wext.c 30 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164
  1. /*
  2. * Copyright 2002-2005, Instant802 Networks, Inc.
  3. * Copyright 2005-2006, Devicescape Software, Inc.
  4. *
  5. * This program is free software; you can redistribute it and/or modify
  6. * it under the terms of the GNU General Public License version 2 as
  7. * published by the Free Software Foundation.
  8. */
  9. #include <linux/module.h>
  10. #include <linux/init.h>
  11. #include <linux/netdevice.h>
  12. #include <linux/types.h>
  13. #include <linux/slab.h>
  14. #include <linux/skbuff.h>
  15. #include <linux/etherdevice.h>
  16. #include <linux/if_arp.h>
  17. #include <linux/wireless.h>
  18. #include <net/iw_handler.h>
  19. #include <asm/uaccess.h>
  20. #include <net/mac80211.h>
  21. #include "ieee80211_i.h"
  22. #include "led.h"
  23. #include "rate.h"
  24. #include "wpa.h"
  25. #include "aes_ccm.h"
  26. static int ieee80211_set_encryption(struct net_device *dev, u8 *sta_addr,
  27. int idx, int alg, int remove,
  28. int set_tx_key, const u8 *_key,
  29. size_t key_len)
  30. {
  31. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  32. struct sta_info *sta;
  33. struct ieee80211_key *key;
  34. struct ieee80211_sub_if_data *sdata;
  35. int err;
  36. sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  37. if (idx < 0 || idx >= NUM_DEFAULT_KEYS) {
  38. printk(KERN_DEBUG "%s: set_encrypt - invalid idx=%d\n",
  39. dev->name, idx);
  40. return -EINVAL;
  41. }
  42. if (remove) {
  43. rcu_read_lock();
  44. err = 0;
  45. if (is_broadcast_ether_addr(sta_addr)) {
  46. key = sdata->keys[idx];
  47. } else {
  48. sta = sta_info_get(local, sta_addr);
  49. if (!sta) {
  50. err = -ENOENT;
  51. goto out_unlock;
  52. }
  53. key = sta->key;
  54. }
  55. ieee80211_key_free(key);
  56. } else {
  57. key = ieee80211_key_alloc(alg, idx, key_len, _key);
  58. if (!key)
  59. return -ENOMEM;
  60. sta = NULL;
  61. err = 0;
  62. rcu_read_lock();
  63. if (!is_broadcast_ether_addr(sta_addr)) {
  64. set_tx_key = 0;
  65. /*
  66. * According to the standard, the key index of a
  67. * pairwise key must be zero. However, some AP are
  68. * broken when it comes to WEP key indices, so we
  69. * work around this.
  70. */
  71. if (idx != 0 && alg != ALG_WEP) {
  72. ieee80211_key_free(key);
  73. err = -EINVAL;
  74. goto out_unlock;
  75. }
  76. sta = sta_info_get(local, sta_addr);
  77. if (!sta) {
  78. ieee80211_key_free(key);
  79. err = -ENOENT;
  80. goto out_unlock;
  81. }
  82. }
  83. ieee80211_key_link(key, sdata, sta);
  84. if (set_tx_key || (!sta && !sdata->default_key && key))
  85. ieee80211_set_default_key(sdata, idx);
  86. }
  87. out_unlock:
  88. rcu_read_unlock();
  89. return err;
  90. }
  91. static int ieee80211_ioctl_siwgenie(struct net_device *dev,
  92. struct iw_request_info *info,
  93. struct iw_point *data, char *extra)
  94. {
  95. struct ieee80211_sub_if_data *sdata;
  96. sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  97. if (sdata->flags & IEEE80211_SDATA_USERSPACE_MLME)
  98. return -EOPNOTSUPP;
  99. if (sdata->vif.type == IEEE80211_IF_TYPE_STA ||
  100. sdata->vif.type == IEEE80211_IF_TYPE_IBSS) {
  101. int ret = ieee80211_sta_set_extra_ie(dev, extra, data->length);
  102. if (ret)
  103. return ret;
  104. sdata->u.sta.flags &= ~IEEE80211_STA_AUTO_BSSID_SEL;
  105. ieee80211_sta_req_auth(dev, &sdata->u.sta);
  106. return 0;
  107. }
  108. return -EOPNOTSUPP;
  109. }
  110. static int ieee80211_ioctl_giwname(struct net_device *dev,
  111. struct iw_request_info *info,
  112. char *name, char *extra)
  113. {
  114. strcpy(name, "IEEE 802.11");
  115. return 0;
  116. }
  117. static int ieee80211_ioctl_giwrange(struct net_device *dev,
  118. struct iw_request_info *info,
  119. struct iw_point *data, char *extra)
  120. {
  121. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  122. struct iw_range *range = (struct iw_range *) extra;
  123. enum ieee80211_band band;
  124. int c = 0;
  125. data->length = sizeof(struct iw_range);
  126. memset(range, 0, sizeof(struct iw_range));
  127. range->we_version_compiled = WIRELESS_EXT;
  128. range->we_version_source = 21;
  129. range->retry_capa = IW_RETRY_LIMIT;
  130. range->retry_flags = IW_RETRY_LIMIT;
  131. range->min_retry = 0;
  132. range->max_retry = 255;
  133. range->min_rts = 0;
  134. range->max_rts = 2347;
  135. range->min_frag = 256;
  136. range->max_frag = 2346;
  137. range->encoding_size[0] = 5;
  138. range->encoding_size[1] = 13;
  139. range->num_encoding_sizes = 2;
  140. range->max_encoding_tokens = NUM_DEFAULT_KEYS;
  141. range->max_qual.qual = local->hw.max_signal;
  142. range->max_qual.level = local->hw.max_rssi;
  143. range->max_qual.noise = local->hw.max_noise;
  144. range->max_qual.updated = local->wstats_flags;
  145. range->avg_qual.qual = local->hw.max_signal/2;
  146. range->avg_qual.level = 0;
  147. range->avg_qual.noise = 0;
  148. range->avg_qual.updated = local->wstats_flags;
  149. range->enc_capa = IW_ENC_CAPA_WPA | IW_ENC_CAPA_WPA2 |
  150. IW_ENC_CAPA_CIPHER_TKIP | IW_ENC_CAPA_CIPHER_CCMP;
  151. for (band = 0; band < IEEE80211_NUM_BANDS; band ++) {
  152. int i;
  153. struct ieee80211_supported_band *sband;
  154. sband = local->hw.wiphy->bands[band];
  155. if (!sband)
  156. continue;
  157. for (i = 0; i < sband->n_channels && c < IW_MAX_FREQUENCIES; i++) {
  158. struct ieee80211_channel *chan = &sband->channels[i];
  159. if (!(chan->flags & IEEE80211_CHAN_DISABLED)) {
  160. range->freq[c].i =
  161. ieee80211_frequency_to_channel(
  162. chan->center_freq);
  163. range->freq[c].m = chan->center_freq;
  164. range->freq[c].e = 6;
  165. c++;
  166. }
  167. }
  168. }
  169. range->num_channels = c;
  170. range->num_frequency = c;
  171. IW_EVENT_CAPA_SET_KERNEL(range->event_capa);
  172. IW_EVENT_CAPA_SET(range->event_capa, SIOCGIWAP);
  173. IW_EVENT_CAPA_SET(range->event_capa, SIOCGIWSCAN);
  174. range->scan_capa |= IW_SCAN_CAPA_ESSID;
  175. return 0;
  176. }
  177. static int ieee80211_ioctl_siwmode(struct net_device *dev,
  178. struct iw_request_info *info,
  179. __u32 *mode, char *extra)
  180. {
  181. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  182. int type;
  183. if (sdata->vif.type == IEEE80211_IF_TYPE_VLAN)
  184. return -EOPNOTSUPP;
  185. switch (*mode) {
  186. case IW_MODE_INFRA:
  187. type = IEEE80211_IF_TYPE_STA;
  188. break;
  189. case IW_MODE_ADHOC:
  190. type = IEEE80211_IF_TYPE_IBSS;
  191. break;
  192. case IW_MODE_REPEAT:
  193. type = IEEE80211_IF_TYPE_WDS;
  194. break;
  195. case IW_MODE_MONITOR:
  196. type = IEEE80211_IF_TYPE_MNTR;
  197. break;
  198. default:
  199. return -EINVAL;
  200. }
  201. if (type == sdata->vif.type)
  202. return 0;
  203. if (netif_running(dev))
  204. return -EBUSY;
  205. ieee80211_if_reinit(dev);
  206. ieee80211_if_set_type(dev, type);
  207. return 0;
  208. }
  209. static int ieee80211_ioctl_giwmode(struct net_device *dev,
  210. struct iw_request_info *info,
  211. __u32 *mode, char *extra)
  212. {
  213. struct ieee80211_sub_if_data *sdata;
  214. sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  215. switch (sdata->vif.type) {
  216. case IEEE80211_IF_TYPE_AP:
  217. *mode = IW_MODE_MASTER;
  218. break;
  219. case IEEE80211_IF_TYPE_STA:
  220. *mode = IW_MODE_INFRA;
  221. break;
  222. case IEEE80211_IF_TYPE_IBSS:
  223. *mode = IW_MODE_ADHOC;
  224. break;
  225. case IEEE80211_IF_TYPE_MNTR:
  226. *mode = IW_MODE_MONITOR;
  227. break;
  228. case IEEE80211_IF_TYPE_WDS:
  229. *mode = IW_MODE_REPEAT;
  230. break;
  231. case IEEE80211_IF_TYPE_VLAN:
  232. *mode = IW_MODE_SECOND; /* FIXME */
  233. break;
  234. default:
  235. *mode = IW_MODE_AUTO;
  236. break;
  237. }
  238. return 0;
  239. }
  240. int ieee80211_set_freq(struct net_device *dev, int freqMHz)
  241. {
  242. int ret = -EINVAL;
  243. struct ieee80211_channel *chan;
  244. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  245. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  246. chan = ieee80211_get_channel(local->hw.wiphy, freqMHz);
  247. if (chan && !(chan->flags & IEEE80211_CHAN_DISABLED)) {
  248. if (sdata->vif.type == IEEE80211_IF_TYPE_IBSS &&
  249. chan->flags & IEEE80211_CHAN_NO_IBSS) {
  250. printk(KERN_DEBUG "%s: IBSS not allowed on frequency "
  251. "%d MHz\n", dev->name, chan->center_freq);
  252. return ret;
  253. }
  254. local->oper_channel = chan;
  255. if (local->sta_sw_scanning || local->sta_hw_scanning)
  256. ret = 0;
  257. else
  258. ret = ieee80211_hw_config(local);
  259. rate_control_clear(local);
  260. }
  261. return ret;
  262. }
  263. static int ieee80211_ioctl_siwfreq(struct net_device *dev,
  264. struct iw_request_info *info,
  265. struct iw_freq *freq, char *extra)
  266. {
  267. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  268. if (sdata->vif.type == IEEE80211_IF_TYPE_STA)
  269. sdata->u.sta.flags &= ~IEEE80211_STA_AUTO_CHANNEL_SEL;
  270. /* freq->e == 0: freq->m = channel; otherwise freq = m * 10^e */
  271. if (freq->e == 0) {
  272. if (freq->m < 0) {
  273. if (sdata->vif.type == IEEE80211_IF_TYPE_STA)
  274. sdata->u.sta.flags |=
  275. IEEE80211_STA_AUTO_CHANNEL_SEL;
  276. return 0;
  277. } else
  278. return ieee80211_set_freq(dev,
  279. ieee80211_channel_to_frequency(freq->m));
  280. } else {
  281. int i, div = 1000000;
  282. for (i = 0; i < freq->e; i++)
  283. div /= 10;
  284. if (div > 0)
  285. return ieee80211_set_freq(dev, freq->m / div);
  286. else
  287. return -EINVAL;
  288. }
  289. }
  290. static int ieee80211_ioctl_giwfreq(struct net_device *dev,
  291. struct iw_request_info *info,
  292. struct iw_freq *freq, char *extra)
  293. {
  294. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  295. freq->m = local->hw.conf.channel->center_freq;
  296. freq->e = 6;
  297. return 0;
  298. }
  299. static int ieee80211_ioctl_siwessid(struct net_device *dev,
  300. struct iw_request_info *info,
  301. struct iw_point *data, char *ssid)
  302. {
  303. struct ieee80211_sub_if_data *sdata;
  304. size_t len = data->length;
  305. /* iwconfig uses nul termination in SSID.. */
  306. if (len > 0 && ssid[len - 1] == '\0')
  307. len--;
  308. sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  309. if (sdata->vif.type == IEEE80211_IF_TYPE_STA ||
  310. sdata->vif.type == IEEE80211_IF_TYPE_IBSS) {
  311. int ret;
  312. if (sdata->flags & IEEE80211_SDATA_USERSPACE_MLME) {
  313. if (len > IEEE80211_MAX_SSID_LEN)
  314. return -EINVAL;
  315. memcpy(sdata->u.sta.ssid, ssid, len);
  316. sdata->u.sta.ssid_len = len;
  317. return 0;
  318. }
  319. if (data->flags)
  320. sdata->u.sta.flags &= ~IEEE80211_STA_AUTO_SSID_SEL;
  321. else
  322. sdata->u.sta.flags |= IEEE80211_STA_AUTO_SSID_SEL;
  323. ret = ieee80211_sta_set_ssid(dev, ssid, len);
  324. if (ret)
  325. return ret;
  326. ieee80211_sta_req_auth(dev, &sdata->u.sta);
  327. return 0;
  328. }
  329. if (sdata->vif.type == IEEE80211_IF_TYPE_AP) {
  330. memcpy(sdata->u.ap.ssid, ssid, len);
  331. memset(sdata->u.ap.ssid + len, 0,
  332. IEEE80211_MAX_SSID_LEN - len);
  333. sdata->u.ap.ssid_len = len;
  334. return ieee80211_if_config(dev);
  335. }
  336. return -EOPNOTSUPP;
  337. }
  338. static int ieee80211_ioctl_giwessid(struct net_device *dev,
  339. struct iw_request_info *info,
  340. struct iw_point *data, char *ssid)
  341. {
  342. size_t len;
  343. struct ieee80211_sub_if_data *sdata;
  344. sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  345. if (sdata->vif.type == IEEE80211_IF_TYPE_STA ||
  346. sdata->vif.type == IEEE80211_IF_TYPE_IBSS) {
  347. int res = ieee80211_sta_get_ssid(dev, ssid, &len);
  348. if (res == 0) {
  349. data->length = len;
  350. data->flags = 1;
  351. } else
  352. data->flags = 0;
  353. return res;
  354. }
  355. if (sdata->vif.type == IEEE80211_IF_TYPE_AP) {
  356. len = sdata->u.ap.ssid_len;
  357. if (len > IW_ESSID_MAX_SIZE)
  358. len = IW_ESSID_MAX_SIZE;
  359. memcpy(ssid, sdata->u.ap.ssid, len);
  360. data->length = len;
  361. data->flags = 1;
  362. return 0;
  363. }
  364. return -EOPNOTSUPP;
  365. }
  366. static int ieee80211_ioctl_siwap(struct net_device *dev,
  367. struct iw_request_info *info,
  368. struct sockaddr *ap_addr, char *extra)
  369. {
  370. struct ieee80211_sub_if_data *sdata;
  371. sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  372. if (sdata->vif.type == IEEE80211_IF_TYPE_STA ||
  373. sdata->vif.type == IEEE80211_IF_TYPE_IBSS) {
  374. int ret;
  375. if (sdata->flags & IEEE80211_SDATA_USERSPACE_MLME) {
  376. memcpy(sdata->u.sta.bssid, (u8 *) &ap_addr->sa_data,
  377. ETH_ALEN);
  378. return 0;
  379. }
  380. if (is_zero_ether_addr((u8 *) &ap_addr->sa_data))
  381. sdata->u.sta.flags |= IEEE80211_STA_AUTO_BSSID_SEL |
  382. IEEE80211_STA_AUTO_CHANNEL_SEL;
  383. else if (is_broadcast_ether_addr((u8 *) &ap_addr->sa_data))
  384. sdata->u.sta.flags |= IEEE80211_STA_AUTO_BSSID_SEL;
  385. else
  386. sdata->u.sta.flags &= ~IEEE80211_STA_AUTO_BSSID_SEL;
  387. ret = ieee80211_sta_set_bssid(dev, (u8 *) &ap_addr->sa_data);
  388. if (ret)
  389. return ret;
  390. ieee80211_sta_req_auth(dev, &sdata->u.sta);
  391. return 0;
  392. } else if (sdata->vif.type == IEEE80211_IF_TYPE_WDS) {
  393. /*
  394. * If it is necessary to update the WDS peer address
  395. * while the interface is running, then we need to do
  396. * more work here, namely if it is running we need to
  397. * add a new and remove the old STA entry, this is
  398. * normally handled by _open() and _stop().
  399. */
  400. if (netif_running(dev))
  401. return -EBUSY;
  402. memcpy(&sdata->u.wds.remote_addr, (u8 *) &ap_addr->sa_data,
  403. ETH_ALEN);
  404. return 0;
  405. }
  406. return -EOPNOTSUPP;
  407. }
  408. static int ieee80211_ioctl_giwap(struct net_device *dev,
  409. struct iw_request_info *info,
  410. struct sockaddr *ap_addr, char *extra)
  411. {
  412. struct ieee80211_sub_if_data *sdata;
  413. sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  414. if (sdata->vif.type == IEEE80211_IF_TYPE_STA ||
  415. sdata->vif.type == IEEE80211_IF_TYPE_IBSS) {
  416. if (sdata->u.sta.state == IEEE80211_ASSOCIATED ||
  417. sdata->u.sta.state == IEEE80211_IBSS_JOINED) {
  418. ap_addr->sa_family = ARPHRD_ETHER;
  419. memcpy(&ap_addr->sa_data, sdata->u.sta.bssid, ETH_ALEN);
  420. return 0;
  421. } else {
  422. memset(&ap_addr->sa_data, 0, ETH_ALEN);
  423. return 0;
  424. }
  425. } else if (sdata->vif.type == IEEE80211_IF_TYPE_WDS) {
  426. ap_addr->sa_family = ARPHRD_ETHER;
  427. memcpy(&ap_addr->sa_data, sdata->u.wds.remote_addr, ETH_ALEN);
  428. return 0;
  429. }
  430. return -EOPNOTSUPP;
  431. }
  432. static int ieee80211_ioctl_siwscan(struct net_device *dev,
  433. struct iw_request_info *info,
  434. union iwreq_data *wrqu, char *extra)
  435. {
  436. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  437. struct iw_scan_req *req = NULL;
  438. u8 *ssid = NULL;
  439. size_t ssid_len = 0;
  440. if (!netif_running(dev))
  441. return -ENETDOWN;
  442. if (sdata->vif.type != IEEE80211_IF_TYPE_STA &&
  443. sdata->vif.type != IEEE80211_IF_TYPE_IBSS &&
  444. sdata->vif.type != IEEE80211_IF_TYPE_MESH_POINT &&
  445. sdata->vif.type != IEEE80211_IF_TYPE_AP)
  446. return -EOPNOTSUPP;
  447. /* if SSID was specified explicitly then use that */
  448. if (wrqu->data.length == sizeof(struct iw_scan_req) &&
  449. wrqu->data.flags & IW_SCAN_THIS_ESSID) {
  450. req = (struct iw_scan_req *)extra;
  451. ssid = req->essid;
  452. ssid_len = req->essid_len;
  453. }
  454. return ieee80211_sta_req_scan(dev, ssid, ssid_len);
  455. }
  456. static int ieee80211_ioctl_giwscan(struct net_device *dev,
  457. struct iw_request_info *info,
  458. struct iw_point *data, char *extra)
  459. {
  460. int res;
  461. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  462. if (local->sta_sw_scanning || local->sta_hw_scanning)
  463. return -EAGAIN;
  464. res = ieee80211_sta_scan_results(dev, extra, data->length);
  465. if (res >= 0) {
  466. data->length = res;
  467. return 0;
  468. }
  469. data->length = 0;
  470. return res;
  471. }
  472. static int ieee80211_ioctl_siwrate(struct net_device *dev,
  473. struct iw_request_info *info,
  474. struct iw_param *rate, char *extra)
  475. {
  476. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  477. int i, err = -EINVAL;
  478. u32 target_rate = rate->value / 100000;
  479. struct ieee80211_sub_if_data *sdata;
  480. struct ieee80211_supported_band *sband;
  481. sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  482. if (!sdata->bss)
  483. return -ENODEV;
  484. sband = local->hw.wiphy->bands[local->hw.conf.channel->band];
  485. /* target_rate = -1, rate->fixed = 0 means auto only, so use all rates
  486. * target_rate = X, rate->fixed = 1 means only rate X
  487. * target_rate = X, rate->fixed = 0 means all rates <= X */
  488. sdata->bss->max_ratectrl_rateidx = -1;
  489. sdata->bss->force_unicast_rateidx = -1;
  490. if (rate->value < 0)
  491. return 0;
  492. for (i=0; i< sband->n_bitrates; i++) {
  493. struct ieee80211_rate *brate = &sband->bitrates[i];
  494. int this_rate = brate->bitrate;
  495. if (target_rate == this_rate) {
  496. sdata->bss->max_ratectrl_rateidx = i;
  497. if (rate->fixed)
  498. sdata->bss->force_unicast_rateidx = i;
  499. err = 0;
  500. break;
  501. }
  502. }
  503. return err;
  504. }
  505. static int ieee80211_ioctl_giwrate(struct net_device *dev,
  506. struct iw_request_info *info,
  507. struct iw_param *rate, char *extra)
  508. {
  509. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  510. struct sta_info *sta;
  511. struct ieee80211_sub_if_data *sdata;
  512. struct ieee80211_supported_band *sband;
  513. sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  514. if (sdata->vif.type != IEEE80211_IF_TYPE_STA)
  515. return -EOPNOTSUPP;
  516. sband = local->hw.wiphy->bands[local->hw.conf.channel->band];
  517. rcu_read_lock();
  518. sta = sta_info_get(local, sdata->u.sta.bssid);
  519. if (sta && sta->txrate_idx < sband->n_bitrates)
  520. rate->value = sband->bitrates[sta->txrate_idx].bitrate;
  521. else
  522. rate->value = 0;
  523. rcu_read_unlock();
  524. if (!sta)
  525. return -ENODEV;
  526. rate->value *= 100000;
  527. return 0;
  528. }
  529. static int ieee80211_ioctl_siwtxpower(struct net_device *dev,
  530. struct iw_request_info *info,
  531. union iwreq_data *data, char *extra)
  532. {
  533. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  534. bool need_reconfig = 0;
  535. int new_power_level;
  536. if ((data->txpower.flags & IW_TXPOW_TYPE) != IW_TXPOW_DBM)
  537. return -EINVAL;
  538. if (data->txpower.flags & IW_TXPOW_RANGE)
  539. return -EINVAL;
  540. if (data->txpower.fixed) {
  541. new_power_level = data->txpower.value;
  542. } else {
  543. /*
  544. * Automatic power level. Use maximum power for the current
  545. * channel. Should be part of rate control.
  546. */
  547. struct ieee80211_channel* chan = local->hw.conf.channel;
  548. if (!chan)
  549. return -EINVAL;
  550. new_power_level = chan->max_power;
  551. }
  552. if (local->hw.conf.power_level != new_power_level) {
  553. local->hw.conf.power_level = new_power_level;
  554. need_reconfig = 1;
  555. }
  556. if (local->hw.conf.radio_enabled != !(data->txpower.disabled)) {
  557. local->hw.conf.radio_enabled = !(data->txpower.disabled);
  558. need_reconfig = 1;
  559. ieee80211_led_radio(local, local->hw.conf.radio_enabled);
  560. }
  561. if (need_reconfig) {
  562. ieee80211_hw_config(local);
  563. /* The return value of hw_config is not of big interest here,
  564. * as it doesn't say that it failed because of _this_ config
  565. * change or something else. Ignore it. */
  566. }
  567. return 0;
  568. }
  569. static int ieee80211_ioctl_giwtxpower(struct net_device *dev,
  570. struct iw_request_info *info,
  571. union iwreq_data *data, char *extra)
  572. {
  573. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  574. data->txpower.fixed = 1;
  575. data->txpower.disabled = !(local->hw.conf.radio_enabled);
  576. data->txpower.value = local->hw.conf.power_level;
  577. data->txpower.flags = IW_TXPOW_DBM;
  578. return 0;
  579. }
  580. static int ieee80211_ioctl_siwrts(struct net_device *dev,
  581. struct iw_request_info *info,
  582. struct iw_param *rts, char *extra)
  583. {
  584. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  585. if (rts->disabled)
  586. local->rts_threshold = IEEE80211_MAX_RTS_THRESHOLD;
  587. else if (rts->value < 0 || rts->value > IEEE80211_MAX_RTS_THRESHOLD)
  588. return -EINVAL;
  589. else
  590. local->rts_threshold = rts->value;
  591. /* If the wlan card performs RTS/CTS in hardware/firmware,
  592. * configure it here */
  593. if (local->ops->set_rts_threshold)
  594. local->ops->set_rts_threshold(local_to_hw(local),
  595. local->rts_threshold);
  596. return 0;
  597. }
  598. static int ieee80211_ioctl_giwrts(struct net_device *dev,
  599. struct iw_request_info *info,
  600. struct iw_param *rts, char *extra)
  601. {
  602. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  603. rts->value = local->rts_threshold;
  604. rts->disabled = (rts->value >= IEEE80211_MAX_RTS_THRESHOLD);
  605. rts->fixed = 1;
  606. return 0;
  607. }
  608. static int ieee80211_ioctl_siwfrag(struct net_device *dev,
  609. struct iw_request_info *info,
  610. struct iw_param *frag, char *extra)
  611. {
  612. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  613. if (frag->disabled)
  614. local->fragmentation_threshold = IEEE80211_MAX_FRAG_THRESHOLD;
  615. else if (frag->value < 256 ||
  616. frag->value > IEEE80211_MAX_FRAG_THRESHOLD)
  617. return -EINVAL;
  618. else {
  619. /* Fragment length must be even, so strip LSB. */
  620. local->fragmentation_threshold = frag->value & ~0x1;
  621. }
  622. /* If the wlan card performs fragmentation in hardware/firmware,
  623. * configure it here */
  624. if (local->ops->set_frag_threshold)
  625. local->ops->set_frag_threshold(
  626. local_to_hw(local),
  627. local->fragmentation_threshold);
  628. return 0;
  629. }
  630. static int ieee80211_ioctl_giwfrag(struct net_device *dev,
  631. struct iw_request_info *info,
  632. struct iw_param *frag, char *extra)
  633. {
  634. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  635. frag->value = local->fragmentation_threshold;
  636. frag->disabled = (frag->value >= IEEE80211_MAX_RTS_THRESHOLD);
  637. frag->fixed = 1;
  638. return 0;
  639. }
  640. static int ieee80211_ioctl_siwretry(struct net_device *dev,
  641. struct iw_request_info *info,
  642. struct iw_param *retry, char *extra)
  643. {
  644. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  645. if (retry->disabled ||
  646. (retry->flags & IW_RETRY_TYPE) != IW_RETRY_LIMIT)
  647. return -EINVAL;
  648. if (retry->flags & IW_RETRY_MAX)
  649. local->long_retry_limit = retry->value;
  650. else if (retry->flags & IW_RETRY_MIN)
  651. local->short_retry_limit = retry->value;
  652. else {
  653. local->long_retry_limit = retry->value;
  654. local->short_retry_limit = retry->value;
  655. }
  656. if (local->ops->set_retry_limit) {
  657. return local->ops->set_retry_limit(
  658. local_to_hw(local),
  659. local->short_retry_limit,
  660. local->long_retry_limit);
  661. }
  662. return 0;
  663. }
  664. static int ieee80211_ioctl_giwretry(struct net_device *dev,
  665. struct iw_request_info *info,
  666. struct iw_param *retry, char *extra)
  667. {
  668. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  669. retry->disabled = 0;
  670. if (retry->flags == 0 || retry->flags & IW_RETRY_MIN) {
  671. /* first return min value, iwconfig will ask max value
  672. * later if needed */
  673. retry->flags |= IW_RETRY_LIMIT;
  674. retry->value = local->short_retry_limit;
  675. if (local->long_retry_limit != local->short_retry_limit)
  676. retry->flags |= IW_RETRY_MIN;
  677. return 0;
  678. }
  679. if (retry->flags & IW_RETRY_MAX) {
  680. retry->flags = IW_RETRY_LIMIT | IW_RETRY_MAX;
  681. retry->value = local->long_retry_limit;
  682. }
  683. return 0;
  684. }
  685. static int ieee80211_ioctl_siwmlme(struct net_device *dev,
  686. struct iw_request_info *info,
  687. struct iw_point *data, char *extra)
  688. {
  689. struct ieee80211_sub_if_data *sdata;
  690. struct iw_mlme *mlme = (struct iw_mlme *) extra;
  691. sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  692. if (sdata->vif.type != IEEE80211_IF_TYPE_STA &&
  693. sdata->vif.type != IEEE80211_IF_TYPE_IBSS)
  694. return -EINVAL;
  695. switch (mlme->cmd) {
  696. case IW_MLME_DEAUTH:
  697. /* TODO: mlme->addr.sa_data */
  698. return ieee80211_sta_deauthenticate(dev, mlme->reason_code);
  699. case IW_MLME_DISASSOC:
  700. /* TODO: mlme->addr.sa_data */
  701. return ieee80211_sta_disassociate(dev, mlme->reason_code);
  702. default:
  703. return -EOPNOTSUPP;
  704. }
  705. }
  706. static int ieee80211_ioctl_siwencode(struct net_device *dev,
  707. struct iw_request_info *info,
  708. struct iw_point *erq, char *keybuf)
  709. {
  710. struct ieee80211_sub_if_data *sdata;
  711. int idx, i, alg = ALG_WEP;
  712. u8 bcaddr[ETH_ALEN] = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
  713. int remove = 0;
  714. sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  715. idx = erq->flags & IW_ENCODE_INDEX;
  716. if (idx == 0) {
  717. if (sdata->default_key)
  718. for (i = 0; i < NUM_DEFAULT_KEYS; i++) {
  719. if (sdata->default_key == sdata->keys[i]) {
  720. idx = i;
  721. break;
  722. }
  723. }
  724. } else if (idx < 1 || idx > 4)
  725. return -EINVAL;
  726. else
  727. idx--;
  728. if (erq->flags & IW_ENCODE_DISABLED)
  729. remove = 1;
  730. else if (erq->length == 0) {
  731. /* No key data - just set the default TX key index */
  732. ieee80211_set_default_key(sdata, idx);
  733. return 0;
  734. }
  735. return ieee80211_set_encryption(
  736. dev, bcaddr,
  737. idx, alg, remove,
  738. !sdata->default_key,
  739. keybuf, erq->length);
  740. }
  741. static int ieee80211_ioctl_giwencode(struct net_device *dev,
  742. struct iw_request_info *info,
  743. struct iw_point *erq, char *key)
  744. {
  745. struct ieee80211_sub_if_data *sdata;
  746. int idx, i;
  747. sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  748. idx = erq->flags & IW_ENCODE_INDEX;
  749. if (idx < 1 || idx > 4) {
  750. idx = -1;
  751. if (!sdata->default_key)
  752. idx = 0;
  753. else for (i = 0; i < NUM_DEFAULT_KEYS; i++) {
  754. if (sdata->default_key == sdata->keys[i]) {
  755. idx = i;
  756. break;
  757. }
  758. }
  759. if (idx < 0)
  760. return -EINVAL;
  761. } else
  762. idx--;
  763. erq->flags = idx + 1;
  764. if (!sdata->keys[idx]) {
  765. erq->length = 0;
  766. erq->flags |= IW_ENCODE_DISABLED;
  767. return 0;
  768. }
  769. memcpy(key, sdata->keys[idx]->conf.key,
  770. min_t(int, erq->length, sdata->keys[idx]->conf.keylen));
  771. erq->length = sdata->keys[idx]->conf.keylen;
  772. erq->flags |= IW_ENCODE_ENABLED;
  773. return 0;
  774. }
  775. static int ieee80211_ioctl_siwauth(struct net_device *dev,
  776. struct iw_request_info *info,
  777. struct iw_param *data, char *extra)
  778. {
  779. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  780. int ret = 0;
  781. switch (data->flags & IW_AUTH_INDEX) {
  782. case IW_AUTH_WPA_VERSION:
  783. case IW_AUTH_CIPHER_PAIRWISE:
  784. case IW_AUTH_CIPHER_GROUP:
  785. case IW_AUTH_WPA_ENABLED:
  786. case IW_AUTH_RX_UNENCRYPTED_EAPOL:
  787. case IW_AUTH_KEY_MGMT:
  788. break;
  789. case IW_AUTH_DROP_UNENCRYPTED:
  790. sdata->drop_unencrypted = !!data->value;
  791. break;
  792. case IW_AUTH_PRIVACY_INVOKED:
  793. if (sdata->vif.type != IEEE80211_IF_TYPE_STA)
  794. ret = -EINVAL;
  795. else {
  796. sdata->u.sta.flags &= ~IEEE80211_STA_PRIVACY_INVOKED;
  797. /*
  798. * Privacy invoked by wpa_supplicant, store the
  799. * value and allow associating to a protected
  800. * network without having a key up front.
  801. */
  802. if (data->value)
  803. sdata->u.sta.flags |=
  804. IEEE80211_STA_PRIVACY_INVOKED;
  805. }
  806. break;
  807. case IW_AUTH_80211_AUTH_ALG:
  808. if (sdata->vif.type == IEEE80211_IF_TYPE_STA ||
  809. sdata->vif.type == IEEE80211_IF_TYPE_IBSS)
  810. sdata->u.sta.auth_algs = data->value;
  811. else
  812. ret = -EOPNOTSUPP;
  813. break;
  814. default:
  815. ret = -EOPNOTSUPP;
  816. break;
  817. }
  818. return ret;
  819. }
  820. /* Get wireless statistics. Called by /proc/net/wireless and by SIOCGIWSTATS */
  821. static struct iw_statistics *ieee80211_get_wireless_stats(struct net_device *dev)
  822. {
  823. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  824. struct iw_statistics *wstats = &local->wstats;
  825. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  826. struct sta_info *sta = NULL;
  827. rcu_read_lock();
  828. if (sdata->vif.type == IEEE80211_IF_TYPE_STA ||
  829. sdata->vif.type == IEEE80211_IF_TYPE_IBSS)
  830. sta = sta_info_get(local, sdata->u.sta.bssid);
  831. if (!sta) {
  832. wstats->discard.fragment = 0;
  833. wstats->discard.misc = 0;
  834. wstats->qual.qual = 0;
  835. wstats->qual.level = 0;
  836. wstats->qual.noise = 0;
  837. wstats->qual.updated = IW_QUAL_ALL_INVALID;
  838. } else {
  839. wstats->qual.level = sta->last_rssi;
  840. wstats->qual.qual = sta->last_signal;
  841. wstats->qual.noise = sta->last_noise;
  842. wstats->qual.updated = local->wstats_flags;
  843. }
  844. rcu_read_unlock();
  845. return wstats;
  846. }
  847. static int ieee80211_ioctl_giwauth(struct net_device *dev,
  848. struct iw_request_info *info,
  849. struct iw_param *data, char *extra)
  850. {
  851. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  852. int ret = 0;
  853. switch (data->flags & IW_AUTH_INDEX) {
  854. case IW_AUTH_80211_AUTH_ALG:
  855. if (sdata->vif.type == IEEE80211_IF_TYPE_STA ||
  856. sdata->vif.type == IEEE80211_IF_TYPE_IBSS)
  857. data->value = sdata->u.sta.auth_algs;
  858. else
  859. ret = -EOPNOTSUPP;
  860. break;
  861. default:
  862. ret = -EOPNOTSUPP;
  863. break;
  864. }
  865. return ret;
  866. }
  867. static int ieee80211_ioctl_siwencodeext(struct net_device *dev,
  868. struct iw_request_info *info,
  869. struct iw_point *erq, char *extra)
  870. {
  871. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  872. struct iw_encode_ext *ext = (struct iw_encode_ext *) extra;
  873. int uninitialized_var(alg), idx, i, remove = 0;
  874. switch (ext->alg) {
  875. case IW_ENCODE_ALG_NONE:
  876. remove = 1;
  877. break;
  878. case IW_ENCODE_ALG_WEP:
  879. alg = ALG_WEP;
  880. break;
  881. case IW_ENCODE_ALG_TKIP:
  882. alg = ALG_TKIP;
  883. break;
  884. case IW_ENCODE_ALG_CCMP:
  885. alg = ALG_CCMP;
  886. break;
  887. default:
  888. return -EOPNOTSUPP;
  889. }
  890. if (erq->flags & IW_ENCODE_DISABLED)
  891. remove = 1;
  892. idx = erq->flags & IW_ENCODE_INDEX;
  893. if (idx < 1 || idx > 4) {
  894. idx = -1;
  895. if (!sdata->default_key)
  896. idx = 0;
  897. else for (i = 0; i < NUM_DEFAULT_KEYS; i++) {
  898. if (sdata->default_key == sdata->keys[i]) {
  899. idx = i;
  900. break;
  901. }
  902. }
  903. if (idx < 0)
  904. return -EINVAL;
  905. } else
  906. idx--;
  907. return ieee80211_set_encryption(dev, ext->addr.sa_data, idx, alg,
  908. remove,
  909. ext->ext_flags &
  910. IW_ENCODE_EXT_SET_TX_KEY,
  911. ext->key, ext->key_len);
  912. }
  913. /* Structures to export the Wireless Handlers */
  914. static const iw_handler ieee80211_handler[] =
  915. {
  916. (iw_handler) NULL, /* SIOCSIWCOMMIT */
  917. (iw_handler) ieee80211_ioctl_giwname, /* SIOCGIWNAME */
  918. (iw_handler) NULL, /* SIOCSIWNWID */
  919. (iw_handler) NULL, /* SIOCGIWNWID */
  920. (iw_handler) ieee80211_ioctl_siwfreq, /* SIOCSIWFREQ */
  921. (iw_handler) ieee80211_ioctl_giwfreq, /* SIOCGIWFREQ */
  922. (iw_handler) ieee80211_ioctl_siwmode, /* SIOCSIWMODE */
  923. (iw_handler) ieee80211_ioctl_giwmode, /* SIOCGIWMODE */
  924. (iw_handler) NULL, /* SIOCSIWSENS */
  925. (iw_handler) NULL, /* SIOCGIWSENS */
  926. (iw_handler) NULL /* not used */, /* SIOCSIWRANGE */
  927. (iw_handler) ieee80211_ioctl_giwrange, /* SIOCGIWRANGE */
  928. (iw_handler) NULL /* not used */, /* SIOCSIWPRIV */
  929. (iw_handler) NULL /* kernel code */, /* SIOCGIWPRIV */
  930. (iw_handler) NULL /* not used */, /* SIOCSIWSTATS */
  931. (iw_handler) NULL /* kernel code */, /* SIOCGIWSTATS */
  932. (iw_handler) NULL, /* SIOCSIWSPY */
  933. (iw_handler) NULL, /* SIOCGIWSPY */
  934. (iw_handler) NULL, /* SIOCSIWTHRSPY */
  935. (iw_handler) NULL, /* SIOCGIWTHRSPY */
  936. (iw_handler) ieee80211_ioctl_siwap, /* SIOCSIWAP */
  937. (iw_handler) ieee80211_ioctl_giwap, /* SIOCGIWAP */
  938. (iw_handler) ieee80211_ioctl_siwmlme, /* SIOCSIWMLME */
  939. (iw_handler) NULL, /* SIOCGIWAPLIST */
  940. (iw_handler) ieee80211_ioctl_siwscan, /* SIOCSIWSCAN */
  941. (iw_handler) ieee80211_ioctl_giwscan, /* SIOCGIWSCAN */
  942. (iw_handler) ieee80211_ioctl_siwessid, /* SIOCSIWESSID */
  943. (iw_handler) ieee80211_ioctl_giwessid, /* SIOCGIWESSID */
  944. (iw_handler) NULL, /* SIOCSIWNICKN */
  945. (iw_handler) NULL, /* SIOCGIWNICKN */
  946. (iw_handler) NULL, /* -- hole -- */
  947. (iw_handler) NULL, /* -- hole -- */
  948. (iw_handler) ieee80211_ioctl_siwrate, /* SIOCSIWRATE */
  949. (iw_handler) ieee80211_ioctl_giwrate, /* SIOCGIWRATE */
  950. (iw_handler) ieee80211_ioctl_siwrts, /* SIOCSIWRTS */
  951. (iw_handler) ieee80211_ioctl_giwrts, /* SIOCGIWRTS */
  952. (iw_handler) ieee80211_ioctl_siwfrag, /* SIOCSIWFRAG */
  953. (iw_handler) ieee80211_ioctl_giwfrag, /* SIOCGIWFRAG */
  954. (iw_handler) ieee80211_ioctl_siwtxpower, /* SIOCSIWTXPOW */
  955. (iw_handler) ieee80211_ioctl_giwtxpower, /* SIOCGIWTXPOW */
  956. (iw_handler) ieee80211_ioctl_siwretry, /* SIOCSIWRETRY */
  957. (iw_handler) ieee80211_ioctl_giwretry, /* SIOCGIWRETRY */
  958. (iw_handler) ieee80211_ioctl_siwencode, /* SIOCSIWENCODE */
  959. (iw_handler) ieee80211_ioctl_giwencode, /* SIOCGIWENCODE */
  960. (iw_handler) NULL, /* SIOCSIWPOWER */
  961. (iw_handler) NULL, /* SIOCGIWPOWER */
  962. (iw_handler) NULL, /* -- hole -- */
  963. (iw_handler) NULL, /* -- hole -- */
  964. (iw_handler) ieee80211_ioctl_siwgenie, /* SIOCSIWGENIE */
  965. (iw_handler) NULL, /* SIOCGIWGENIE */
  966. (iw_handler) ieee80211_ioctl_siwauth, /* SIOCSIWAUTH */
  967. (iw_handler) ieee80211_ioctl_giwauth, /* SIOCGIWAUTH */
  968. (iw_handler) ieee80211_ioctl_siwencodeext, /* SIOCSIWENCODEEXT */
  969. (iw_handler) NULL, /* SIOCGIWENCODEEXT */
  970. (iw_handler) NULL, /* SIOCSIWPMKSA */
  971. (iw_handler) NULL, /* -- hole -- */
  972. };
  973. const struct iw_handler_def ieee80211_iw_handler_def =
  974. {
  975. .num_standard = ARRAY_SIZE(ieee80211_handler),
  976. .standard = (iw_handler *) ieee80211_handler,
  977. .get_wireless_stats = ieee80211_get_wireless_stats,
  978. };