reada.c 23 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949
  1. /*
  2. * Copyright (C) 2011 STRATO. All rights reserved.
  3. *
  4. * This program is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU General Public
  6. * License v2 as published by the Free Software Foundation.
  7. *
  8. * This program is distributed in the hope that it will be useful,
  9. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  11. * General Public License for more details.
  12. *
  13. * You should have received a copy of the GNU General Public
  14. * License along with this program; if not, write to the
  15. * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16. * Boston, MA 021110-1307, USA.
  17. */
  18. #include <linux/sched.h>
  19. #include <linux/pagemap.h>
  20. #include <linux/writeback.h>
  21. #include <linux/blkdev.h>
  22. #include <linux/rbtree.h>
  23. #include <linux/slab.h>
  24. #include <linux/workqueue.h>
  25. #include "ctree.h"
  26. #include "volumes.h"
  27. #include "disk-io.h"
  28. #include "transaction.h"
  29. #undef DEBUG
  30. /*
  31. * This is the implementation for the generic read ahead framework.
  32. *
  33. * To trigger a readahead, btrfs_reada_add must be called. It will start
  34. * a read ahead for the given range [start, end) on tree root. The returned
  35. * handle can either be used to wait on the readahead to finish
  36. * (btrfs_reada_wait), or to send it to the background (btrfs_reada_detach).
  37. *
  38. * The read ahead works as follows:
  39. * On btrfs_reada_add, the root of the tree is inserted into a radix_tree.
  40. * reada_start_machine will then search for extents to prefetch and trigger
  41. * some reads. When a read finishes for a node, all contained node/leaf
  42. * pointers that lie in the given range will also be enqueued. The reads will
  43. * be triggered in sequential order, thus giving a big win over a naive
  44. * enumeration. It will also make use of multi-device layouts. Each disk
  45. * will have its on read pointer and all disks will by utilized in parallel.
  46. * Also will no two disks read both sides of a mirror simultaneously, as this
  47. * would waste seeking capacity. Instead both disks will read different parts
  48. * of the filesystem.
  49. * Any number of readaheads can be started in parallel. The read order will be
  50. * determined globally, i.e. 2 parallel readaheads will normally finish faster
  51. * than the 2 started one after another.
  52. */
  53. #define MAX_MIRRORS 2
  54. #define MAX_IN_FLIGHT 6
  55. struct reada_extctl {
  56. struct list_head list;
  57. struct reada_control *rc;
  58. u64 generation;
  59. };
  60. struct reada_extent {
  61. u64 logical;
  62. struct btrfs_key top;
  63. u32 blocksize;
  64. int err;
  65. struct list_head extctl;
  66. struct kref refcnt;
  67. spinlock_t lock;
  68. struct reada_zone *zones[MAX_MIRRORS];
  69. int nzones;
  70. struct btrfs_device *scheduled_for;
  71. };
  72. struct reada_zone {
  73. u64 start;
  74. u64 end;
  75. u64 elems;
  76. struct list_head list;
  77. spinlock_t lock;
  78. int locked;
  79. struct btrfs_device *device;
  80. struct btrfs_device *devs[MAX_MIRRORS]; /* full list, incl self */
  81. int ndevs;
  82. struct kref refcnt;
  83. };
  84. struct reada_machine_work {
  85. struct btrfs_work work;
  86. struct btrfs_fs_info *fs_info;
  87. };
  88. static void reada_extent_put(struct btrfs_fs_info *, struct reada_extent *);
  89. static void reada_control_release(struct kref *kref);
  90. static void reada_zone_release(struct kref *kref);
  91. static void reada_start_machine(struct btrfs_fs_info *fs_info);
  92. static void __reada_start_machine(struct btrfs_fs_info *fs_info);
  93. static int reada_add_block(struct reada_control *rc, u64 logical,
  94. struct btrfs_key *top, int level, u64 generation);
  95. /* recurses */
  96. /* in case of err, eb might be NULL */
  97. static int __readahead_hook(struct btrfs_root *root, struct extent_buffer *eb,
  98. u64 start, int err)
  99. {
  100. int level = 0;
  101. int nritems;
  102. int i;
  103. u64 bytenr;
  104. u64 generation;
  105. struct reada_extent *re;
  106. struct btrfs_fs_info *fs_info = root->fs_info;
  107. struct list_head list;
  108. unsigned long index = start >> PAGE_CACHE_SHIFT;
  109. struct btrfs_device *for_dev;
  110. if (eb)
  111. level = btrfs_header_level(eb);
  112. /* find extent */
  113. spin_lock(&fs_info->reada_lock);
  114. re = radix_tree_lookup(&fs_info->reada_tree, index);
  115. if (re)
  116. kref_get(&re->refcnt);
  117. spin_unlock(&fs_info->reada_lock);
  118. if (!re)
  119. return -1;
  120. spin_lock(&re->lock);
  121. /*
  122. * just take the full list from the extent. afterwards we
  123. * don't need the lock anymore
  124. */
  125. list_replace_init(&re->extctl, &list);
  126. for_dev = re->scheduled_for;
  127. re->scheduled_for = NULL;
  128. spin_unlock(&re->lock);
  129. if (err == 0) {
  130. nritems = level ? btrfs_header_nritems(eb) : 0;
  131. generation = btrfs_header_generation(eb);
  132. /*
  133. * FIXME: currently we just set nritems to 0 if this is a leaf,
  134. * effectively ignoring the content. In a next step we could
  135. * trigger more readahead depending from the content, e.g.
  136. * fetch the checksums for the extents in the leaf.
  137. */
  138. } else {
  139. /*
  140. * this is the error case, the extent buffer has not been
  141. * read correctly. We won't access anything from it and
  142. * just cleanup our data structures. Effectively this will
  143. * cut the branch below this node from read ahead.
  144. */
  145. nritems = 0;
  146. generation = 0;
  147. }
  148. for (i = 0; i < nritems; i++) {
  149. struct reada_extctl *rec;
  150. u64 n_gen;
  151. struct btrfs_key key;
  152. struct btrfs_key next_key;
  153. btrfs_node_key_to_cpu(eb, &key, i);
  154. if (i + 1 < nritems)
  155. btrfs_node_key_to_cpu(eb, &next_key, i + 1);
  156. else
  157. next_key = re->top;
  158. bytenr = btrfs_node_blockptr(eb, i);
  159. n_gen = btrfs_node_ptr_generation(eb, i);
  160. list_for_each_entry(rec, &list, list) {
  161. struct reada_control *rc = rec->rc;
  162. /*
  163. * if the generation doesn't match, just ignore this
  164. * extctl. This will probably cut off a branch from
  165. * prefetch. Alternatively one could start a new (sub-)
  166. * prefetch for this branch, starting again from root.
  167. * FIXME: move the generation check out of this loop
  168. */
  169. #ifdef DEBUG
  170. if (rec->generation != generation) {
  171. printk(KERN_DEBUG "generation mismatch for "
  172. "(%llu,%d,%llu) %llu != %llu\n",
  173. key.objectid, key.type, key.offset,
  174. rec->generation, generation);
  175. }
  176. #endif
  177. if (rec->generation == generation &&
  178. btrfs_comp_cpu_keys(&key, &rc->key_end) < 0 &&
  179. btrfs_comp_cpu_keys(&next_key, &rc->key_start) > 0)
  180. reada_add_block(rc, bytenr, &next_key,
  181. level - 1, n_gen);
  182. }
  183. }
  184. /*
  185. * free extctl records
  186. */
  187. while (!list_empty(&list)) {
  188. struct reada_control *rc;
  189. struct reada_extctl *rec;
  190. rec = list_first_entry(&list, struct reada_extctl, list);
  191. list_del(&rec->list);
  192. rc = rec->rc;
  193. kfree(rec);
  194. kref_get(&rc->refcnt);
  195. if (atomic_dec_and_test(&rc->elems)) {
  196. kref_put(&rc->refcnt, reada_control_release);
  197. wake_up(&rc->wait);
  198. }
  199. kref_put(&rc->refcnt, reada_control_release);
  200. reada_extent_put(fs_info, re); /* one ref for each entry */
  201. }
  202. reada_extent_put(fs_info, re); /* our ref */
  203. if (for_dev)
  204. atomic_dec(&for_dev->reada_in_flight);
  205. return 0;
  206. }
  207. /*
  208. * start is passed separately in case eb in NULL, which may be the case with
  209. * failed I/O
  210. */
  211. int btree_readahead_hook(struct btrfs_root *root, struct extent_buffer *eb,
  212. u64 start, int err)
  213. {
  214. int ret;
  215. ret = __readahead_hook(root, eb, start, err);
  216. reada_start_machine(root->fs_info);
  217. return ret;
  218. }
  219. static struct reada_zone *reada_find_zone(struct btrfs_fs_info *fs_info,
  220. struct btrfs_device *dev, u64 logical,
  221. struct btrfs_multi_bio *multi)
  222. {
  223. int ret;
  224. int looped = 0;
  225. struct reada_zone *zone;
  226. struct btrfs_block_group_cache *cache = NULL;
  227. u64 start;
  228. u64 end;
  229. int i;
  230. again:
  231. zone = NULL;
  232. spin_lock(&fs_info->reada_lock);
  233. ret = radix_tree_gang_lookup(&dev->reada_zones, (void **)&zone,
  234. logical >> PAGE_CACHE_SHIFT, 1);
  235. if (ret == 1)
  236. kref_get(&zone->refcnt);
  237. spin_unlock(&fs_info->reada_lock);
  238. if (ret == 1) {
  239. if (logical >= zone->start && logical < zone->end)
  240. return zone;
  241. spin_lock(&fs_info->reada_lock);
  242. kref_put(&zone->refcnt, reada_zone_release);
  243. spin_unlock(&fs_info->reada_lock);
  244. }
  245. if (looped)
  246. return NULL;
  247. cache = btrfs_lookup_block_group(fs_info, logical);
  248. if (!cache)
  249. return NULL;
  250. start = cache->key.objectid;
  251. end = start + cache->key.offset - 1;
  252. btrfs_put_block_group(cache);
  253. zone = kzalloc(sizeof(*zone), GFP_NOFS);
  254. if (!zone)
  255. return NULL;
  256. zone->start = start;
  257. zone->end = end;
  258. INIT_LIST_HEAD(&zone->list);
  259. spin_lock_init(&zone->lock);
  260. zone->locked = 0;
  261. kref_init(&zone->refcnt);
  262. zone->elems = 0;
  263. zone->device = dev; /* our device always sits at index 0 */
  264. for (i = 0; i < multi->num_stripes; ++i) {
  265. /* bounds have already been checked */
  266. zone->devs[i] = multi->stripes[i].dev;
  267. }
  268. zone->ndevs = multi->num_stripes;
  269. spin_lock(&fs_info->reada_lock);
  270. ret = radix_tree_insert(&dev->reada_zones,
  271. (unsigned long)zone->end >> PAGE_CACHE_SHIFT,
  272. zone);
  273. spin_unlock(&fs_info->reada_lock);
  274. if (ret) {
  275. kfree(zone);
  276. looped = 1;
  277. goto again;
  278. }
  279. return zone;
  280. }
  281. static struct reada_extent *reada_find_extent(struct btrfs_root *root,
  282. u64 logical,
  283. struct btrfs_key *top, int level)
  284. {
  285. int ret;
  286. int looped = 0;
  287. struct reada_extent *re = NULL;
  288. struct btrfs_fs_info *fs_info = root->fs_info;
  289. struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
  290. struct btrfs_multi_bio *multi = NULL;
  291. struct btrfs_device *dev;
  292. u32 blocksize;
  293. u64 length;
  294. int nzones = 0;
  295. int i;
  296. unsigned long index = logical >> PAGE_CACHE_SHIFT;
  297. again:
  298. spin_lock(&fs_info->reada_lock);
  299. re = radix_tree_lookup(&fs_info->reada_tree, index);
  300. if (re)
  301. kref_get(&re->refcnt);
  302. spin_unlock(&fs_info->reada_lock);
  303. if (re || looped)
  304. return re;
  305. re = kzalloc(sizeof(*re), GFP_NOFS);
  306. if (!re)
  307. return NULL;
  308. blocksize = btrfs_level_size(root, level);
  309. re->logical = logical;
  310. re->blocksize = blocksize;
  311. re->top = *top;
  312. INIT_LIST_HEAD(&re->extctl);
  313. spin_lock_init(&re->lock);
  314. kref_init(&re->refcnt);
  315. /*
  316. * map block
  317. */
  318. length = blocksize;
  319. ret = btrfs_map_block(map_tree, REQ_WRITE, logical, &length, &multi, 0);
  320. if (ret || !multi || length < blocksize)
  321. goto error;
  322. if (multi->num_stripes > MAX_MIRRORS) {
  323. printk(KERN_ERR "btrfs readahead: more than %d copies not "
  324. "supported", MAX_MIRRORS);
  325. goto error;
  326. }
  327. for (nzones = 0; nzones < multi->num_stripes; ++nzones) {
  328. struct reada_zone *zone;
  329. dev = multi->stripes[nzones].dev;
  330. zone = reada_find_zone(fs_info, dev, logical, multi);
  331. if (!zone)
  332. break;
  333. re->zones[nzones] = zone;
  334. spin_lock(&zone->lock);
  335. if (!zone->elems)
  336. kref_get(&zone->refcnt);
  337. ++zone->elems;
  338. spin_unlock(&zone->lock);
  339. spin_lock(&fs_info->reada_lock);
  340. kref_put(&zone->refcnt, reada_zone_release);
  341. spin_unlock(&fs_info->reada_lock);
  342. }
  343. re->nzones = nzones;
  344. if (nzones == 0) {
  345. /* not a single zone found, error and out */
  346. goto error;
  347. }
  348. /* insert extent in reada_tree + all per-device trees, all or nothing */
  349. spin_lock(&fs_info->reada_lock);
  350. ret = radix_tree_insert(&fs_info->reada_tree, index, re);
  351. if (ret) {
  352. spin_unlock(&fs_info->reada_lock);
  353. if (ret != -ENOMEM) {
  354. /* someone inserted the extent in the meantime */
  355. looped = 1;
  356. }
  357. goto error;
  358. }
  359. for (i = 0; i < nzones; ++i) {
  360. dev = multi->stripes[i].dev;
  361. ret = radix_tree_insert(&dev->reada_extents, index, re);
  362. if (ret) {
  363. while (--i >= 0) {
  364. dev = multi->stripes[i].dev;
  365. BUG_ON(dev == NULL);
  366. radix_tree_delete(&dev->reada_extents, index);
  367. }
  368. BUG_ON(fs_info == NULL);
  369. radix_tree_delete(&fs_info->reada_tree, index);
  370. spin_unlock(&fs_info->reada_lock);
  371. goto error;
  372. }
  373. }
  374. spin_unlock(&fs_info->reada_lock);
  375. return re;
  376. error:
  377. while (nzones) {
  378. struct reada_zone *zone;
  379. --nzones;
  380. zone = re->zones[nzones];
  381. kref_get(&zone->refcnt);
  382. spin_lock(&zone->lock);
  383. --zone->elems;
  384. if (zone->elems == 0) {
  385. /*
  386. * no fs_info->reada_lock needed, as this can't be
  387. * the last ref
  388. */
  389. kref_put(&zone->refcnt, reada_zone_release);
  390. }
  391. spin_unlock(&zone->lock);
  392. spin_lock(&fs_info->reada_lock);
  393. kref_put(&zone->refcnt, reada_zone_release);
  394. spin_unlock(&fs_info->reada_lock);
  395. }
  396. kfree(re);
  397. if (looped)
  398. goto again;
  399. return NULL;
  400. }
  401. static void reada_kref_dummy(struct kref *kr)
  402. {
  403. }
  404. static void reada_extent_put(struct btrfs_fs_info *fs_info,
  405. struct reada_extent *re)
  406. {
  407. int i;
  408. unsigned long index = re->logical >> PAGE_CACHE_SHIFT;
  409. spin_lock(&fs_info->reada_lock);
  410. if (!kref_put(&re->refcnt, reada_kref_dummy)) {
  411. spin_unlock(&fs_info->reada_lock);
  412. return;
  413. }
  414. radix_tree_delete(&fs_info->reada_tree, index);
  415. for (i = 0; i < re->nzones; ++i) {
  416. struct reada_zone *zone = re->zones[i];
  417. radix_tree_delete(&zone->device->reada_extents, index);
  418. }
  419. spin_unlock(&fs_info->reada_lock);
  420. for (i = 0; i < re->nzones; ++i) {
  421. struct reada_zone *zone = re->zones[i];
  422. kref_get(&zone->refcnt);
  423. spin_lock(&zone->lock);
  424. --zone->elems;
  425. if (zone->elems == 0) {
  426. /* no fs_info->reada_lock needed, as this can't be
  427. * the last ref */
  428. kref_put(&zone->refcnt, reada_zone_release);
  429. }
  430. spin_unlock(&zone->lock);
  431. spin_lock(&fs_info->reada_lock);
  432. kref_put(&zone->refcnt, reada_zone_release);
  433. spin_unlock(&fs_info->reada_lock);
  434. }
  435. if (re->scheduled_for)
  436. atomic_dec(&re->scheduled_for->reada_in_flight);
  437. kfree(re);
  438. }
  439. static void reada_zone_release(struct kref *kref)
  440. {
  441. struct reada_zone *zone = container_of(kref, struct reada_zone, refcnt);
  442. radix_tree_delete(&zone->device->reada_zones,
  443. zone->end >> PAGE_CACHE_SHIFT);
  444. kfree(zone);
  445. }
  446. static void reada_control_release(struct kref *kref)
  447. {
  448. struct reada_control *rc = container_of(kref, struct reada_control,
  449. refcnt);
  450. kfree(rc);
  451. }
  452. static int reada_add_block(struct reada_control *rc, u64 logical,
  453. struct btrfs_key *top, int level, u64 generation)
  454. {
  455. struct btrfs_root *root = rc->root;
  456. struct reada_extent *re;
  457. struct reada_extctl *rec;
  458. re = reada_find_extent(root, logical, top, level); /* takes one ref */
  459. if (!re)
  460. return -1;
  461. rec = kzalloc(sizeof(*rec), GFP_NOFS);
  462. if (!rec) {
  463. reada_extent_put(root->fs_info, re);
  464. return -1;
  465. }
  466. rec->rc = rc;
  467. rec->generation = generation;
  468. atomic_inc(&rc->elems);
  469. spin_lock(&re->lock);
  470. list_add_tail(&rec->list, &re->extctl);
  471. spin_unlock(&re->lock);
  472. /* leave the ref on the extent */
  473. return 0;
  474. }
  475. /*
  476. * called with fs_info->reada_lock held
  477. */
  478. static void reada_peer_zones_set_lock(struct reada_zone *zone, int lock)
  479. {
  480. int i;
  481. unsigned long index = zone->end >> PAGE_CACHE_SHIFT;
  482. for (i = 0; i < zone->ndevs; ++i) {
  483. struct reada_zone *peer;
  484. peer = radix_tree_lookup(&zone->devs[i]->reada_zones, index);
  485. if (peer && peer->device != zone->device)
  486. peer->locked = lock;
  487. }
  488. }
  489. /*
  490. * called with fs_info->reada_lock held
  491. */
  492. static int reada_pick_zone(struct btrfs_device *dev)
  493. {
  494. struct reada_zone *top_zone = NULL;
  495. struct reada_zone *top_locked_zone = NULL;
  496. u64 top_elems = 0;
  497. u64 top_locked_elems = 0;
  498. unsigned long index = 0;
  499. int ret;
  500. if (dev->reada_curr_zone) {
  501. reada_peer_zones_set_lock(dev->reada_curr_zone, 0);
  502. kref_put(&dev->reada_curr_zone->refcnt, reada_zone_release);
  503. dev->reada_curr_zone = NULL;
  504. }
  505. /* pick the zone with the most elements */
  506. while (1) {
  507. struct reada_zone *zone;
  508. ret = radix_tree_gang_lookup(&dev->reada_zones,
  509. (void **)&zone, index, 1);
  510. if (ret == 0)
  511. break;
  512. index = (zone->end >> PAGE_CACHE_SHIFT) + 1;
  513. if (zone->locked) {
  514. if (zone->elems > top_locked_elems) {
  515. top_locked_elems = zone->elems;
  516. top_locked_zone = zone;
  517. }
  518. } else {
  519. if (zone->elems > top_elems) {
  520. top_elems = zone->elems;
  521. top_zone = zone;
  522. }
  523. }
  524. }
  525. if (top_zone)
  526. dev->reada_curr_zone = top_zone;
  527. else if (top_locked_zone)
  528. dev->reada_curr_zone = top_locked_zone;
  529. else
  530. return 0;
  531. dev->reada_next = dev->reada_curr_zone->start;
  532. kref_get(&dev->reada_curr_zone->refcnt);
  533. reada_peer_zones_set_lock(dev->reada_curr_zone, 1);
  534. return 1;
  535. }
  536. static int reada_start_machine_dev(struct btrfs_fs_info *fs_info,
  537. struct btrfs_device *dev)
  538. {
  539. struct reada_extent *re = NULL;
  540. int mirror_num = 0;
  541. struct extent_buffer *eb = NULL;
  542. u64 logical;
  543. u32 blocksize;
  544. int ret;
  545. int i;
  546. int need_kick = 0;
  547. spin_lock(&fs_info->reada_lock);
  548. if (dev->reada_curr_zone == NULL) {
  549. ret = reada_pick_zone(dev);
  550. if (!ret) {
  551. spin_unlock(&fs_info->reada_lock);
  552. return 0;
  553. }
  554. }
  555. /*
  556. * FIXME currently we issue the reads one extent at a time. If we have
  557. * a contiguous block of extents, we could also coagulate them or use
  558. * plugging to speed things up
  559. */
  560. ret = radix_tree_gang_lookup(&dev->reada_extents, (void **)&re,
  561. dev->reada_next >> PAGE_CACHE_SHIFT, 1);
  562. if (ret == 0 || re->logical >= dev->reada_curr_zone->end) {
  563. ret = reada_pick_zone(dev);
  564. if (!ret) {
  565. spin_unlock(&fs_info->reada_lock);
  566. return 0;
  567. }
  568. re = NULL;
  569. ret = radix_tree_gang_lookup(&dev->reada_extents, (void **)&re,
  570. dev->reada_next >> PAGE_CACHE_SHIFT, 1);
  571. }
  572. if (ret == 0) {
  573. spin_unlock(&fs_info->reada_lock);
  574. return 0;
  575. }
  576. dev->reada_next = re->logical + re->blocksize;
  577. kref_get(&re->refcnt);
  578. spin_unlock(&fs_info->reada_lock);
  579. /*
  580. * find mirror num
  581. */
  582. for (i = 0; i < re->nzones; ++i) {
  583. if (re->zones[i]->device == dev) {
  584. mirror_num = i + 1;
  585. break;
  586. }
  587. }
  588. logical = re->logical;
  589. blocksize = re->blocksize;
  590. spin_lock(&re->lock);
  591. if (re->scheduled_for == NULL) {
  592. re->scheduled_for = dev;
  593. need_kick = 1;
  594. }
  595. spin_unlock(&re->lock);
  596. reada_extent_put(fs_info, re);
  597. if (!need_kick)
  598. return 0;
  599. atomic_inc(&dev->reada_in_flight);
  600. ret = reada_tree_block_flagged(fs_info->extent_root, logical, blocksize,
  601. mirror_num, &eb);
  602. if (ret)
  603. __readahead_hook(fs_info->extent_root, NULL, logical, ret);
  604. else if (eb)
  605. __readahead_hook(fs_info->extent_root, eb, eb->start, ret);
  606. if (eb)
  607. free_extent_buffer(eb);
  608. return 1;
  609. }
  610. static void reada_start_machine_worker(struct btrfs_work *work)
  611. {
  612. struct reada_machine_work *rmw;
  613. struct btrfs_fs_info *fs_info;
  614. rmw = container_of(work, struct reada_machine_work, work);
  615. fs_info = rmw->fs_info;
  616. kfree(rmw);
  617. __reada_start_machine(fs_info);
  618. }
  619. static void __reada_start_machine(struct btrfs_fs_info *fs_info)
  620. {
  621. struct btrfs_device *device;
  622. struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
  623. u64 enqueued;
  624. u64 total = 0;
  625. int i;
  626. do {
  627. enqueued = 0;
  628. list_for_each_entry(device, &fs_devices->devices, dev_list) {
  629. if (atomic_read(&device->reada_in_flight) <
  630. MAX_IN_FLIGHT)
  631. enqueued += reada_start_machine_dev(fs_info,
  632. device);
  633. }
  634. total += enqueued;
  635. } while (enqueued && total < 10000);
  636. if (enqueued == 0)
  637. return;
  638. /*
  639. * If everything is already in the cache, this is effectively single
  640. * threaded. To a) not hold the caller for too long and b) to utilize
  641. * more cores, we broke the loop above after 10000 iterations and now
  642. * enqueue to workers to finish it. This will distribute the load to
  643. * the cores.
  644. */
  645. for (i = 0; i < 2; ++i)
  646. reada_start_machine(fs_info);
  647. }
  648. static void reada_start_machine(struct btrfs_fs_info *fs_info)
  649. {
  650. struct reada_machine_work *rmw;
  651. rmw = kzalloc(sizeof(*rmw), GFP_NOFS);
  652. if (!rmw) {
  653. /* FIXME we cannot handle this properly right now */
  654. BUG();
  655. }
  656. rmw->work.func = reada_start_machine_worker;
  657. rmw->fs_info = fs_info;
  658. btrfs_queue_worker(&fs_info->readahead_workers, &rmw->work);
  659. }
  660. #ifdef DEBUG
  661. static void dump_devs(struct btrfs_fs_info *fs_info, int all)
  662. {
  663. struct btrfs_device *device;
  664. struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
  665. unsigned long index;
  666. int ret;
  667. int i;
  668. int j;
  669. int cnt;
  670. spin_lock(&fs_info->reada_lock);
  671. list_for_each_entry(device, &fs_devices->devices, dev_list) {
  672. printk(KERN_DEBUG "dev %lld has %d in flight\n", device->devid,
  673. atomic_read(&device->reada_in_flight));
  674. index = 0;
  675. while (1) {
  676. struct reada_zone *zone;
  677. ret = radix_tree_gang_lookup(&device->reada_zones,
  678. (void **)&zone, index, 1);
  679. if (ret == 0)
  680. break;
  681. printk(KERN_DEBUG " zone %llu-%llu elems %llu locked "
  682. "%d devs", zone->start, zone->end, zone->elems,
  683. zone->locked);
  684. for (j = 0; j < zone->ndevs; ++j) {
  685. printk(KERN_CONT " %lld",
  686. zone->devs[j]->devid);
  687. }
  688. if (device->reada_curr_zone == zone)
  689. printk(KERN_CONT " curr off %llu",
  690. device->reada_next - zone->start);
  691. printk(KERN_CONT "\n");
  692. index = (zone->end >> PAGE_CACHE_SHIFT) + 1;
  693. }
  694. cnt = 0;
  695. index = 0;
  696. while (all) {
  697. struct reada_extent *re = NULL;
  698. ret = radix_tree_gang_lookup(&device->reada_extents,
  699. (void **)&re, index, 1);
  700. if (ret == 0)
  701. break;
  702. printk(KERN_DEBUG
  703. " re: logical %llu size %u empty %d for %lld",
  704. re->logical, re->blocksize,
  705. list_empty(&re->extctl), re->scheduled_for ?
  706. re->scheduled_for->devid : -1);
  707. for (i = 0; i < re->nzones; ++i) {
  708. printk(KERN_CONT " zone %llu-%llu devs",
  709. re->zones[i]->start,
  710. re->zones[i]->end);
  711. for (j = 0; j < re->zones[i]->ndevs; ++j) {
  712. printk(KERN_CONT " %lld",
  713. re->zones[i]->devs[j]->devid);
  714. }
  715. }
  716. printk(KERN_CONT "\n");
  717. index = (re->logical >> PAGE_CACHE_SHIFT) + 1;
  718. if (++cnt > 15)
  719. break;
  720. }
  721. }
  722. index = 0;
  723. cnt = 0;
  724. while (all) {
  725. struct reada_extent *re = NULL;
  726. ret = radix_tree_gang_lookup(&fs_info->reada_tree, (void **)&re,
  727. index, 1);
  728. if (ret == 0)
  729. break;
  730. if (!re->scheduled_for) {
  731. index = (re->logical >> PAGE_CACHE_SHIFT) + 1;
  732. continue;
  733. }
  734. printk(KERN_DEBUG
  735. "re: logical %llu size %u list empty %d for %lld",
  736. re->logical, re->blocksize, list_empty(&re->extctl),
  737. re->scheduled_for ? re->scheduled_for->devid : -1);
  738. for (i = 0; i < re->nzones; ++i) {
  739. printk(KERN_CONT " zone %llu-%llu devs",
  740. re->zones[i]->start,
  741. re->zones[i]->end);
  742. for (i = 0; i < re->nzones; ++i) {
  743. printk(KERN_CONT " zone %llu-%llu devs",
  744. re->zones[i]->start,
  745. re->zones[i]->end);
  746. for (j = 0; j < re->zones[i]->ndevs; ++j) {
  747. printk(KERN_CONT " %lld",
  748. re->zones[i]->devs[j]->devid);
  749. }
  750. }
  751. }
  752. printk(KERN_CONT "\n");
  753. index = (re->logical >> PAGE_CACHE_SHIFT) + 1;
  754. }
  755. spin_unlock(&fs_info->reada_lock);
  756. }
  757. #endif
  758. /*
  759. * interface
  760. */
  761. struct reada_control *btrfs_reada_add(struct btrfs_root *root,
  762. struct btrfs_key *key_start, struct btrfs_key *key_end)
  763. {
  764. struct reada_control *rc;
  765. u64 start;
  766. u64 generation;
  767. int level;
  768. struct extent_buffer *node;
  769. static struct btrfs_key max_key = {
  770. .objectid = (u64)-1,
  771. .type = (u8)-1,
  772. .offset = (u64)-1
  773. };
  774. rc = kzalloc(sizeof(*rc), GFP_NOFS);
  775. if (!rc)
  776. return ERR_PTR(-ENOMEM);
  777. rc->root = root;
  778. rc->key_start = *key_start;
  779. rc->key_end = *key_end;
  780. atomic_set(&rc->elems, 0);
  781. init_waitqueue_head(&rc->wait);
  782. kref_init(&rc->refcnt);
  783. kref_get(&rc->refcnt); /* one ref for having elements */
  784. node = btrfs_root_node(root);
  785. start = node->start;
  786. level = btrfs_header_level(node);
  787. generation = btrfs_header_generation(node);
  788. free_extent_buffer(node);
  789. reada_add_block(rc, start, &max_key, level, generation);
  790. reada_start_machine(root->fs_info);
  791. return rc;
  792. }
  793. #ifdef DEBUG
  794. int btrfs_reada_wait(void *handle)
  795. {
  796. struct reada_control *rc = handle;
  797. while (atomic_read(&rc->elems)) {
  798. wait_event_timeout(rc->wait, atomic_read(&rc->elems) == 0,
  799. 5 * HZ);
  800. dump_devs(rc->root->fs_info, rc->elems < 10 ? 1 : 0);
  801. }
  802. dump_devs(rc->root->fs_info, rc->elems < 10 ? 1 : 0);
  803. kref_put(&rc->refcnt, reada_control_release);
  804. return 0;
  805. }
  806. #else
  807. int btrfs_reada_wait(void *handle)
  808. {
  809. struct reada_control *rc = handle;
  810. while (atomic_read(&rc->elems)) {
  811. wait_event(rc->wait, atomic_read(&rc->elems) == 0);
  812. }
  813. kref_put(&rc->refcnt, reada_control_release);
  814. return 0;
  815. }
  816. #endif
  817. void btrfs_reada_detach(void *handle)
  818. {
  819. struct reada_control *rc = handle;
  820. kref_put(&rc->refcnt, reada_control_release);
  821. }