAG:
  1435. fcp_cmnd->fc_pri_ta = FCP_PTA_ORDERED;
  1436. break;
  1437. default:
  1438. fcp_cmnd->fc_pri_ta = FCP_PTA_SIMPLE;
  1439. break;
  1440. }
  1441. } else {
  1442. fcp_cmnd->fc_pri_ta = 0;
  1443. }
  1444. }
  1445. static void bnx2fc_parse_fcp_rsp(struct bnx2fc_cmd *io_req,
  1446. struct fcoe_fcp_rsp_payload *fcp_rsp,
  1447. u8 num_rq)
  1448. {
  1449. struct scsi_cmnd *sc_cmd = io_req->sc_cmd;
  1450. struct bnx2fc_rport *tgt = io_req->tgt;
  1451. u8 rsp_flags = fcp_rsp->fcp_flags.flags;
  1452. u32 rq_buff_len = 0;
  1453. int i;
  1454. unsigned char *rq_data;
  1455. unsigned char *dummy;
  1456. int fcp_sns_len = 0;
  1457. int fcp_rsp_len = 0;
  1458. io_req->fcp_status = FC_GOOD;
  1459. io_req->fcp_resid = fcp_rsp->fcp_resid;
  1460. io_req->scsi_comp_flags = rsp_flags;
  1461. CMD_SCSI_STATUS(sc_cmd) = io_req->cdb_status =
  1462. fcp_rsp->scsi_status_code;
  1463. /* Fetch fcp_rsp_info and fcp_sns_info if available */
  1464. if (num_rq) {
  1465. /*
  1466. * We do not anticipate num_rq >1, as the linux defined
  1467. * SCSI_SENSE_BUFFERSIZE is 96 bytes + 8 bytes of FCP_RSP_INFO
  1468. * 256 bytes of single rq buffer is good enough to hold this.
  1469. */
  1470. if (rsp_flags &
  1471. FCOE_FCP_RSP_FLAGS_FCP_RSP_LEN_VALID) {
  1472. fcp_rsp_len = rq_buff_len
  1473. = fcp_rsp->fcp_rsp_len;
  1474. }
  1475. if (rsp_flags &
  1476. FCOE_FCP_RSP_FLAGS_FCP_SNS_LEN_VALID) {
  1477. fcp_sns_len = fcp_rsp->fcp_sns_len;
  1478. rq_buff_len += fcp_rsp->fcp_sns_len;
  1479. }
  1480. io_req->fcp_rsp_len = fcp_rsp_len;
  1481. io_req->fcp_sns_len = fcp_sns_len;
  1482. if (rq_buff_len > num_rq * BNX2FC_RQ_BUF_SZ) {
  1483. /* Invalid sense sense length. */
  1484. printk(KERN_ERR PFX "invalid sns length %d\n",
  1485. rq_buff_len);
  1486. /* reset rq_buff_len */
  1487. rq_buff_len = num_rq * BNX2FC_RQ_BUF_SZ;
  1488. }
  1489. rq_data = bnx2fc_get_next_rqe(tgt, 1);
  1490. if (num_rq > 1) {
  1491. /* We do not need extra sense data */
  1492. for (i = 1; i < num_rq; i++)
  1493. dummy = bnx2fc_get_next_rqe(tgt, 1);
  1494. }
  1495. /* fetch fcp_rsp_code */
  1496. if ((fcp_rsp_len == 4) || (fcp_rsp_len == 8)) {
  1497. /* Only for task management function */
  1498. io_req->fcp_rsp_code = rq_data[3];
  1499. printk(KERN_ERR PFX "fcp_rsp_code = %d\n",
  1500. io_req->fcp_rsp_code);
  1501. }
  1502. /* fetch sense data */
  1503. rq_data += fcp_rsp_len;
  1504. if (fcp_sns_len > SCSI_SENSE_BUFFERSIZE) {
  1505. printk(KERN_ERR PFX "Truncating sense buffer\n");
  1506. fcp_sns_len = SCSI_SENSE_BUFFERSIZE;
  1507. }
  1508. memset(sc_cmd->sense_buffer, 0, sizeof(sc_cmd->sense_buffer));
  1509. if (fcp_sns_len)
  1510. memcpy(sc_cmd->sense_buffer, rq_data, fcp_sns_len);
  1511. /* return RQ entries */
  1512. for (i = 0; i < num_rq; i++)
  1513. bnx2fc_return_rqe(tgt, 1);
  1514. }
  1515. }
  1516. /**
  1517. * bnx2fc_queuecommand - Queuecommand function of the scsi template
  1518. *
  1519. * @host: The Scsi_Host the command was issued to
  1520. * @sc_cmd: struct scsi_cmnd to be executed
  1521. *
  1522. * This is the IO strategy routine, called by SCSI-ML
  1523. **/
  1524. int bnx2fc_queuecommand(struct Scsi_Host *host,
  1525. struct scsi_cmnd *sc_cmd)
  1526. {
  1527. struct fc_lport *lport = shost_priv(host);
  1528. struct fc_rport *rport = starget_to_rport(scsi_target(sc_cmd->device));
  1529. struct fc_rport_libfc_priv *rp = rport->dd_data;
  1530. struct bnx2fc_rport *tgt;
  1531. struct bnx2fc_cmd *io_req;
  1532. int rc = 0;
  1533. int rval;
  1534. rval = fc_remote_port_chkready(rport);
  1535. if (rval) {
  1536. sc_cmd->result = rval;
  1537. sc_cmd->scsi_done(sc_cmd);
  1538. return 0;
  1539. }
  1540. if ((lport->state != LPORT_ST_READY) || !(lport->link_up)) {
  1541. rc = SCSI_MLQUEUE_HOST_BUSY;
  1542. goto exit_qcmd;
  1543. }
  1544. /* rport and tgt are allocated together, so tgt should be non-NULL */
  1545. tgt = (struct bnx2fc_rport *)&rp[1];
  1546. if (!test_bit(BNX2FC_FLAG_SESSION_READY, &tgt->flags)) {
  1547. if (test_bit(BNX2FC_FLAG_UPLD_REQ_COMPL, &tgt->flags)) {
  1548. sc_cmd->result = DID_NO_CONNECT << 16;
  1549. sc_cmd->scsi_done(sc_cmd);
  1550. return 0;
  1551. }
  1552. /*
  1553. * Session is not offloaded yet. Let SCSI-ml retry
  1554. * the command.
  1555. */
  1556. rc = SCSI_MLQUEUE_TARGET_BUSY;
  1557. goto exit_qcmd;
  1558. }
  1559. io_req = bnx2fc_cmd_alloc(tgt);
  1560. if (!io_req) {
  1561. rc = SCSI_MLQUEUE_HOST_BUSY;
  1562. goto exit_qcmd;
  1563. }
  1564. io_req->sc_cmd = sc_cmd;
  1565. if (bnx2fc_post_io_req(tgt, io_req)) {
  1566. printk(KERN_ERR PFX "Unable to post io_req\n");
  1567. rc = SCSI_MLQUEUE_HOST_BUSY;
  1568. goto exit_qcmd;
  1569. }
  1570. exit_qcmd:
  1571. return rc;
  1572. }
  1573. void bnx2fc_process_scsi_cmd_compl(struct bnx2fc_cmd *io_req,
  1574. struct fcoe_task_ctx_entry *task,
  1575. u8 num_rq)
  1576. {
  1577. struct fcoe_fcp_rsp_payload *fcp_rsp;
  1578. struct bnx2fc_rport *tgt = io_req->tgt;
  1579. struct scsi_cmnd *sc_cmd;
  1580. struct Scsi_Host *host;
  1581. /* scsi_cmd_cmpl is called with tgt lock held */
  1582. if (test_and_set_bit(BNX2FC_FLAG_IO_COMPL, &io_req->req_flags)) {
  1583. /* we will not receive ABTS response for this IO */
  1584. BNX2FC_IO_DBG(io_req, "Timer context finished processing "
  1585. "this scsi cmd\n");
  1586. }
  1587. /* Cancel the timeout_work, as we received IO completion */
  1588. if (cancel_delayed_work(&io_req->timeout_work))
  1589. kref_put(&io_req->refcount,
  1590. bnx2fc_cmd_release); /* drop timer hold */
  1591. sc_cmd = io_req->sc_cmd;
  1592. if (sc_cmd == NULL) {
  1593. printk(KERN_ERR PFX "scsi_cmd_compl - sc_cmd is NULL\n");
  1594. return;
  1595. }
  1596. /* Fetch fcp_rsp from task context and perform cmd completion */
  1597. fcp_rsp = (struct fcoe_fcp_rsp_payload *)
  1598. &(task->rxwr_only.union_ctx.comp_info.fcp_rsp.payload);
  1599. /* parse fcp_rsp and obtain sense data from RQ if available */
  1600. bnx2fc_parse_fcp_rsp(io_req, fcp_rsp, num_rq);
  1601. host = sc_cmd->device->host;
  1602. if (!sc_cmd->SCp.ptr) {
  1603. printk(KERN_ERR PFX "SCp.ptr is NULL\n");
  1604. return;
  1605. }
  1606. if (io_req->on_active_queue) {
  1607. list_del_init(&io_req->link);
  1608. io_req->on_active_queue = 0;
  1609. /* Move IO req to retire queue */
  1610. list_add_tail(&io_req->link, &tgt->io_retire_queue);
  1611. } else {
  1612. /* This should not happen, but could have been pulled
  1613. * by bnx2fc_flush_active_ios(), or during a race
  1614. * between command abort and (late) completion.
  1615. */
  1616. BNX2FC_IO_DBG(io_req, "xid not on active_cmd_queue\n");
  1617. if (io_req->wait_for_comp)
  1618. if (test_and_clear_bit(BNX2FC_FLAG_EH_ABORT,
  1619. &io_req->req_flags))
  1620. complete(&io_req->tm_done);
  1621. }
  1622. bnx2fc_unmap_sg_list(io_req);
  1623. io_req->sc_cmd = NULL;
  1624. switch (io_req->fcp_status) {
  1625. case FC_GOOD:
  1626. if (io_req->cdb_status == 0) {
  1627. /* Good IO completion */
  1628. sc_cmd->result = DID_OK << 16;
  1629. } else {
  1630. /* Transport status is good, SCSI status not good */
  1631. BNX2FC_IO_DBG(io_req, "scsi_cmpl: cdb_status = %d"
  1632. " fcp_resid = 0x%x\n",
  1633. io_req->cdb_status, io_req->fcp_resid);
  1634. sc_cmd->result = (DID_OK << 16) | io_req->cdb_status;
  1635. }
  1636. if (io_req->fcp_resid)
  1637. scsi_set_resid(sc_cmd, io_req->fcp_resid);
  1638. break;
  1639. default:
  1640. printk(KERN_ERR PFX "scsi_cmd_compl: fcp_status = %d\n",
  1641. io_req->fcp_status);
  1642. break;
  1643. }
  1644. sc_cmd->SCp.ptr = NULL;
  1645. sc_cmd->scsi_done(sc_cmd);
  1646. kref_put(&io_req->refcount, bnx2fc_cmd_release);
  1647. }
  1648. int bnx2fc_post_io_req(struct bnx2fc_rport *tgt,
  1649. struct bnx2fc_cmd *io_req)
  1650. {
  1651. struct fcoe_task_ctx_entry *task;
  1652. struct fcoe_task_ctx_entry *task_page;
  1653. struct scsi_cmnd *sc_cmd = io_req->sc_cmd;
  1654. struct fcoe_port *port = tgt->port;
  1655. struct bnx2fc_interface *interface = port->priv;
  1656. struct bnx2fc_hba *hba = interface->hba;
  1657. struct fc_lport *lport = port->lport;
  1658. struct fcoe_dev_stats *stats;
  1659. int task_idx, index;
  1660. u16 xid;
  1661. /* Initialize rest of io_req fields */
  1662. io_req->cmd_type = BNX2FC_SCSI_CMD;
  1663. io_req->port = port;
  1664. io_req->tgt = tgt;
  1665. io_req->data_xfer_len = scsi_bufflen(sc_cmd);
  1666. sc_cmd->SCp.ptr = (char *)io_req;
  1667. stats = per_cpu_ptr(lport->dev_stats, get_cpu());
  1668. if (sc_cmd->sc_data_direction == DMA_FROM_DEVICE) {
  1669. io_req->io_req_flags = BNX2FC_READ;
  1670. stats->InputRequests++;
  1671. stats->InputBytes += io_req->data_xfer_len;
  1672. } else if (sc_cmd->sc_data_direction == DMA_TO_DEVICE) {
  1673. io_req->io_req_flags = BNX2FC_WRITE;
  1674. stats->OutputRequests++;
  1675. stats->OutputBytes += io_req->data_xfer_len;
  1676. } else {
  1677. io_req->io_req_flags = 0;
  1678. stats->ControlRequests++;
  1679. }
  1680. put_cpu();
  1681. xid = io_req->xid;
  1682. /* Build buffer descriptor list for firmware from sg list */
  1683. bnx2fc_build_bd_list_from_sg(io_req);
  1684. task_idx = xid / BNX2FC_TASKS_PER_PAGE;
  1685. index = xid % BNX2FC_TASKS_PER_PAGE;
  1686. /* Initialize task context for this IO request */
  1687. task_page = (struct fcoe_task_ctx_entry *) hba->task_ctx[task_idx];
  1688. task = &(task_page[index]);
  1689. bnx2fc_init_task(io_req, task);
  1690. spin_lock_bh(&tgt->tgt_lock);
  1691. if (tgt->flush_in_prog) {
  1692. printk(KERN_ERR PFX "Flush in progress..Host Busy\n");
  1693. kref_put(&io_req->refcount, bnx2fc_cmd_release);
  1694. spin_unlock_bh(&tgt->tgt_lock);
  1695. return -EAGAIN;
  1696. }
  1697. if (!test_bit(BNX2FC_FLAG_SESSION_READY, &tgt->flags)) {
  1698. printk(KERN_ERR PFX "Session not ready...post_io\n");
  1699. kref_put(&io_req->refcount, bnx2fc_cmd_release);
  1700. spin_unlock_bh(&tgt->tgt_lock);
  1701. return -EAGAIN;
  1702. }
  1703. /* Time IO req */
  1704. if (tgt->io_timeout)
  1705. bnx2fc_cmd_timer_set(io_req, BNX2FC_IO_TIMEOUT);
  1706. /* Obtain free SQ entry */
  1707. bnx2fc_add_2_sq(tgt, xid);
  1708. /* Enqueue the io_req to active_cmd_queue */
  1709. io_req->on_active_queue = 1;
  1710. /* move io_req from pending_queue to active_queue */
  1711. list_add_tail(&io_req->link, &tgt->active_cmd_queue);
  1712. /* Ring doorbell */
  1713. bnx2fc_ring_doorbell(tgt);
  1714. spin_unlock_bh(&tgt->tgt_lock);
  1715. return 0;
  1716. }