db8500-prcmu.c 82 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221
  1. /*
  2. * Copyright (C) STMicroelectronics 2009
  3. * Copyright (C) ST-Ericsson SA 2010
  4. *
  5. * License Terms: GNU General Public License v2
  6. * Author: Kumar Sanghvi <kumar.sanghvi@stericsson.com>
  7. * Author: Sundar Iyer <sundar.iyer@stericsson.com>
  8. * Author: Mattias Nilsson <mattias.i.nilsson@stericsson.com>
  9. *
  10. * U8500 PRCM Unit interface driver
  11. *
  12. */
  13. #include <linux/module.h>
  14. #include <linux/kernel.h>
  15. #include <linux/delay.h>
  16. #include <linux/errno.h>
  17. #include <linux/err.h>
  18. #include <linux/spinlock.h>
  19. #include <linux/io.h>
  20. #include <linux/slab.h>
  21. #include <linux/mutex.h>
  22. #include <linux/completion.h>
  23. #include <linux/irq.h>
  24. #include <linux/jiffies.h>
  25. #include <linux/bitops.h>
  26. #include <linux/fs.h>
  27. #include <linux/platform_device.h>
  28. #include <linux/uaccess.h>
  29. #include <linux/mfd/core.h>
  30. #include <linux/mfd/dbx500-prcmu.h>
  31. #include <linux/mfd/abx500/ab8500.h>
  32. #include <linux/regulator/db8500-prcmu.h>
  33. #include <linux/regulator/machine.h>
  34. #include <linux/cpufreq.h>
  35. #include <linux/platform_data/ux500_wdt.h>
  36. #include <linux/platform_data/db8500_thermal.h>
  37. #include "dbx500-prcmu-regs.h"
  38. /* Index of different voltages to be used when accessing AVSData */
  39. #define PRCM_AVS_BASE 0x2FC
  40. #define PRCM_AVS_VBB_RET (PRCM_AVS_BASE + 0x0)
  41. #define PRCM_AVS_VBB_MAX_OPP (PRCM_AVS_BASE + 0x1)
  42. #define PRCM_AVS_VBB_100_OPP (PRCM_AVS_BASE + 0x2)
  43. #define PRCM_AVS_VBB_50_OPP (PRCM_AVS_BASE + 0x3)
  44. #define PRCM_AVS_VARM_MAX_OPP (PRCM_AVS_BASE + 0x4)
  45. #define PRCM_AVS_VARM_100_OPP (PRCM_AVS_BASE + 0x5)
  46. #define PRCM_AVS_VARM_50_OPP (PRCM_AVS_BASE + 0x6)
  47. #define PRCM_AVS_VARM_RET (PRCM_AVS_BASE + 0x7)
  48. #define PRCM_AVS_VAPE_100_OPP (PRCM_AVS_BASE + 0x8)
  49. #define PRCM_AVS_VAPE_50_OPP (PRCM_AVS_BASE + 0x9)
  50. #define PRCM_AVS_VMOD_100_OPP (PRCM_AVS_BASE + 0xA)
  51. #define PRCM_AVS_VMOD_50_OPP (PRCM_AVS_BASE + 0xB)
  52. #define PRCM_AVS_VSAFE (PRCM_AVS_BASE + 0xC)
  53. #define PRCM_AVS_VOLTAGE 0
  54. #define PRCM_AVS_VOLTAGE_MASK 0x3f
  55. #define PRCM_AVS_ISSLOWSTARTUP 6
  56. #define PRCM_AVS_ISSLOWSTARTUP_MASK (1 << PRCM_AVS_ISSLOWSTARTUP)
  57. #define PRCM_AVS_ISMODEENABLE 7
  58. #define PRCM_AVS_ISMODEENABLE_MASK (1 << PRCM_AVS_ISMODEENABLE)
  59. #define PRCM_BOOT_STATUS 0xFFF
  60. #define PRCM_ROMCODE_A2P 0xFFE
  61. #define PRCM_ROMCODE_P2A 0xFFD
  62. #define PRCM_XP70_CUR_PWR_STATE 0xFFC /* 4 BYTES */
  63. #define PRCM_SW_RST_REASON 0xFF8 /* 2 bytes */
  64. #define _PRCM_MBOX_HEADER 0xFE8 /* 16 bytes */
  65. #define PRCM_MBOX_HEADER_REQ_MB0 (_PRCM_MBOX_HEADER + 0x0)
  66. #define PRCM_MBOX_HEADER_REQ_MB1 (_PRCM_MBOX_HEADER + 0x1)
  67. #define PRCM_MBOX_HEADER_REQ_MB2 (_PRCM_MBOX_HEADER + 0x2)
  68. #define PRCM_MBOX_HEADER_REQ_MB3 (_PRCM_MBOX_HEADER + 0x3)
  69. #define PRCM_MBOX_HEADER_REQ_MB4 (_PRCM_MBOX_HEADER + 0x4)
  70. #define PRCM_MBOX_HEADER_REQ_MB5 (_PRCM_MBOX_HEADER + 0x5)
  71. #define PRCM_MBOX_HEADER_ACK_MB0 (_PRCM_MBOX_HEADER + 0x8)
  72. /* Req Mailboxes */
  73. #define PRCM_REQ_MB0 0xFDC /* 12 bytes */
  74. #define PRCM_REQ_MB1 0xFD0 /* 12 bytes */
  75. #define PRCM_REQ_MB2 0xFC0 /* 16 bytes */
  76. #define PRCM_REQ_MB3 0xE4C /* 372 bytes */
  77. #define PRCM_REQ_MB4 0xE48 /* 4 bytes */
  78. #define PRCM_REQ_MB5 0xE44 /* 4 bytes */
  79. /* Ack Mailboxes */
  80. #define PRCM_ACK_MB0 0xE08 /* 52 bytes */
  81. #define PRCM_ACK_MB1 0xE04 /* 4 bytes */
  82. #define PRCM_ACK_MB2 0xE00 /* 4 bytes */
  83. #define PRCM_ACK_MB3 0xDFC /* 4 bytes */
  84. #define PRCM_ACK_MB4 0xDF8 /* 4 bytes */
  85. #define PRCM_ACK_MB5 0xDF4 /* 4 bytes */
  86. /* Mailbox 0 headers */
  87. #define MB0H_POWER_STATE_TRANS 0
  88. #define MB0H_CONFIG_WAKEUPS_EXE 1
  89. #define MB0H_READ_WAKEUP_ACK 3
  90. #define MB0H_CONFIG_WAKEUPS_SLEEP 4
  91. #define MB0H_WAKEUP_EXE 2
  92. #define MB0H_WAKEUP_SLEEP 5
  93. /* Mailbox 0 REQs */
  94. #define PRCM_REQ_MB0_AP_POWER_STATE (PRCM_REQ_MB0 + 0x0)
  95. #define PRCM_REQ_MB0_AP_PLL_STATE (PRCM_REQ_MB0 + 0x1)
  96. #define PRCM_REQ_MB0_ULP_CLOCK_STATE (PRCM_REQ_MB0 + 0x2)
  97. #define PRCM_REQ_MB0_DO_NOT_WFI (PRCM_REQ_MB0 + 0x3)
  98. #define PRCM_REQ_MB0_WAKEUP_8500 (PRCM_REQ_MB0 + 0x4)
  99. #define PRCM_REQ_MB0_WAKEUP_4500 (PRCM_REQ_MB0 + 0x8)
  100. /* Mailbox 0 ACKs */
  101. #define PRCM_ACK_MB0_AP_PWRSTTR_STATUS (PRCM_ACK_MB0 + 0x0)
  102. #define PRCM_ACK_MB0_READ_POINTER (PRCM_ACK_MB0 + 0x1)
  103. #define PRCM_ACK_MB0_WAKEUP_0_8500 (PRCM_ACK_MB0 + 0x4)
  104. #define PRCM_ACK_MB0_WAKEUP_0_4500 (PRCM_ACK_MB0 + 0x8)
  105. #define PRCM_ACK_MB0_WAKEUP_1_8500 (PRCM_ACK_MB0 + 0x1C)
  106. #define PRCM_ACK_MB0_WAKEUP_1_4500 (PRCM_ACK_MB0 + 0x20)
  107. #define PRCM_ACK_MB0_EVENT_4500_NUMBERS 20
  108. /* Mailbox 1 headers */
  109. #define MB1H_ARM_APE_OPP 0x0
  110. #define MB1H_RESET_MODEM 0x2
  111. #define MB1H_REQUEST_APE_OPP_100_VOLT 0x3
  112. #define MB1H_RELEASE_APE_OPP_100_VOLT 0x4
  113. #define MB1H_RELEASE_USB_WAKEUP 0x5
  114. #define MB1H_PLL_ON_OFF 0x6
  115. /* Mailbox 1 Requests */
  116. #define PRCM_REQ_MB1_ARM_OPP (PRCM_REQ_MB1 + 0x0)
  117. #define PRCM_REQ_MB1_APE_OPP (PRCM_REQ_MB1 + 0x1)
  118. #define PRCM_REQ_MB1_PLL_ON_OFF (PRCM_REQ_MB1 + 0x4)
  119. #define PLL_SOC0_OFF 0x1
  120. #define PLL_SOC0_ON 0x2
  121. #define PLL_SOC1_OFF 0x4
  122. #define PLL_SOC1_ON 0x8
  123. /* Mailbox 1 ACKs */
  124. #define PRCM_ACK_MB1_CURRENT_ARM_OPP (PRCM_ACK_MB1 + 0x0)
  125. #define PRCM_ACK_MB1_CURRENT_APE_OPP (PRCM_ACK_MB1 + 0x1)
  126. #define PRCM_ACK_MB1_APE_VOLTAGE_STATUS (PRCM_ACK_MB1 + 0x2)
  127. #define PRCM_ACK_MB1_DVFS_STATUS (PRCM_ACK_MB1 + 0x3)
  128. /* Mailbox 2 headers */
  129. #define MB2H_DPS 0x0
  130. #define MB2H_AUTO_PWR 0x1
  131. /* Mailbox 2 REQs */
  132. #define PRCM_REQ_MB2_SVA_MMDSP (PRCM_REQ_MB2 + 0x0)
  133. #define PRCM_REQ_MB2_SVA_PIPE (PRCM_REQ_MB2 + 0x1)
  134. #define PRCM_REQ_MB2_SIA_MMDSP (PRCM_REQ_MB2 + 0x2)
  135. #define PRCM_REQ_MB2_SIA_PIPE (PRCM_REQ_MB2 + 0x3)
  136. #define PRCM_REQ_MB2_SGA (PRCM_REQ_MB2 + 0x4)
  137. #define PRCM_REQ_MB2_B2R2_MCDE (PRCM_REQ_MB2 + 0x5)
  138. #define PRCM_REQ_MB2_ESRAM12 (PRCM_REQ_MB2 + 0x6)
  139. #define PRCM_REQ_MB2_ESRAM34 (PRCM_REQ_MB2 + 0x7)
  140. #define PRCM_REQ_MB2_AUTO_PM_SLEEP (PRCM_REQ_MB2 + 0x8)
  141. #define PRCM_REQ_MB2_AUTO_PM_IDLE (PRCM_REQ_MB2 + 0xC)
  142. /* Mailbox 2 ACKs */
  143. #define PRCM_ACK_MB2_DPS_STATUS (PRCM_ACK_MB2 + 0x0)
  144. #define HWACC_PWR_ST_OK 0xFE
  145. /* Mailbox 3 headers */
  146. #define MB3H_ANC 0x0
  147. #define MB3H_SIDETONE 0x1
  148. #define MB3H_SYSCLK 0xE
  149. /* Mailbox 3 Requests */
  150. #define PRCM_REQ_MB3_ANC_FIR_COEFF (PRCM_REQ_MB3 + 0x0)
  151. #define PRCM_REQ_MB3_ANC_IIR_COEFF (PRCM_REQ_MB3 + 0x20)
  152. #define PRCM_REQ_MB3_ANC_SHIFTER (PRCM_REQ_MB3 + 0x60)
  153. #define PRCM_REQ_MB3_ANC_WARP (PRCM_REQ_MB3 + 0x64)
  154. #define PRCM_REQ_MB3_SIDETONE_FIR_GAIN (PRCM_REQ_MB3 + 0x68)
  155. #define PRCM_REQ_MB3_SIDETONE_FIR_COEFF (PRCM_REQ_MB3 + 0x6C)
  156. #define PRCM_REQ_MB3_SYSCLK_MGT (PRCM_REQ_MB3 + 0x16C)
  157. /* Mailbox 4 headers */
  158. #define MB4H_DDR_INIT 0x0
  159. #define MB4H_MEM_ST 0x1
  160. #define MB4H_HOTDOG 0x12
  161. #define MB4H_HOTMON 0x13
  162. #define MB4H_HOT_PERIOD 0x14
  163. #define MB4H_A9WDOG_CONF 0x16
  164. #define MB4H_A9WDOG_EN 0x17
  165. #define MB4H_A9WDOG_DIS 0x18
  166. #define MB4H_A9WDOG_LOAD 0x19
  167. #define MB4H_A9WDOG_KICK 0x20
  168. /* Mailbox 4 Requests */
  169. #define PRCM_REQ_MB4_DDR_ST_AP_SLEEP_IDLE (PRCM_REQ_MB4 + 0x0)
  170. #define PRCM_REQ_MB4_DDR_ST_AP_DEEP_IDLE (PRCM_REQ_MB4 + 0x1)
  171. #define PRCM_REQ_MB4_ESRAM0_ST (PRCM_REQ_MB4 + 0x3)
  172. #define PRCM_REQ_MB4_HOTDOG_THRESHOLD (PRCM_REQ_MB4 + 0x0)
  173. #define PRCM_REQ_MB4_HOTMON_LOW (PRCM_REQ_MB4 + 0x0)
  174. #define PRCM_REQ_MB4_HOTMON_HIGH (PRCM_REQ_MB4 + 0x1)
  175. #define PRCM_REQ_MB4_HOTMON_CONFIG (PRCM_REQ_MB4 + 0x2)
  176. #define PRCM_REQ_MB4_HOT_PERIOD (PRCM_REQ_MB4 + 0x0)
  177. #define HOTMON_CONFIG_LOW BIT(0)
  178. #define HOTMON_CONFIG_HIGH BIT(1)
  179. #define PRCM_REQ_MB4_A9WDOG_0 (PRCM_REQ_MB4 + 0x0)
  180. #define PRCM_REQ_MB4_A9WDOG_1 (PRCM_REQ_MB4 + 0x1)
  181. #define PRCM_REQ_MB4_A9WDOG_2 (PRCM_REQ_MB4 + 0x2)
  182. #define PRCM_REQ_MB4_A9WDOG_3 (PRCM_REQ_MB4 + 0x3)
  183. #define A9WDOG_AUTO_OFF_EN BIT(7)
  184. #define A9WDOG_AUTO_OFF_DIS 0
  185. #define A9WDOG_ID_MASK 0xf
  186. /* Mailbox 5 Requests */
  187. #define PRCM_REQ_MB5_I2C_SLAVE_OP (PRCM_REQ_MB5 + 0x0)
  188. #define PRCM_REQ_MB5_I2C_HW_BITS (PRCM_REQ_MB5 + 0x1)
  189. #define PRCM_REQ_MB5_I2C_REG (PRCM_REQ_MB5 + 0x2)
  190. #define PRCM_REQ_MB5_I2C_VAL (PRCM_REQ_MB5 + 0x3)
  191. #define PRCMU_I2C_WRITE(slave) (((slave) << 1) | BIT(6))
  192. #define PRCMU_I2C_READ(slave) (((slave) << 1) | BIT(0) | BIT(6))
  193. #define PRCMU_I2C_STOP_EN BIT(3)
  194. /* Mailbox 5 ACKs */
  195. #define PRCM_ACK_MB5_I2C_STATUS (PRCM_ACK_MB5 + 0x1)
  196. #define PRCM_ACK_MB5_I2C_VAL (PRCM_ACK_MB5 + 0x3)
  197. #define I2C_WR_OK 0x1
  198. #define I2C_RD_OK 0x2
  199. #define NUM_MB 8
  200. #define MBOX_BIT BIT
  201. #define ALL_MBOX_BITS (MBOX_BIT(NUM_MB) - 1)
  202. /*
  203. * Wakeups/IRQs
  204. */
  205. #define WAKEUP_BIT_RTC BIT(0)
  206. #define WAKEUP_BIT_RTT0 BIT(1)
  207. #define WAKEUP_BIT_RTT1 BIT(2)
  208. #define WAKEUP_BIT_HSI0 BIT(3)
  209. #define WAKEUP_BIT_HSI1 BIT(4)
  210. #define WAKEUP_BIT_CA_WAKE BIT(5)
  211. #define WAKEUP_BIT_USB BIT(6)
  212. #define WAKEUP_BIT_ABB BIT(7)
  213. #define WAKEUP_BIT_ABB_FIFO BIT(8)
  214. #define WAKEUP_BIT_SYSCLK_OK BIT(9)
  215. #define WAKEUP_BIT_CA_SLEEP BIT(10)
  216. #define WAKEUP_BIT_AC_WAKE_ACK BIT(11)
  217. #define WAKEUP_BIT_SIDE_TONE_OK BIT(12)
  218. #define WAKEUP_BIT_ANC_OK BIT(13)
  219. #define WAKEUP_BIT_SW_ERROR BIT(14)
  220. #define WAKEUP_BIT_AC_SLEEP_ACK BIT(15)
  221. #define WAKEUP_BIT_ARM BIT(17)
  222. #define WAKEUP_BIT_HOTMON_LOW BIT(18)
  223. #define WAKEUP_BIT_HOTMON_HIGH BIT(19)
  224. #define WAKEUP_BIT_MODEM_SW_RESET_REQ BIT(20)
  225. #define WAKEUP_BIT_GPIO0 BIT(23)
  226. #define WAKEUP_BIT_GPIO1 BIT(24)
  227. #define WAKEUP_BIT_GPIO2 BIT(25)
  228. #define WAKEUP_BIT_GPIO3 BIT(26)
  229. #define WAKEUP_BIT_GPIO4 BIT(27)
  230. #define WAKEUP_BIT_GPIO5 BIT(28)
  231. #define WAKEUP_BIT_GPIO6 BIT(29)
  232. #define WAKEUP_BIT_GPIO7 BIT(30)
  233. #define WAKEUP_BIT_GPIO8 BIT(31)
  234. static struct {
  235. bool valid;
  236. struct prcmu_fw_version version;
  237. } fw_info;
  238. static struct irq_domain *db8500_irq_domain;
  239. /*
  240. * This vector maps irq numbers to the bits in the bit field used in
  241. * communication with the PRCMU firmware.
  242. *
  243. * The reason for having this is to keep the irq numbers contiguous even though
  244. * the bits in the bit field are not. (The bits also have a tendency to move
  245. * around, to further complicate matters.)
  246. */
  247. #define IRQ_INDEX(_name) ((IRQ_PRCMU_##_name))
  248. #define IRQ_ENTRY(_name)[IRQ_INDEX(_name)] = (WAKEUP_BIT_##_name)
  249. #define IRQ_PRCMU_RTC 0
  250. #define IRQ_PRCMU_RTT0 1
  251. #define IRQ_PRCMU_RTT1 2
  252. #define IRQ_PRCMU_HSI0 3
  253. #define IRQ_PRCMU_HSI1 4
  254. #define IRQ_PRCMU_CA_WAKE 5
  255. #define IRQ_PRCMU_USB 6
  256. #define IRQ_PRCMU_ABB 7
  257. #define IRQ_PRCMU_ABB_FIFO 8
  258. #define IRQ_PRCMU_ARM 9
  259. #define IRQ_PRCMU_MODEM_SW_RESET_REQ 10
  260. #define IRQ_PRCMU_GPIO0 11
  261. #define IRQ_PRCMU_GPIO1 12
  262. #define IRQ_PRCMU_GPIO2 13
  263. #define IRQ_PRCMU_GPIO3 14
  264. #define IRQ_PRCMU_GPIO4 15
  265. #define IRQ_PRCMU_GPIO5 16
  266. #define IRQ_PRCMU_GPIO6 17
  267. #define IRQ_PRCMU_GPIO7 18
  268. #define IRQ_PRCMU_GPIO8 19
  269. #define IRQ_PRCMU_CA_SLEEP 20
  270. #define IRQ_PRCMU_HOTMON_LOW 21
  271. #define IRQ_PRCMU_HOTMON_HIGH 22
  272. #define NUM_PRCMU_WAKEUPS 23
  273. static u32 prcmu_irq_bit[NUM_PRCMU_WAKEUPS] = {
  274. IRQ_ENTRY(RTC),
  275. IRQ_ENTRY(RTT0),
  276. IRQ_ENTRY(RTT1),
  277. IRQ_ENTRY(HSI0),
  278. IRQ_ENTRY(HSI1),
  279. IRQ_ENTRY(CA_WAKE),
  280. IRQ_ENTRY(USB),
  281. IRQ_ENTRY(ABB),
  282. IRQ_ENTRY(ABB_FIFO),
  283. IRQ_ENTRY(CA_SLEEP),
  284. IRQ_ENTRY(ARM),
  285. IRQ_ENTRY(HOTMON_LOW),
  286. IRQ_ENTRY(HOTMON_HIGH),
  287. IRQ_ENTRY(MODEM_SW_RESET_REQ),
  288. IRQ_ENTRY(GPIO0),
  289. IRQ_ENTRY(GPIO1),
  290. IRQ_ENTRY(GPIO2),
  291. IRQ_ENTRY(GPIO3),
  292. IRQ_ENTRY(GPIO4),
  293. IRQ_ENTRY(GPIO5),
  294. IRQ_ENTRY(GPIO6),
  295. IRQ_ENTRY(GPIO7),
  296. IRQ_ENTRY(GPIO8)
  297. };
  298. #define VALID_WAKEUPS (BIT(NUM_PRCMU_WAKEUP_INDICES) - 1)
  299. #define WAKEUP_ENTRY(_name)[PRCMU_WAKEUP_INDEX_##_name] = (WAKEUP_BIT_##_name)
  300. static u32 prcmu_wakeup_bit[NUM_PRCMU_WAKEUP_INDICES] = {
  301. WAKEUP_ENTRY(RTC),
  302. WAKEUP_ENTRY(RTT0),
  303. WAKEUP_ENTRY(RTT1),
  304. WAKEUP_ENTRY(HSI0),
  305. WAKEUP_ENTRY(HSI1),
  306. WAKEUP_ENTRY(USB),
  307. WAKEUP_ENTRY(ABB),
  308. WAKEUP_ENTRY(ABB_FIFO),
  309. WAKEUP_ENTRY(ARM)
  310. };
  311. /*
  312. * mb0_transfer - state needed for mailbox 0 communication.
  313. * @lock: The transaction lock.
  314. * @dbb_events_lock: A lock used to handle concurrent access to (parts of)
  315. * the request data.
  316. * @mask_work: Work structure used for (un)masking wakeup interrupts.
  317. * @req: Request data that need to persist between requests.
  318. */
  319. static struct {
  320. spinlock_t lock;
  321. spinlock_t dbb_irqs_lock;
  322. struct work_struct mask_work;
  323. struct mutex ac_wake_lock;
  324. struct completion ac_wake_work;
  325. struct {
  326. u32 dbb_irqs;
  327. u32 dbb_wakeups;
  328. u32 abb_events;
  329. } req;
  330. } mb0_transfer;
  331. /*
  332. * mb1_transfer - state needed for mailbox 1 communication.
  333. * @lock: The transaction lock.
  334. * @work: The transaction completion structure.
  335. * @ape_opp: The current APE OPP.
  336. * @ack: Reply ("acknowledge") data.
  337. */
  338. static struct {
  339. struct mutex lock;
  340. struct completion work;
  341. u8 ape_opp;
  342. struct {
  343. u8 header;
  344. u8 arm_opp;
  345. u8 ape_opp;
  346. u8 ape_voltage_status;
  347. } ack;
  348. } mb1_transfer;
  349. /*
  350. * mb2_transfer - state needed for mailbox 2 communication.
  351. * @lock: The transaction lock.
  352. * @work: The transaction completion structure.
  353. * @auto_pm_lock: The autonomous power management configuration lock.
  354. * @auto_pm_enabled: A flag indicating whether autonomous PM is enabled.
  355. * @req: Request data that need to persist between requests.
  356. * @ack: Reply ("acknowledge") data.
  357. */
  358. static struct {
  359. struct mutex lock;
  360. struct completion work;
  361. spinlock_t auto_pm_lock;
  362. bool auto_pm_enabled;
  363. struct {
  364. u8 status;
  365. } ack;
  366. } mb2_transfer;
  367. /*
  368. * mb3_transfer - state needed for mailbox 3 communication.
  369. * @lock: The request lock.
  370. * @sysclk_lock: A lock used to handle concurrent sysclk requests.
  371. * @sysclk_work: Work structure used for sysclk requests.
  372. */
  373. static struct {
  374. spinlock_t lock;
  375. struct mutex sysclk_lock;
  376. struct completion sysclk_work;
  377. } mb3_transfer;
  378. /*
  379. * mb4_transfer - state needed for mailbox 4 communication.
  380. * @lock: The transaction lock.
  381. * @work: The transaction completion structure.
  382. */
  383. static struct {
  384. struct mutex lock;
  385. struct completion work;
  386. } mb4_transfer;
  387. /*
  388. * mb5_transfer - state needed for mailbox 5 communication.
  389. * @lock: The transaction lock.
  390. * @work: The transaction completion structure.
  391. * @ack: Reply ("acknowledge") data.
  392. */
  393. static struct {
  394. struct mutex lock;
  395. struct completion work;
  396. struct {
  397. u8 status;
  398. u8 value;
  399. } ack;
  400. } mb5_transfer;
  401. static atomic_t ac_wake_req_state = ATOMIC_INIT(0);
  402. /* Spinlocks */
  403. static DEFINE_SPINLOCK(prcmu_lock);
  404. static DEFINE_SPINLOCK(clkout_lock);
  405. /* Global var to runtime determine TCDM base for v2 or v1 */
  406. static __iomem void *tcdm_base;
  407. static __iomem void *prcmu_base;
  408. struct clk_mgt {
  409. u32 offset;
  410. u32 pllsw;
  411. int branch;
  412. bool clk38div;
  413. };
  414. enum {
  415. PLL_RAW,
  416. PLL_FIX,
  417. PLL_DIV
  418. };
  419. static DEFINE_SPINLOCK(clk_mgt_lock);
  420. #define CLK_MGT_ENTRY(_name, _branch, _clk38div)[PRCMU_##_name] = \
  421. { (PRCM_##_name##_MGT), 0 , _branch, _clk38div}
  422. struct clk_mgt clk_mgt[PRCMU_NUM_REG_CLOCKS] = {
  423. CLK_MGT_ENTRY(SGACLK, PLL_DIV, false),
  424. CLK_MGT_ENTRY(UARTCLK, PLL_FIX, true),
  425. CLK_MGT_ENTRY(MSP02CLK, PLL_FIX, true),
  426. CLK_MGT_ENTRY(MSP1CLK, PLL_FIX, true),
  427. CLK_MGT_ENTRY(I2CCLK, PLL_FIX, true),
  428. CLK_MGT_ENTRY(SDMMCCLK, PLL_DIV, true),
  429. CLK_MGT_ENTRY(SLIMCLK, PLL_FIX, true),
  430. CLK_MGT_ENTRY(PER1CLK, PLL_DIV, true),
  431. CLK_MGT_ENTRY(PER2CLK, PLL_DIV, true),
  432. CLK_MGT_ENTRY(PER3CLK, PLL_DIV, true),
  433. CLK_MGT_ENTRY(PER5CLK, PLL_DIV, true),
  434. CLK_MGT_ENTRY(PER6CLK, PLL_DIV, true),
  435. CLK_MGT_ENTRY(PER7CLK, PLL_DIV, true),
  436. CLK_MGT_ENTRY(LCDCLK, PLL_FIX, true),
  437. CLK_MGT_ENTRY(BMLCLK, PLL_DIV, true),
  438. CLK_MGT_ENTRY(HSITXCLK, PLL_DIV, true),
  439. CLK_MGT_ENTRY(HSIRXCLK, PLL_DIV, true),
  440. CLK_MGT_ENTRY(HDMICLK, PLL_FIX, false),
  441. CLK_MGT_ENTRY(APEATCLK, PLL_DIV, true),
  442. CLK_MGT_ENTRY(APETRACECLK, PLL_DIV, true),
  443. CLK_MGT_ENTRY(MCDECLK, PLL_DIV, true),
  444. CLK_MGT_ENTRY(IPI2CCLK, PLL_FIX, true),
  445. CLK_MGT_ENTRY(DSIALTCLK, PLL_FIX, false),
  446. CLK_MGT_ENTRY(DMACLK, PLL_DIV, true),
  447. CLK_MGT_ENTRY(B2R2CLK, PLL_DIV, true),
  448. CLK_MGT_ENTRY(TVCLK, PLL_FIX, true),
  449. CLK_MGT_ENTRY(SSPCLK, PLL_FIX, true),
  450. CLK_MGT_ENTRY(RNGCLK, PLL_FIX, true),
  451. CLK_MGT_ENTRY(UICCCLK, PLL_FIX, false),
  452. };
  453. struct dsiclk {
  454. u32 divsel_mask;
  455. u32 divsel_shift;
  456. u32 divsel;
  457. };
  458. static struct dsiclk dsiclk[2] = {
  459. {
  460. .divsel_mask = PRCM_DSI_PLLOUT_SEL_DSI0_PLLOUT_DIVSEL_MASK,
  461. .divsel_shift = PRCM_DSI_PLLOUT_SEL_DSI0_PLLOUT_DIVSEL_SHIFT,
  462. .divsel = PRCM_DSI_PLLOUT_SEL_PHI,
  463. },
  464. {
  465. .divsel_mask = PRCM_DSI_PLLOUT_SEL_DSI1_PLLOUT_DIVSEL_MASK,
  466. .divsel_shift = PRCM_DSI_PLLOUT_SEL_DSI1_PLLOUT_DIVSEL_SHIFT,
  467. .divsel = PRCM_DSI_PLLOUT_SEL_PHI,
  468. }
  469. };
  470. struct dsiescclk {
  471. u32 en;
  472. u32 div_mask;
  473. u32 div_shift;
  474. };
  475. static struct dsiescclk dsiescclk[3] = {
  476. {
  477. .en = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_EN,
  478. .div_mask = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_DIV_MASK,
  479. .div_shift = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_DIV_SHIFT,
  480. },
  481. {
  482. .en = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_EN,
  483. .div_mask = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_DIV_MASK,
  484. .div_shift = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_DIV_SHIFT,
  485. },
  486. {
  487. .en = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_EN,
  488. .div_mask = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_DIV_MASK,
  489. .div_shift = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_DIV_SHIFT,
  490. }
  491. };
  492. /*
  493. * Used by MCDE to setup all necessary PRCMU registers
  494. */
  495. #define PRCMU_RESET_DSIPLL 0x00004000
  496. #define PRCMU_UNCLAMP_DSIPLL 0x00400800
  497. #define PRCMU_CLK_PLL_DIV_SHIFT 0
  498. #define PRCMU_CLK_PLL_SW_SHIFT 5
  499. #define PRCMU_CLK_38 (1 << 9)
  500. #define PRCMU_CLK_38_SRC (1 << 10)
  501. #define PRCMU_CLK_38_DIV (1 << 11)
  502. /* PLLDIV=12, PLLSW=4 (PLLDDR) */
  503. #define PRCMU_DSI_CLOCK_SETTING 0x0000008C
  504. /* DPI 50000000 Hz */
  505. #define PRCMU_DPI_CLOCK_SETTING ((1 << PRCMU_CLK_PLL_SW_SHIFT) | \
  506. (16 << PRCMU_CLK_PLL_DIV_SHIFT))
  507. #define PRCMU_DSI_LP_CLOCK_SETTING 0x00000E00
  508. /* D=101, N=1, R=4, SELDIV2=0 */
  509. #define PRCMU_PLLDSI_FREQ_SETTING 0x00040165
  510. #define PRCMU_ENABLE_PLLDSI 0x00000001
  511. #define PRCMU_DISABLE_PLLDSI 0x00000000
  512. #define PRCMU_RELEASE_RESET_DSS 0x0000400C
  513. #define PRCMU_DSI_PLLOUT_SEL_SETTING 0x00000202
  514. /* ESC clk, div0=1, div1=1, div2=3 */
  515. #define PRCMU_ENABLE_ESCAPE_CLOCK_DIV 0x07030101
  516. #define PRCMU_DISABLE_ESCAPE_CLOCK_DIV 0x00030101
  517. #define PRCMU_DSI_RESET_SW 0x00000007
  518. #define PRCMU_PLLDSI_LOCKP_LOCKED 0x3
  519. int db8500_prcmu_enable_dsipll(void)
  520. {
  521. int i;
  522. /* Clear DSIPLL_RESETN */
  523. writel(PRCMU_RESET_DSIPLL, PRCM_APE_RESETN_CLR);
  524. /* Unclamp DSIPLL in/out */
  525. writel(PRCMU_UNCLAMP_DSIPLL, PRCM_MMIP_LS_CLAMP_CLR);
  526. /* Set DSI PLL FREQ */
  527. writel(PRCMU_PLLDSI_FREQ_SETTING, PRCM_PLLDSI_FREQ);
  528. writel(PRCMU_DSI_PLLOUT_SEL_SETTING, PRCM_DSI_PLLOUT_SEL);
  529. /* Enable Escape clocks */
  530. writel(PRCMU_ENABLE_ESCAPE_CLOCK_DIV, PRCM_DSITVCLK_DIV);
  531. /* Start DSI PLL */
  532. writel(PRCMU_ENABLE_PLLDSI, PRCM_PLLDSI_ENABLE);
  533. /* Reset DSI PLL */
  534. writel(PRCMU_DSI_RESET_SW, PRCM_DSI_SW_RESET);
  535. for (i = 0; i < 10; i++) {
  536. if ((readl(PRCM_PLLDSI_LOCKP) & PRCMU_PLLDSI_LOCKP_LOCKED)
  537. == PRCMU_PLLDSI_LOCKP_LOCKED)
  538. break;
  539. udelay(100);
  540. }
  541. /* Set DSIPLL_RESETN */
  542. writel(PRCMU_RESET_DSIPLL, PRCM_APE_RESETN_SET);
  543. return 0;
  544. }
  545. int db8500_prcmu_disable_dsipll(void)
  546. {
  547. /* Disable dsi pll */
  548. writel(PRCMU_DISABLE_PLLDSI, PRCM_PLLDSI_ENABLE);
  549. /* Disable escapeclock */
  550. writel(PRCMU_DISABLE_ESCAPE_CLOCK_DIV, PRCM_DSITVCLK_DIV);
  551. return 0;
  552. }
  553. int db8500_prcmu_set_display_clocks(void)
  554. {
  555. unsigned long flags;
  556. spin_lock_irqsave(&clk_mgt_lock, flags);
  557. /* Grab the HW semaphore. */
  558. while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
  559. cpu_relax();
  560. writel(PRCMU_DSI_CLOCK_SETTING, prcmu_base + PRCM_HDMICLK_MGT);
  561. writel(PRCMU_DSI_LP_CLOCK_SETTING, prcmu_base + PRCM_TVCLK_MGT);
  562. writel(PRCMU_DPI_CLOCK_SETTING, prcmu_base + PRCM_LCDCLK_MGT);
  563. /* Release the HW semaphore. */
  564. writel(0, PRCM_SEM);
  565. spin_unlock_irqrestore(&clk_mgt_lock, flags);
  566. return 0;
  567. }
  568. u32 db8500_prcmu_read(unsigned int reg)
  569. {
  570. return readl(prcmu_base + reg);
  571. }
  572. void db8500_prcmu_write(unsigned int reg, u32 value)
  573. {
  574. unsigned long flags;
  575. spin_lock_irqsave(&prcmu_lock, flags);
  576. writel(value, (prcmu_base + reg));
  577. spin_unlock_irqrestore(&prcmu_lock, flags);
  578. }
  579. void db8500_prcmu_write_masked(unsigned int reg, u32 mask, u32 value)
  580. {
  581. u32 val;
  582. unsigned long flags;
  583. spin_lock_irqsave(&prcmu_lock, flags);
  584. val = readl(prcmu_base + reg);
  585. val = ((val & ~mask) | (value & mask));
  586. writel(val, (prcmu_base + reg));
  587. spin_unlock_irqrestore(&prcmu_lock, flags);
  588. }
  589. struct prcmu_fw_version *prcmu_get_fw_version(void)
  590. {
  591. return fw_info.valid ? &fw_info.version : NULL;
  592. }
  593. bool prcmu_has_arm_maxopp(void)
  594. {
  595. return (readb(tcdm_base + PRCM_AVS_VARM_MAX_OPP) &
  596. PRCM_AVS_ISMODEENABLE_MASK) == PRCM_AVS_ISMODEENABLE_MASK;
  597. }
  598. /**
  599. * prcmu_get_boot_status - PRCMU boot status checking
  600. * Returns: the current PRCMU boot status
  601. */
  602. int prcmu_get_boot_status(void)
  603. {
  604. return readb(tcdm_base + PRCM_BOOT_STATUS);
  605. }
  606. /**
  607. * prcmu_set_rc_a2p - This function is used to run few power state sequences
  608. * @val: Value to be set, i.e. transition requested
  609. * Returns: 0 on success, -EINVAL on invalid argument
  610. *
  611. * This function is used to run the following power state sequences -
  612. * any state to ApReset, ApDeepSleep to ApExecute, ApExecute to ApDeepSleep
  613. */
  614. int prcmu_set_rc_a2p(enum romcode_write val)
  615. {
  616. if (val < RDY_2_DS || val > RDY_2_XP70_RST)
  617. return -EINVAL;
  618. writeb(val, (tcdm_base + PRCM_ROMCODE_A2P));
  619. return 0;
  620. }
  621. /**
  622. * prcmu_get_rc_p2a - This function is used to get power state sequences
  623. * Returns: the power transition that has last happened
  624. *
  625. * This function can return the following transitions-
  626. * any state to ApReset, ApDeepSleep to ApExecute, ApExecute to ApDeepSleep
  627. */
  628. enum romcode_read prcmu_get_rc_p2a(void)
  629. {
  630. return readb(tcdm_base + PRCM_ROMCODE_P2A);
  631. }
  632. /**
  633. * prcmu_get_current_mode - Return the current XP70 power mode
  634. * Returns: Returns the current AP(ARM) power mode: init,
  635. * apBoot, apExecute, apDeepSleep, apSleep, apIdle, apReset
  636. */
  637. enum ap_pwrst prcmu_get_xp70_current_state(void)
  638. {
  639. return readb(tcdm_base + PRCM_XP70_CUR_PWR_STATE);
  640. }
  641. /**
  642. * prcmu_config_clkout - Configure one of the programmable clock outputs.
  643. * @clkout: The CLKOUT number (0 or 1).
  644. * @source: The clock to be used (one of the PRCMU_CLKSRC_*).
  645. * @div: The divider to be applied.
  646. *
  647. * Configures one of the programmable clock outputs (CLKOUTs).
  648. * @div should be in the range [1,63] to request a configuration, or 0 to
  649. * inform that the configuration is no longer requested.
  650. */
  651. int prcmu_config_clkout(u8 clkout, u8 source, u8 div)
  652. {
  653. static int requests[2];
  654. int r = 0;
  655. unsigned long flags;
  656. u32 val;
  657. u32 bits;
  658. u32 mask;
  659. u32 div_mask;
  660. BUG_ON(clkout > 1);
  661. BUG_ON(div > 63);
  662. BUG_ON((clkout == 0) && (source > PRCMU_CLKSRC_CLK009));
  663. if (!div && !requests[clkout])
  664. return -EINVAL;
  665. switch (clkout) {
  666. case 0:
  667. div_mask = PRCM_CLKOCR_CLKODIV0_MASK;
  668. mask = (PRCM_CLKOCR_CLKODIV0_MASK | PRCM_CLKOCR_CLKOSEL0_MASK);
  669. bits = ((source << PRCM_CLKOCR_CLKOSEL0_SHIFT) |
  670. (div << PRCM_CLKOCR_CLKODIV0_SHIFT));
  671. break;
  672. case 1:
  673. div_mask = PRCM_CLKOCR_CLKODIV1_MASK;
  674. mask = (PRCM_CLKOCR_CLKODIV1_MASK | PRCM_CLKOCR_CLKOSEL1_MASK |
  675. PRCM_CLKOCR_CLK1TYPE);
  676. bits = ((source << PRCM_CLKOCR_CLKOSEL1_SHIFT) |
  677. (div << PRCM_CLKOCR_CLKODIV1_SHIFT));
  678. break;
  679. }
  680. bits &= mask;
  681. spin_lock_irqsave(&clkout_lock, flags);
  682. val = readl(PRCM_CLKOCR);
  683. if (val & div_mask) {
  684. if (div) {
  685. if ((val & mask) != bits) {
  686. r = -EBUSY;
  687. goto unlock_and_return;
  688. }
  689. } else {
  690. if ((val & mask & ~div_mask) != bits) {
  691. r = -EINVAL;
  692. goto unlock_and_return;
  693. }
  694. }
  695. }
  696. writel((bits | (val & ~mask)), PRCM_CLKOCR);
  697. requests[clkout] += (div ? 1 : -1);
  698. unlock_and_return:
  699. spin_unlock_irqrestore(&clkout_lock, flags);
  700. return r;
  701. }
  702. int db8500_prcmu_set_power_state(u8 state, bool keep_ulp_clk, bool keep_ap_pll)
  703. {
  704. unsigned long flags;
  705. BUG_ON((state < PRCMU_AP_SLEEP) || (PRCMU_AP_DEEP_IDLE < state));
  706. spin_lock_irqsave(&mb0_transfer.lock, flags);
  707. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
  708. cpu_relax();
  709. writeb(MB0H_POWER_STATE_TRANS, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
  710. writeb(state, (tcdm_base + PRCM_REQ_MB0_AP_POWER_STATE));
  711. writeb((keep_ap_pll ? 1 : 0), (tcdm_base + PRCM_REQ_MB0_AP_PLL_STATE));
  712. writeb((keep_ulp_clk ? 1 : 0),
  713. (tcdm_base + PRCM_REQ_MB0_ULP_CLOCK_STATE));
  714. writeb(0, (tcdm_base + PRCM_REQ_MB0_DO_NOT_WFI));
  715. writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET);
  716. spin_unlock_irqrestore(&mb0_transfer.lock, flags);
  717. return 0;
  718. }
  719. u8 db8500_prcmu_get_power_state_result(void)
  720. {
  721. return readb(tcdm_base + PRCM_ACK_MB0_AP_PWRSTTR_STATUS);
  722. }
  723. /* This function should only be called while mb0_transfer.lock is held. */
  724. static void config_wakeups(void)
  725. {
  726. const u8 header[2] = {
  727. MB0H_CONFIG_WAKEUPS_EXE,
  728. MB0H_CONFIG_WAKEUPS_SLEEP
  729. };
  730. static u32 last_dbb_events;
  731. static u32 last_abb_events;
  732. u32 dbb_events;
  733. u32 abb_events;
  734. unsigned int i;
  735. dbb_events = mb0_transfer.req.dbb_irqs | mb0_transfer.req.dbb_wakeups;
  736. dbb_events |= (WAKEUP_BIT_AC_WAKE_ACK | WAKEUP_BIT_AC_SLEEP_ACK);
  737. abb_events = mb0_transfer.req.abb_events;
  738. if ((dbb_events == last_dbb_events) && (abb_events == last_abb_events))
  739. return;
  740. for (i = 0; i < 2; i++) {
  741. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
  742. cpu_relax();
  743. writel(dbb_events, (tcdm_base + PRCM_REQ_MB0_WAKEUP_8500));
  744. writel(abb_events, (tcdm_base + PRCM_REQ_MB0_WAKEUP_4500));
  745. writeb(header[i], (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
  746. writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET);
  747. }
  748. last_dbb_events = dbb_events;
  749. last_abb_events = abb_events;
  750. }
  751. void db8500_prcmu_enable_wakeups(u32 wakeups)
  752. {
  753. unsigned long flags;
  754. u32 bits;
  755. int i;
  756. BUG_ON(wakeups != (wakeups & VALID_WAKEUPS));
  757. for (i = 0, bits = 0; i < NUM_PRCMU_WAKEUP_INDICES; i++) {
  758. if (wakeups & BIT(i))
  759. bits |= prcmu_wakeup_bit[i];
  760. }
  761. spin_lock_irqsave(&mb0_transfer.lock, flags);
  762. mb0_transfer.req.dbb_wakeups = bits;
  763. config_wakeups();
  764. spin_unlock_irqrestore(&mb0_transfer.lock, flags);
  765. }
  766. void db8500_prcmu_config_abb_event_readout(u32 abb_events)
  767. {
  768. unsigned long flags;
  769. spin_lock_irqsave(&mb0_transfer.lock, flags);
  770. mb0_transfer.req.abb_events = abb_events;
  771. config_wakeups();
  772. spin_unlock_irqrestore(&mb0_transfer.lock, flags);
  773. }
  774. void db8500_prcmu_get_abb_event_buffer(void __iomem **buf)
  775. {
  776. if (readb(tcdm_base + PRCM_ACK_MB0_READ_POINTER) & 1)
  777. *buf = (tcdm_base + PRCM_ACK_MB0_WAKEUP_1_4500);
  778. else
  779. *buf = (tcdm_base + PRCM_ACK_MB0_WAKEUP_0_4500);
  780. }
  781. /**
  782. * db8500_prcmu_set_arm_opp - set the appropriate ARM OPP
  783. * @opp: The new ARM operating point to which transition is to be made
  784. * Returns: 0 on success, non-zero on failure
  785. *
  786. * This function sets the the operating point of the ARM.
  787. */
  788. int db8500_prcmu_set_arm_opp(u8 opp)
  789. {
  790. int r;
  791. if (opp < ARM_NO_CHANGE || opp > ARM_EXTCLK)
  792. return -EINVAL;
  793. r = 0;
  794. mutex_lock(&mb1_transfer.lock);
  795. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
  796. cpu_relax();
  797. writeb(MB1H_ARM_APE_OPP, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
  798. writeb(opp, (tcdm_base + PRCM_REQ_MB1_ARM_OPP));
  799. writeb(APE_NO_CHANGE, (tcdm_base + PRCM_REQ_MB1_APE_OPP));
  800. writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
  801. wait_for_completion(&mb1_transfer.work);
  802. if ((mb1_transfer.ack.header != MB1H_ARM_APE_OPP) ||
  803. (mb1_transfer.ack.arm_opp != opp))
  804. r = -EIO;
  805. mutex_unlock(&mb1_transfer.lock);
  806. return r;
  807. }
  808. /**
  809. * db8500_prcmu_get_arm_opp - get the current ARM OPP
  810. *
  811. * Returns: the current ARM OPP
  812. */
  813. int db8500_prcmu_get_arm_opp(void)
  814. {
  815. return readb(tcdm_base + PRCM_ACK_MB1_CURRENT_ARM_OPP);
  816. }
  817. /**
  818. * db8500_prcmu_get_ddr_opp - get the current DDR OPP
  819. *
  820. * Returns: the current DDR OPP
  821. */
  822. int db8500_prcmu_get_ddr_opp(void)
  823. {
  824. return readb(PRCM_DDR_SUBSYS_APE_MINBW);
  825. }
  826. /**
  827. * db8500_set_ddr_opp - set the appropriate DDR OPP
  828. * @opp: The new DDR operating point to which transition is to be made
  829. * Returns: 0 on success, non-zero on failure
  830. *
  831. * This function sets the operating point of the DDR.
  832. */
  833. static bool enable_set_ddr_opp;
  834. int db8500_prcmu_set_ddr_opp(u8 opp)
  835. {
  836. if (opp < DDR_100_OPP || opp > DDR_25_OPP)
  837. return -EINVAL;
  838. /* Changing the DDR OPP can hang the hardware pre-v21 */
  839. if (enable_set_ddr_opp)
  840. writeb(opp, PRCM_DDR_SUBSYS_APE_MINBW);
  841. return 0;
  842. }
  843. /* Divide the frequency of certain clocks by 2 for APE_50_PARTLY_25_OPP. */
  844. static void request_even_slower_clocks(bool enable)
  845. {
  846. u32 clock_reg[] = {
  847. PRCM_ACLK_MGT,
  848. PRCM_DMACLK_MGT
  849. };
  850. unsigned long flags;
  851. unsigned int i;
  852. spin_lock_irqsave(&clk_mgt_lock, flags);
  853. /* Grab the HW semaphore. */
  854. while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
  855. cpu_relax();
  856. for (i = 0; i < ARRAY_SIZE(clock_reg); i++) {
  857. u32 val;
  858. u32 div;
  859. val = readl(prcmu_base + clock_reg[i]);
  860. div = (val & PRCM_CLK_MGT_CLKPLLDIV_MASK);
  861. if (enable) {
  862. if ((div <= 1) || (div > 15)) {
  863. pr_err("prcmu: Bad clock divider %d in %s\n",
  864. div, __func__);
  865. goto unlock_and_return;
  866. }
  867. div <<= 1;
  868. } else {
  869. if (div <= 2)
  870. goto unlock_and_return;
  871. div >>= 1;
  872. }
  873. val = ((val & ~PRCM_CLK_MGT_CLKPLLDIV_MASK) |
  874. (div & PRCM_CLK_MGT_CLKPLLDIV_MASK));
  875. writel(val, prcmu_base + clock_reg[i]);
  876. }
  877. unlock_and_return:
  878. /* Release the HW semaphore. */
  879. writel(0, PRCM_SEM);
  880. spin_unlock_irqrestore(&clk_mgt_lock, flags);
  881. }
  882. /**
  883. * db8500_set_ape_opp - set the appropriate APE OPP
  884. * @opp: The new APE operating point to which transition is to be made
  885. * Returns: 0 on success, non-zero on failure
  886. *
  887. * This function sets the operating point of the APE.
  888. */
  889. int db8500_prcmu_set_ape_opp(u8 opp)
  890. {
  891. int r = 0;
  892. if (opp == mb1_transfer.ape_opp)
  893. return 0;
  894. mutex_lock(&mb1_transfer.lock);
  895. if (mb1_transfer.ape_opp == APE_50_PARTLY_25_OPP)
  896. request_even_slower_clocks(false);
  897. if ((opp != APE_100_OPP) && (mb1_transfer.ape_opp != APE_100_OPP))
  898. goto skip_message;
  899. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
  900. cpu_relax();
  901. writeb(MB1H_ARM_APE_OPP, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
  902. writeb(ARM_NO_CHANGE, (tcdm_base + PRCM_REQ_MB1_ARM_OPP));
  903. writeb(((opp == APE_50_PARTLY_25_OPP) ? APE_50_OPP : opp),
  904. (tcdm_base + PRCM_REQ_MB1_APE_OPP));
  905. writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
  906. wait_for_completion(&mb1_transfer.work);
  907. if ((mb1_transfer.ack.header != MB1H_ARM_APE_OPP) ||
  908. (mb1_transfer.ack.ape_opp != opp))
  909. r = -EIO;
  910. skip_message:
  911. if ((!r && (opp == APE_50_PARTLY_25_OPP)) ||
  912. (r && (mb1_transfer.ape_opp == APE_50_PARTLY_25_OPP)))
  913. request_even_slower_clocks(true);
  914. if (!r)
  915. mb1_transfer.ape_opp = opp;
  916. mutex_unlock(&mb1_transfer.lock);
  917. return r;
  918. }
  919. /**
  920. * db8500_prcmu_get_ape_opp - get the current APE OPP
  921. *
  922. * Returns: the current APE OPP
  923. */
  924. int db8500_prcmu_get_ape_opp(void)
  925. {
  926. return readb(tcdm_base + PRCM_ACK_MB1_CURRENT_APE_OPP);
  927. }
  928. /**
  929. * db8500_prcmu_request_ape_opp_100_voltage - Request APE OPP 100% voltage
  930. * @enable: true to request the higher voltage, false to drop a request.
  931. *
  932. * Calls to this function to enable and disable requests must be balanced.
  933. */
  934. int db8500_prcmu_request_ape_opp_100_voltage(bool enable)
  935. {
  936. int r = 0;
  937. u8 header;
  938. static unsigned int requests;
  939. mutex_lock(&mb1_transfer.lock);
  940. if (enable) {
  941. if (0 != requests++)
  942. goto unlock_and_return;
  943. header = MB1H_REQUEST_APE_OPP_100_VOLT;
  944. } else {
  945. if (requests == 0) {
  946. r = -EIO;
  947. goto unlock_and_return;
  948. } else if (1 != requests--) {
  949. goto unlock_and_return;
  950. }
  951. header = MB1H_RELEASE_APE_OPP_100_VOLT;
  952. }
  953. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
  954. cpu_relax();
  955. writeb(header, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
  956. writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
  957. wait_for_completion(&mb1_transfer.work);
  958. if ((mb1_transfer.ack.header != header) ||
  959. ((mb1_transfer.ack.ape_voltage_status & BIT(0)) != 0))
  960. r = -EIO;
  961. unlock_and_return:
  962. mutex_unlock(&mb1_transfer.lock);
  963. return r;
  964. }
  965. /**
  966. * prcmu_release_usb_wakeup_state - release the state required by a USB wakeup
  967. *
  968. * This function releases the power state requirements of a USB wakeup.
  969. */
  970. int prcmu_release_usb_wakeup_state(void)
  971. {
  972. int r = 0;
  973. mutex_lock(&mb1_transfer.lock);
  974. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
  975. cpu_relax();
  976. writeb(MB1H_RELEASE_USB_WAKEUP,
  977. (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
  978. writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
  979. wait_for_completion(&mb1_transfer.work);
  980. if ((mb1_transfer.ack.header != MB1H_RELEASE_USB_WAKEUP) ||
  981. ((mb1_transfer.ack.ape_voltage_status & BIT(0)) != 0))
  982. r = -EIO;
  983. mutex_unlock(&mb1_transfer.lock);
  984. return r;
  985. }
  986. static int request_pll(u8 clock, bool enable)
  987. {
  988. int r = 0;
  989. if (clock == PRCMU_PLLSOC0)
  990. clock = (enable ? PLL_SOC0_ON : PLL_SOC0_OFF);
  991. else if (clock == PRCMU_PLLSOC1)
  992. clock = (enable ? PLL_SOC1_ON : PLL_SOC1_OFF);
  993. else
  994. return -EINVAL;
  995. mutex_lock(&mb1_transfer.lock);
  996. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
  997. cpu_relax();
  998. writeb(MB1H_PLL_ON_OFF, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
  999. writeb(clock, (tcdm_base + PRCM_REQ_MB1_PLL_ON_OFF));
  1000. writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
  1001. wait_for_completion(&mb1_transfer.work);
  1002. if (mb1_transfer.ack.header != MB1H_PLL_ON_OFF)
  1003. r = -EIO;
  1004. mutex_unlock(&mb1_transfer.lock);
  1005. return r;
  1006. }
  1007. /**
  1008. * db8500_prcmu_set_epod - set the state of a EPOD (power domain)
  1009. * @epod_id: The EPOD to set
  1010. * @epod_state: The new EPOD state
  1011. *
  1012. * This function sets the state of a EPOD (power domain). It may not be called
  1013. * from interrupt context.
  1014. */
  1015. int db8500_prcmu_set_epod(u16 epod_id, u8 epod_state)
  1016. {
  1017. int r = 0;
  1018. bool ram_retention = false;
  1019. int i;
  1020. /* check argument */
  1021. BUG_ON(epod_id >= NUM_EPOD_ID);
  1022. /* set flag if retention is possible */
  1023. switch (epod_id) {
  1024. case EPOD_ID_SVAMMDSP:
  1025. case EPOD_ID_SIAMMDSP:
  1026. case EPOD_ID_ESRAM12:
  1027. case EPOD_ID_ESRAM34:
  1028. ram_retention = true;
  1029. break;
  1030. }
  1031. /* check argument */
  1032. BUG_ON(epod_state > EPOD_STATE_ON);
  1033. BUG_ON(epod_state == EPOD_STATE_RAMRET && !ram_retention);
  1034. /* get lock */
  1035. mutex_lock(&mb2_transfer.lock);
  1036. /* wait for mailbox */
  1037. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(2))
  1038. cpu_relax();
  1039. /* fill in mailbox */
  1040. for (i = 0; i < NUM_EPOD_ID; i++)
  1041. writeb(EPOD_STATE_NO_CHANGE, (tcdm_base + PRCM_REQ_MB2 + i));
  1042. writeb(epod_state, (tcdm_base + PRCM_REQ_MB2 + epod_id));
  1043. writeb(MB2H_DPS, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB2));
  1044. writel(MBOX_BIT(2), PRCM_MBOX_CPU_SET);
  1045. /*
  1046. * The current firmware version does not handle errors correctly,
  1047. * and we cannot recover if there is an error.
  1048. * This is expected to change when the firmware is updated.
  1049. */
  1050. if (!wait_for_completion_timeout(&mb2_transfer.work,
  1051. msecs_to_jiffies(20000))) {
  1052. pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
  1053. __func__);
  1054. r = -EIO;
  1055. goto unlock_and_return;
  1056. }
  1057. if (mb2_transfer.ack.status != HWACC_PWR_ST_OK)
  1058. r = -EIO;
  1059. unlock_and_return:
  1060. mutex_unlock(&mb2_transfer.lock);
  1061. return r;
  1062. }
  1063. /**
  1064. * prcmu_configure_auto_pm - Configure autonomous power management.
  1065. * @sleep: Configuration for ApSleep.
  1066. * @idle: Configuration for ApIdle.
  1067. */
  1068. void prcmu_configure_auto_pm(struct prcmu_auto_pm_config *sleep,
  1069. struct prcmu_auto_pm_config *idle)
  1070. {
  1071. u32 sleep_cfg;
  1072. u32 idle_cfg;
  1073. unsigned long flags;
  1074. BUG_ON((sleep == NULL) || (idle == NULL));
  1075. sleep_cfg = (sleep->sva_auto_pm_enable & 0xF);
  1076. sleep_cfg = ((sleep_cfg << 4) | (sleep->sia_auto_pm_enable & 0xF));
  1077. sleep_cfg = ((sleep_cfg << 8) | (sleep->sva_power_on & 0xFF));
  1078. sleep_cfg = ((sleep_cfg << 8) | (sleep->sia_power_on & 0xFF));
  1079. sleep_cfg = ((sleep_cfg << 4) | (sleep->sva_policy & 0xF));
  1080. sleep_cfg = ((sleep_cfg << 4) | (sleep->sia_policy & 0xF));
  1081. idle_cfg = (idle->sva_auto_pm_enable & 0xF);
  1082. idle_cfg = ((idle_cfg << 4) | (idle->sia_auto_pm_enable & 0xF));
  1083. idle_cfg = ((idle_cfg << 8) | (idle->sva_power_on & 0xFF));
  1084. idle_cfg = ((idle_cfg << 8) | (idle->sia_power_on & 0xFF));
  1085. idle_cfg = ((idle_cfg << 4) | (idle->sva_policy & 0xF));
  1086. idle_cfg = ((idle_cfg << 4) | (idle->sia_policy & 0xF));
  1087. spin_lock_irqsave(&mb2_transfer.auto_pm_lock, flags);
  1088. /*
  1089. * The autonomous power management configuration is done through
  1090. * fields in mailbox 2, but these fields are only used as shared
  1091. * variables - i.e. there is no need to send a message.
  1092. */
  1093. writel(sleep_cfg, (tcdm_base + PRCM_REQ_MB2_AUTO_PM_SLEEP));
  1094. writel(idle_cfg, (tcdm_base + PRCM_REQ_MB2_AUTO_PM_IDLE));
  1095. mb2_transfer.auto_pm_enabled =
  1096. ((sleep->sva_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
  1097. (sleep->sia_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
  1098. (idle->sva_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
  1099. (idle->sia_auto_pm_enable == PRCMU_AUTO_PM_ON));
  1100. spin_unlock_irqrestore(&mb2_transfer.auto_pm_lock, flags);
  1101. }
  1102. EXPORT_SYMBOL(prcmu_configure_auto_pm);
  1103. bool prcmu_is_auto_pm_enabled(void)
  1104. {
  1105. return mb2_transfer.auto_pm_enabled;
  1106. }
  1107. static int request_sysclk(bool enable)
  1108. {
  1109. int r;
  1110. unsigned long flags;
  1111. r = 0;
  1112. mutex_lock(&mb3_transfer.sysclk_lock);
  1113. spin_lock_irqsave(&mb3_transfer.lock, flags);
  1114. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(3))
  1115. cpu_relax();
  1116. writeb((enable ? ON : OFF), (tcdm_base + PRCM_REQ_MB3_SYSCLK_MGT));
  1117. writeb(MB3H_SYSCLK, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB3));
  1118. writel(MBOX_BIT(3), PRCM_MBOX_CPU_SET);
  1119. spin_unlock_irqrestore(&mb3_transfer.lock, flags);
  1120. /*
  1121. * The firmware only sends an ACK if we want to enable the
  1122. * SysClk, and it succeeds.
  1123. */
  1124. if (enable && !wait_for_completion_timeout(&mb3_transfer.sysclk_work,
  1125. msecs_to_jiffies(20000))) {
  1126. pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
  1127. __func__);
  1128. r = -EIO;
  1129. }
  1130. mutex_unlock(&mb3_transfer.sysclk_lock);
  1131. return r;
  1132. }
  1133. static int request_timclk(bool enable)
  1134. {
  1135. u32 val = (PRCM_TCR_DOZE_MODE | PRCM_TCR_TENSEL_MASK);
  1136. if (!enable)
  1137. val |= PRCM_TCR_STOP_TIMERS;
  1138. writel(val, PRCM_TCR);
  1139. return 0;
  1140. }
  1141. static int request_clock(u8 clock, bool enable)
  1142. {
  1143. u32 val;
  1144. unsigned long flags;
  1145. spin_lock_irqsave(&clk_mgt_lock, flags);
  1146. /* Grab the HW semaphore. */
  1147. while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
  1148. cpu_relax();
  1149. val = readl(prcmu_base + clk_mgt[clock].offset);
  1150. if (enable) {
  1151. val |= (PRCM_CLK_MGT_CLKEN | clk_mgt[clock].pllsw);
  1152. } else {
  1153. clk_mgt[clock].pllsw = (val & PRCM_CLK_MGT_CLKPLLSW_MASK);
  1154. val &= ~(PRCM_CLK_MGT_CLKEN | PRCM_CLK_MGT_CLKPLLSW_MASK);
  1155. }
  1156. writel(val, prcmu_base + clk_mgt[clock].offset);
  1157. /* Release the HW semaphore. */
  1158. writel(0, PRCM_SEM);
  1159. spin_unlock_irqrestore(&clk_mgt_lock, flags);
  1160. return 0;
  1161. }
  1162. static int request_sga_clock(u8 clock, bool enable)
  1163. {
  1164. u32 val;
  1165. int ret;
  1166. if (enable) {
  1167. val = readl(PRCM_CGATING_BYPASS);
  1168. writel(val | PRCM_CGATING_BYPASS_ICN2, PRCM_CGATING_BYPASS);
  1169. }
  1170. ret = request_clock(clock, enable);
  1171. if (!ret && !enable) {
  1172. val = readl(PRCM_CGATING_BYPASS);
  1173. writel(val & ~PRCM_CGATING_BYPASS_ICN2, PRCM_CGATING_BYPASS);
  1174. }
  1175. return ret;
  1176. }
  1177. static inline bool plldsi_locked(void)
  1178. {
  1179. return (readl(PRCM_PLLDSI_LOCKP) &
  1180. (PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP10 |
  1181. PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP3)) ==
  1182. (PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP10 |
  1183. PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP3);
  1184. }
  1185. static int request_plldsi(bool enable)
  1186. {
  1187. int r = 0;
  1188. u32 val;
  1189. writel((PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMP |
  1190. PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMPI), (enable ?
  1191. PRCM_MMIP_LS_CLAMP_CLR : PRCM_MMIP_LS_CLAMP_SET));
  1192. val = readl(PRCM_PLLDSI_ENABLE);
  1193. if (enable)
  1194. val |= PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE;
  1195. else
  1196. val &= ~PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE;
  1197. writel(val, PRCM_PLLDSI_ENABLE);
  1198. if (enable) {
  1199. unsigned int i;
  1200. bool locked = plldsi_locked();
  1201. for (i = 10; !locked && (i > 0); --i) {
  1202. udelay(100);
  1203. locked = plldsi_locked();
  1204. }
  1205. if (locked) {
  1206. writel(PRCM_APE_RESETN_DSIPLL_RESETN,
  1207. PRCM_APE_RESETN_SET);
  1208. } else {
  1209. writel((PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMP |
  1210. PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMPI),
  1211. PRCM_MMIP_LS_CLAMP_SET);
  1212. val &= ~PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE;
  1213. writel(val, PRCM_PLLDSI_ENABLE);
  1214. r = -EAGAIN;
  1215. }
  1216. } else {
  1217. writel(PRCM_APE_RESETN_DSIPLL_RESETN, PRCM_APE_RESETN_CLR);
  1218. }
  1219. return r;
  1220. }
  1221. static int request_dsiclk(u8 n, bool enable)
  1222. {
  1223. u32 val;
  1224. val = readl(PRCM_DSI_PLLOUT_SEL);
  1225. val &= ~dsiclk[n].divsel_mask;
  1226. val |= ((enable ? dsiclk[n].divsel : PRCM_DSI_PLLOUT_SEL_OFF) <<
  1227. dsiclk[n].divsel_shift);
  1228. writel(val, PRCM_DSI_PLLOUT_SEL);
  1229. return 0;
  1230. }
  1231. static int request_dsiescclk(u8 n, bool enable)
  1232. {
  1233. u32 val;
  1234. val = readl(PRCM_DSITVCLK_DIV);
  1235. enable ? (val |= dsiescclk[n].en) : (val &= ~dsiescclk[n].en);
  1236. writel(val, PRCM_DSITVCLK_DIV);
  1237. return 0;
  1238. }
  1239. /**
  1240. * db8500_prcmu_request_clock() - Request for a clock to be enabled or disabled.
  1241. * @clock: The clock for which the request is made.
  1242. * @enable: Whether the clock should be enabled (true) or disabled (false).
  1243. *
  1244. * This function should only be used by the clock implementation.
  1245. * Do not use it from any other place!
  1246. */
  1247. int db8500_prcmu_request_clock(u8 clock, bool enable)
  1248. {
  1249. if (clock == PRCMU_SGACLK)
  1250. return request_sga_clock(clock, enable);
  1251. else if (clock < PRCMU_NUM_REG_CLOCKS)
  1252. return request_clock(clock, enable);
  1253. else if (clock == PRCMU_TIMCLK)
  1254. return request_timclk(enable);
  1255. else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
  1256. return request_dsiclk((clock - PRCMU_DSI0CLK), enable);
  1257. else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
  1258. return request_dsiescclk((clock - PRCMU_DSI0ESCCLK), enable);
  1259. else if (clock == PRCMU_PLLDSI)
  1260. return request_plldsi(enable);
  1261. else if (clock == PRCMU_SYSCLK)
  1262. return request_sysclk(enable);
  1263. else if ((clock == PRCMU_PLLSOC0) || (clock == PRCMU_PLLSOC1))
  1264. return request_pll(clock, enable);
  1265. else
  1266. return -EINVAL;
  1267. }
  1268. static unsigned long pll_rate(void __iomem *reg, unsigned long src_rate,
  1269. int branch)
  1270. {
  1271. u64 rate;
  1272. u32 val;
  1273. u32 d;
  1274. u32 div = 1;
  1275. val = readl(reg);
  1276. rate = src_rate;
  1277. rate *= ((val & PRCM_PLL_FREQ_D_MASK) >> PRCM_PLL_FREQ_D_SHIFT);
  1278. d = ((val & PRCM_PLL_FREQ_N_MASK) >> PRCM_PLL_FREQ_N_SHIFT);
  1279. if (d > 1)
  1280. div *= d;
  1281. d = ((val & PRCM_PLL_FREQ_R_MASK) >> PRCM_PLL_FREQ_R_SHIFT);
  1282. if (d > 1)
  1283. div *= d;
  1284. if (val & PRCM_PLL_FREQ_SELDIV2)
  1285. div *= 2;
  1286. if ((branch == PLL_FIX) || ((branch == PLL_DIV) &&
  1287. (val & PRCM_PLL_FREQ_DIV2EN) &&
  1288. ((reg == PRCM_PLLSOC0_FREQ) ||
  1289. (reg == PRCM_PLLARM_FREQ) ||
  1290. (reg == PRCM_PLLDDR_FREQ))))
  1291. div *= 2;
  1292. (void)do_div(rate, div);
  1293. return (unsigned long)rate;
  1294. }
  1295. #define ROOT_CLOCK_RATE 38400000
  1296. static unsigned long clock_rate(u8 clock)
  1297. {
  1298. u32 val;
  1299. u32 pllsw;
  1300. unsigned long rate = ROOT_CLOCK_RATE;
  1301. val = readl(prcmu_base + clk_mgt[clock].offset);
  1302. if (val & PRCM_CLK_MGT_CLK38) {
  1303. if (clk_mgt[clock].clk38div && (val & PRCM_CLK_MGT_CLK38DIV))
  1304. rate /= 2;
  1305. return rate;
  1306. }
  1307. val |= clk_mgt[clock].pllsw;
  1308. pllsw = (val & PRCM_CLK_MGT_CLKPLLSW_MASK);
  1309. if (pllsw == PRCM_CLK_MGT_CLKPLLSW_SOC0)
  1310. rate = pll_rate(PRCM_PLLSOC0_FREQ, rate, clk_mgt[clock].branch);
  1311. else if (pllsw == PRCM_CLK_MGT_CLKPLLSW_SOC1)
  1312. rate = pll_rate(PRCM_PLLSOC1_FREQ, rate, clk_mgt[clock].branch);
  1313. else if (pllsw == PRCM_CLK_MGT_CLKPLLSW_DDR)
  1314. rate = pll_rate(PRCM_PLLDDR_FREQ, rate, clk_mgt[clock].branch);
  1315. else
  1316. return 0;
  1317. if ((clock == PRCMU_SGACLK) &&
  1318. (val & PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN)) {
  1319. u64 r = (rate * 10);
  1320. (void)do_div(r, 25);
  1321. return (unsigned long)r;
  1322. }
  1323. val &= PRCM_CLK_MGT_CLKPLLDIV_MASK;
  1324. if (val)
  1325. return rate / val;
  1326. else
  1327. return 0;
  1328. }
  1329. static unsigned long armss_rate(void)
  1330. {
  1331. u32 r;
  1332. unsigned long rate;
  1333. r = readl(PRCM_ARM_CHGCLKREQ);
  1334. if (r & PRCM_ARM_CHGCLKREQ_PRCM_ARM_CHGCLKREQ) {
  1335. /* External ARMCLKFIX clock */
  1336. rate = pll_rate(PRCM_PLLDDR_FREQ, ROOT_CLOCK_RATE, PLL_FIX);
  1337. /* Check PRCM_ARM_CHGCLKREQ divider */
  1338. if (!(r & PRCM_ARM_CHGCLKREQ_PRCM_ARM_DIVSEL))
  1339. rate /= 2;
  1340. /* Check PRCM_ARMCLKFIX_MGT divider */
  1341. r = readl(PRCM_ARMCLKFIX_MGT);
  1342. r &= PRCM_CLK_MGT_CLKPLLDIV_MASK;
  1343. rate /= r;
  1344. } else {/* ARM PLL */
  1345. rate = pll_rate(PRCM_PLLARM_FREQ, ROOT_CLOCK_RATE, PLL_DIV);
  1346. }
  1347. return rate;
  1348. }
  1349. static unsigned long dsiclk_rate(u8 n)
  1350. {
  1351. u32 divsel;
  1352. u32 div = 1;
  1353. divsel = readl(PRCM_DSI_PLLOUT_SEL);
  1354. divsel = ((divsel & dsiclk[n].divsel_mask) >> dsiclk[n].divsel_shift);
  1355. if (divsel == PRCM_DSI_PLLOUT_SEL_OFF)
  1356. divsel = dsiclk[n].divsel;
  1357. switch (divsel) {
  1358. case PRCM_DSI_PLLOUT_SEL_PHI_4:
  1359. div *= 2;
  1360. case PRCM_DSI_PLLOUT_SEL_PHI_2:
  1361. div *= 2;
  1362. case PRCM_DSI_PLLOUT_SEL_PHI:
  1363. return pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK),
  1364. PLL_RAW) / div;
  1365. default:
  1366. return 0;
  1367. }
  1368. }
  1369. static unsigned long dsiescclk_rate(u8 n)
  1370. {
  1371. u32 div;
  1372. div = readl(PRCM_DSITVCLK_DIV);
  1373. div = ((div & dsiescclk[n].div_mask) >> (dsiescclk[n].div_shift));
  1374. return clock_rate(PRCMU_TVCLK) / max((u32)1, div);
  1375. }
  1376. unsigned long prcmu_clock_rate(u8 clock)
  1377. {
  1378. if (clock < PRCMU_NUM_REG_CLOCKS)
  1379. return clock_rate(clock);
  1380. else if (clock == PRCMU_TIMCLK)
  1381. return ROOT_CLOCK_RATE / 16;
  1382. else if (clock == PRCMU_SYSCLK)
  1383. return ROOT_CLOCK_RATE;
  1384. else if (clock == PRCMU_PLLSOC0)
  1385. return pll_rate(PRCM_PLLSOC0_FREQ, ROOT_CLOCK_RATE, PLL_RAW);
  1386. else if (clock == PRCMU_PLLSOC1)
  1387. return pll_rate(PRCM_PLLSOC1_FREQ, ROOT_CLOCK_RATE, PLL_RAW);
  1388. else if (clock == PRCMU_ARMSS)
  1389. return armss_rate();
  1390. else if (clock == PRCMU_PLLDDR)
  1391. return pll_rate(PRCM_PLLDDR_FREQ, ROOT_CLOCK_RATE, PLL_RAW);
  1392. else if (clock == PRCMU_PLLDSI)
  1393. return pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK),
  1394. PLL_RAW);
  1395. else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
  1396. return dsiclk_rate(clock - PRCMU_DSI0CLK);
  1397. else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
  1398. return dsiescclk_rate(clock - PRCMU_DSI0ESCCLK);
  1399. else
  1400. return 0;
  1401. }
  1402. static unsigned long clock_source_rate(u32 clk_mgt_val, int branch)
  1403. {
  1404. if (clk_mgt_val & PRCM_CLK_MGT_CLK38)
  1405. return ROOT_CLOCK_RATE;
  1406. clk_mgt_val &= PRCM_CLK_MGT_CLKPLLSW_MASK;
  1407. if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_SOC0)
  1408. return pll_rate(PRCM_PLLSOC0_FREQ, ROOT_CLOCK_RATE, branch);
  1409. else if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_SOC1)
  1410. return pll_rate(PRCM_PLLSOC1_FREQ, ROOT_CLOCK_RATE, branch);
  1411. else if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_DDR)
  1412. return pll_rate(PRCM_PLLDDR_FREQ, ROOT_CLOCK_RATE, branch);
  1413. else
  1414. return 0;
  1415. }
  1416. static u32 clock_divider(unsigned long src_rate, unsigned long rate)
  1417. {
  1418. u32 div;
  1419. div = (src_rate / rate);
  1420. if (div == 0)
  1421. return 1;
  1422. if (rate < (src_rate / div))
  1423. div++;
  1424. return div;
  1425. }
  1426. static long round_clock_rate(u8 clock, unsigned long rate)
  1427. {
  1428. u32 val;
  1429. u32 div;
  1430. unsigned long src_rate;
  1431. long rounded_rate;
  1432. val = readl(prcmu_base + clk_mgt[clock].offset);
  1433. src_rate = clock_source_rate((val | clk_mgt[clock].pllsw),
  1434. clk_mgt[clock].branch);
  1435. div = clock_divider(src_rate, rate);
  1436. if (val & PRCM_CLK_MGT_CLK38) {
  1437. if (clk_mgt[clock].clk38div) {
  1438. if (div > 2)
  1439. div = 2;
  1440. } else {
  1441. div = 1;
  1442. }
  1443. } else if ((clock == PRCMU_SGACLK) && (div == 3)) {
  1444. u64 r = (src_rate * 10);
  1445. (void)do_div(r, 25);
  1446. if (r <= rate)
  1447. return (unsigned long)r;
  1448. }
  1449. rounded_rate = (src_rate / min(div, (u32)31));
  1450. return rounded_rate;
  1451. }
  1452. /* CPU FREQ table, may be changed due to if MAX_OPP is supported. */
  1453. static struct cpufreq_frequency_table db8500_cpufreq_table[] = {
  1454. { .frequency = 200000, .index = ARM_EXTCLK,},
  1455. { .frequency = 400000, .index = ARM_50_OPP,},
  1456. { .frequency = 800000, .index = ARM_100_OPP,},
  1457. { .frequency = CPUFREQ_TABLE_END,}, /* To be used for MAX_OPP. */
  1458. { .frequency = CPUFREQ_TABLE_END,},
  1459. };
  1460. static long round_armss_rate(unsigned long rate)
  1461. {
  1462. long freq = 0;
  1463. int i = 0;
  1464. /* cpufreq table frequencies is in KHz. */
  1465. rate = rate / 1000;
  1466. /* Find the corresponding arm opp from the cpufreq table. */
  1467. while (db8500_cpufreq_table[i].frequency != CPUFREQ_TABLE_END) {
  1468. freq = db8500_cpufreq_table[i].frequency;
  1469. if (freq == rate)
  1470. break;
  1471. i++;
  1472. }
  1473. /* Return the last valid value, even if a match was not found. */
  1474. return freq * 1000;
  1475. }
  1476. #define MIN_PLL_VCO_RATE 600000000ULL
  1477. #define MAX_PLL_VCO_RATE 1680640000ULL
  1478. static long round_plldsi_rate(unsigned long rate)
  1479. {
  1480. long rounded_rate = 0;
  1481. unsigned long src_rate;
  1482. unsigned long rem;
  1483. u32 r;
  1484. src_rate = clock_rate(PRCMU_HDMICLK);
  1485. rem = rate;
  1486. for (r = 7; (rem > 0) && (r > 0); r--) {
  1487. u64 d;
  1488. d = (r * rate);
  1489. (void)do_div(d, src_rate);
  1490. if (d < 6)
  1491. d = 6;
  1492. else if (d > 255)
  1493. d = 255;
  1494. d *= src_rate;
  1495. if (((2 * d) < (r * MIN_PLL_VCO_RATE)) ||
  1496. ((r * MAX_PLL_VCO_RATE) < (2 * d)))
  1497. continue;
  1498. (void)do_div(d, r);
  1499. if (rate < d) {
  1500. if (rounded_rate == 0)
  1501. rounded_rate = (long)d;
  1502. break;
  1503. }
  1504. if ((rate - d) < rem) {
  1505. rem = (rate - d);
  1506. rounded_rate = (long)d;
  1507. }
  1508. }
  1509. return rounded_rate;
  1510. }
  1511. static long round_dsiclk_rate(unsigned long rate)
  1512. {
  1513. u32 div;
  1514. unsigned long src_rate;
  1515. long rounded_rate;
  1516. src_rate = pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK),
  1517. PLL_RAW);
  1518. div = clock_divider(src_rate, rate);
  1519. rounded_rate = (src_rate / ((div > 2) ? 4 : div));
  1520. return rounded_rate;
  1521. }
  1522. static long round_dsiescclk_rate(unsigned long rate)
  1523. {
  1524. u32 div;
  1525. unsigned long src_rate;
  1526. long rounded_rate;
  1527. src_rate = clock_rate(PRCMU_TVCLK);
  1528. div = clock_divider(src_rate, rate);
  1529. rounded_rate = (src_rate / min(div, (u32)255));
  1530. return rounded_rate;
  1531. }
  1532. long prcmu_round_clock_rate(u8 clock, unsigned long rate)
  1533. {
  1534. if (clock < PRCMU_NUM_REG_CLOCKS)
  1535. return round_clock_rate(clock, rate);
  1536. else if (clock == PRCMU_ARMSS)
  1537. return round_armss_rate(rate);
  1538. else if (clock == PRCMU_PLLDSI)
  1539. return round_plldsi_rate(rate);
  1540. else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
  1541. return round_dsiclk_rate(rate);
  1542. else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
  1543. return round_dsiescclk_rate(rate);
  1544. else
  1545. return (long)prcmu_clock_rate(clock);
  1546. }
  1547. static void set_clock_rate(u8 clock, unsigned long rate)
  1548. {
  1549. u32 val;
  1550. u32 div;
  1551. unsigned long src_rate;
  1552. unsigned long flags;
  1553. spin_lock_irqsave(&clk_mgt_lock, flags);
  1554. /* Grab the HW semaphore. */
  1555. while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
  1556. cpu_relax();
  1557. val = readl(prcmu_base + clk_mgt[clock].offset);
  1558. src_rate = clock_source_rate((val | clk_mgt[clock].pllsw),
  1559. clk_mgt[clock].branch);
  1560. div = clock_divider(src_rate, rate);
  1561. if (val & PRCM_CLK_MGT_CLK38) {
  1562. if (clk_mgt[clock].clk38div) {
  1563. if (div > 1)
  1564. val |= PRCM_CLK_MGT_CLK38DIV;
  1565. else
  1566. val &= ~PRCM_CLK_MGT_CLK38DIV;
  1567. }
  1568. } else if (clock == PRCMU_SGACLK) {
  1569. val &= ~(PRCM_CLK_MGT_CLKPLLDIV_MASK |
  1570. PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN);
  1571. if (div == 3) {
  1572. u64 r = (src_rate * 10);
  1573. (void)do_div(r, 25);
  1574. if (r <= rate) {
  1575. val |= PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN;
  1576. div = 0;
  1577. }
  1578. }
  1579. val |= min(div, (u32)31);
  1580. } else {
  1581. val &= ~PRCM_CLK_MGT_CLKPLLDIV_MASK;
  1582. val |= min(div, (u32)31);
  1583. }
  1584. writel(val, prcmu_base + clk_mgt[clock].offset);
  1585. /* Release the HW semaphore. */
  1586. writel(0, PRCM_SEM);
  1587. spin_unlock_irqrestore(&clk_mgt_lock, flags);
  1588. }
  1589. static int set_armss_rate(unsigned long rate)
  1590. {
  1591. int i = 0;
  1592. /* cpufreq table frequencies is in KHz. */
  1593. rate = rate / 1000;
  1594. /* Find the corresponding arm opp from the cpufreq table. */
  1595. while (db8500_cpufreq_table[i].frequency != CPUFREQ_TABLE_END) {
  1596. if (db8500_cpufreq_table[i].frequency == rate)
  1597. break;
  1598. i++;
  1599. }
  1600. if (db8500_cpufreq_table[i].frequency != rate)
  1601. return -EINVAL;
  1602. /* Set the new arm opp. */
  1603. return db8500_prcmu_set_arm_opp(db8500_cpufreq_table[i].index);
  1604. }
  1605. static int set_plldsi_rate(unsigned long rate)
  1606. {
  1607. unsigned long src_rate;
  1608. unsigned long rem;
  1609. u32 pll_freq = 0;
  1610. u32 r;
  1611. src_rate = clock_rate(PRCMU_HDMICLK);
  1612. rem = rate;
  1613. for (r = 7; (rem > 0) && (r > 0); r--) {
  1614. u64 d;
  1615. u64 hwrate;
  1616. d = (r * rate);
  1617. (void)do_div(d, src_rate);
  1618. if (d < 6)
  1619. d = 6;
  1620. else if (d > 255)
  1621. d = 255;
  1622. hwrate = (d * src_rate);
  1623. if (((2 * hwrate) < (r * MIN_PLL_VCO_RATE)) ||
  1624. ((r * MAX_PLL_VCO_RATE) < (2 * hwrate)))
  1625. continue;
  1626. (void)do_div(hwrate, r);
  1627. if (rate < hwrate) {
  1628. if (pll_freq == 0)
  1629. pll_freq = (((u32)d << PRCM_PLL_FREQ_D_SHIFT) |
  1630. (r << PRCM_PLL_FREQ_R_SHIFT));
  1631. break;
  1632. }
  1633. if ((rate - hwrate) < rem) {
  1634. rem = (rate - hwrate);
  1635. pll_freq = (((u32)d << PRCM_PLL_FREQ_D_SHIFT) |
  1636. (r << PRCM_PLL_FREQ_R_SHIFT));
  1637. }
  1638. }
  1639. if (pll_freq == 0)
  1640. return -EINVAL;
  1641. pll_freq |= (1 << PRCM_PLL_FREQ_N_SHIFT);
  1642. writel(pll_freq, PRCM_PLLDSI_FREQ);
  1643. return 0;
  1644. }
  1645. static void set_dsiclk_rate(u8 n, unsigned long rate)
  1646. {
  1647. u32 val;
  1648. u32 div;
  1649. div = clock_divider(pll_rate(PRCM_PLLDSI_FREQ,
  1650. clock_rate(PRCMU_HDMICLK), PLL_RAW), rate);
  1651. dsiclk[n].divsel = (div == 1) ? PRCM_DSI_PLLOUT_SEL_PHI :
  1652. (div == 2) ? PRCM_DSI_PLLOUT_SEL_PHI_2 :
  1653. /* else */ PRCM_DSI_PLLOUT_SEL_PHI_4;
  1654. val = readl(PRCM_DSI_PLLOUT_SEL);
  1655. val &= ~dsiclk[n].divsel_mask;
  1656. val |= (dsiclk[n].divsel << dsiclk[n].divsel_shift);
  1657. writel(val, PRCM_DSI_PLLOUT_SEL);
  1658. }
  1659. static void set_dsiescclk_rate(u8 n, unsigned long rate)
  1660. {
  1661. u32 val;
  1662. u32 div;
  1663. div = clock_divider(clock_rate(PRCMU_TVCLK), rate);
  1664. val = readl(PRCM_DSITVCLK_DIV);
  1665. val &= ~dsiescclk[n].div_mask;
  1666. val |= (min(div, (u32)255) << dsiescclk[n].div_shift);
  1667. writel(val, PRCM_DSITVCLK_DIV);
  1668. }
  1669. int prcmu_set_clock_rate(u8 clock, unsigned long rate)
  1670. {
  1671. if (clock < PRCMU_NUM_REG_CLOCKS)
  1672. set_clock_rate(clock, rate);
  1673. else if (clock == PRCMU_ARMSS)
  1674. return set_armss_rate(rate);
  1675. else if (clock == PRCMU_PLLDSI)
  1676. return set_plldsi_rate(rate);
  1677. else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
  1678. set_dsiclk_rate((clock - PRCMU_DSI0CLK), rate);
  1679. else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
  1680. set_dsiescclk_rate((clock - PRCMU_DSI0ESCCLK), rate);
  1681. return 0;
  1682. }
  1683. int db8500_prcmu_config_esram0_deep_sleep(u8 state)
  1684. {
  1685. if ((state > ESRAM0_DEEP_SLEEP_STATE_RET) ||
  1686. (state < ESRAM0_DEEP_SLEEP_STATE_OFF))
  1687. return -EINVAL;
  1688. mutex_lock(&mb4_transfer.lock);
  1689. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
  1690. cpu_relax();
  1691. writeb(MB4H_MEM_ST, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
  1692. writeb(((DDR_PWR_STATE_OFFHIGHLAT << 4) | DDR_PWR_STATE_ON),
  1693. (tcdm_base + PRCM_REQ_MB4_DDR_ST_AP_SLEEP_IDLE));
  1694. writeb(DDR_PWR_STATE_ON,
  1695. (tcdm_base + PRCM_REQ_MB4_DDR_ST_AP_DEEP_IDLE));
  1696. writeb(state, (tcdm_base + PRCM_REQ_MB4_ESRAM0_ST));
  1697. writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
  1698. wait_for_completion(&mb4_transfer.work);
  1699. mutex_unlock(&mb4_transfer.lock);
  1700. return 0;
  1701. }
  1702. int db8500_prcmu_config_hotdog(u8 threshold)
  1703. {
  1704. mutex_lock(&mb4_transfer.lock);
  1705. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
  1706. cpu_relax();
  1707. writeb(threshold, (tcdm_base + PRCM_REQ_MB4_HOTDOG_THRESHOLD));
  1708. writeb(MB4H_HOTDOG, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
  1709. writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
  1710. wait_for_completion(&mb4_transfer.work);
  1711. mutex_unlock(&mb4_transfer.lock);
  1712. return 0;
  1713. }
  1714. int db8500_prcmu_config_hotmon(u8 low, u8 high)
  1715. {
  1716. mutex_lock(&mb4_transfer.lock);
  1717. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
  1718. cpu_relax();
  1719. writeb(low, (tcdm_base + PRCM_REQ_MB4_HOTMON_LOW));
  1720. writeb(high, (tcdm_base + PRCM_REQ_MB4_HOTMON_HIGH));
  1721. writeb((HOTMON_CONFIG_LOW | HOTMON_CONFIG_HIGH),
  1722. (tcdm_base + PRCM_REQ_MB4_HOTMON_CONFIG));
  1723. writeb(MB4H_HOTMON, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
  1724. writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
  1725. wait_for_completion(&mb4_transfer.work);
  1726. mutex_unlock(&mb4_transfer.lock);
  1727. return 0;
  1728. }
  1729. static int config_hot_period(u16 val)
  1730. {
  1731. mutex_lock(&mb4_transfer.lock);
  1732. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
  1733. cpu_relax();
  1734. writew(val, (tcdm_base + PRCM_REQ_MB4_HOT_PERIOD));
  1735. writeb(MB4H_HOT_PERIOD, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
  1736. writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
  1737. wait_for_completion(&mb4_transfer.work);
  1738. mutex_unlock(&mb4_transfer.lock);
  1739. return 0;
  1740. }
  1741. int db8500_prcmu_start_temp_sense(u16 cycles32k)
  1742. {
  1743. if (cycles32k == 0xFFFF)
  1744. return -EINVAL;
  1745. return config_hot_period(cycles32k);
  1746. }
  1747. int db8500_prcmu_stop_temp_sense(void)
  1748. {
  1749. return config_hot_period(0xFFFF);
  1750. }
  1751. static int prcmu_a9wdog(u8 cmd, u8 d0, u8 d1, u8 d2, u8 d3)
  1752. {
  1753. mutex_lock(&mb4_transfer.lock);
  1754. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
  1755. cpu_relax();
  1756. writeb(d0, (tcdm_base + PRCM_REQ_MB4_A9WDOG_0));
  1757. writeb(d1, (tcdm_base + PRCM_REQ_MB4_A9WDOG_1));
  1758. writeb(d2, (tcdm_base + PRCM_REQ_MB4_A9WDOG_2));
  1759. writeb(d3, (tcdm_base + PRCM_REQ_MB4_A9WDOG_3));
  1760. writeb(cmd, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
  1761. writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
  1762. wait_for_completion(&mb4_transfer.work);
  1763. mutex_unlock(&mb4_transfer.lock);
  1764. return 0;
  1765. }
  1766. int db8500_prcmu_config_a9wdog(u8 num, bool sleep_auto_off)
  1767. {
  1768. BUG_ON(num == 0 || num > 0xf);
  1769. return prcmu_a9wdog(MB4H_A9WDOG_CONF, num, 0, 0,
  1770. sleep_auto_off ? A9WDOG_AUTO_OFF_EN :
  1771. A9WDOG_AUTO_OFF_DIS);
  1772. }
  1773. EXPORT_SYMBOL(db8500_prcmu_config_a9wdog);
  1774. int db8500_prcmu_enable_a9wdog(u8 id)
  1775. {
  1776. return prcmu_a9wdog(MB4H_A9WDOG_EN, id, 0, 0, 0);
  1777. }
  1778. EXPORT_SYMBOL(db8500_prcmu_enable_a9wdog);
  1779. int db8500_prcmu_disable_a9wdog(u8 id)
  1780. {
  1781. return prcmu_a9wdog(MB4H_A9WDOG_DIS, id, 0, 0, 0);
  1782. }
  1783. EXPORT_SYMBOL(db8500_prcmu_disable_a9wdog);
  1784. int db8500_prcmu_kick_a9wdog(u8 id)
  1785. {
  1786. return prcmu_a9wdog(MB4H_A9WDOG_KICK, id, 0, 0, 0);
  1787. }
  1788. EXPORT_SYMBOL(db8500_prcmu_kick_a9wdog);
  1789. /*
  1790. * timeout is 28 bit, in ms.
  1791. */
  1792. int db8500_prcmu_load_a9wdog(u8 id, u32 timeout)
  1793. {
  1794. return prcmu_a9wdog(MB4H_A9WDOG_LOAD,
  1795. (id & A9WDOG_ID_MASK) |
  1796. /*
  1797. * Put the lowest 28 bits of timeout at
  1798. * offset 4. Four first bits are used for id.
  1799. */
  1800. (u8)((timeout << 4) & 0xf0),
  1801. (u8)((timeout >> 4) & 0xff),
  1802. (u8)((timeout >> 12) & 0xff),
  1803. (u8)((timeout >> 20) & 0xff));
  1804. }
  1805. EXPORT_SYMBOL(db8500_prcmu_load_a9wdog);
  1806. /**
  1807. * prcmu_abb_read() - Read register value(s) from the ABB.
  1808. * @slave: The I2C slave address.
  1809. * @reg: The (start) register address.
  1810. * @value: The read out value(s).
  1811. * @size: The number of registers to read.
  1812. *
  1813. * Reads register value(s) from the ABB.
  1814. * @size has to be 1 for the current firmware version.
  1815. */
  1816. int prcmu_abb_read(u8 slave, u8 reg, u8 *value, u8 size)
  1817. {
  1818. int r;
  1819. if (size != 1)
  1820. return -EINVAL;
  1821. mutex_lock(&mb5_transfer.lock);
  1822. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(5))
  1823. cpu_relax();
  1824. writeb(0, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB5));
  1825. writeb(PRCMU_I2C_READ(slave), (tcdm_base + PRCM_REQ_MB5_I2C_SLAVE_OP));
  1826. writeb(PRCMU_I2C_STOP_EN, (tcdm_base + PRCM_REQ_MB5_I2C_HW_BITS));
  1827. writeb(reg, (tcdm_base + PRCM_REQ_MB5_I2C_REG));
  1828. writeb(0, (tcdm_base + PRCM_REQ_MB5_I2C_VAL));
  1829. writel(MBOX_BIT(5), PRCM_MBOX_CPU_SET);
  1830. if (!wait_for_completion_timeout(&mb5_transfer.work,
  1831. msecs_to_jiffies(20000))) {
  1832. pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
  1833. __func__);
  1834. r = -EIO;
  1835. } else {
  1836. r = ((mb5_transfer.ack.status == I2C_RD_OK) ? 0 : -EIO);
  1837. }
  1838. if (!r)
  1839. *value = mb5_transfer.ack.value;
  1840. mutex_unlock(&mb5_transfer.lock);
  1841. return r;
  1842. }
  1843. /**
  1844. * prcmu_abb_write_masked() - Write masked register value(s) to the ABB.
  1845. * @slave: The I2C slave address.
  1846. * @reg: The (start) register address.
  1847. * @value: The value(s) to write.
  1848. * @mask: The mask(s) to use.
  1849. * @size: The number of registers to write.
  1850. *
  1851. * Writes masked register value(s) to the ABB.
  1852. * For each @value, only the bits set to 1 in the corresponding @mask
  1853. * will be written. The other bits are not changed.
  1854. * @size has to be 1 for the current firmware version.
  1855. */
  1856. int prcmu_abb_write_masked(u8 slave, u8 reg, u8 *value, u8 *mask, u8 size)
  1857. {
  1858. int r;
  1859. if (size != 1)
  1860. return -EINVAL;
  1861. mutex_lock(&mb5_transfer.lock);
  1862. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(5))
  1863. cpu_relax();
  1864. writeb(~*mask, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB5));
  1865. writeb(PRCMU_I2C_WRITE(slave), (tcdm_base + PRCM_REQ_MB5_I2C_SLAVE_OP));
  1866. writeb(PRCMU_I2C_STOP_EN, (tcdm_base + PRCM_REQ_MB5_I2C_HW_BITS));
  1867. writeb(reg, (tcdm_base + PRCM_REQ_MB5_I2C_REG));
  1868. writeb(*value, (tcdm_base + PRCM_REQ_MB5_I2C_VAL));
  1869. writel(MBOX_BIT(5), PRCM_MBOX_CPU_SET);
  1870. if (!wait_for_completion_timeout(&mb5_transfer.work,
  1871. msecs_to_jiffies(20000))) {
  1872. pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
  1873. __func__);
  1874. r = -EIO;
  1875. } else {
  1876. r = ((mb5_transfer.ack.status == I2C_WR_OK) ? 0 : -EIO);
  1877. }
  1878. mutex_unlock(&mb5_transfer.lock);
  1879. return r;
  1880. }
  1881. /**
  1882. * prcmu_abb_write() - Write register value(s) to the ABB.
  1883. * @slave: The I2C slave address.
  1884. * @reg: The (start) register address.
  1885. * @value: The value(s) to write.
  1886. * @size: The number of registers to write.
  1887. *
  1888. * Writes register value(s) to the ABB.
  1889. * @size has to be 1 for the current firmware version.
  1890. */
  1891. int prcmu_abb_write(u8 slave, u8 reg, u8 *value, u8 size)
  1892. {
  1893. u8 mask = ~0;
  1894. return prcmu_abb_write_masked(slave, reg, value, &mask, size);
  1895. }
  1896. /**
  1897. * prcmu_ac_wake_req - should be called whenever ARM wants to wakeup Modem
  1898. */
  1899. int prcmu_ac_wake_req(void)
  1900. {
  1901. u32 val;
  1902. int ret = 0;
  1903. mutex_lock(&mb0_transfer.ac_wake_lock);
  1904. val = readl(PRCM_HOSTACCESS_REQ);
  1905. if (val & PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ)
  1906. goto unlock_and_return;
  1907. atomic_set(&ac_wake_req_state, 1);
  1908. /*
  1909. * Force Modem Wake-up before hostaccess_req ping-pong.
  1910. * It prevents Modem to enter in Sleep while acking the hostaccess
  1911. * request. The 31us delay has been calculated by HWI.
  1912. */
  1913. val |= PRCM_HOSTACCESS_REQ_WAKE_REQ;
  1914. writel(val, PRCM_HOSTACCESS_REQ);
  1915. udelay(31);
  1916. val |= PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ;
  1917. writel(val, PRCM_HOSTACCESS_REQ);
  1918. if (!wait_for_completion_timeout(&mb0_transfer.ac_wake_work,
  1919. msecs_to_jiffies(5000))) {
  1920. #if defined(CONFIG_DBX500_PRCMU_DEBUG)
  1921. db8500_prcmu_debug_dump(__func__, true, true);
  1922. #endif
  1923. pr_crit("prcmu: %s timed out (5 s) waiting for a reply.\n",
  1924. __func__);
  1925. ret = -EFAULT;
  1926. }
  1927. unlock_and_return:
  1928. mutex_unlock(&mb0_transfer.ac_wake_lock);
  1929. return ret;
  1930. }
  1931. /**
  1932. * prcmu_ac_sleep_req - called when ARM no longer needs to talk to modem
  1933. */
  1934. void prcmu_ac_sleep_req()
  1935. {
  1936. u32 val;
  1937. mutex_lock(&mb0_transfer.ac_wake_lock);
  1938. val = readl(PRCM_HOSTACCESS_REQ);
  1939. if (!(val & PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ))
  1940. goto unlock_and_return;
  1941. writel((val & ~PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ),
  1942. PRCM_HOSTACCESS_REQ);
  1943. if (!wait_for_completion_timeout(&mb0_transfer.ac_wake_work,
  1944. msecs_to_jiffies(5000))) {
  1945. pr_crit("prcmu: %s timed out (5 s) waiting for a reply.\n",
  1946. __func__);
  1947. }
  1948. atomic_set(&ac_wake_req_state, 0);
  1949. unlock_and_return:
  1950. mutex_unlock(&mb0_transfer.ac_wake_lock);
  1951. }
  1952. bool db8500_prcmu_is_ac_wake_requested(void)
  1953. {
  1954. return (atomic_read(&ac_wake_req_state) != 0);
  1955. }
  1956. /**
  1957. * db8500_prcmu_system_reset - System reset
  1958. *
  1959. * Saves the reset reason code and then sets the APE_SOFTRST register which
  1960. * fires interrupt to fw
  1961. */
  1962. void db8500_prcmu_system_reset(u16 reset_code)
  1963. {
  1964. writew(reset_code, (tcdm_base + PRCM_SW_RST_REASON));
  1965. writel(1, PRCM_APE_SOFTRST);
  1966. }
  1967. /**
  1968. * db8500_prcmu_get_reset_code - Retrieve SW reset reason code
  1969. *
  1970. * Retrieves the reset reason code stored by prcmu_system_reset() before
  1971. * last restart.
  1972. */
  1973. u16 db8500_prcmu_get_reset_code(void)
  1974. {
  1975. return readw(tcdm_base + PRCM_SW_RST_REASON);
  1976. }
  1977. /**
  1978. * db8500_prcmu_reset_modem - ask the PRCMU to reset modem
  1979. */
  1980. void db8500_prcmu_modem_reset(void)
  1981. {
  1982. mutex_lock(&mb1_transfer.lock);
  1983. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
  1984. cpu_relax();
  1985. writeb(MB1H_RESET_MODEM, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
  1986. writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
  1987. wait_for_completion(&mb1_transfer.work);
  1988. /*
  1989. * No need to check return from PRCMU as modem should go in reset state
  1990. * This state is already managed by upper layer
  1991. */
  1992. mutex_unlock(&mb1_transfer.lock);
  1993. }
  1994. static void ack_dbb_wakeup(void)
  1995. {
  1996. unsigned long flags;
  1997. spin_lock_irqsave(&mb0_transfer.lock, flags);
  1998. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
  1999. cpu_relax();
  2000. writeb(MB0H_READ_WAKEUP_ACK, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
  2001. writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET);
  2002. spin_unlock_irqrestore(&mb0_transfer.lock, flags);
  2003. }
  2004. static inline void print_unknown_header_warning(u8 n, u8 header)
  2005. {
  2006. pr_warning("prcmu: Unknown message header (%d) in mailbox %d.\n",
  2007. header, n);
  2008. }
  2009. static bool read_mailbox_0(void)
  2010. {
  2011. bool r;
  2012. u32 ev;
  2013. unsigned int n;
  2014. u8 header;
  2015. header = readb(tcdm_base + PRCM_MBOX_HEADER_ACK_MB0);
  2016. switch (header) {
  2017. case MB0H_WAKEUP_EXE:
  2018. case MB0H_WAKEUP_SLEEP:
  2019. if (readb(tcdm_base + PRCM_ACK_MB0_READ_POINTER) & 1)
  2020. ev = readl(tcdm_base + PRCM_ACK_MB0_WAKEUP_1_8500);
  2021. else
  2022. ev = readl(tcdm_base + PRCM_ACK_MB0_WAKEUP_0_8500);
  2023. if (ev & (WAKEUP_BIT_AC_WAKE_ACK | WAKEUP_BIT_AC_SLEEP_ACK))
  2024. complete(&mb0_transfer.ac_wake_work);
  2025. if (ev & WAKEUP_BIT_SYSCLK_OK)
  2026. complete(&mb3_transfer.sysclk_work);
  2027. ev &= mb0_transfer.req.dbb_irqs;
  2028. for (n = 0; n < NUM_PRCMU_WAKEUPS; n++) {
  2029. if (ev & prcmu_irq_bit[n])
  2030. generic_handle_irq(irq_find_mapping(db8500_irq_domain, n));
  2031. }
  2032. r = true;
  2033. break;
  2034. default:
  2035. print_unknown_header_warning(0, header);
  2036. r = false;
  2037. break;
  2038. }
  2039. writel(MBOX_BIT(0), PRCM_ARM_IT1_CLR);
  2040. return r;
  2041. }
  2042. static bool read_mailbox_1(void)
  2043. {
  2044. mb1_transfer.ack.header = readb(tcdm_base + PRCM_MBOX_HEADER_REQ_MB1);
  2045. mb1_transfer.ack.arm_opp = readb(tcdm_base +
  2046. PRCM_ACK_MB1_CURRENT_ARM_OPP);
  2047. mb1_transfer.ack.ape_opp = readb(tcdm_base +
  2048. PRCM_ACK_MB1_CURRENT_APE_OPP);
  2049. mb1_transfer.ack.ape_voltage_status = readb(tcdm_base +
  2050. PRCM_ACK_MB1_APE_VOLTAGE_STATUS);
  2051. writel(MBOX_BIT(1), PRCM_ARM_IT1_CLR);
  2052. complete(&mb1_transfer.work);
  2053. return false;
  2054. }
  2055. static bool read_mailbox_2(void)
  2056. {
  2057. mb2_transfer.ack.status = readb(tcdm_base + PRCM_ACK_MB2_DPS_STATUS);
  2058. writel(MBOX_BIT(2), PRCM_ARM_IT1_CLR);
  2059. complete(&mb2_transfer.work);
  2060. return false;
  2061. }
  2062. static bool read_mailbox_3(void)
  2063. {
  2064. writel(MBOX_BIT(3), PRCM_ARM_IT1_CLR);
  2065. return false;
  2066. }
  2067. static bool read_mailbox_4(void)
  2068. {
  2069. u8 header;
  2070. bool do_complete = true;
  2071. header = readb(tcdm_base + PRCM_MBOX_HEADER_REQ_MB4);
  2072. switch (header) {
  2073. case MB4H_MEM_ST:
  2074. case MB4H_HOTDOG:
  2075. case MB4H_HOTMON:
  2076. case MB4H_HOT_PERIOD:
  2077. case MB4H_A9WDOG_CONF:
  2078. case MB4H_A9WDOG_EN:
  2079. case MB4H_A9WDOG_DIS:
  2080. case MB4H_A9WDOG_LOAD:
  2081. case MB4H_A9WDOG_KICK:
  2082. break;
  2083. default:
  2084. print_unknown_header_warning(4, header);
  2085. do_complete = false;
  2086. break;
  2087. }
  2088. writel(MBOX_BIT(4), PRCM_ARM_IT1_CLR);
  2089. if (do_complete)
  2090. complete(&mb4_transfer.work);
  2091. return false;
  2092. }
  2093. static bool read_mailbox_5(void)
  2094. {
  2095. mb5_transfer.ack.status = readb(tcdm_base + PRCM_ACK_MB5_I2C_STATUS);
  2096. mb5_transfer.ack.value = readb(tcdm_base + PRCM_ACK_MB5_I2C_VAL);
  2097. writel(MBOX_BIT(5), PRCM_ARM_IT1_CLR);
  2098. complete(&mb5_transfer.work);
  2099. return false;
  2100. }
  2101. static bool read_mailbox_6(void)
  2102. {
  2103. writel(MBOX_BIT(6), PRCM_ARM_IT1_CLR);
  2104. return false;
  2105. }
  2106. static bool read_mailbox_7(void)
  2107. {
  2108. writel(MBOX_BIT(7), PRCM_ARM_IT1_CLR);
  2109. return false;
  2110. }
  2111. static bool (* const read_mailbox[NUM_MB])(void) = {
  2112. read_mailbox_0,
  2113. read_mailbox_1,
  2114. read_mailbox_2,
  2115. read_mailbox_3,
  2116. read_mailbox_4,
  2117. read_mailbox_5,
  2118. read_mailbox_6,
  2119. read_mailbox_7
  2120. };
  2121. static irqreturn_t prcmu_irq_handler(int irq, void *data)
  2122. {
  2123. u32 bits;
  2124. u8 n;
  2125. irqreturn_t r;
  2126. bits = (readl(PRCM_ARM_IT1_VAL) & ALL_MBOX_BITS);
  2127. if (unlikely(!bits))
  2128. return IRQ_NONE;
  2129. r = IRQ_HANDLED;
  2130. for (n = 0; bits; n++) {
  2131. if (bits & MBOX_BIT(n)) {
  2132. bits -= MBOX_BIT(n);
  2133. if (read_mailbox[n]())
  2134. r = IRQ_WAKE_THREAD;
  2135. }
  2136. }
  2137. return r;
  2138. }
  2139. static irqreturn_t prcmu_irq_thread_fn(int irq, void *data)
  2140. {
  2141. ack_dbb_wakeup();
  2142. return IRQ_HANDLED;
  2143. }
  2144. static void prcmu_mask_work(struct work_struct *work)
  2145. {
  2146. unsigned long flags;
  2147. spin_lock_irqsave(&mb0_transfer.lock, flags);
  2148. config_wakeups();
  2149. spin_unlock_irqrestore(&mb0_transfer.lock, flags);
  2150. }
  2151. static void prcmu_irq_mask(struct irq_data *d)
  2152. {
  2153. unsigned long flags;
  2154. spin_lock_irqsave(&mb0_transfer.dbb_irqs_lock, flags);
  2155. mb0_transfer.req.dbb_irqs &= ~prcmu_irq_bit[d->hwirq];
  2156. spin_unlock_irqrestore(&mb0_transfer.dbb_irqs_lock, flags);
  2157. if (d->irq != IRQ_PRCMU_CA_SLEEP)
  2158. schedule_work(&mb0_transfer.mask_work);
  2159. }
  2160. static void prcmu_irq_unmask(struct irq_data *d)
  2161. {
  2162. unsigned long flags;
  2163. spin_lock_irqsave(&mb0_transfer.dbb_irqs_lock, flags);
  2164. mb0_transfer.req.dbb_irqs |= prcmu_irq_bit[d->hwirq];
  2165. spin_unlock_irqrestore(&mb0_transfer.dbb_irqs_lock, flags);
  2166. if (d->irq != IRQ_PRCMU_CA_SLEEP)
  2167. schedule_work(&mb0_transfer.mask_work);
  2168. }
  2169. static void noop(struct irq_data *d)
  2170. {
  2171. }
  2172. static struct irq_chip prcmu_irq_chip = {
  2173. .name = "prcmu",
  2174. .irq_disable = prcmu_irq_mask,
  2175. .irq_ack = noop,
  2176. .irq_mask = prcmu_irq_mask,
  2177. .irq_unmask = prcmu_irq_unmask,
  2178. };
  2179. static __init char *fw_project_name(u32 project)
  2180. {
  2181. switch (project) {
  2182. case PRCMU_FW_PROJECT_U8500:
  2183. return "U8500";
  2184. case PRCMU_FW_PROJECT_U8400:
  2185. return "U8400";
  2186. case PRCMU_FW_PROJECT_U9500:
  2187. return "U9500";
  2188. case PRCMU_FW_PROJECT_U8500_MBB:
  2189. return "U8500 MBB";
  2190. case PRCMU_FW_PROJECT_U8500_C1:
  2191. return "U8500 C1";
  2192. case PRCMU_FW_PROJECT_U8500_C2:
  2193. return "U8500 C2";
  2194. case PRCMU_FW_PROJECT_U8500_C3:
  2195. return "U8500 C3";
  2196. case PRCMU_FW_PROJECT_U8500_C4:
  2197. return "U8500 C4";
  2198. case PRCMU_FW_PROJECT_U9500_MBL:
  2199. return "U9500 MBL";
  2200. case PRCMU_FW_PROJECT_U8500_MBL:
  2201. return "U8500 MBL";
  2202. case PRCMU_FW_PROJECT_U8500_MBL2:
  2203. return "U8500 MBL2";
  2204. case PRCMU_FW_PROJECT_U8520:
  2205. return "U8520 MBL";
  2206. case PRCMU_FW_PROJECT_U8420:
  2207. return "U8420";
  2208. case PRCMU_FW_PROJECT_U9540:
  2209. return "U9540";
  2210. case PRCMU_FW_PROJECT_A9420:
  2211. return "A9420";
  2212. case PRCMU_FW_PROJECT_L8540:
  2213. return "L8540";
  2214. case PRCMU_FW_PROJECT_L8580:
  2215. return "L8580";
  2216. default:
  2217. return "Unknown";
  2218. }
  2219. }
  2220. static int db8500_irq_map(struct irq_domain *d, unsigned int virq,
  2221. irq_hw_number_t hwirq)
  2222. {
  2223. irq_set_chip_and_handler(virq, &prcmu_irq_chip,
  2224. handle_simple_irq);
  2225. set_irq_flags(virq, IRQF_VALID);
  2226. return 0;
  2227. }
  2228. static struct irq_domain_ops db8500_irq_ops = {
  2229. .map = db8500_irq_map,
  2230. .xlate = irq_domain_xlate_twocell,
  2231. };
  2232. static int db8500_irq_init(struct device_node *np, int irq_base)
  2233. {
  2234. int i;
  2235. /* In the device tree case, just take some IRQs */
  2236. if (np)
  2237. irq_base = 0;
  2238. db8500_irq_domain = irq_domain_add_simple(
  2239. np, NUM_PRCMU_WAKEUPS, irq_base,
  2240. &db8500_irq_ops, NULL);
  2241. if (!db8500_irq_domain) {
  2242. pr_err("Failed to create irqdomain\n");
  2243. return -ENOSYS;
  2244. }
  2245. /* All wakeups will be used, so create mappings for all */
  2246. for (i = 0; i < NUM_PRCMU_WAKEUPS; i++)
  2247. irq_create_mapping(db8500_irq_domain, i);
  2248. return 0;
  2249. }
  2250. static void dbx500_fw_version_init(struct platform_device *pdev,
  2251. u32 version_offset)
  2252. {
  2253. struct resource *res;
  2254. void __iomem *tcpm_base;
  2255. u32 version;
  2256. res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
  2257. "prcmu-tcpm");
  2258. if (!res) {
  2259. dev_err(&pdev->dev,
  2260. "Error: no prcmu tcpm memory region provided\n");
  2261. return;
  2262. }
  2263. tcpm_base = ioremap(res->start, resource_size(res));
  2264. if (!tcpm_base) {
  2265. dev_err(&pdev->dev, "no prcmu tcpm mem region provided\n");
  2266. return;
  2267. }
  2268. version = readl(tcpm_base + version_offset);
  2269. fw_info.version.project = (version & 0xFF);
  2270. fw_info.version.api_version = (version >> 8) & 0xFF;
  2271. fw_info.version.func_version = (version >> 16) & 0xFF;
  2272. fw_info.version.errata = (version >> 24) & 0xFF;
  2273. strncpy(fw_info.version.project_name,
  2274. fw_project_name(fw_info.version.project),
  2275. PRCMU_FW_PROJECT_NAME_LEN);
  2276. fw_info.valid = true;
  2277. pr_info("PRCMU firmware: %s(%d), version %d.%d.%d\n",
  2278. fw_info.version.project_name,
  2279. fw_info.version.project,
  2280. fw_info.version.api_version,
  2281. fw_info.version.func_version,
  2282. fw_info.version.errata);
  2283. iounmap(tcpm_base);
  2284. }
  2285. void __init db8500_prcmu_early_init(u32 phy_base, u32 size)
  2286. {
  2287. /*
  2288. * This is a temporary remap to bring up the clocks. It is
  2289. * subsequently replaces with a real remap. After the merge of
  2290. * the mailbox subsystem all of this early code goes away, and the
  2291. * clock driver can probe independently. An early initcall will
  2292. * still be needed, but it can be diverted into drivers/clk/ux500.
  2293. */
  2294. prcmu_base = ioremap(phy_base, size);
  2295. if (!prcmu_base)
  2296. pr_err("%s: ioremap() of prcmu registers failed!\n", __func__);
  2297. spin_lock_init(&mb0_transfer.lock);
  2298. spin_lock_init(&mb0_transfer.dbb_irqs_lock);
  2299. mutex_init(&mb0_transfer.ac_wake_lock);
  2300. init_completion(&mb0_transfer.ac_wake_work);
  2301. mutex_init(&mb1_transfer.lock);
  2302. init_completion(&mb1_transfer.work);
  2303. mb1_transfer.ape_opp = APE_NO_CHANGE;
  2304. mutex_init(&mb2_transfer.lock);
  2305. init_completion(&mb2_transfer.work);
  2306. spin_lock_init(&mb2_transfer.auto_pm_lock);
  2307. spin_lock_init(&mb3_transfer.lock);
  2308. mutex_init(&mb3_transfer.sysclk_lock);
  2309. init_completion(&mb3_transfer.sysclk_work);
  2310. mutex_init(&mb4_transfer.lock);
  2311. init_completion(&mb4_transfer.work);
  2312. mutex_init(&mb5_transfer.lock);
  2313. init_completion(&mb5_transfer.work);
  2314. INIT_WORK(&mb0_transfer.mask_work, prcmu_mask_work);
  2315. }
  2316. static void __init init_prcm_registers(void)
  2317. {
  2318. u32 val;
  2319. val = readl(PRCM_A9PL_FORCE_CLKEN);
  2320. val &= ~(PRCM_A9PL_FORCE_CLKEN_PRCM_A9PL_FORCE_CLKEN |
  2321. PRCM_A9PL_FORCE_CLKEN_PRCM_A9AXI_FORCE_CLKEN);
  2322. writel(val, (PRCM_A9PL_FORCE_CLKEN));
  2323. }
  2324. /*
  2325. * Power domain switches (ePODs) modeled as regulators for the DB8500 SoC
  2326. */
  2327. static struct regulator_consumer_supply db8500_vape_consumers[] = {
  2328. REGULATOR_SUPPLY("v-ape", NULL),
  2329. REGULATOR_SUPPLY("v-i2c", "nmk-i2c.0"),
  2330. REGULATOR_SUPPLY("v-i2c", "nmk-i2c.1"),
  2331. REGULATOR_SUPPLY("v-i2c", "nmk-i2c.2"),
  2332. REGULATOR_SUPPLY("v-i2c", "nmk-i2c.3"),
  2333. REGULATOR_SUPPLY("v-i2c", "nmk-i2c.4"),
  2334. /* "v-mmc" changed to "vcore" in the mainline kernel */
  2335. REGULATOR_SUPPLY("vcore", "sdi0"),
  2336. REGULATOR_SUPPLY("vcore", "sdi1"),
  2337. REGULATOR_SUPPLY("vcore", "sdi2"),
  2338. REGULATOR_SUPPLY("vcore", "sdi3"),
  2339. REGULATOR_SUPPLY("vcore", "sdi4"),
  2340. REGULATOR_SUPPLY("v-dma", "dma40.0"),
  2341. REGULATOR_SUPPLY("v-ape", "ab8500-usb.0"),
  2342. /* "v-uart" changed to "vcore" in the mainline kernel */
  2343. REGULATOR_SUPPLY("vcore", "uart0"),
  2344. REGULATOR_SUPPLY("vcore", "uart1"),
  2345. REGULATOR_SUPPLY("vcore", "uart2"),
  2346. REGULATOR_SUPPLY("v-ape", "nmk-ske-keypad.0"),
  2347. REGULATOR_SUPPLY("v-hsi", "ste_hsi.0"),
  2348. REGULATOR_SUPPLY("vddvario", "smsc911x.0"),
  2349. };
  2350. static struct regulator_consumer_supply db8500_vsmps2_consumers[] = {
  2351. REGULATOR_SUPPLY("musb_1v8", "ab8500-usb.0"),
  2352. /* AV8100 regulator */
  2353. REGULATOR_SUPPLY("hdmi_1v8", "0-0070"),
  2354. };
  2355. static struct regulator_consumer_supply db8500_b2r2_mcde_consumers[] = {
  2356. REGULATOR_SUPPLY("vsupply", "b2r2_bus"),
  2357. REGULATOR_SUPPLY("vsupply", "mcde"),
  2358. };
  2359. /* SVA MMDSP regulator switch */
  2360. static struct regulator_consumer_supply db8500_svammdsp_consumers[] = {
  2361. REGULATOR_SUPPLY("sva-mmdsp", "cm_control"),
  2362. };
  2363. /* SVA pipe regulator switch */
  2364. static struct regulator_consumer_supply db8500_svapipe_consumers[] = {
  2365. REGULATOR_SUPPLY("sva-pipe", "cm_control"),
  2366. };
  2367. /* SIA MMDSP regulator switch */
  2368. static struct regulator_consumer_supply db8500_siammdsp_consumers[] = {
  2369. REGULATOR_SUPPLY("sia-mmdsp", "cm_control"),
  2370. };
  2371. /* SIA pipe regulator switch */
  2372. static struct regulator_consumer_supply db8500_siapipe_consumers[] = {
  2373. REGULATOR_SUPPLY("sia-pipe", "cm_control"),
  2374. };
  2375. static struct regulator_consumer_supply db8500_sga_consumers[] = {
  2376. REGULATOR_SUPPLY("v-mali", NULL),
  2377. };
  2378. /* ESRAM1 and 2 regulator switch */
  2379. static struct regulator_consumer_supply db8500_esram12_consumers[] = {
  2380. REGULATOR_SUPPLY("esram12", "cm_control"),
  2381. };
  2382. /* ESRAM3 and 4 regulator switch */
  2383. static struct regulator_consumer_supply db8500_esram34_consumers[] = {
  2384. REGULATOR_SUPPLY("v-esram34", "mcde"),
  2385. REGULATOR_SUPPLY("esram34", "cm_control"),
  2386. REGULATOR_SUPPLY("lcla_esram", "dma40.0"),
  2387. };
  2388. static struct regulator_init_data db8500_regulators[DB8500_NUM_REGULATORS] = {
  2389. [DB8500_REGULATOR_VAPE] = {
  2390. .constraints = {
  2391. .name = "db8500-vape",
  2392. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  2393. .always_on = true,
  2394. },
  2395. .consumer_supplies = db8500_vape_consumers,
  2396. .num_consumer_supplies = ARRAY_SIZE(db8500_vape_consumers),
  2397. },
  2398. [DB8500_REGULATOR_VARM] = {
  2399. .constraints = {
  2400. .name = "db8500-varm",
  2401. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  2402. },
  2403. },
  2404. [DB8500_REGULATOR_VMODEM] = {
  2405. .constraints = {
  2406. .name = "db8500-vmodem",
  2407. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  2408. },
  2409. },
  2410. [DB8500_REGULATOR_VPLL] = {
  2411. .constraints = {
  2412. .name = "db8500-vpll",
  2413. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  2414. },
  2415. },
  2416. [DB8500_REGULATOR_VSMPS1] = {
  2417. .constraints = {
  2418. .name = "db8500-vsmps1",
  2419. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  2420. },
  2421. },
  2422. [DB8500_REGULATOR_VSMPS2] = {
  2423. .constraints = {
  2424. .name = "db8500-vsmps2",
  2425. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  2426. },
  2427. .consumer_supplies = db8500_vsmps2_consumers,
  2428. .num_consumer_supplies = ARRAY_SIZE(db8500_vsmps2_consumers),
  2429. },
  2430. [DB8500_REGULATOR_VSMPS3] = {
  2431. .constraints = {
  2432. .name = "db8500-vsmps3",
  2433. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  2434. },
  2435. },
  2436. [DB8500_REGULATOR_VRF1] = {
  2437. .constraints = {
  2438. .name = "db8500-vrf1",
  2439. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  2440. },
  2441. },
  2442. [DB8500_REGULATOR_SWITCH_SVAMMDSP] = {
  2443. /* dependency to u8500-vape is handled outside regulator framework */
  2444. .constraints = {
  2445. .name = "db8500-sva-mmdsp",
  2446. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  2447. },
  2448. .consumer_supplies = db8500_svammdsp_consumers,
  2449. .num_consumer_supplies = ARRAY_SIZE(db8500_svammdsp_consumers),
  2450. },
  2451. [DB8500_REGULATOR_SWITCH_SVAMMDSPRET] = {
  2452. .constraints = {
  2453. /* "ret" means "retention" */
  2454. .name = "db8500-sva-mmdsp-ret",
  2455. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  2456. },
  2457. },
  2458. [DB8500_REGULATOR_SWITCH_SVAPIPE] = {
  2459. /* dependency to u8500-vape is handled outside regulator framework */
  2460. .constraints = {
  2461. .name = "db8500-sva-pipe",
  2462. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  2463. },
  2464. .consumer_supplies = db8500_svapipe_consumers,
  2465. .num_consumer_supplies = ARRAY_SIZE(db8500_svapipe_consumers),
  2466. },
  2467. [DB8500_REGULATOR_SWITCH_SIAMMDSP] = {
  2468. /* dependency to u8500-vape is handled outside regulator framework */
  2469. .constraints = {
  2470. .name = "db8500-sia-mmdsp",
  2471. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  2472. },
  2473. .consumer_supplies = db8500_siammdsp_consumers,
  2474. .num_consumer_supplies = ARRAY_SIZE(db8500_siammdsp_consumers),
  2475. },
  2476. [DB8500_REGULATOR_SWITCH_SIAMMDSPRET] = {
  2477. .constraints = {
  2478. .name = "db8500-sia-mmdsp-ret",
  2479. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  2480. },
  2481. },
  2482. [DB8500_REGULATOR_SWITCH_SIAPIPE] = {
  2483. /* dependency to u8500-vape is handled outside regulator framework */
  2484. .constraints = {
  2485. .name = "db8500-sia-pipe",
  2486. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  2487. },
  2488. .consumer_supplies = db8500_siapipe_consumers,
  2489. .num_consumer_supplies = ARRAY_SIZE(db8500_siapipe_consumers),
  2490. },
  2491. [DB8500_REGULATOR_SWITCH_SGA] = {
  2492. .supply_regulator = "db8500-vape",
  2493. .constraints = {
  2494. .name = "db8500-sga",
  2495. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  2496. },
  2497. .consumer_supplies = db8500_sga_consumers,
  2498. .num_consumer_supplies = ARRAY_SIZE(db8500_sga_consumers),
  2499. },
  2500. [DB8500_REGULATOR_SWITCH_B2R2_MCDE] = {
  2501. .supply_regulator = "db8500-vape",
  2502. .constraints = {
  2503. .name = "db8500-b2r2-mcde",
  2504. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  2505. },
  2506. .consumer_supplies = db8500_b2r2_mcde_consumers,
  2507. .num_consumer_supplies = ARRAY_SIZE(db8500_b2r2_mcde_consumers),
  2508. },
  2509. [DB8500_REGULATOR_SWITCH_ESRAM12] = {
  2510. /*
  2511. * esram12 is set in retention and supplied by Vsafe when Vape is off,
  2512. * no need to hold Vape
  2513. */
  2514. .constraints = {
  2515. .name = "db8500-esram12",
  2516. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  2517. },
  2518. .consumer_supplies = db8500_esram12_consumers,
  2519. .num_consumer_supplies = ARRAY_SIZE(db8500_esram12_consumers),
  2520. },
  2521. [DB8500_REGULATOR_SWITCH_ESRAM12RET] = {
  2522. .constraints = {
  2523. .name = "db8500-esram12-ret",
  2524. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  2525. },
  2526. },
  2527. [DB8500_REGULATOR_SWITCH_ESRAM34] = {
  2528. /*
  2529. * esram34 is set in retention and supplied by Vsafe when Vape is off,
  2530. * no need to hold Vape
  2531. */
  2532. .constraints = {
  2533. .name = "db8500-esram34",
  2534. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  2535. },
  2536. .consumer_supplies = db8500_esram34_consumers,
  2537. .num_consumer_supplies = ARRAY_SIZE(db8500_esram34_consumers),
  2538. },
  2539. [DB8500_REGULATOR_SWITCH_ESRAM34RET] = {
  2540. .constraints = {
  2541. .name = "db8500-esram34-ret",
  2542. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  2543. },
  2544. },
  2545. };
  2546. static struct ux500_wdt_data db8500_wdt_pdata = {
  2547. .timeout = 600, /* 10 minutes */
  2548. .has_28_bits_resolution = true,
  2549. };
  2550. /*
  2551. * Thermal Sensor
  2552. */
  2553. static struct resource db8500_thsens_resources[] = {
  2554. {
  2555. .name = "IRQ_HOTMON_LOW",
  2556. .start = IRQ_PRCMU_HOTMON_LOW,
  2557. .end = IRQ_PRCMU_HOTMON_LOW,
  2558. .flags = IORESOURCE_IRQ,
  2559. },
  2560. {
  2561. .name = "IRQ_HOTMON_HIGH",
  2562. .start = IRQ_PRCMU_HOTMON_HIGH,
  2563. .end = IRQ_PRCMU_HOTMON_HIGH,
  2564. .flags = IORESOURCE_IRQ,
  2565. },
  2566. };
  2567. static struct db8500_thsens_platform_data db8500_thsens_data = {
  2568. .trip_points[0] = {
  2569. .temp = 70000,
  2570. .type = THERMAL_TRIP_ACTIVE,
  2571. .cdev_name = {
  2572. [0] = "thermal-cpufreq-0",
  2573. },
  2574. },
  2575. .trip_points[1] = {
  2576. .temp = 75000,
  2577. .type = THERMAL_TRIP_ACTIVE,
  2578. .cdev_name = {
  2579. [0] = "thermal-cpufreq-0",
  2580. },
  2581. },
  2582. .trip_points[2] = {
  2583. .temp = 80000,
  2584. .type = THERMAL_TRIP_ACTIVE,
  2585. .cdev_name = {
  2586. [0] = "thermal-cpufreq-0",
  2587. },
  2588. },
  2589. .trip_points[3] = {
  2590. .temp = 85000,
  2591. .type = THERMAL_TRIP_CRITICAL,
  2592. },
  2593. .num_trips = 4,
  2594. };
  2595. static struct mfd_cell db8500_prcmu_devs[] = {
  2596. {
  2597. .name = "db8500-prcmu-regulators",
  2598. .of_compatible = "stericsson,db8500-prcmu-regulator",
  2599. .platform_data = &db8500_regulators,
  2600. .pdata_size = sizeof(db8500_regulators),
  2601. },
  2602. {
  2603. .name = "cpufreq-ux500",
  2604. .of_compatible = "stericsson,cpufreq-ux500",
  2605. .platform_data = &db8500_cpufreq_table,
  2606. .pdata_size = sizeof(db8500_cpufreq_table),
  2607. },
  2608. {
  2609. .name = "ux500_wdt",
  2610. .platform_data = &db8500_wdt_pdata,
  2611. .pdata_size = sizeof(db8500_wdt_pdata),
  2612. .id = -1,
  2613. },
  2614. {
  2615. .name = "db8500-thermal",
  2616. .num_resources = ARRAY_SIZE(db8500_thsens_resources),
  2617. .resources = db8500_thsens_resources,
  2618. .platform_data = &db8500_thsens_data,
  2619. },
  2620. };
  2621. static void db8500_prcmu_update_cpufreq(void)
  2622. {
  2623. if (prcmu_has_arm_maxopp()) {
  2624. db8500_cpufreq_table[3].frequency = 1000000;
  2625. db8500_cpufreq_table[3].index = ARM_MAX_OPP;
  2626. }
  2627. }
  2628. static int db8500_prcmu_register_ab8500(struct device *parent,
  2629. struct ab8500_platform_data *pdata,
  2630. int irq)
  2631. {
  2632. struct resource ab8500_resource = DEFINE_RES_IRQ(irq);
  2633. struct mfd_cell ab8500_cell = {
  2634. .name = "ab8500-core",
  2635. .of_compatible = "stericsson,ab8500",
  2636. .id = AB8500_VERSION_AB8500,
  2637. .platform_data = pdata,
  2638. .pdata_size = sizeof(struct ab8500_platform_data),
  2639. .resources = &ab8500_resource,
  2640. .num_resources = 1,
  2641. };
  2642. return mfd_add_devices(parent, 0, &ab8500_cell, 1, NULL, 0, NULL);
  2643. }
  2644. /**
  2645. * prcmu_fw_init - arch init call for the Linux PRCMU fw init logic
  2646. *
  2647. */
  2648. static int db8500_prcmu_probe(struct platform_device *pdev)
  2649. {
  2650. struct device_node *np = pdev->dev.of_node;
  2651. struct prcmu_pdata *pdata = dev_get_platdata(&pdev->dev);
  2652. int irq = 0, err = 0;
  2653. struct resource *res;
  2654. res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "prcmu");
  2655. if (!res) {
  2656. dev_err(&pdev->dev, "no prcmu memory region provided\n");
  2657. return -ENOENT;
  2658. }
  2659. prcmu_base = devm_ioremap(&pdev->dev, res->start, resource_size(res));
  2660. if (!prcmu_base) {
  2661. dev_err(&pdev->dev,
  2662. "failed to ioremap prcmu register memory\n");
  2663. return -ENOENT;
  2664. }
  2665. init_prcm_registers();
  2666. dbx500_fw_version_init(pdev, pdata->version_offset);
  2667. res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "prcmu-tcdm");
  2668. if (!res) {
  2669. dev_err(&pdev->dev, "no prcmu tcdm region provided\n");
  2670. return -ENOENT;
  2671. }
  2672. tcdm_base = devm_ioremap(&pdev->dev, res->start,
  2673. resource_size(res));
  2674. /* Clean up the mailbox interrupts after pre-kernel code. */
  2675. writel(ALL_MBOX_BITS, PRCM_ARM_IT1_CLR);
  2676. irq = platform_get_irq(pdev, 0);
  2677. if (irq <= 0) {
  2678. dev_err(&pdev->dev, "no prcmu irq provided\n");
  2679. return -ENOENT;
  2680. }
  2681. err = request_threaded_irq(irq, prcmu_irq_handler,
  2682. prcmu_irq_thread_fn, IRQF_NO_SUSPEND, "prcmu", NULL);
  2683. if (err < 0) {
  2684. pr_err("prcmu: Failed to allocate IRQ_DB8500_PRCMU1.\n");
  2685. err = -EBUSY;
  2686. goto no_irq_return;
  2687. }
  2688. db8500_irq_init(np, pdata->irq_base);
  2689. prcmu_config_esram0_deep_sleep(ESRAM0_DEEP_SLEEP_STATE_RET);
  2690. db8500_prcmu_update_cpufreq();
  2691. err = mfd_add_devices(&pdev->dev, 0, db8500_prcmu_devs,
  2692. ARRAY_SIZE(db8500_prcmu_devs), NULL, 0, db8500_irq_domain);
  2693. if (err) {
  2694. pr_err("prcmu: Failed to add subdevices\n");
  2695. return err;
  2696. }
  2697. err = db8500_prcmu_register_ab8500(&pdev->dev, pdata->ab_platdata,
  2698. pdata->ab_irq);
  2699. if (err) {
  2700. mfd_remove_devices(&pdev->dev);
  2701. pr_err("prcmu: Failed to add ab8500 subdevice\n");
  2702. goto no_irq_return;
  2703. }
  2704. pr_info("DB8500 PRCMU initialized\n");
  2705. no_irq_return:
  2706. return err;
  2707. }
  2708. static const struct of_device_id db8500_prcmu_match[] = {
  2709. { .compatible = "stericsson,db8500-prcmu"},
  2710. { },
  2711. };
  2712. static struct platform_driver db8500_prcmu_driver = {
  2713. .driver = {
  2714. .name = "db8500-prcmu",
  2715. .owner = THIS_MODULE,
  2716. .of_match_table = db8500_prcmu_match,
  2717. },
  2718. .probe = db8500_prcmu_probe,
  2719. };
  2720. static int __init db8500_prcmu_init(void)
  2721. {
  2722. return platform_driver_register(&db8500_prcmu_driver);
  2723. }
  2724. core_initcall(db8500_prcmu_init);
  2725. MODULE_AUTHOR("Mattias Nilsson <mattias.i.nilsson@stericsson.com>");
  2726. MODULE_DESCRIPTION("DB8500 PRCM Unit driver");
  2727. MODULE_LICENSE("GPL v2");