consistent.c 4.0 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170
  1. /*
  2. * arch/sh/mm/consistent.c
  3. *
  4. * Copyright (C) 2004 - 2007 Paul Mundt
  5. *
  6. * Declared coherent memory functions based on arch/x86/kernel/pci-dma_32.c
  7. *
  8. * This file is subject to the terms and conditions of the GNU General Public
  9. * License. See the file "COPYING" in the main directory of this archive
  10. * for more details.
  11. */
  12. #include <linux/mm.h>
  13. #include <linux/init.h>
  14. #include <linux/platform_device.h>
  15. #include <linux/dma-mapping.h>
  16. #include <linux/dma-debug.h>
  17. #include <linux/io.h>
  18. #include <linux/module.h>
  19. #include <asm/cacheflush.h>
  20. #include <asm/addrspace.h>
  21. #define PREALLOC_DMA_DEBUG_ENTRIES 4096
  22. struct dma_map_ops *dma_ops;
  23. EXPORT_SYMBOL(dma_ops);
  24. static int __init dma_init(void)
  25. {
  26. dma_debug_init(PREALLOC_DMA_DEBUG_ENTRIES);
  27. no_iommu_init();
  28. return 0;
  29. }
  30. fs_initcall(dma_init);
  31. void *dma_alloc_coherent(struct device *dev, size_t size,
  32. dma_addr_t *dma_handle, gfp_t gfp)
  33. {
  34. void *ret, *ret_nocache;
  35. int order = get_order(size);
  36. if (dma_alloc_from_coherent(dev, size, dma_handle, &ret))
  37. return ret;
  38. ret = (void *)__get_free_pages(gfp, order);
  39. if (!ret)
  40. return NULL;
  41. memset(ret, 0, size);
  42. /*
  43. * Pages from the page allocator may have data present in
  44. * cache. So flush the cache before using uncached memory.
  45. */
  46. dma_cache_sync(dev, ret, size, DMA_BIDIRECTIONAL);
  47. ret_nocache = (void __force *)ioremap_nocache(virt_to_phys(ret), size);
  48. if (!ret_nocache) {
  49. free_pages((unsigned long)ret, order);
  50. return NULL;
  51. }
  52. split_page(pfn_to_page(virt_to_phys(ret) >> PAGE_SHIFT), order);
  53. *dma_handle = virt_to_phys(ret);
  54. debug_dma_alloc_coherent(dev, size, *dma_handle, ret_nocache);
  55. return ret_nocache;
  56. }
  57. EXPORT_SYMBOL(dma_alloc_coherent);
  58. void dma_free_coherent(struct device *dev, size_t size,
  59. void *vaddr, dma_addr_t dma_handle)
  60. {
  61. int order = get_order(size);
  62. unsigned long pfn = dma_handle >> PAGE_SHIFT;
  63. int k;
  64. WARN_ON(irqs_disabled()); /* for portability */
  65. if (dma_release_from_coherent(dev, order, vaddr))
  66. return;
  67. debug_dma_free_coherent(dev, size, vaddr, dma_handle);
  68. for (k = 0; k < (1 << order); k++)
  69. __free_pages(pfn_to_page(pfn + k), 0);
  70. iounmap(vaddr);
  71. }
  72. EXPORT_SYMBOL(dma_free_coherent);
  73. void dma_cache_sync(struct device *dev, void *vaddr, size_t size,
  74. enum dma_data_direction direction)
  75. {
  76. #if defined(CONFIG_CPU_SH5) || defined(CONFIG_PMB)
  77. void *p1addr = vaddr;
  78. #else
  79. void *p1addr = (void*) P1SEGADDR((unsigned long)vaddr);
  80. #endif
  81. switch (direction) {
  82. case DMA_FROM_DEVICE: /* invalidate only */
  83. __flush_invalidate_region(p1addr, size);
  84. break;
  85. case DMA_TO_DEVICE: /* writeback only */
  86. __flush_wback_region(p1addr, size);
  87. break;
  88. case DMA_BIDIRECTIONAL: /* writeback and invalidate */
  89. __flush_purge_region(p1addr, size);
  90. break;
  91. default:
  92. BUG();
  93. }
  94. }
  95. EXPORT_SYMBOL(dma_cache_sync);
  96. static int __init memchunk_setup(char *str)
  97. {
  98. return 1; /* accept anything that begins with "memchunk." */
  99. }
  100. __setup("memchunk.", memchunk_setup);
  101. static void __init memchunk_cmdline_override(char *name, unsigned long *sizep)
  102. {
  103. char *p = boot_command_line;
  104. int k = strlen(name);
  105. while ((p = strstr(p, "memchunk."))) {
  106. p += 9; /* strlen("memchunk.") */
  107. if (!strncmp(name, p, k) && p[k] == '=') {
  108. p += k + 1;
  109. *sizep = memparse(p, NULL);
  110. pr_info("%s: forcing memory chunk size to 0x%08lx\n",
  111. name, *sizep);
  112. break;
  113. }
  114. }
  115. }
  116. int __init platform_resource_setup_memory(struct platform_device *pdev,
  117. char *name, unsigned long memsize)
  118. {
  119. struct resource *r;
  120. dma_addr_t dma_handle;
  121. void *buf;
  122. r = pdev->resource + pdev->num_resources - 1;
  123. if (r->flags) {
  124. pr_warning("%s: unable to find empty space for resource\n",
  125. name);
  126. return -EINVAL;
  127. }
  128. memchunk_cmdline_override(name, &memsize);
  129. if (!memsize)
  130. return 0;
  131. buf = dma_alloc_coherent(NULL, memsize, &dma_handle, GFP_KERNEL);
  132. if (!buf) {
  133. pr_warning("%s: unable to allocate memory\n", name);
  134. return -ENOMEM;
  135. }
  136. memset(buf, 0, memsize);
  137. r->flags = IORESOURCE_MEM;
  138. r->start = dma_handle;
  139. r->end = r->start + memsize - 1;
  140. r->name = name;
  141. return 0;
  142. }