timer.c 42 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619
  1. /*
  2. * linux/kernel/timer.c
  3. *
  4. * Kernel internal timers, basic process system calls
  5. *
  6. * Copyright (C) 1991, 1992 Linus Torvalds
  7. *
  8. * 1997-01-28 Modified by Finn Arne Gangstad to make timers scale better.
  9. *
  10. * 1997-09-10 Updated NTP code according to technical memorandum Jan '96
  11. * "A Kernel Model for Precision Timekeeping" by Dave Mills
  12. * 1998-12-24 Fixed a xtime SMP race (we need the xtime_lock rw spinlock to
  13. * serialize accesses to xtime/lost_ticks).
  14. * Copyright (C) 1998 Andrea Arcangeli
  15. * 1999-03-10 Improved NTP compatibility by Ulrich Windl
  16. * 2002-05-31 Move sys_sysinfo here and make its locking sane, Robert Love
  17. * 2000-10-05 Implemented scalable SMP per-CPU timer handling.
  18. * Copyright (C) 2000, 2001, 2002 Ingo Molnar
  19. * Designed by David S. Miller, Alexey Kuznetsov and Ingo Molnar
  20. */
  21. #include <linux/kernel_stat.h>
  22. #include <linux/module.h>
  23. #include <linux/interrupt.h>
  24. #include <linux/percpu.h>
  25. #include <linux/init.h>
  26. #include <linux/mm.h>
  27. #include <linux/swap.h>
  28. #include <linux/pid_namespace.h>
  29. #include <linux/notifier.h>
  30. #include <linux/thread_info.h>
  31. #include <linux/time.h>
  32. #include <linux/jiffies.h>
  33. #include <linux/posix-timers.h>
  34. #include <linux/cpu.h>
  35. #include <linux/syscalls.h>
  36. #include <linux/delay.h>
  37. #include <linux/tick.h>
  38. #include <linux/kallsyms.h>
  39. #include <asm/uaccess.h>
  40. #include <asm/unistd.h>
  41. #include <asm/div64.h>
  42. #include <asm/timex.h>
  43. #include <asm/io.h>
  44. u64 jiffies_64 __cacheline_aligned_in_smp = INITIAL_JIFFIES;
  45. EXPORT_SYMBOL(jiffies_64);
  46. /*
  47. * per-CPU timer vector definitions:
  48. */
  49. #define TVN_BITS (CONFIG_BASE_SMALL ? 4 : 6)
  50. #define TVR_BITS (CONFIG_BASE_SMALL ? 6 : 8)
  51. #define TVN_SIZE (1 << TVN_BITS)
  52. #define TVR_SIZE (1 << TVR_BITS)
  53. #define TVN_MASK (TVN_SIZE - 1)
  54. #define TVR_MASK (TVR_SIZE - 1)
  55. struct tvec {
  56. struct list_head vec[TVN_SIZE];
  57. };
  58. struct tvec_root {
  59. struct list_head vec[TVR_SIZE];
  60. };
  61. struct tvec_base {
  62. spinlock_t lock;
  63. struct timer_list *running_timer;
  64. unsigned long timer_jiffies;
  65. struct tvec_root tv1;
  66. struct tvec tv2;
  67. struct tvec tv3;
  68. struct tvec tv4;
  69. struct tvec tv5;
  70. } ____cacheline_aligned;
  71. struct tvec_base boot_tvec_bases;
  72. EXPORT_SYMBOL(boot_tvec_bases);
  73. static DEFINE_PER_CPU(struct tvec_base *, tvec_bases) = &boot_tvec_bases;
  74. /*
  75. * Note that all tvec_bases are 2 byte aligned and lower bit of
  76. * base in timer_list is guaranteed to be zero. Use the LSB for
  77. * the new flag to indicate whether the timer is deferrable
  78. */
  79. #define TBASE_DEFERRABLE_FLAG (0x1)
  80. /* Functions below help us manage 'deferrable' flag */
  81. static inline unsigned int tbase_get_deferrable(struct tvec_base *base)
  82. {
  83. return ((unsigned int)(unsigned long)base & TBASE_DEFERRABLE_FLAG);
  84. }
  85. static inline struct tvec_base *tbase_get_base(struct tvec_base *base)
  86. {
  87. return ((struct tvec_base *)((unsigned long)base & ~TBASE_DEFERRABLE_FLAG));
  88. }
  89. static inline void timer_set_deferrable(struct timer_list *timer)
  90. {
  91. timer->base = ((struct tvec_base *)((unsigned long)(timer->base) |
  92. TBASE_DEFERRABLE_FLAG));
  93. }
  94. static inline void
  95. timer_set_base(struct timer_list *timer, struct tvec_base *new_base)
  96. {
  97. timer->base = (struct tvec_base *)((unsigned long)(new_base) |
  98. tbase_get_deferrable(timer->base));
  99. }
  100. static unsigned long round_jiffies_common(unsigned long j, int cpu,
  101. bool force_up)
  102. {
  103. int rem;
  104. unsigned long original = j;
  105. /*
  106. * We don't want all cpus firing their timers at once hitting the
  107. * same lock or cachelines, so we skew each extra cpu with an extra
  108. * 3 jiffies. This 3 jiffies came originally from the mm/ code which
  109. * already did this.
  110. * The skew is done by adding 3*cpunr, then round, then subtract this
  111. * extra offset again.
  112. */
  113. j += cpu * 3;
  114. rem = j % HZ;
  115. /*
  116. * If the target jiffie is just after a whole second (which can happen
  117. * due to delays of the timer irq, long irq off times etc etc) then
  118. * we should round down to the whole second, not up. Use 1/4th second
  119. * as cutoff for this rounding as an extreme upper bound for this.
  120. * But never round down if @force_up is set.
  121. */
  122. if (rem < HZ/4 && !force_up) /* round down */
  123. j = j - rem;
  124. else /* round up */
  125. j = j - rem + HZ;
  126. /* now that we have rounded, subtract the extra skew again */
  127. j -= cpu * 3;
  128. if (j <= jiffies) /* rounding ate our timeout entirely; */
  129. return original;
  130. return j;
  131. }
  132. /**
  133. * __round_jiffies - function to round jiffies to a full second
  134. * @j: the time in (absolute) jiffies that should be rounded
  135. * @cpu: the processor number on which the timeout will happen
  136. *
  137. * __round_jiffies() rounds an absolute time in the future (in jiffies)
  138. * up or down to (approximately) full seconds. This is useful for timers
  139. * for which the exact time they fire does not matter too much, as long as
  140. * they fire approximately every X seconds.
  141. *
  142. * By rounding these timers to whole seconds, all such timers will fire
  143. * at the same time, rather than at various times spread out. The goal
  144. * of this is to have the CPU wake up less, which saves power.
  145. *
  146. * The exact rounding is skewed for each processor to avoid all
  147. * processors firing at the exact same time, which could lead
  148. * to lock contention or spurious cache line bouncing.
  149. *
  150. * The return value is the rounded version of the @j parameter.
  151. */
  152. unsigned long __round_jiffies(unsigned long j, int cpu)
  153. {
  154. return round_jiffies_common(j, cpu, false);
  155. }
  156. EXPORT_SYMBOL_GPL(__round_jiffies);
  157. /**
  158. * __round_jiffies_relative - function to round jiffies to a full second
  159. * @j: the time in (relative) jiffies that should be rounded
  160. * @cpu: the processor number on which the timeout will happen
  161. *
  162. * __round_jiffies_relative() rounds a time delta in the future (in jiffies)
  163. * up or down to (approximately) full seconds. This is useful for timers
  164. * for which the exact time they fire does not matter too much, as long as
  165. * they fire approximately every X seconds.
  166. *
  167. * By rounding these timers to whole seconds, all such timers will fire
  168. * at the same time, rather than at various times spread out. The goal
  169. * of this is to have the CPU wake up less, which saves power.
  170. *
  171. * The exact rounding is skewed for each processor to avoid all
  172. * processors firing at the exact same time, which could lead
  173. * to lock contention or spurious cache line bouncing.
  174. *
  175. * The return value is the rounded version of the @j parameter.
  176. */
  177. unsigned long __round_jiffies_relative(unsigned long j, int cpu)
  178. {
  179. unsigned long j0 = jiffies;
  180. /* Use j0 because jiffies might change while we run */
  181. return round_jiffies_common(j + j0, cpu, false) - j0;
  182. }
  183. EXPORT_SYMBOL_GPL(__round_jiffies_relative);
  184. /**
  185. * round_jiffies - function to round jiffies to a full second
  186. * @j: the time in (absolute) jiffies that should be rounded
  187. *
  188. * round_jiffies() rounds an absolute time in the future (in jiffies)
  189. * up or down to (approximately) full seconds. This is useful for timers
  190. * for which the exact time they fire does not matter too much, as long as
  191. * they fire approximately every X seconds.
  192. *
  193. * By rounding these timers to whole seconds, all such timers will fire
  194. * at the same time, rather than at various times spread out. The goal
  195. * of this is to have the CPU wake up less, which saves power.
  196. *
  197. * The return value is the rounded version of the @j parameter.
  198. */
  199. unsigned long round_jiffies(unsigned long j)
  200. {
  201. return round_jiffies_common(j, raw_smp_processor_id(), false);
  202. }
  203. EXPORT_SYMBOL_GPL(round_jiffies);
  204. /**
  205. * round_jiffies_relative - function to round jiffies to a full second
  206. * @j: the time in (relative) jiffies that should be rounded
  207. *
  208. * round_jiffies_relative() rounds a time delta in the future (in jiffies)
  209. * up or down to (approximately) full seconds. This is useful for timers
  210. * for which the exact time they fire does not matter too much, as long as
  211. * they fire approximately every X seconds.
  212. *
  213. * By rounding these timers to whole seconds, all such timers will fire
  214. * at the same time, rather than at various times spread out. The goal
  215. * of this is to have the CPU wake up less, which saves power.
  216. *
  217. * The return value is the rounded version of the @j parameter.
  218. */
  219. unsigned long round_jiffies_relative(unsigned long j)
  220. {
  221. return __round_jiffies_relative(j, raw_smp_processor_id());
  222. }
  223. EXPORT_SYMBOL_GPL(round_jiffies_relative);
  224. /**
  225. * __round_jiffies_up - function to round jiffies up to a full second
  226. * @j: the time in (absolute) jiffies that should be rounded
  227. * @cpu: the processor number on which the timeout will happen
  228. *
  229. * This is the same as __round_jiffies() except that it will never
  230. * round down. This is useful for timeouts for which the exact time
  231. * of firing does not matter too much, as long as they don't fire too
  232. * early.
  233. */
  234. unsigned long __round_jiffies_up(unsigned long j, int cpu)
  235. {
  236. return round_jiffies_common(j, cpu, true);
  237. }
  238. EXPORT_SYMBOL_GPL(__round_jiffies_up);
  239. /**
  240. * __round_jiffies_up_relative - function to round jiffies up to a full second
  241. * @j: the time in (relative) jiffies that should be rounded
  242. * @cpu: the processor number on which the timeout will happen
  243. *
  244. * This is the same as __round_jiffies_relative() except that it will never
  245. * round down. This is useful for timeouts for which the exact time
  246. * of firing does not matter too much, as long as they don't fire too
  247. * early.
  248. */
  249. unsigned long __round_jiffies_up_relative(unsigned long j, int cpu)
  250. {
  251. unsigned long j0 = jiffies;
  252. /* Use j0 because jiffies might change while we run */
  253. return round_jiffies_common(j + j0, cpu, true) - j0;
  254. }
  255. EXPORT_SYMBOL_GPL(__round_jiffies_up_relative);
  256. /**
  257. * round_jiffies_up - function to round jiffies up to a full second
  258. * @j: the time in (absolute) jiffies that should be rounded
  259. *
  260. * This is the same as round_jiffies() except that it will never
  261. * round down. This is useful for timeouts for which the exact time
  262. * of firing does not matter too much, as long as they don't fire too
  263. * early.
  264. */
  265. unsigned long round_jiffies_up(unsigned long j)
  266. {
  267. return round_jiffies_common(j, raw_smp_processor_id(), true);
  268. }
  269. EXPORT_SYMBOL_GPL(round_jiffies_up);
  270. /**
  271. * round_jiffies_up_relative - function to round jiffies up to a full second
  272. * @j: the time in (relative) jiffies that should be rounded
  273. *
  274. * This is the same as round_jiffies_relative() except that it will never
  275. * round down. This is useful for timeouts for which the exact time
  276. * of firing does not matter too much, as long as they don't fire too
  277. * early.
  278. */
  279. unsigned long round_jiffies_up_relative(unsigned long j)
  280. {
  281. return __round_jiffies_up_relative(j, raw_smp_processor_id());
  282. }
  283. EXPORT_SYMBOL_GPL(round_jiffies_up_relative);
  284. static inline void set_running_timer(struct tvec_base *base,
  285. struct timer_list *timer)
  286. {
  287. #ifdef CONFIG_SMP
  288. base->running_timer = timer;
  289. #endif
  290. }
  291. static void internal_add_timer(struct tvec_base *base, struct timer_list *timer)
  292. {
  293. unsigned long expires = timer->expires;
  294. unsigned long idx = expires - base->timer_jiffies;
  295. struct list_head *vec;
  296. if (idx < TVR_SIZE) {
  297. int i = expires & TVR_MASK;
  298. vec = base->tv1.vec + i;
  299. } else if (idx < 1 << (TVR_BITS + TVN_BITS)) {
  300. int i = (expires >> TVR_BITS) & TVN_MASK;
  301. vec = base->tv2.vec + i;
  302. } else if (idx < 1 << (TVR_BITS + 2 * TVN_BITS)) {
  303. int i = (expires >> (TVR_BITS + TVN_BITS)) & TVN_MASK;
  304. vec = base->tv3.vec + i;
  305. } else if (idx < 1 << (TVR_BITS + 3 * TVN_BITS)) {
  306. int i = (expires >> (TVR_BITS + 2 * TVN_BITS)) & TVN_MASK;
  307. vec = base->tv4.vec + i;
  308. } else if ((signed long) idx < 0) {
  309. /*
  310. * Can happen if you add a timer with expires == jiffies,
  311. * or you set a timer to go off in the past
  312. */
  313. vec = base->tv1.vec + (base->timer_jiffies & TVR_MASK);
  314. } else {
  315. int i;
  316. /* If the timeout is larger than 0xffffffff on 64-bit
  317. * architectures then we use the maximum timeout:
  318. */
  319. if (idx > 0xffffffffUL) {
  320. idx = 0xffffffffUL;
  321. expires = idx + base->timer_jiffies;
  322. }
  323. i = (expires >> (TVR_BITS + 3 * TVN_BITS)) & TVN_MASK;
  324. vec = base->tv5.vec + i;
  325. }
  326. /*
  327. * Timers are FIFO:
  328. */
  329. list_add_tail(&timer->entry, vec);
  330. }
  331. #ifdef CONFIG_TIMER_STATS
  332. void __timer_stats_timer_set_start_info(struct timer_list *timer, void *addr)
  333. {
  334. if (timer->start_site)
  335. return;
  336. timer->start_site = addr;
  337. memcpy(timer->start_comm, current->comm, TASK_COMM_LEN);
  338. timer->start_pid = current->pid;
  339. }
  340. static void timer_stats_account_timer(struct timer_list *timer)
  341. {
  342. unsigned int flag = 0;
  343. if (unlikely(tbase_get_deferrable(timer->base)))
  344. flag |= TIMER_STATS_FLAG_DEFERRABLE;
  345. timer_stats_update_stats(timer, timer->start_pid, timer->start_site,
  346. timer->function, timer->start_comm, flag);
  347. }
  348. #else
  349. static void timer_stats_account_timer(struct timer_list *timer) {}
  350. #endif
  351. #ifdef CONFIG_DEBUG_OBJECTS_TIMERS
  352. static struct debug_obj_descr timer_debug_descr;
  353. /*
  354. * fixup_init is called when:
  355. * - an active object is initialized
  356. */
  357. static int timer_fixup_init(void *addr, enum debug_obj_state state)
  358. {
  359. struct timer_list *timer = addr;
  360. switch (state) {
  361. case ODEBUG_STATE_ACTIVE:
  362. del_timer_sync(timer);
  363. debug_object_init(timer, &timer_debug_descr);
  364. return 1;
  365. default:
  366. return 0;
  367. }
  368. }
  369. /*
  370. * fixup_activate is called when:
  371. * - an active object is activated
  372. * - an unknown object is activated (might be a statically initialized object)
  373. */
  374. static int timer_fixup_activate(void *addr, enum debug_obj_state state)
  375. {
  376. struct timer_list *timer = addr;
  377. switch (state) {
  378. case ODEBUG_STATE_NOTAVAILABLE:
  379. /*
  380. * This is not really a fixup. The timer was
  381. * statically initialized. We just make sure that it
  382. * is tracked in the object tracker.
  383. */
  384. if (timer->entry.next == NULL &&
  385. timer->entry.prev == TIMER_ENTRY_STATIC) {
  386. debug_object_init(timer, &timer_debug_descr);
  387. debug_object_activate(timer, &timer_debug_descr);
  388. return 0;
  389. } else {
  390. WARN_ON_ONCE(1);
  391. }
  392. return 0;
  393. case ODEBUG_STATE_ACTIVE:
  394. WARN_ON(1);
  395. default:
  396. return 0;
  397. }
  398. }
  399. /*
  400. * fixup_free is called when:
  401. * - an active object is freed
  402. */
  403. static int timer_fixup_free(void *addr, enum debug_obj_state state)
  404. {
  405. struct timer_list *timer = addr;
  406. switch (state) {
  407. case ODEBUG_STATE_ACTIVE:
  408. del_timer_sync(timer);
  409. debug_object_free(timer, &timer_debug_descr);
  410. return 1;
  411. default:
  412. return 0;
  413. }
  414. }
  415. static struct debug_obj_descr timer_debug_descr = {
  416. .name = "timer_list",
  417. .fixup_init = timer_fixup_init,
  418. .fixup_activate = timer_fixup_activate,
  419. .fixup_free = timer_fixup_free,
  420. };
  421. static inline void debug_timer_init(struct timer_list *timer)
  422. {
  423. debug_object_init(timer, &timer_debug_descr);
  424. }
  425. static inline void debug_timer_activate(struct timer_list *timer)
  426. {
  427. debug_object_activate(timer, &timer_debug_descr);
  428. }
  429. static inline void debug_timer_deactivate(struct timer_list *timer)
  430. {
  431. debug_object_deactivate(timer, &timer_debug_descr);
  432. }
  433. static inline void debug_timer_free(struct timer_list *timer)
  434. {
  435. debug_object_free(timer, &timer_debug_descr);
  436. }
  437. static void __init_timer(struct timer_list *timer);
  438. void init_timer_on_stack(struct timer_list *timer)
  439. {
  440. debug_object_init_on_stack(timer, &timer_debug_descr);
  441. __init_timer(timer);
  442. }
  443. EXPORT_SYMBOL_GPL(init_timer_on_stack);
  444. void destroy_timer_on_stack(struct timer_list *timer)
  445. {
  446. debug_object_free(timer, &timer_debug_descr);
  447. }
  448. EXPORT_SYMBOL_GPL(destroy_timer_on_stack);
  449. #else
  450. static inline void debug_timer_init(struct timer_list *timer) { }
  451. static inline void debug_timer_activate(struct timer_list *timer) { }
  452. static inline void debug_timer_deactivate(struct timer_list *timer) { }
  453. #endif
  454. static void __init_timer(struct timer_list *timer)
  455. {
  456. timer->entry.next = NULL;
  457. timer->base = __raw_get_cpu_var(tvec_bases);
  458. #ifdef CONFIG_TIMER_STATS
  459. timer->start_site = NULL;
  460. timer->start_pid = -1;
  461. memset(timer->start_comm, 0, TASK_COMM_LEN);
  462. #endif
  463. }
  464. /**
  465. * init_timer - initialize a timer.
  466. * @timer: the timer to be initialized
  467. *
  468. * init_timer() must be done to a timer prior calling *any* of the
  469. * other timer functions.
  470. */
  471. void init_timer(struct timer_list *timer)
  472. {
  473. debug_timer_init(timer);
  474. __init_timer(timer);
  475. }
  476. EXPORT_SYMBOL(init_timer);
  477. void init_timer_deferrable(struct timer_list *timer)
  478. {
  479. init_timer(timer);
  480. timer_set_deferrable(timer);
  481. }
  482. EXPORT_SYMBOL(init_timer_deferrable);
  483. static inline void detach_timer(struct timer_list *timer,
  484. int clear_pending)
  485. {
  486. struct list_head *entry = &timer->entry;
  487. debug_timer_deactivate(timer);
  488. __list_del(entry->prev, entry->next);
  489. if (clear_pending)
  490. entry->next = NULL;
  491. entry->prev = LIST_POISON2;
  492. }
  493. /*
  494. * We are using hashed locking: holding per_cpu(tvec_bases).lock
  495. * means that all timers which are tied to this base via timer->base are
  496. * locked, and the base itself is locked too.
  497. *
  498. * So __run_timers/migrate_timers can safely modify all timers which could
  499. * be found on ->tvX lists.
  500. *
  501. * When the timer's base is locked, and the timer removed from list, it is
  502. * possible to set timer->base = NULL and drop the lock: the timer remains
  503. * locked.
  504. */
  505. static struct tvec_base *lock_timer_base(struct timer_list *timer,
  506. unsigned long *flags)
  507. __acquires(timer->base->lock)
  508. {
  509. struct tvec_base *base;
  510. for (;;) {
  511. struct tvec_base *prelock_base = timer->base;
  512. base = tbase_get_base(prelock_base);
  513. if (likely(base != NULL)) {
  514. spin_lock_irqsave(&base->lock, *flags);
  515. if (likely(prelock_base == timer->base))
  516. return base;
  517. /* The timer has migrated to another CPU */
  518. spin_unlock_irqrestore(&base->lock, *flags);
  519. }
  520. cpu_relax();
  521. }
  522. }
  523. static inline int
  524. __mod_timer(struct timer_list *timer, unsigned long expires, bool pending_only)
  525. {
  526. struct tvec_base *base, *new_base;
  527. unsigned long flags;
  528. int ret;
  529. ret = 0;
  530. timer_stats_timer_set_start_info(timer);
  531. BUG_ON(!timer->function);
  532. base = lock_timer_base(timer, &flags);
  533. if (timer_pending(timer)) {
  534. detach_timer(timer, 0);
  535. ret = 1;
  536. } else {
  537. if (pending_only)
  538. goto out_unlock;
  539. }
  540. debug_timer_activate(timer);
  541. new_base = __get_cpu_var(tvec_bases);
  542. if (base != new_base) {
  543. /*
  544. * We are trying to schedule the timer on the local CPU.
  545. * However we can't change timer's base while it is running,
  546. * otherwise del_timer_sync() can't detect that the timer's
  547. * handler yet has not finished. This also guarantees that
  548. * the timer is serialized wrt itself.
  549. */
  550. if (likely(base->running_timer != timer)) {
  551. /* See the comment in lock_timer_base() */
  552. timer_set_base(timer, NULL);
  553. spin_unlock(&base->lock);
  554. base = new_base;
  555. spin_lock(&base->lock);
  556. timer_set_base(timer, base);
  557. }
  558. }
  559. timer->expires = expires;
  560. internal_add_timer(base, timer);
  561. out_unlock:
  562. spin_unlock_irqrestore(&base->lock, flags);
  563. return ret;
  564. }
  565. /**
  566. * mod_timer_pending - modify a pending timer's timeout
  567. * @timer: the pending timer to be modified
  568. * @expires: new timeout in jiffies
  569. *
  570. * mod_timer_pending() is the same for pending timers as mod_timer(),
  571. * but will not re-activate and modify already deleted timers.
  572. *
  573. * It is useful for unserialized use of timers.
  574. */
  575. int mod_timer_pending(struct timer_list *timer, unsigned long expires)
  576. {
  577. return __mod_timer(timer, expires, true);
  578. }
  579. EXPORT_SYMBOL(mod_timer_pending);
  580. /**
  581. * mod_timer - modify a timer's timeout
  582. * @timer: the timer to be modified
  583. * @expires: new timeout in jiffies
  584. *
  585. * mod_timer() is a more efficient way to update the expire field of an
  586. * active timer (if the timer is inactive it will be activated)
  587. *
  588. * mod_timer(timer, expires) is equivalent to:
  589. *
  590. * del_timer(timer); timer->expires = expires; add_timer(timer);
  591. *
  592. * Note that if there are multiple unserialized concurrent users of the
  593. * same timer, then mod_timer() is the only safe way to modify the timeout,
  594. * since add_timer() cannot modify an already running timer.
  595. *
  596. * The function returns whether it has modified a pending timer or not.
  597. * (ie. mod_timer() of an inactive timer returns 0, mod_timer() of an
  598. * active timer returns 1.)
  599. */
  600. int mod_timer(struct timer_list *timer, unsigned long expires)
  601. {
  602. /*
  603. * This is a common optimization triggered by the
  604. * networking code - if the timer is re-modified
  605. * to be the same thing then just return:
  606. */
  607. if (timer->expires == expires && timer_pending(timer))
  608. return 1;
  609. return __mod_timer(timer, expires, false);
  610. }
  611. EXPORT_SYMBOL(mod_timer);
  612. /**
  613. * add_timer - start a timer
  614. * @timer: the timer to be added
  615. *
  616. * The kernel will do a ->function(->data) callback from the
  617. * timer interrupt at the ->expires point in the future. The
  618. * current time is 'jiffies'.
  619. *
  620. * The timer's ->expires, ->function (and if the handler uses it, ->data)
  621. * fields must be set prior calling this function.
  622. *
  623. * Timers with an ->expires field in the past will be executed in the next
  624. * timer tick.
  625. */
  626. void add_timer(struct timer_list *timer)
  627. {
  628. BUG_ON(timer_pending(timer));
  629. mod_timer(timer, timer->expires);
  630. }
  631. EXPORT_SYMBOL(add_timer);
  632. /**
  633. * add_timer_on - start a timer on a particular CPU
  634. * @timer: the timer to be added
  635. * @cpu: the CPU to start it on
  636. *
  637. * This is not very scalable on SMP. Double adds are not possible.
  638. */
  639. void add_timer_on(struct timer_list *timer, int cpu)
  640. {
  641. struct tvec_base *base = per_cpu(tvec_bases, cpu);
  642. unsigned long flags;
  643. timer_stats_timer_set_start_info(timer);
  644. BUG_ON(timer_pending(timer) || !timer->function);
  645. spin_lock_irqsave(&base->lock, flags);
  646. timer_set_base(timer, base);
  647. debug_timer_activate(timer);
  648. internal_add_timer(base, timer);
  649. /*
  650. * Check whether the other CPU is idle and needs to be
  651. * triggered to reevaluate the timer wheel when nohz is
  652. * active. We are protected against the other CPU fiddling
  653. * with the timer by holding the timer base lock. This also
  654. * makes sure that a CPU on the way to idle can not evaluate
  655. * the timer wheel.
  656. */
  657. wake_up_idle_cpu(cpu);
  658. spin_unlock_irqrestore(&base->lock, flags);
  659. }
  660. /**
  661. * del_timer - deactive a timer.
  662. * @timer: the timer to be deactivated
  663. *
  664. * del_timer() deactivates a timer - this works on both active and inactive
  665. * timers.
  666. *
  667. * The function returns whether it has deactivated a pending timer or not.
  668. * (ie. del_timer() of an inactive timer returns 0, del_timer() of an
  669. * active timer returns 1.)
  670. */
  671. int del_timer(struct timer_list *timer)
  672. {
  673. struct tvec_base *base;
  674. unsigned long flags;
  675. int ret = 0;
  676. timer_stats_timer_clear_start_info(timer);
  677. if (timer_pending(timer)) {
  678. base = lock_timer_base(timer, &flags);
  679. if (timer_pending(timer)) {
  680. detach_timer(timer, 1);
  681. ret = 1;
  682. }
  683. spin_unlock_irqrestore(&base->lock, flags);
  684. }
  685. return ret;
  686. }
  687. EXPORT_SYMBOL(del_timer);
  688. #ifdef CONFIG_SMP
  689. /**
  690. * try_to_del_timer_sync - Try to deactivate a timer
  691. * @timer: timer do del
  692. *
  693. * This function tries to deactivate a timer. Upon successful (ret >= 0)
  694. * exit the timer is not queued and the handler is not running on any CPU.
  695. *
  696. * It must not be called from interrupt contexts.
  697. */
  698. int try_to_del_timer_sync(struct timer_list *timer)
  699. {
  700. struct tvec_base *base;
  701. unsigned long flags;
  702. int ret = -1;
  703. base = lock_timer_base(timer, &flags);
  704. if (base->running_timer == timer)
  705. goto out;
  706. ret = 0;
  707. if (timer_pending(timer)) {
  708. detach_timer(timer, 1);
  709. ret = 1;
  710. }
  711. out:
  712. spin_unlock_irqrestore(&base->lock, flags);
  713. return ret;
  714. }
  715. EXPORT_SYMBOL(try_to_del_timer_sync);
  716. /**
  717. * del_timer_sync - deactivate a timer and wait for the handler to finish.
  718. * @timer: the timer to be deactivated
  719. *
  720. * This function only differs from del_timer() on SMP: besides deactivating
  721. * the timer it also makes sure the handler has finished executing on other
  722. * CPUs.
  723. *
  724. * Synchronization rules: Callers must prevent restarting of the timer,
  725. * otherwise this function is meaningless. It must not be called from
  726. * interrupt contexts. The caller must not hold locks which would prevent
  727. * completion of the timer's handler. The timer's handler must not call
  728. * add_timer_on(). Upon exit the timer is not queued and the handler is
  729. * not running on any CPU.
  730. *
  731. * The function returns whether it has deactivated a pending timer or not.
  732. */
  733. int del_timer_sync(struct timer_list *timer)
  734. {
  735. for (;;) {
  736. int ret = try_to_del_timer_sync(timer);
  737. if (ret >= 0)
  738. return ret;
  739. cpu_relax();
  740. }
  741. }
  742. EXPORT_SYMBOL(del_timer_sync);
  743. #endif
  744. static int cascade(struct tvec_base *base, struct tvec *tv, int index)
  745. {
  746. /* cascade all the timers from tv up one level */
  747. struct timer_list *timer, *tmp;
  748. struct list_head tv_list;
  749. list_replace_init(tv->vec + index, &tv_list);
  750. /*
  751. * We are removing _all_ timers from the list, so we
  752. * don't have to detach them individually.
  753. */
  754. list_for_each_entry_safe(timer, tmp, &tv_list, entry) {
  755. BUG_ON(tbase_get_base(timer->base) != base);
  756. internal_add_timer(base, timer);
  757. }
  758. return index;
  759. }
  760. #define INDEX(N) ((base->timer_jiffies >> (TVR_BITS + (N) * TVN_BITS)) & TVN_MASK)
  761. /**
  762. * __run_timers - run all expired timers (if any) on this CPU.
  763. * @base: the timer vector to be processed.
  764. *
  765. * This function cascades all vectors and executes all expired timer
  766. * vectors.
  767. */
  768. static inline void __run_timers(struct tvec_base *base)
  769. {
  770. struct timer_list *timer;
  771. spin_lock_irq(&base->lock);
  772. while (time_after_eq(jiffies, base->timer_jiffies)) {
  773. struct list_head work_list;
  774. struct list_head *head = &work_list;
  775. int index = base->timer_jiffies & TVR_MASK;
  776. /*
  777. * Cascade timers:
  778. */
  779. if (!index &&
  780. (!cascade(base, &base->tv2, INDEX(0))) &&
  781. (!cascade(base, &base->tv3, INDEX(1))) &&
  782. !cascade(base, &base->tv4, INDEX(2)))
  783. cascade(base, &base->tv5, INDEX(3));
  784. ++base->timer_jiffies;
  785. list_replace_init(base->tv1.vec + index, &work_list);
  786. while (!list_empty(head)) {
  787. void (*fn)(unsigned long);
  788. unsigned long data;
  789. timer = list_first_entry(head, struct timer_list,entry);
  790. fn = timer->function;
  791. data = timer->data;
  792. timer_stats_account_timer(timer);
  793. set_running_timer(base, timer);
  794. detach_timer(timer, 1);
  795. spin_unlock_irq(&base->lock);
  796. {
  797. int preempt_count = preempt_count();
  798. fn(data);
  799. if (preempt_count != preempt_count()) {
  800. printk(KERN_ERR "huh, entered %p "
  801. "with preempt_count %08x, exited"
  802. " with %08x?\n",
  803. fn, preempt_count,
  804. preempt_count());
  805. BUG();
  806. }
  807. }
  808. spin_lock_irq(&base->lock);
  809. }
  810. }
  811. set_running_timer(base, NULL);
  812. spin_unlock_irq(&base->lock);
  813. }
  814. #ifdef CONFIG_NO_HZ
  815. /*
  816. * Find out when the next timer event is due to happen. This
  817. * is used on S/390 to stop all activity when a cpus is idle.
  818. * This functions needs to be called disabled.
  819. */
  820. static unsigned long __next_timer_interrupt(struct tvec_base *base)
  821. {
  822. unsigned long timer_jiffies = base->timer_jiffies;
  823. unsigned long expires = timer_jiffies + NEXT_TIMER_MAX_DELTA;
  824. int index, slot, array, found = 0;
  825. struct timer_list *nte;
  826. struct tvec *varray[4];
  827. /* Look for timer events in tv1. */
  828. index = slot = timer_jiffies & TVR_MASK;
  829. do {
  830. list_for_each_entry(nte, base->tv1.vec + slot, entry) {
  831. if (tbase_get_deferrable(nte->base))
  832. continue;
  833. found = 1;
  834. expires = nte->expires;
  835. /* Look at the cascade bucket(s)? */
  836. if (!index || slot < index)
  837. goto cascade;
  838. return expires;
  839. }
  840. slot = (slot + 1) & TVR_MASK;
  841. } while (slot != index);
  842. cascade:
  843. /* Calculate the next cascade event */
  844. if (index)
  845. timer_jiffies += TVR_SIZE - index;
  846. timer_jiffies >>= TVR_BITS;
  847. /* Check tv2-tv5. */
  848. varray[0] = &base->tv2;
  849. varray[1] = &base->tv3;
  850. varray[2] = &base->tv4;
  851. varray[3] = &base->tv5;
  852. for (array = 0; array < 4; array++) {
  853. struct tvec *varp = varray[array];
  854. index = slot = timer_jiffies & TVN_MASK;
  855. do {
  856. list_for_each_entry(nte, varp->vec + slot, entry) {
  857. found = 1;
  858. if (time_before(nte->expires, expires))
  859. expires = nte->expires;
  860. }
  861. /*
  862. * Do we still search for the first timer or are
  863. * we looking up the cascade buckets ?
  864. */
  865. if (found) {
  866. /* Look at the cascade bucket(s)? */
  867. if (!index || slot < index)
  868. break;
  869. return expires;
  870. }
  871. slot = (slot + 1) & TVN_MASK;
  872. } while (slot != index);
  873. if (index)
  874. timer_jiffies += TVN_SIZE - index;
  875. timer_jiffies >>= TVN_BITS;
  876. }
  877. return expires;
  878. }
  879. /*
  880. * Check, if the next hrtimer event is before the next timer wheel
  881. * event:
  882. */
  883. static unsigned long cmp_next_hrtimer_event(unsigned long now,
  884. unsigned long expires)
  885. {
  886. ktime_t hr_delta = hrtimer_get_next_event();
  887. struct timespec tsdelta;
  888. unsigned long delta;
  889. if (hr_delta.tv64 == KTIME_MAX)
  890. return expires;
  891. /*
  892. * Expired timer available, let it expire in the next tick
  893. */
  894. if (hr_delta.tv64 <= 0)
  895. return now + 1;
  896. tsdelta = ktime_to_timespec(hr_delta);
  897. delta = timespec_to_jiffies(&tsdelta);
  898. /*
  899. * Limit the delta to the max value, which is checked in
  900. * tick_nohz_stop_sched_tick():
  901. */
  902. if (delta > NEXT_TIMER_MAX_DELTA)
  903. delta = NEXT_TIMER_MAX_DELTA;
  904. /*
  905. * Take rounding errors in to account and make sure, that it
  906. * expires in the next tick. Otherwise we go into an endless
  907. * ping pong due to tick_nohz_stop_sched_tick() retriggering
  908. * the timer softirq
  909. */
  910. if (delta < 1)
  911. delta = 1;
  912. now += delta;
  913. if (time_before(now, expires))
  914. return now;
  915. return expires;
  916. }
  917. /**
  918. * get_next_timer_interrupt - return the jiffy of the next pending timer
  919. * @now: current time (in jiffies)
  920. */
  921. unsigned long get_next_timer_interrupt(unsigned long now)
  922. {
  923. struct tvec_base *base = __get_cpu_var(tvec_bases);
  924. unsigned long expires;
  925. spin_lock(&base->lock);
  926. expires = __next_timer_interrupt(base);
  927. spin_unlock(&base->lock);
  928. if (time_before_eq(expires, now))
  929. return now;
  930. return cmp_next_hrtimer_event(now, expires);
  931. }
  932. #endif
  933. /*
  934. * Called from the timer interrupt handler to charge one tick to the current
  935. * process. user_tick is 1 if the tick is user time, 0 for system.
  936. */
  937. void update_process_times(int user_tick)
  938. {
  939. struct task_struct *p = current;
  940. int cpu = smp_processor_id();
  941. /* Note: this timer irq context must be accounted for as well. */
  942. account_process_tick(p, user_tick);
  943. run_local_timers();
  944. if (rcu_pending(cpu))
  945. rcu_check_callbacks(cpu, user_tick);
  946. printk_tick();
  947. scheduler_tick();
  948. run_posix_cpu_timers(p);
  949. }
  950. /*
  951. * Nr of active tasks - counted in fixed-point numbers
  952. */
  953. static unsigned long count_active_tasks(void)
  954. {
  955. return nr_active() * FIXED_1;
  956. }
  957. /*
  958. * Hmm.. Changed this, as the GNU make sources (load.c) seems to
  959. * imply that avenrun[] is the standard name for this kind of thing.
  960. * Nothing else seems to be standardized: the fractional size etc
  961. * all seem to differ on different machines.
  962. *
  963. * Requires xtime_lock to access.
  964. */
  965. unsigned long avenrun[3];
  966. EXPORT_SYMBOL(avenrun);
  967. /*
  968. * calc_load - given tick count, update the avenrun load estimates.
  969. * This is called while holding a write_lock on xtime_lock.
  970. */
  971. static inline void calc_load(unsigned long ticks)
  972. {
  973. unsigned long active_tasks; /* fixed-point */
  974. static int count = LOAD_FREQ;
  975. count -= ticks;
  976. if (unlikely(count < 0)) {
  977. active_tasks = count_active_tasks();
  978. do {
  979. CALC_LOAD(avenrun[0], EXP_1, active_tasks);
  980. CALC_LOAD(avenrun[1], EXP_5, active_tasks);
  981. CALC_LOAD(avenrun[2], EXP_15, active_tasks);
  982. count += LOAD_FREQ;
  983. } while (count < 0);
  984. }
  985. }
  986. /*
  987. * This function runs timers and the timer-tq in bottom half context.
  988. */
  989. static void run_timer_softirq(struct softirq_action *h)
  990. {
  991. struct tvec_base *base = __get_cpu_var(tvec_bases);
  992. hrtimer_run_pending();
  993. if (time_after_eq(jiffies, base->timer_jiffies))
  994. __run_timers(base);
  995. }
  996. /*
  997. * Called by the local, per-CPU timer interrupt on SMP.
  998. */
  999. void run_local_timers(void)
  1000. {
  1001. hrtimer_run_queues();
  1002. raise_softirq(TIMER_SOFTIRQ);
  1003. softlockup_tick();
  1004. }
  1005. /*
  1006. * Called by the timer interrupt. xtime_lock must already be taken
  1007. * by the timer IRQ!
  1008. */
  1009. static inline void update_times(unsigned long ticks)
  1010. {
  1011. update_wall_time();
  1012. calc_load(ticks);
  1013. }
  1014. /*
  1015. * The 64-bit jiffies value is not atomic - you MUST NOT read it
  1016. * without sampling the sequence number in xtime_lock.
  1017. * jiffies is defined in the linker script...
  1018. */
  1019. void do_timer(unsigned long ticks)
  1020. {
  1021. jiffies_64 += ticks;
  1022. update_times(ticks);
  1023. }
  1024. #ifdef __ARCH_WANT_SYS_ALARM
  1025. /*
  1026. * For backwards compatibility? This can be done in libc so Alpha
  1027. * and all newer ports shouldn't need it.
  1028. */
  1029. SYSCALL_DEFINE1(alarm, unsigned int, seconds)
  1030. {
  1031. return alarm_setitimer(seconds);
  1032. }
  1033. #endif
  1034. #ifndef __alpha__
  1035. /*
  1036. * The Alpha uses getxpid, getxuid, and getxgid instead. Maybe this
  1037. * should be moved into arch/i386 instead?
  1038. */
  1039. /**
  1040. * sys_getpid - return the thread group id of the current process
  1041. *
  1042. * Note, despite the name, this returns the tgid not the pid. The tgid and
  1043. * the pid are identical unless CLONE_THREAD was specified on clone() in
  1044. * which case the tgid is the same in all threads of the same group.
  1045. *
  1046. * This is SMP safe as current->tgid does not change.
  1047. */
  1048. SYSCALL_DEFINE0(getpid)
  1049. {
  1050. return task_tgid_vnr(current);
  1051. }
  1052. /*
  1053. * Accessing ->real_parent is not SMP-safe, it could
  1054. * change from under us. However, we can use a stale
  1055. * value of ->real_parent under rcu_read_lock(), see
  1056. * release_task()->call_rcu(delayed_put_task_struct).
  1057. */
  1058. SYSCALL_DEFINE0(getppid)
  1059. {
  1060. int pid;
  1061. rcu_read_lock();
  1062. pid = task_tgid_vnr(current->real_parent);
  1063. rcu_read_unlock();
  1064. return pid;
  1065. }
  1066. SYSCALL_DEFINE0(getuid)
  1067. {
  1068. /* Only we change this so SMP safe */
  1069. return current_uid();
  1070. }
  1071. SYSCALL_DEFINE0(geteuid)
  1072. {
  1073. /* Only we change this so SMP safe */
  1074. return current_euid();
  1075. }
  1076. SYSCALL_DEFINE0(getgid)
  1077. {
  1078. /* Only we change this so SMP safe */
  1079. return current_gid();
  1080. }
  1081. SYSCALL_DEFINE0(getegid)
  1082. {
  1083. /* Only we change this so SMP safe */
  1084. return current_egid();
  1085. }
  1086. #endif
  1087. static void process_timeout(unsigned long __data)
  1088. {
  1089. wake_up_process((struct task_struct *)__data);
  1090. }
  1091. /**
  1092. * schedule_timeout - sleep until timeout
  1093. * @timeout: timeout value in jiffies
  1094. *
  1095. * Make the current task sleep until @timeout jiffies have
  1096. * elapsed. The routine will return immediately unless
  1097. * the current task state has been set (see set_current_state()).
  1098. *
  1099. * You can set the task state as follows -
  1100. *
  1101. * %TASK_UNINTERRUPTIBLE - at least @timeout jiffies are guaranteed to
  1102. * pass before the routine returns. The routine will return 0
  1103. *
  1104. * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
  1105. * delivered to the current task. In this case the remaining time
  1106. * in jiffies will be returned, or 0 if the timer expired in time
  1107. *
  1108. * The current task state is guaranteed to be TASK_RUNNING when this
  1109. * routine returns.
  1110. *
  1111. * Specifying a @timeout value of %MAX_SCHEDULE_TIMEOUT will schedule
  1112. * the CPU away without a bound on the timeout. In this case the return
  1113. * value will be %MAX_SCHEDULE_TIMEOUT.
  1114. *
  1115. * In all cases the return value is guaranteed to be non-negative.
  1116. */
  1117. signed long __sched schedule_timeout(signed long timeout)
  1118. {
  1119. struct timer_list timer;
  1120. unsigned long expire;
  1121. switch (timeout)
  1122. {
  1123. case MAX_SCHEDULE_TIMEOUT:
  1124. /*
  1125. * These two special cases are useful to be comfortable
  1126. * in the caller. Nothing more. We could take
  1127. * MAX_SCHEDULE_TIMEOUT from one of the negative value
  1128. * but I' d like to return a valid offset (>=0) to allow
  1129. * the caller to do everything it want with the retval.
  1130. */
  1131. schedule();
  1132. goto out;
  1133. default:
  1134. /*
  1135. * Another bit of PARANOID. Note that the retval will be
  1136. * 0 since no piece of kernel is supposed to do a check
  1137. * for a negative retval of schedule_timeout() (since it
  1138. * should never happens anyway). You just have the printk()
  1139. * that will tell you if something is gone wrong and where.
  1140. */
  1141. if (timeout < 0) {
  1142. printk(KERN_ERR "schedule_timeout: wrong timeout "
  1143. "value %lx\n", timeout);
  1144. dump_stack();
  1145. current->state = TASK_RUNNING;
  1146. goto out;
  1147. }
  1148. }
  1149. expire = timeout + jiffies;
  1150. setup_timer_on_stack(&timer, process_timeout, (unsigned long)current);
  1151. __mod_timer(&timer, expire, false);
  1152. schedule();
  1153. del_singleshot_timer_sync(&timer);
  1154. /* Remove the timer from the object tracker */
  1155. destroy_timer_on_stack(&timer);
  1156. timeout = expire - jiffies;
  1157. out:
  1158. return timeout < 0 ? 0 : timeout;
  1159. }
  1160. EXPORT_SYMBOL(schedule_timeout);
  1161. /*
  1162. * We can use __set_current_state() here because schedule_timeout() calls
  1163. * schedule() unconditionally.
  1164. */
  1165. signed long __sched schedule_timeout_interruptible(signed long timeout)
  1166. {
  1167. __set_current_state(TASK_INTERRUPTIBLE);
  1168. return schedule_timeout(timeout);
  1169. }
  1170. EXPORT_SYMBOL(schedule_timeout_interruptible);
  1171. signed long __sched schedule_timeout_killable(signed long timeout)
  1172. {
  1173. __set_current_state(TASK_KILLABLE);
  1174. return schedule_timeout(timeout);
  1175. }
  1176. EXPORT_SYMBOL(schedule_timeout_killable);
  1177. signed long __sched schedule_timeout_uninterruptible(signed long timeout)
  1178. {
  1179. __set_current_state(TASK_UNINTERRUPTIBLE);
  1180. return schedule_timeout(timeout);
  1181. }
  1182. EXPORT_SYMBOL(schedule_timeout_uninterruptible);
  1183. /* Thread ID - the internal kernel "pid" */
  1184. SYSCALL_DEFINE0(gettid)
  1185. {
  1186. return task_pid_vnr(current);
  1187. }
  1188. /**
  1189. * do_sysinfo - fill in sysinfo struct
  1190. * @info: pointer to buffer to fill
  1191. */
  1192. int do_sysinfo(struct sysinfo *info)
  1193. {
  1194. unsigned long mem_total, sav_total;
  1195. unsigned int mem_unit, bitcount;
  1196. unsigned long seq;
  1197. memset(info, 0, sizeof(struct sysinfo));
  1198. do {
  1199. struct timespec tp;
  1200. seq = read_seqbegin(&xtime_lock);
  1201. /*
  1202. * This is annoying. The below is the same thing
  1203. * posix_get_clock_monotonic() does, but it wants to
  1204. * take the lock which we want to cover the loads stuff
  1205. * too.
  1206. */
  1207. getnstimeofday(&tp);
  1208. tp.tv_sec += wall_to_monotonic.tv_sec;
  1209. tp.tv_nsec += wall_to_monotonic.tv_nsec;
  1210. monotonic_to_bootbased(&tp);
  1211. if (tp.tv_nsec - NSEC_PER_SEC >= 0) {
  1212. tp.tv_nsec = tp.tv_nsec - NSEC_PER_SEC;
  1213. tp.tv_sec++;
  1214. }
  1215. info->uptime = tp.tv_sec + (tp.tv_nsec ? 1 : 0);
  1216. info->loads[0] = avenrun[0] << (SI_LOAD_SHIFT - FSHIFT);
  1217. info->loads[1] = avenrun[1] << (SI_LOAD_SHIFT - FSHIFT);
  1218. info->loads[2] = avenrun[2] << (SI_LOAD_SHIFT - FSHIFT);
  1219. info->procs = nr_threads;
  1220. } while (read_seqretry(&xtime_lock, seq));
  1221. si_meminfo(info);
  1222. si_swapinfo(info);
  1223. /*
  1224. * If the sum of all the available memory (i.e. ram + swap)
  1225. * is less than can be stored in a 32 bit unsigned long then
  1226. * we can be binary compatible with 2.2.x kernels. If not,
  1227. * well, in that case 2.2.x was broken anyways...
  1228. *
  1229. * -Erik Andersen <andersee@debian.org>
  1230. */
  1231. mem_total = info->totalram + info->totalswap;
  1232. if (mem_total < info->totalram || mem_total < info->totalswap)
  1233. goto out;
  1234. bitcount = 0;
  1235. mem_unit = info->mem_unit;
  1236. while (mem_unit > 1) {
  1237. bitcount++;
  1238. mem_unit >>= 1;
  1239. sav_total = mem_total;
  1240. mem_total <<= 1;
  1241. if (mem_total < sav_total)
  1242. goto out;
  1243. }
  1244. /*
  1245. * If mem_total did not overflow, multiply all memory values by
  1246. * info->mem_unit and set it to 1. This leaves things compatible
  1247. * with 2.2.x, and also retains compatibility with earlier 2.4.x
  1248. * kernels...
  1249. */
  1250. info->mem_unit = 1;
  1251. info->totalram <<= bitcount;
  1252. info->freeram <<= bitcount;
  1253. info->sharedram <<= bitcount;
  1254. info->bufferram <<= bitcount;
  1255. info->totalswap <<= bitcount;
  1256. info->freeswap <<= bitcount;
  1257. info->totalhigh <<= bitcount;
  1258. info->freehigh <<= bitcount;
  1259. out:
  1260. return 0;
  1261. }
  1262. SYSCALL_DEFINE1(sysinfo, struct sysinfo __user *, info)
  1263. {
  1264. struct sysinfo val;
  1265. do_sysinfo(&val);
  1266. if (copy_to_user(info, &val, sizeof(struct sysinfo)))
  1267. return -EFAULT;
  1268. return 0;
  1269. }
  1270. static int __cpuinit init_timers_cpu(int cpu)
  1271. {
  1272. int j;
  1273. struct tvec_base *base;
  1274. static char __cpuinitdata tvec_base_done[NR_CPUS];
  1275. if (!tvec_base_done[cpu]) {
  1276. static char boot_done;
  1277. if (boot_done) {
  1278. /*
  1279. * The APs use this path later in boot
  1280. */
  1281. base = kmalloc_node(sizeof(*base),
  1282. GFP_KERNEL | __GFP_ZERO,
  1283. cpu_to_node(cpu));
  1284. if (!base)
  1285. return -ENOMEM;
  1286. /* Make sure that tvec_base is 2 byte aligned */
  1287. if (tbase_get_deferrable(base)) {
  1288. WARN_ON(1);
  1289. kfree(base);
  1290. return -ENOMEM;
  1291. }
  1292. per_cpu(tvec_bases, cpu) = base;
  1293. } else {
  1294. /*
  1295. * This is for the boot CPU - we use compile-time
  1296. * static initialisation because per-cpu memory isn't
  1297. * ready yet and because the memory allocators are not
  1298. * initialised either.
  1299. */
  1300. boot_done = 1;
  1301. base = &boot_tvec_bases;
  1302. }
  1303. tvec_base_done[cpu] = 1;
  1304. } else {
  1305. base = per_cpu(tvec_bases, cpu);
  1306. }
  1307. spin_lock_init(&base->lock);
  1308. for (j = 0; j < TVN_SIZE; j++) {
  1309. INIT_LIST_HEAD(base->tv5.vec + j);
  1310. INIT_LIST_HEAD(base->tv4.vec + j);
  1311. INIT_LIST_HEAD(base->tv3.vec + j);
  1312. INIT_LIST_HEAD(base->tv2.vec + j);
  1313. }
  1314. for (j = 0; j < TVR_SIZE; j++)
  1315. INIT_LIST_HEAD(base->tv1.vec + j);
  1316. base->timer_jiffies = jiffies;
  1317. return 0;
  1318. }
  1319. #ifdef CONFIG_HOTPLUG_CPU
  1320. static void migrate_timer_list(struct tvec_base *new_base, struct list_head *head)
  1321. {
  1322. struct timer_list *timer;
  1323. while (!list_empty(head)) {
  1324. timer = list_first_entry(head, struct timer_list, entry);
  1325. detach_timer(timer, 0);
  1326. timer_set_base(timer, new_base);
  1327. internal_add_timer(new_base, timer);
  1328. }
  1329. }
  1330. static void __cpuinit migrate_timers(int cpu)
  1331. {
  1332. struct tvec_base *old_base;
  1333. struct tvec_base *new_base;
  1334. int i;
  1335. BUG_ON(cpu_online(cpu));
  1336. old_base = per_cpu(tvec_bases, cpu);
  1337. new_base = get_cpu_var(tvec_bases);
  1338. /*
  1339. * The caller is globally serialized and nobody else
  1340. * takes two locks at once, deadlock is not possible.
  1341. */
  1342. spin_lock_irq(&new_base->lock);
  1343. spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
  1344. BUG_ON(old_base->running_timer);
  1345. for (i = 0; i < TVR_SIZE; i++)
  1346. migrate_timer_list(new_base, old_base->tv1.vec + i);
  1347. for (i = 0; i < TVN_SIZE; i++) {
  1348. migrate_timer_list(new_base, old_base->tv2.vec + i);
  1349. migrate_timer_list(new_base, old_base->tv3.vec + i);
  1350. migrate_timer_list(new_base, old_base->tv4.vec + i);
  1351. migrate_timer_list(new_base, old_base->tv5.vec + i);
  1352. }
  1353. spin_unlock(&old_base->lock);
  1354. spin_unlock_irq(&new_base->lock);
  1355. put_cpu_var(tvec_bases);
  1356. }
  1357. #endif /* CONFIG_HOTPLUG_CPU */
  1358. static int __cpuinit timer_cpu_notify(struct notifier_block *self,
  1359. unsigned long action, void *hcpu)
  1360. {
  1361. long cpu = (long)hcpu;
  1362. switch(action) {
  1363. case CPU_UP_PREPARE:
  1364. case CPU_UP_PREPARE_FROZEN:
  1365. if (init_timers_cpu(cpu) < 0)
  1366. return NOTIFY_BAD;
  1367. break;
  1368. #ifdef CONFIG_HOTPLUG_CPU
  1369. case CPU_DEAD:
  1370. case CPU_DEAD_FROZEN:
  1371. migrate_timers(cpu);
  1372. break;
  1373. #endif
  1374. default:
  1375. break;
  1376. }
  1377. return NOTIFY_OK;
  1378. }
  1379. static struct notifier_block __cpuinitdata timers_nb = {
  1380. .notifier_call = timer_cpu_notify,
  1381. };
  1382. void __init init_timers(void)
  1383. {
  1384. int err = timer_cpu_notify(&timers_nb, (unsigned long)CPU_UP_PREPARE,
  1385. (void *)(long)smp_processor_id());
  1386. init_timer_stats();
  1387. BUG_ON(err == NOTIFY_BAD);
  1388. register_cpu_notifier(&timers_nb);
  1389. open_softirq(TIMER_SOFTIRQ, run_timer_softirq);
  1390. }
  1391. /**
  1392. * msleep - sleep safely even with waitqueue interruptions
  1393. * @msecs: Time in milliseconds to sleep for
  1394. */
  1395. void msleep(unsigned int msecs)
  1396. {
  1397. unsigned long timeout = msecs_to_jiffies(msecs) + 1;
  1398. while (timeout)
  1399. timeout = schedule_timeout_uninterruptible(timeout);
  1400. }
  1401. EXPORT_SYMBOL(msleep);
  1402. /**
  1403. * msleep_interruptible - sleep waiting for signals
  1404. * @msecs: Time in milliseconds to sleep for
  1405. */
  1406. unsigned long msleep_interruptible(unsigned int msecs)
  1407. {
  1408. unsigned long timeout = msecs_to_jiffies(msecs) + 1;
  1409. while (timeout && !signal_pending(current))
  1410. timeout = schedule_timeout_interruptible(timeout);
  1411. return jiffies_to_msecs(timeout);
  1412. }
  1413. EXPORT_SYMBOL(msleep_interruptible);