xfs_buf.c 44 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944
  1. /*
  2. * Copyright (c) 2000-2005 Silicon Graphics, Inc. All Rights Reserved.
  3. *
  4. * This program is free software; you can redistribute it and/or modify it
  5. * under the terms of version 2 of the GNU General Public License as
  6. * published by the Free Software Foundation.
  7. *
  8. * This program is distributed in the hope that it would be useful, but
  9. * WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
  11. *
  12. * Further, this software is distributed without any warranty that it is
  13. * free of the rightful claim of any third person regarding infringement
  14. * or the like. Any license provided herein, whether implied or
  15. * otherwise, applies only to this software file. Patent licenses, if
  16. * any, provided herein do not apply to combinations of this program with
  17. * other software, or any other product whatsoever.
  18. *
  19. * You should have received a copy of the GNU General Public License along
  20. * with this program; if not, write the Free Software Foundation, Inc., 59
  21. * Temple Place - Suite 330, Boston MA 02111-1307, USA.
  22. *
  23. * Contact information: Silicon Graphics, Inc., 1600 Amphitheatre Pkwy,
  24. * Mountain View, CA 94043, or:
  25. *
  26. * http://www.sgi.com
  27. *
  28. * For further information regarding this notice, see:
  29. *
  30. * http://oss.sgi.com/projects/GenInfo/SGIGPLNoticeExplan/
  31. */
  32. /*
  33. * The xfs_buf.c code provides an abstract buffer cache model on top
  34. * of the Linux page cache. Cached metadata blocks for a file system
  35. * are hashed to the inode for the block device. xfs_buf.c assembles
  36. * buffers (xfs_buf_t) on demand to aggregate such cached pages for I/O.
  37. *
  38. * Written by Steve Lord, Jim Mostek, Russell Cattelan
  39. * and Rajagopal Ananthanarayanan ("ananth") at SGI.
  40. *
  41. */
  42. #include <linux/stddef.h>
  43. #include <linux/errno.h>
  44. #include <linux/slab.h>
  45. #include <linux/pagemap.h>
  46. #include <linux/init.h>
  47. #include <linux/vmalloc.h>
  48. #include <linux/bio.h>
  49. #include <linux/sysctl.h>
  50. #include <linux/proc_fs.h>
  51. #include <linux/workqueue.h>
  52. #include <linux/percpu.h>
  53. #include <linux/blkdev.h>
  54. #include <linux/hash.h>
  55. #include <linux/kthread.h>
  56. #include "xfs_linux.h"
  57. /*
  58. * File wide globals
  59. */
  60. STATIC kmem_cache_t *pagebuf_zone;
  61. STATIC kmem_shaker_t pagebuf_shake;
  62. STATIC int xfsbufd_wakeup(int, gfp_t);
  63. STATIC void pagebuf_delwri_queue(xfs_buf_t *, int);
  64. STATIC struct workqueue_struct *xfslogd_workqueue;
  65. struct workqueue_struct *xfsdatad_workqueue;
  66. /*
  67. * Pagebuf debugging
  68. */
  69. #ifdef PAGEBUF_TRACE
  70. void
  71. pagebuf_trace(
  72. xfs_buf_t *pb,
  73. char *id,
  74. void *data,
  75. void *ra)
  76. {
  77. ktrace_enter(pagebuf_trace_buf,
  78. pb, id,
  79. (void *)(unsigned long)pb->pb_flags,
  80. (void *)(unsigned long)pb->pb_hold.counter,
  81. (void *)(unsigned long)pb->pb_sema.count.counter,
  82. (void *)current,
  83. data, ra,
  84. (void *)(unsigned long)((pb->pb_file_offset>>32) & 0xffffffff),
  85. (void *)(unsigned long)(pb->pb_file_offset & 0xffffffff),
  86. (void *)(unsigned long)pb->pb_buffer_length,
  87. NULL, NULL, NULL, NULL, NULL);
  88. }
  89. ktrace_t *pagebuf_trace_buf;
  90. #define PAGEBUF_TRACE_SIZE 4096
  91. #define PB_TRACE(pb, id, data) \
  92. pagebuf_trace(pb, id, (void *)data, (void *)__builtin_return_address(0))
  93. #else
  94. #define PB_TRACE(pb, id, data) do { } while (0)
  95. #endif
  96. #ifdef PAGEBUF_LOCK_TRACKING
  97. # define PB_SET_OWNER(pb) ((pb)->pb_last_holder = current->pid)
  98. # define PB_CLEAR_OWNER(pb) ((pb)->pb_last_holder = -1)
  99. # define PB_GET_OWNER(pb) ((pb)->pb_last_holder)
  100. #else
  101. # define PB_SET_OWNER(pb) do { } while (0)
  102. # define PB_CLEAR_OWNER(pb) do { } while (0)
  103. # define PB_GET_OWNER(pb) do { } while (0)
  104. #endif
  105. /*
  106. * Pagebuf allocation / freeing.
  107. */
  108. #define pb_to_gfp(flags) \
  109. ((((flags) & PBF_READ_AHEAD) ? __GFP_NORETRY : \
  110. ((flags) & PBF_DONT_BLOCK) ? GFP_NOFS : GFP_KERNEL) | __GFP_NOWARN)
  111. #define pb_to_km(flags) \
  112. (((flags) & PBF_DONT_BLOCK) ? KM_NOFS : KM_SLEEP)
  113. #define pagebuf_allocate(flags) \
  114. kmem_zone_alloc(pagebuf_zone, pb_to_km(flags))
  115. #define pagebuf_deallocate(pb) \
  116. kmem_zone_free(pagebuf_zone, (pb));
  117. /*
  118. * Page Region interfaces.
  119. *
  120. * For pages in filesystems where the blocksize is smaller than the
  121. * pagesize, we use the page->private field (long) to hold a bitmap
  122. * of uptodate regions within the page.
  123. *
  124. * Each such region is "bytes per page / bits per long" bytes long.
  125. *
  126. * NBPPR == number-of-bytes-per-page-region
  127. * BTOPR == bytes-to-page-region (rounded up)
  128. * BTOPRT == bytes-to-page-region-truncated (rounded down)
  129. */
  130. #if (BITS_PER_LONG == 32)
  131. #define PRSHIFT (PAGE_CACHE_SHIFT - 5) /* (32 == 1<<5) */
  132. #elif (BITS_PER_LONG == 64)
  133. #define PRSHIFT (PAGE_CACHE_SHIFT - 6) /* (64 == 1<<6) */
  134. #else
  135. #error BITS_PER_LONG must be 32 or 64
  136. #endif
  137. #define NBPPR (PAGE_CACHE_SIZE/BITS_PER_LONG)
  138. #define BTOPR(b) (((unsigned int)(b) + (NBPPR - 1)) >> PRSHIFT)
  139. #define BTOPRT(b) (((unsigned int)(b) >> PRSHIFT))
  140. STATIC unsigned long
  141. page_region_mask(
  142. size_t offset,
  143. size_t length)
  144. {
  145. unsigned long mask;
  146. int first, final;
  147. first = BTOPR(offset);
  148. final = BTOPRT(offset + length - 1);
  149. first = min(first, final);
  150. mask = ~0UL;
  151. mask <<= BITS_PER_LONG - (final - first);
  152. mask >>= BITS_PER_LONG - (final);
  153. ASSERT(offset + length <= PAGE_CACHE_SIZE);
  154. ASSERT((final - first) < BITS_PER_LONG && (final - first) >= 0);
  155. return mask;
  156. }
  157. STATIC inline void
  158. set_page_region(
  159. struct page *page,
  160. size_t offset,
  161. size_t length)
  162. {
  163. set_page_private(page,
  164. page_private(page) | page_region_mask(offset, length));
  165. if (page_private(page) == ~0UL)
  166. SetPageUptodate(page);
  167. }
  168. STATIC inline int
  169. test_page_region(
  170. struct page *page,
  171. size_t offset,
  172. size_t length)
  173. {
  174. unsigned long mask = page_region_mask(offset, length);
  175. return (mask && (page_private(page) & mask) == mask);
  176. }
  177. /*
  178. * Mapping of multi-page buffers into contiguous virtual space
  179. */
  180. typedef struct a_list {
  181. void *vm_addr;
  182. struct a_list *next;
  183. } a_list_t;
  184. STATIC a_list_t *as_free_head;
  185. STATIC int as_list_len;
  186. STATIC DEFINE_SPINLOCK(as_lock);
  187. /*
  188. * Try to batch vunmaps because they are costly.
  189. */
  190. STATIC void
  191. free_address(
  192. void *addr)
  193. {
  194. a_list_t *aentry;
  195. aentry = kmalloc(sizeof(a_list_t), GFP_ATOMIC & ~__GFP_HIGH);
  196. if (likely(aentry)) {
  197. spin_lock(&as_lock);
  198. aentry->next = as_free_head;
  199. aentry->vm_addr = addr;
  200. as_free_head = aentry;
  201. as_list_len++;
  202. spin_unlock(&as_lock);
  203. } else {
  204. vunmap(addr);
  205. }
  206. }
  207. STATIC void
  208. purge_addresses(void)
  209. {
  210. a_list_t *aentry, *old;
  211. if (as_free_head == NULL)
  212. return;
  213. spin_lock(&as_lock);
  214. aentry = as_free_head;
  215. as_free_head = NULL;
  216. as_list_len = 0;
  217. spin_unlock(&as_lock);
  218. while ((old = aentry) != NULL) {
  219. vunmap(aentry->vm_addr);
  220. aentry = aentry->next;
  221. kfree(old);
  222. }
  223. }
  224. /*
  225. * Internal pagebuf object manipulation
  226. */
  227. STATIC void
  228. _pagebuf_initialize(
  229. xfs_buf_t *pb,
  230. xfs_buftarg_t *target,
  231. loff_t range_base,
  232. size_t range_length,
  233. page_buf_flags_t flags)
  234. {
  235. /*
  236. * We don't want certain flags to appear in pb->pb_flags.
  237. */
  238. flags &= ~(PBF_LOCK|PBF_MAPPED|PBF_DONT_BLOCK|PBF_READ_AHEAD);
  239. memset(pb, 0, sizeof(xfs_buf_t));
  240. atomic_set(&pb->pb_hold, 1);
  241. init_MUTEX_LOCKED(&pb->pb_iodonesema);
  242. INIT_LIST_HEAD(&pb->pb_list);
  243. INIT_LIST_HEAD(&pb->pb_hash_list);
  244. init_MUTEX_LOCKED(&pb->pb_sema); /* held, no waiters */
  245. PB_SET_OWNER(pb);
  246. pb->pb_target = target;
  247. pb->pb_file_offset = range_base;
  248. /*
  249. * Set buffer_length and count_desired to the same value initially.
  250. * I/O routines should use count_desired, which will be the same in
  251. * most cases but may be reset (e.g. XFS recovery).
  252. */
  253. pb->pb_buffer_length = pb->pb_count_desired = range_length;
  254. pb->pb_flags = flags | PBF_NONE;
  255. pb->pb_bn = XFS_BUF_DADDR_NULL;
  256. atomic_set(&pb->pb_pin_count, 0);
  257. init_waitqueue_head(&pb->pb_waiters);
  258. XFS_STATS_INC(pb_create);
  259. PB_TRACE(pb, "initialize", target);
  260. }
  261. /*
  262. * Allocate a page array capable of holding a specified number
  263. * of pages, and point the page buf at it.
  264. */
  265. STATIC int
  266. _pagebuf_get_pages(
  267. xfs_buf_t *pb,
  268. int page_count,
  269. page_buf_flags_t flags)
  270. {
  271. /* Make sure that we have a page list */
  272. if (pb->pb_pages == NULL) {
  273. pb->pb_offset = page_buf_poff(pb->pb_file_offset);
  274. pb->pb_page_count = page_count;
  275. if (page_count <= PB_PAGES) {
  276. pb->pb_pages = pb->pb_page_array;
  277. } else {
  278. pb->pb_pages = kmem_alloc(sizeof(struct page *) *
  279. page_count, pb_to_km(flags));
  280. if (pb->pb_pages == NULL)
  281. return -ENOMEM;
  282. }
  283. memset(pb->pb_pages, 0, sizeof(struct page *) * page_count);
  284. }
  285. return 0;
  286. }
  287. /*
  288. * Frees pb_pages if it was malloced.
  289. */
  290. STATIC void
  291. _pagebuf_free_pages(
  292. xfs_buf_t *bp)
  293. {
  294. if (bp->pb_pages != bp->pb_page_array) {
  295. kmem_free(bp->pb_pages,
  296. bp->pb_page_count * sizeof(struct page *));
  297. }
  298. }
  299. /*
  300. * Releases the specified buffer.
  301. *
  302. * The modification state of any associated pages is left unchanged.
  303. * The buffer most not be on any hash - use pagebuf_rele instead for
  304. * hashed and refcounted buffers
  305. */
  306. void
  307. pagebuf_free(
  308. xfs_buf_t *bp)
  309. {
  310. PB_TRACE(bp, "free", 0);
  311. ASSERT(list_empty(&bp->pb_hash_list));
  312. if (bp->pb_flags & _PBF_PAGE_CACHE) {
  313. uint i;
  314. if ((bp->pb_flags & PBF_MAPPED) && (bp->pb_page_count > 1))
  315. free_address(bp->pb_addr - bp->pb_offset);
  316. for (i = 0; i < bp->pb_page_count; i++)
  317. page_cache_release(bp->pb_pages[i]);
  318. _pagebuf_free_pages(bp);
  319. } else if (bp->pb_flags & _PBF_KMEM_ALLOC) {
  320. /*
  321. * XXX(hch): bp->pb_count_desired might be incorrect (see
  322. * pagebuf_associate_memory for details), but fortunately
  323. * the Linux version of kmem_free ignores the len argument..
  324. */
  325. kmem_free(bp->pb_addr, bp->pb_count_desired);
  326. _pagebuf_free_pages(bp);
  327. }
  328. pagebuf_deallocate(bp);
  329. }
  330. /*
  331. * Finds all pages for buffer in question and builds it's page list.
  332. */
  333. STATIC int
  334. _pagebuf_lookup_pages(
  335. xfs_buf_t *bp,
  336. uint flags)
  337. {
  338. struct address_space *mapping = bp->pb_target->pbr_mapping;
  339. size_t blocksize = bp->pb_target->pbr_bsize;
  340. size_t size = bp->pb_count_desired;
  341. size_t nbytes, offset;
  342. gfp_t gfp_mask = pb_to_gfp(flags);
  343. unsigned short page_count, i;
  344. pgoff_t first;
  345. loff_t end;
  346. int error;
  347. end = bp->pb_file_offset + bp->pb_buffer_length;
  348. page_count = page_buf_btoc(end) - page_buf_btoct(bp->pb_file_offset);
  349. error = _pagebuf_get_pages(bp, page_count, flags);
  350. if (unlikely(error))
  351. return error;
  352. bp->pb_flags |= _PBF_PAGE_CACHE;
  353. offset = bp->pb_offset;
  354. first = bp->pb_file_offset >> PAGE_CACHE_SHIFT;
  355. for (i = 0; i < bp->pb_page_count; i++) {
  356. struct page *page;
  357. uint retries = 0;
  358. retry:
  359. page = find_or_create_page(mapping, first + i, gfp_mask);
  360. if (unlikely(page == NULL)) {
  361. if (flags & PBF_READ_AHEAD) {
  362. bp->pb_page_count = i;
  363. for (i = 0; i < bp->pb_page_count; i++)
  364. unlock_page(bp->pb_pages[i]);
  365. return -ENOMEM;
  366. }
  367. /*
  368. * This could deadlock.
  369. *
  370. * But until all the XFS lowlevel code is revamped to
  371. * handle buffer allocation failures we can't do much.
  372. */
  373. if (!(++retries % 100))
  374. printk(KERN_ERR
  375. "XFS: possible memory allocation "
  376. "deadlock in %s (mode:0x%x)\n",
  377. __FUNCTION__, gfp_mask);
  378. XFS_STATS_INC(pb_page_retries);
  379. xfsbufd_wakeup(0, gfp_mask);
  380. blk_congestion_wait(WRITE, HZ/50);
  381. goto retry;
  382. }
  383. XFS_STATS_INC(pb_page_found);
  384. nbytes = min_t(size_t, size, PAGE_CACHE_SIZE - offset);
  385. size -= nbytes;
  386. if (!PageUptodate(page)) {
  387. page_count--;
  388. if (blocksize >= PAGE_CACHE_SIZE) {
  389. if (flags & PBF_READ)
  390. bp->pb_locked = 1;
  391. } else if (!PagePrivate(page)) {
  392. if (test_page_region(page, offset, nbytes))
  393. page_count++;
  394. }
  395. }
  396. bp->pb_pages[i] = page;
  397. offset = 0;
  398. }
  399. if (!bp->pb_locked) {
  400. for (i = 0; i < bp->pb_page_count; i++)
  401. unlock_page(bp->pb_pages[i]);
  402. }
  403. if (page_count)
  404. bp->pb_flags &= ~PBF_NONE;
  405. PB_TRACE(bp, "lookup_pages", (long)page_count);
  406. return error;
  407. }
  408. /*
  409. * Map buffer into kernel address-space if nessecary.
  410. */
  411. STATIC int
  412. _pagebuf_map_pages(
  413. xfs_buf_t *bp,
  414. uint flags)
  415. {
  416. /* A single page buffer is always mappable */
  417. if (bp->pb_page_count == 1) {
  418. bp->pb_addr = page_address(bp->pb_pages[0]) + bp->pb_offset;
  419. bp->pb_flags |= PBF_MAPPED;
  420. } else if (flags & PBF_MAPPED) {
  421. if (as_list_len > 64)
  422. purge_addresses();
  423. bp->pb_addr = vmap(bp->pb_pages, bp->pb_page_count,
  424. VM_MAP, PAGE_KERNEL);
  425. if (unlikely(bp->pb_addr == NULL))
  426. return -ENOMEM;
  427. bp->pb_addr += bp->pb_offset;
  428. bp->pb_flags |= PBF_MAPPED;
  429. }
  430. return 0;
  431. }
  432. /*
  433. * Finding and Reading Buffers
  434. */
  435. /*
  436. * _pagebuf_find
  437. *
  438. * Looks up, and creates if absent, a lockable buffer for
  439. * a given range of an inode. The buffer is returned
  440. * locked. If other overlapping buffers exist, they are
  441. * released before the new buffer is created and locked,
  442. * which may imply that this call will block until those buffers
  443. * are unlocked. No I/O is implied by this call.
  444. */
  445. xfs_buf_t *
  446. _pagebuf_find(
  447. xfs_buftarg_t *btp, /* block device target */
  448. loff_t ioff, /* starting offset of range */
  449. size_t isize, /* length of range */
  450. page_buf_flags_t flags, /* PBF_TRYLOCK */
  451. xfs_buf_t *new_pb)/* newly allocated buffer */
  452. {
  453. loff_t range_base;
  454. size_t range_length;
  455. xfs_bufhash_t *hash;
  456. xfs_buf_t *pb, *n;
  457. range_base = (ioff << BBSHIFT);
  458. range_length = (isize << BBSHIFT);
  459. /* Check for IOs smaller than the sector size / not sector aligned */
  460. ASSERT(!(range_length < (1 << btp->pbr_sshift)));
  461. ASSERT(!(range_base & (loff_t)btp->pbr_smask));
  462. hash = &btp->bt_hash[hash_long((unsigned long)ioff, btp->bt_hashshift)];
  463. spin_lock(&hash->bh_lock);
  464. list_for_each_entry_safe(pb, n, &hash->bh_list, pb_hash_list) {
  465. ASSERT(btp == pb->pb_target);
  466. if (pb->pb_file_offset == range_base &&
  467. pb->pb_buffer_length == range_length) {
  468. /*
  469. * If we look at something bring it to the
  470. * front of the list for next time.
  471. */
  472. atomic_inc(&pb->pb_hold);
  473. list_move(&pb->pb_hash_list, &hash->bh_list);
  474. goto found;
  475. }
  476. }
  477. /* No match found */
  478. if (new_pb) {
  479. _pagebuf_initialize(new_pb, btp, range_base,
  480. range_length, flags);
  481. new_pb->pb_hash = hash;
  482. list_add(&new_pb->pb_hash_list, &hash->bh_list);
  483. } else {
  484. XFS_STATS_INC(pb_miss_locked);
  485. }
  486. spin_unlock(&hash->bh_lock);
  487. return new_pb;
  488. found:
  489. spin_unlock(&hash->bh_lock);
  490. /* Attempt to get the semaphore without sleeping,
  491. * if this does not work then we need to drop the
  492. * spinlock and do a hard attempt on the semaphore.
  493. */
  494. if (down_trylock(&pb->pb_sema)) {
  495. if (!(flags & PBF_TRYLOCK)) {
  496. /* wait for buffer ownership */
  497. PB_TRACE(pb, "get_lock", 0);
  498. pagebuf_lock(pb);
  499. XFS_STATS_INC(pb_get_locked_waited);
  500. } else {
  501. /* We asked for a trylock and failed, no need
  502. * to look at file offset and length here, we
  503. * know that this pagebuf at least overlaps our
  504. * pagebuf and is locked, therefore our buffer
  505. * either does not exist, or is this buffer
  506. */
  507. pagebuf_rele(pb);
  508. XFS_STATS_INC(pb_busy_locked);
  509. return (NULL);
  510. }
  511. } else {
  512. /* trylock worked */
  513. PB_SET_OWNER(pb);
  514. }
  515. if (pb->pb_flags & PBF_STALE) {
  516. ASSERT((pb->pb_flags & _PBF_DELWRI_Q) == 0);
  517. pb->pb_flags &= PBF_MAPPED;
  518. }
  519. PB_TRACE(pb, "got_lock", 0);
  520. XFS_STATS_INC(pb_get_locked);
  521. return (pb);
  522. }
  523. /*
  524. * xfs_buf_get_flags assembles a buffer covering the specified range.
  525. *
  526. * Storage in memory for all portions of the buffer will be allocated,
  527. * although backing storage may not be.
  528. */
  529. xfs_buf_t *
  530. xfs_buf_get_flags( /* allocate a buffer */
  531. xfs_buftarg_t *target,/* target for buffer */
  532. loff_t ioff, /* starting offset of range */
  533. size_t isize, /* length of range */
  534. page_buf_flags_t flags) /* PBF_TRYLOCK */
  535. {
  536. xfs_buf_t *pb, *new_pb;
  537. int error = 0, i;
  538. new_pb = pagebuf_allocate(flags);
  539. if (unlikely(!new_pb))
  540. return NULL;
  541. pb = _pagebuf_find(target, ioff, isize, flags, new_pb);
  542. if (pb == new_pb) {
  543. error = _pagebuf_lookup_pages(pb, flags);
  544. if (error)
  545. goto no_buffer;
  546. } else {
  547. pagebuf_deallocate(new_pb);
  548. if (unlikely(pb == NULL))
  549. return NULL;
  550. }
  551. for (i = 0; i < pb->pb_page_count; i++)
  552. mark_page_accessed(pb->pb_pages[i]);
  553. if (!(pb->pb_flags & PBF_MAPPED)) {
  554. error = _pagebuf_map_pages(pb, flags);
  555. if (unlikely(error)) {
  556. printk(KERN_WARNING "%s: failed to map pages\n",
  557. __FUNCTION__);
  558. goto no_buffer;
  559. }
  560. }
  561. XFS_STATS_INC(pb_get);
  562. /*
  563. * Always fill in the block number now, the mapped cases can do
  564. * their own overlay of this later.
  565. */
  566. pb->pb_bn = ioff;
  567. pb->pb_count_desired = pb->pb_buffer_length;
  568. PB_TRACE(pb, "get", (unsigned long)flags);
  569. return pb;
  570. no_buffer:
  571. if (flags & (PBF_LOCK | PBF_TRYLOCK))
  572. pagebuf_unlock(pb);
  573. pagebuf_rele(pb);
  574. return NULL;
  575. }
  576. xfs_buf_t *
  577. xfs_buf_read_flags(
  578. xfs_buftarg_t *target,
  579. loff_t ioff,
  580. size_t isize,
  581. page_buf_flags_t flags)
  582. {
  583. xfs_buf_t *pb;
  584. flags |= PBF_READ;
  585. pb = xfs_buf_get_flags(target, ioff, isize, flags);
  586. if (pb) {
  587. if (!XFS_BUF_ISDONE(pb)) {
  588. PB_TRACE(pb, "read", (unsigned long)flags);
  589. XFS_STATS_INC(pb_get_read);
  590. pagebuf_iostart(pb, flags);
  591. } else if (flags & PBF_ASYNC) {
  592. PB_TRACE(pb, "read_async", (unsigned long)flags);
  593. /*
  594. * Read ahead call which is already satisfied,
  595. * drop the buffer
  596. */
  597. goto no_buffer;
  598. } else {
  599. PB_TRACE(pb, "read_done", (unsigned long)flags);
  600. /* We do not want read in the flags */
  601. pb->pb_flags &= ~PBF_READ;
  602. }
  603. }
  604. return pb;
  605. no_buffer:
  606. if (flags & (PBF_LOCK | PBF_TRYLOCK))
  607. pagebuf_unlock(pb);
  608. pagebuf_rele(pb);
  609. return NULL;
  610. }
  611. /*
  612. * If we are not low on memory then do the readahead in a deadlock
  613. * safe manner.
  614. */
  615. void
  616. pagebuf_readahead(
  617. xfs_buftarg_t *target,
  618. loff_t ioff,
  619. size_t isize,
  620. page_buf_flags_t flags)
  621. {
  622. struct backing_dev_info *bdi;
  623. bdi = target->pbr_mapping->backing_dev_info;
  624. if (bdi_read_congested(bdi))
  625. return;
  626. flags |= (PBF_TRYLOCK|PBF_ASYNC|PBF_READ_AHEAD);
  627. xfs_buf_read_flags(target, ioff, isize, flags);
  628. }
  629. xfs_buf_t *
  630. pagebuf_get_empty(
  631. size_t len,
  632. xfs_buftarg_t *target)
  633. {
  634. xfs_buf_t *pb;
  635. pb = pagebuf_allocate(0);
  636. if (pb)
  637. _pagebuf_initialize(pb, target, 0, len, 0);
  638. return pb;
  639. }
  640. static inline struct page *
  641. mem_to_page(
  642. void *addr)
  643. {
  644. if (((unsigned long)addr < VMALLOC_START) ||
  645. ((unsigned long)addr >= VMALLOC_END)) {
  646. return virt_to_page(addr);
  647. } else {
  648. return vmalloc_to_page(addr);
  649. }
  650. }
  651. int
  652. pagebuf_associate_memory(
  653. xfs_buf_t *pb,
  654. void *mem,
  655. size_t len)
  656. {
  657. int rval;
  658. int i = 0;
  659. size_t ptr;
  660. size_t end, end_cur;
  661. off_t offset;
  662. int page_count;
  663. page_count = PAGE_CACHE_ALIGN(len) >> PAGE_CACHE_SHIFT;
  664. offset = (off_t) mem - ((off_t)mem & PAGE_CACHE_MASK);
  665. if (offset && (len > PAGE_CACHE_SIZE))
  666. page_count++;
  667. /* Free any previous set of page pointers */
  668. if (pb->pb_pages)
  669. _pagebuf_free_pages(pb);
  670. pb->pb_pages = NULL;
  671. pb->pb_addr = mem;
  672. rval = _pagebuf_get_pages(pb, page_count, 0);
  673. if (rval)
  674. return rval;
  675. pb->pb_offset = offset;
  676. ptr = (size_t) mem & PAGE_CACHE_MASK;
  677. end = PAGE_CACHE_ALIGN((size_t) mem + len);
  678. end_cur = end;
  679. /* set up first page */
  680. pb->pb_pages[0] = mem_to_page(mem);
  681. ptr += PAGE_CACHE_SIZE;
  682. pb->pb_page_count = ++i;
  683. while (ptr < end) {
  684. pb->pb_pages[i] = mem_to_page((void *)ptr);
  685. pb->pb_page_count = ++i;
  686. ptr += PAGE_CACHE_SIZE;
  687. }
  688. pb->pb_locked = 0;
  689. pb->pb_count_desired = pb->pb_buffer_length = len;
  690. pb->pb_flags |= PBF_MAPPED;
  691. return 0;
  692. }
  693. xfs_buf_t *
  694. pagebuf_get_no_daddr(
  695. size_t len,
  696. xfs_buftarg_t *target)
  697. {
  698. size_t malloc_len = len;
  699. xfs_buf_t *bp;
  700. void *data;
  701. int error;
  702. bp = pagebuf_allocate(0);
  703. if (unlikely(bp == NULL))
  704. goto fail;
  705. _pagebuf_initialize(bp, target, 0, len, 0);
  706. try_again:
  707. data = kmem_alloc(malloc_len, KM_SLEEP | KM_MAYFAIL);
  708. if (unlikely(data == NULL))
  709. goto fail_free_buf;
  710. /* check whether alignment matches.. */
  711. if ((__psunsigned_t)data !=
  712. ((__psunsigned_t)data & ~target->pbr_smask)) {
  713. /* .. else double the size and try again */
  714. kmem_free(data, malloc_len);
  715. malloc_len <<= 1;
  716. goto try_again;
  717. }
  718. error = pagebuf_associate_memory(bp, data, len);
  719. if (error)
  720. goto fail_free_mem;
  721. bp->pb_flags |= _PBF_KMEM_ALLOC;
  722. pagebuf_unlock(bp);
  723. PB_TRACE(bp, "no_daddr", data);
  724. return bp;
  725. fail_free_mem:
  726. kmem_free(data, malloc_len);
  727. fail_free_buf:
  728. pagebuf_free(bp);
  729. fail:
  730. return NULL;
  731. }
  732. /*
  733. * pagebuf_hold
  734. *
  735. * Increment reference count on buffer, to hold the buffer concurrently
  736. * with another thread which may release (free) the buffer asynchronously.
  737. *
  738. * Must hold the buffer already to call this function.
  739. */
  740. void
  741. pagebuf_hold(
  742. xfs_buf_t *pb)
  743. {
  744. atomic_inc(&pb->pb_hold);
  745. PB_TRACE(pb, "hold", 0);
  746. }
  747. /*
  748. * pagebuf_rele
  749. *
  750. * pagebuf_rele releases a hold on the specified buffer. If the
  751. * the hold count is 1, pagebuf_rele calls pagebuf_free.
  752. */
  753. void
  754. pagebuf_rele(
  755. xfs_buf_t *pb)
  756. {
  757. xfs_bufhash_t *hash = pb->pb_hash;
  758. PB_TRACE(pb, "rele", pb->pb_relse);
  759. /*
  760. * pagebuf_lookup buffers are not hashed, not delayed write,
  761. * and don't have their own release routines. Special case.
  762. */
  763. if (unlikely(!hash)) {
  764. ASSERT(!pb->pb_relse);
  765. if (atomic_dec_and_test(&pb->pb_hold))
  766. xfs_buf_free(pb);
  767. return;
  768. }
  769. if (atomic_dec_and_lock(&pb->pb_hold, &hash->bh_lock)) {
  770. int do_free = 1;
  771. if (pb->pb_relse) {
  772. atomic_inc(&pb->pb_hold);
  773. spin_unlock(&hash->bh_lock);
  774. (*(pb->pb_relse)) (pb);
  775. spin_lock(&hash->bh_lock);
  776. do_free = 0;
  777. }
  778. if (pb->pb_flags & PBF_FS_MANAGED) {
  779. do_free = 0;
  780. }
  781. if (do_free) {
  782. ASSERT((pb->pb_flags & (PBF_DELWRI|_PBF_DELWRI_Q)) == 0);
  783. list_del_init(&pb->pb_hash_list);
  784. spin_unlock(&hash->bh_lock);
  785. pagebuf_free(pb);
  786. } else {
  787. spin_unlock(&hash->bh_lock);
  788. }
  789. } else {
  790. /*
  791. * Catch reference count leaks
  792. */
  793. ASSERT(atomic_read(&pb->pb_hold) >= 0);
  794. }
  795. }
  796. /*
  797. * Mutual exclusion on buffers. Locking model:
  798. *
  799. * Buffers associated with inodes for which buffer locking
  800. * is not enabled are not protected by semaphores, and are
  801. * assumed to be exclusively owned by the caller. There is a
  802. * spinlock in the buffer, used by the caller when concurrent
  803. * access is possible.
  804. */
  805. /*
  806. * pagebuf_cond_lock
  807. *
  808. * pagebuf_cond_lock locks a buffer object, if it is not already locked.
  809. * Note that this in no way
  810. * locks the underlying pages, so it is only useful for synchronizing
  811. * concurrent use of page buffer objects, not for synchronizing independent
  812. * access to the underlying pages.
  813. */
  814. int
  815. pagebuf_cond_lock( /* lock buffer, if not locked */
  816. /* returns -EBUSY if locked) */
  817. xfs_buf_t *pb)
  818. {
  819. int locked;
  820. locked = down_trylock(&pb->pb_sema) == 0;
  821. if (locked) {
  822. PB_SET_OWNER(pb);
  823. }
  824. PB_TRACE(pb, "cond_lock", (long)locked);
  825. return(locked ? 0 : -EBUSY);
  826. }
  827. #if defined(DEBUG) || defined(XFS_BLI_TRACE)
  828. /*
  829. * pagebuf_lock_value
  830. *
  831. * Return lock value for a pagebuf
  832. */
  833. int
  834. pagebuf_lock_value(
  835. xfs_buf_t *pb)
  836. {
  837. return(atomic_read(&pb->pb_sema.count));
  838. }
  839. #endif
  840. /*
  841. * pagebuf_lock
  842. *
  843. * pagebuf_lock locks a buffer object. Note that this in no way
  844. * locks the underlying pages, so it is only useful for synchronizing
  845. * concurrent use of page buffer objects, not for synchronizing independent
  846. * access to the underlying pages.
  847. */
  848. int
  849. pagebuf_lock(
  850. xfs_buf_t *pb)
  851. {
  852. PB_TRACE(pb, "lock", 0);
  853. if (atomic_read(&pb->pb_io_remaining))
  854. blk_run_address_space(pb->pb_target->pbr_mapping);
  855. down(&pb->pb_sema);
  856. PB_SET_OWNER(pb);
  857. PB_TRACE(pb, "locked", 0);
  858. return 0;
  859. }
  860. /*
  861. * pagebuf_unlock
  862. *
  863. * pagebuf_unlock releases the lock on the buffer object created by
  864. * pagebuf_lock or pagebuf_cond_lock (not any pinning of underlying pages
  865. * created by pagebuf_pin).
  866. *
  867. * If the buffer is marked delwri but is not queued, do so before we
  868. * unlock the buffer as we need to set flags correctly. We also need to
  869. * take a reference for the delwri queue because the unlocker is going to
  870. * drop their's and they don't know we just queued it.
  871. */
  872. void
  873. pagebuf_unlock( /* unlock buffer */
  874. xfs_buf_t *pb) /* buffer to unlock */
  875. {
  876. if ((pb->pb_flags & (PBF_DELWRI|_PBF_DELWRI_Q)) == PBF_DELWRI) {
  877. atomic_inc(&pb->pb_hold);
  878. pb->pb_flags |= PBF_ASYNC;
  879. pagebuf_delwri_queue(pb, 0);
  880. }
  881. PB_CLEAR_OWNER(pb);
  882. up(&pb->pb_sema);
  883. PB_TRACE(pb, "unlock", 0);
  884. }
  885. /*
  886. * Pinning Buffer Storage in Memory
  887. */
  888. /*
  889. * pagebuf_pin
  890. *
  891. * pagebuf_pin locks all of the memory represented by a buffer in
  892. * memory. Multiple calls to pagebuf_pin and pagebuf_unpin, for
  893. * the same or different buffers affecting a given page, will
  894. * properly count the number of outstanding "pin" requests. The
  895. * buffer may be released after the pagebuf_pin and a different
  896. * buffer used when calling pagebuf_unpin, if desired.
  897. * pagebuf_pin should be used by the file system when it wants be
  898. * assured that no attempt will be made to force the affected
  899. * memory to disk. It does not assure that a given logical page
  900. * will not be moved to a different physical page.
  901. */
  902. void
  903. pagebuf_pin(
  904. xfs_buf_t *pb)
  905. {
  906. atomic_inc(&pb->pb_pin_count);
  907. PB_TRACE(pb, "pin", (long)pb->pb_pin_count.counter);
  908. }
  909. /*
  910. * pagebuf_unpin
  911. *
  912. * pagebuf_unpin reverses the locking of memory performed by
  913. * pagebuf_pin. Note that both functions affected the logical
  914. * pages associated with the buffer, not the buffer itself.
  915. */
  916. void
  917. pagebuf_unpin(
  918. xfs_buf_t *pb)
  919. {
  920. if (atomic_dec_and_test(&pb->pb_pin_count)) {
  921. wake_up_all(&pb->pb_waiters);
  922. }
  923. PB_TRACE(pb, "unpin", (long)pb->pb_pin_count.counter);
  924. }
  925. int
  926. pagebuf_ispin(
  927. xfs_buf_t *pb)
  928. {
  929. return atomic_read(&pb->pb_pin_count);
  930. }
  931. /*
  932. * pagebuf_wait_unpin
  933. *
  934. * pagebuf_wait_unpin waits until all of the memory associated
  935. * with the buffer is not longer locked in memory. It returns
  936. * immediately if none of the affected pages are locked.
  937. */
  938. static inline void
  939. _pagebuf_wait_unpin(
  940. xfs_buf_t *pb)
  941. {
  942. DECLARE_WAITQUEUE (wait, current);
  943. if (atomic_read(&pb->pb_pin_count) == 0)
  944. return;
  945. add_wait_queue(&pb->pb_waiters, &wait);
  946. for (;;) {
  947. set_current_state(TASK_UNINTERRUPTIBLE);
  948. if (atomic_read(&pb->pb_pin_count) == 0)
  949. break;
  950. if (atomic_read(&pb->pb_io_remaining))
  951. blk_run_address_space(pb->pb_target->pbr_mapping);
  952. schedule();
  953. }
  954. remove_wait_queue(&pb->pb_waiters, &wait);
  955. set_current_state(TASK_RUNNING);
  956. }
  957. /*
  958. * Buffer Utility Routines
  959. */
  960. /*
  961. * pagebuf_iodone
  962. *
  963. * pagebuf_iodone marks a buffer for which I/O is in progress
  964. * done with respect to that I/O. The pb_iodone routine, if
  965. * present, will be called as a side-effect.
  966. */
  967. STATIC void
  968. pagebuf_iodone_work(
  969. void *v)
  970. {
  971. xfs_buf_t *bp = (xfs_buf_t *)v;
  972. if (bp->pb_iodone)
  973. (*(bp->pb_iodone))(bp);
  974. else if (bp->pb_flags & PBF_ASYNC)
  975. xfs_buf_relse(bp);
  976. }
  977. void
  978. pagebuf_iodone(
  979. xfs_buf_t *pb,
  980. int schedule)
  981. {
  982. pb->pb_flags &= ~(PBF_READ | PBF_WRITE);
  983. if (pb->pb_error == 0)
  984. pb->pb_flags &= ~PBF_NONE;
  985. PB_TRACE(pb, "iodone", pb->pb_iodone);
  986. if ((pb->pb_iodone) || (pb->pb_flags & PBF_ASYNC)) {
  987. if (schedule) {
  988. INIT_WORK(&pb->pb_iodone_work, pagebuf_iodone_work, pb);
  989. queue_work(xfslogd_workqueue, &pb->pb_iodone_work);
  990. } else {
  991. pagebuf_iodone_work(pb);
  992. }
  993. } else {
  994. up(&pb->pb_iodonesema);
  995. }
  996. }
  997. /*
  998. * pagebuf_ioerror
  999. *
  1000. * pagebuf_ioerror sets the error code for a buffer.
  1001. */
  1002. void
  1003. pagebuf_ioerror( /* mark/clear buffer error flag */
  1004. xfs_buf_t *pb, /* buffer to mark */
  1005. int error) /* error to store (0 if none) */
  1006. {
  1007. ASSERT(error >= 0 && error <= 0xffff);
  1008. pb->pb_error = (unsigned short)error;
  1009. PB_TRACE(pb, "ioerror", (unsigned long)error);
  1010. }
  1011. /*
  1012. * pagebuf_iostart
  1013. *
  1014. * pagebuf_iostart initiates I/O on a buffer, based on the flags supplied.
  1015. * If necessary, it will arrange for any disk space allocation required,
  1016. * and it will break up the request if the block mappings require it.
  1017. * The pb_iodone routine in the buffer supplied will only be called
  1018. * when all of the subsidiary I/O requests, if any, have been completed.
  1019. * pagebuf_iostart calls the pagebuf_ioinitiate routine or
  1020. * pagebuf_iorequest, if the former routine is not defined, to start
  1021. * the I/O on a given low-level request.
  1022. */
  1023. int
  1024. pagebuf_iostart( /* start I/O on a buffer */
  1025. xfs_buf_t *pb, /* buffer to start */
  1026. page_buf_flags_t flags) /* PBF_LOCK, PBF_ASYNC, PBF_READ, */
  1027. /* PBF_WRITE, PBF_DELWRI, */
  1028. /* PBF_DONT_BLOCK */
  1029. {
  1030. int status = 0;
  1031. PB_TRACE(pb, "iostart", (unsigned long)flags);
  1032. if (flags & PBF_DELWRI) {
  1033. pb->pb_flags &= ~(PBF_READ | PBF_WRITE | PBF_ASYNC);
  1034. pb->pb_flags |= flags & (PBF_DELWRI | PBF_ASYNC);
  1035. pagebuf_delwri_queue(pb, 1);
  1036. return status;
  1037. }
  1038. pb->pb_flags &= ~(PBF_READ | PBF_WRITE | PBF_ASYNC | PBF_DELWRI | \
  1039. PBF_READ_AHEAD | _PBF_RUN_QUEUES);
  1040. pb->pb_flags |= flags & (PBF_READ | PBF_WRITE | PBF_ASYNC | \
  1041. PBF_READ_AHEAD | _PBF_RUN_QUEUES);
  1042. BUG_ON(pb->pb_bn == XFS_BUF_DADDR_NULL);
  1043. /* For writes allow an alternate strategy routine to precede
  1044. * the actual I/O request (which may not be issued at all in
  1045. * a shutdown situation, for example).
  1046. */
  1047. status = (flags & PBF_WRITE) ?
  1048. pagebuf_iostrategy(pb) : pagebuf_iorequest(pb);
  1049. /* Wait for I/O if we are not an async request.
  1050. * Note: async I/O request completion will release the buffer,
  1051. * and that can already be done by this point. So using the
  1052. * buffer pointer from here on, after async I/O, is invalid.
  1053. */
  1054. if (!status && !(flags & PBF_ASYNC))
  1055. status = pagebuf_iowait(pb);
  1056. return status;
  1057. }
  1058. /*
  1059. * Helper routine for pagebuf_iorequest
  1060. */
  1061. STATIC __inline__ int
  1062. _pagebuf_iolocked(
  1063. xfs_buf_t *pb)
  1064. {
  1065. ASSERT(pb->pb_flags & (PBF_READ|PBF_WRITE));
  1066. if (pb->pb_flags & PBF_READ)
  1067. return pb->pb_locked;
  1068. return 0;
  1069. }
  1070. STATIC __inline__ void
  1071. _pagebuf_iodone(
  1072. xfs_buf_t *pb,
  1073. int schedule)
  1074. {
  1075. if (atomic_dec_and_test(&pb->pb_io_remaining) == 1) {
  1076. pb->pb_locked = 0;
  1077. pagebuf_iodone(pb, schedule);
  1078. }
  1079. }
  1080. STATIC int
  1081. bio_end_io_pagebuf(
  1082. struct bio *bio,
  1083. unsigned int bytes_done,
  1084. int error)
  1085. {
  1086. xfs_buf_t *pb = (xfs_buf_t *)bio->bi_private;
  1087. unsigned int blocksize = pb->pb_target->pbr_bsize;
  1088. struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
  1089. if (bio->bi_size)
  1090. return 1;
  1091. if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
  1092. pb->pb_error = EIO;
  1093. do {
  1094. struct page *page = bvec->bv_page;
  1095. if (unlikely(pb->pb_error)) {
  1096. if (pb->pb_flags & PBF_READ)
  1097. ClearPageUptodate(page);
  1098. SetPageError(page);
  1099. } else if (blocksize == PAGE_CACHE_SIZE) {
  1100. SetPageUptodate(page);
  1101. } else if (!PagePrivate(page) &&
  1102. (pb->pb_flags & _PBF_PAGE_CACHE)) {
  1103. set_page_region(page, bvec->bv_offset, bvec->bv_len);
  1104. }
  1105. if (--bvec >= bio->bi_io_vec)
  1106. prefetchw(&bvec->bv_page->flags);
  1107. if (_pagebuf_iolocked(pb)) {
  1108. unlock_page(page);
  1109. }
  1110. } while (bvec >= bio->bi_io_vec);
  1111. _pagebuf_iodone(pb, 1);
  1112. bio_put(bio);
  1113. return 0;
  1114. }
  1115. STATIC void
  1116. _pagebuf_ioapply(
  1117. xfs_buf_t *pb)
  1118. {
  1119. int i, rw, map_i, total_nr_pages, nr_pages;
  1120. struct bio *bio;
  1121. int offset = pb->pb_offset;
  1122. int size = pb->pb_count_desired;
  1123. sector_t sector = pb->pb_bn;
  1124. unsigned int blocksize = pb->pb_target->pbr_bsize;
  1125. int locking = _pagebuf_iolocked(pb);
  1126. total_nr_pages = pb->pb_page_count;
  1127. map_i = 0;
  1128. if (pb->pb_flags & _PBF_RUN_QUEUES) {
  1129. pb->pb_flags &= ~_PBF_RUN_QUEUES;
  1130. rw = (pb->pb_flags & PBF_READ) ? READ_SYNC : WRITE_SYNC;
  1131. } else {
  1132. rw = (pb->pb_flags & PBF_READ) ? READ : WRITE;
  1133. }
  1134. /* Special code path for reading a sub page size pagebuf in --
  1135. * we populate up the whole page, and hence the other metadata
  1136. * in the same page. This optimization is only valid when the
  1137. * filesystem block size and the page size are equal.
  1138. */
  1139. if ((pb->pb_buffer_length < PAGE_CACHE_SIZE) &&
  1140. (pb->pb_flags & PBF_READ) && locking &&
  1141. (blocksize == PAGE_CACHE_SIZE)) {
  1142. bio = bio_alloc(GFP_NOIO, 1);
  1143. bio->bi_bdev = pb->pb_target->pbr_bdev;
  1144. bio->bi_sector = sector - (offset >> BBSHIFT);
  1145. bio->bi_end_io = bio_end_io_pagebuf;
  1146. bio->bi_private = pb;
  1147. bio_add_page(bio, pb->pb_pages[0], PAGE_CACHE_SIZE, 0);
  1148. size = 0;
  1149. atomic_inc(&pb->pb_io_remaining);
  1150. goto submit_io;
  1151. }
  1152. /* Lock down the pages which we need to for the request */
  1153. if (locking && (pb->pb_flags & PBF_WRITE) && (pb->pb_locked == 0)) {
  1154. for (i = 0; size; i++) {
  1155. int nbytes = PAGE_CACHE_SIZE - offset;
  1156. struct page *page = pb->pb_pages[i];
  1157. if (nbytes > size)
  1158. nbytes = size;
  1159. lock_page(page);
  1160. size -= nbytes;
  1161. offset = 0;
  1162. }
  1163. offset = pb->pb_offset;
  1164. size = pb->pb_count_desired;
  1165. }
  1166. next_chunk:
  1167. atomic_inc(&pb->pb_io_remaining);
  1168. nr_pages = BIO_MAX_SECTORS >> (PAGE_SHIFT - BBSHIFT);
  1169. if (nr_pages > total_nr_pages)
  1170. nr_pages = total_nr_pages;
  1171. bio = bio_alloc(GFP_NOIO, nr_pages);
  1172. bio->bi_bdev = pb->pb_target->pbr_bdev;
  1173. bio->bi_sector = sector;
  1174. bio->bi_end_io = bio_end_io_pagebuf;
  1175. bio->bi_private = pb;
  1176. for (; size && nr_pages; nr_pages--, map_i++) {
  1177. int nbytes = PAGE_CACHE_SIZE - offset;
  1178. if (nbytes > size)
  1179. nbytes = size;
  1180. if (bio_add_page(bio, pb->pb_pages[map_i],
  1181. nbytes, offset) < nbytes)
  1182. break;
  1183. offset = 0;
  1184. sector += nbytes >> BBSHIFT;
  1185. size -= nbytes;
  1186. total_nr_pages--;
  1187. }
  1188. submit_io:
  1189. if (likely(bio->bi_size)) {
  1190. submit_bio(rw, bio);
  1191. if (size)
  1192. goto next_chunk;
  1193. } else {
  1194. bio_put(bio);
  1195. pagebuf_ioerror(pb, EIO);
  1196. }
  1197. }
  1198. /*
  1199. * pagebuf_iorequest -- the core I/O request routine.
  1200. */
  1201. int
  1202. pagebuf_iorequest( /* start real I/O */
  1203. xfs_buf_t *pb) /* buffer to convey to device */
  1204. {
  1205. PB_TRACE(pb, "iorequest", 0);
  1206. if (pb->pb_flags & PBF_DELWRI) {
  1207. pagebuf_delwri_queue(pb, 1);
  1208. return 0;
  1209. }
  1210. if (pb->pb_flags & PBF_WRITE) {
  1211. _pagebuf_wait_unpin(pb);
  1212. }
  1213. pagebuf_hold(pb);
  1214. /* Set the count to 1 initially, this will stop an I/O
  1215. * completion callout which happens before we have started
  1216. * all the I/O from calling pagebuf_iodone too early.
  1217. */
  1218. atomic_set(&pb->pb_io_remaining, 1);
  1219. _pagebuf_ioapply(pb);
  1220. _pagebuf_iodone(pb, 0);
  1221. pagebuf_rele(pb);
  1222. return 0;
  1223. }
  1224. /*
  1225. * pagebuf_iowait
  1226. *
  1227. * pagebuf_iowait waits for I/O to complete on the buffer supplied.
  1228. * It returns immediately if no I/O is pending. In any case, it returns
  1229. * the error code, if any, or 0 if there is no error.
  1230. */
  1231. int
  1232. pagebuf_iowait(
  1233. xfs_buf_t *pb)
  1234. {
  1235. PB_TRACE(pb, "iowait", 0);
  1236. if (atomic_read(&pb->pb_io_remaining))
  1237. blk_run_address_space(pb->pb_target->pbr_mapping);
  1238. down(&pb->pb_iodonesema);
  1239. PB_TRACE(pb, "iowaited", (long)pb->pb_error);
  1240. return pb->pb_error;
  1241. }
  1242. caddr_t
  1243. pagebuf_offset(
  1244. xfs_buf_t *pb,
  1245. size_t offset)
  1246. {
  1247. struct page *page;
  1248. offset += pb->pb_offset;
  1249. page = pb->pb_pages[offset >> PAGE_CACHE_SHIFT];
  1250. return (caddr_t) page_address(page) + (offset & (PAGE_CACHE_SIZE - 1));
  1251. }
  1252. /*
  1253. * pagebuf_iomove
  1254. *
  1255. * Move data into or out of a buffer.
  1256. */
  1257. void
  1258. pagebuf_iomove(
  1259. xfs_buf_t *pb, /* buffer to process */
  1260. size_t boff, /* starting buffer offset */
  1261. size_t bsize, /* length to copy */
  1262. caddr_t data, /* data address */
  1263. page_buf_rw_t mode) /* read/write flag */
  1264. {
  1265. size_t bend, cpoff, csize;
  1266. struct page *page;
  1267. bend = boff + bsize;
  1268. while (boff < bend) {
  1269. page = pb->pb_pages[page_buf_btoct(boff + pb->pb_offset)];
  1270. cpoff = page_buf_poff(boff + pb->pb_offset);
  1271. csize = min_t(size_t,
  1272. PAGE_CACHE_SIZE-cpoff, pb->pb_count_desired-boff);
  1273. ASSERT(((csize + cpoff) <= PAGE_CACHE_SIZE));
  1274. switch (mode) {
  1275. case PBRW_ZERO:
  1276. memset(page_address(page) + cpoff, 0, csize);
  1277. break;
  1278. case PBRW_READ:
  1279. memcpy(data, page_address(page) + cpoff, csize);
  1280. break;
  1281. case PBRW_WRITE:
  1282. memcpy(page_address(page) + cpoff, data, csize);
  1283. }
  1284. boff += csize;
  1285. data += csize;
  1286. }
  1287. }
  1288. /*
  1289. * Handling of buftargs.
  1290. */
  1291. /*
  1292. * Wait for any bufs with callbacks that have been submitted but
  1293. * have not yet returned... walk the hash list for the target.
  1294. */
  1295. void
  1296. xfs_wait_buftarg(
  1297. xfs_buftarg_t *btp)
  1298. {
  1299. xfs_buf_t *bp, *n;
  1300. xfs_bufhash_t *hash;
  1301. uint i;
  1302. for (i = 0; i < (1 << btp->bt_hashshift); i++) {
  1303. hash = &btp->bt_hash[i];
  1304. again:
  1305. spin_lock(&hash->bh_lock);
  1306. list_for_each_entry_safe(bp, n, &hash->bh_list, pb_hash_list) {
  1307. ASSERT(btp == bp->pb_target);
  1308. if (!(bp->pb_flags & PBF_FS_MANAGED)) {
  1309. spin_unlock(&hash->bh_lock);
  1310. /*
  1311. * Catch superblock reference count leaks
  1312. * immediately
  1313. */
  1314. BUG_ON(bp->pb_bn == 0);
  1315. delay(100);
  1316. goto again;
  1317. }
  1318. }
  1319. spin_unlock(&hash->bh_lock);
  1320. }
  1321. }
  1322. /*
  1323. * Allocate buffer hash table for a given target.
  1324. * For devices containing metadata (i.e. not the log/realtime devices)
  1325. * we need to allocate a much larger hash table.
  1326. */
  1327. STATIC void
  1328. xfs_alloc_bufhash(
  1329. xfs_buftarg_t *btp,
  1330. int external)
  1331. {
  1332. unsigned int i;
  1333. btp->bt_hashshift = external ? 3 : 8; /* 8 or 256 buckets */
  1334. btp->bt_hashmask = (1 << btp->bt_hashshift) - 1;
  1335. btp->bt_hash = kmem_zalloc((1 << btp->bt_hashshift) *
  1336. sizeof(xfs_bufhash_t), KM_SLEEP);
  1337. for (i = 0; i < (1 << btp->bt_hashshift); i++) {
  1338. spin_lock_init(&btp->bt_hash[i].bh_lock);
  1339. INIT_LIST_HEAD(&btp->bt_hash[i].bh_list);
  1340. }
  1341. }
  1342. STATIC void
  1343. xfs_free_bufhash(
  1344. xfs_buftarg_t *btp)
  1345. {
  1346. kmem_free(btp->bt_hash,
  1347. (1 << btp->bt_hashshift) * sizeof(xfs_bufhash_t));
  1348. btp->bt_hash = NULL;
  1349. }
  1350. void
  1351. xfs_free_buftarg(
  1352. xfs_buftarg_t *btp,
  1353. int external)
  1354. {
  1355. xfs_flush_buftarg(btp, 1);
  1356. if (external)
  1357. xfs_blkdev_put(btp->pbr_bdev);
  1358. xfs_free_bufhash(btp);
  1359. iput(btp->pbr_mapping->host);
  1360. kmem_free(btp, sizeof(*btp));
  1361. }
  1362. STATIC int
  1363. xfs_setsize_buftarg_flags(
  1364. xfs_buftarg_t *btp,
  1365. unsigned int blocksize,
  1366. unsigned int sectorsize,
  1367. int verbose)
  1368. {
  1369. btp->pbr_bsize = blocksize;
  1370. btp->pbr_sshift = ffs(sectorsize) - 1;
  1371. btp->pbr_smask = sectorsize - 1;
  1372. if (set_blocksize(btp->pbr_bdev, sectorsize)) {
  1373. printk(KERN_WARNING
  1374. "XFS: Cannot set_blocksize to %u on device %s\n",
  1375. sectorsize, XFS_BUFTARG_NAME(btp));
  1376. return EINVAL;
  1377. }
  1378. if (verbose &&
  1379. (PAGE_CACHE_SIZE / BITS_PER_LONG) > sectorsize) {
  1380. printk(KERN_WARNING
  1381. "XFS: %u byte sectors in use on device %s. "
  1382. "This is suboptimal; %u or greater is ideal.\n",
  1383. sectorsize, XFS_BUFTARG_NAME(btp),
  1384. (unsigned int)PAGE_CACHE_SIZE / BITS_PER_LONG);
  1385. }
  1386. return 0;
  1387. }
  1388. /*
  1389. * When allocating the initial buffer target we have not yet
  1390. * read in the superblock, so don't know what sized sectors
  1391. * are being used is at this early stage. Play safe.
  1392. */
  1393. STATIC int
  1394. xfs_setsize_buftarg_early(
  1395. xfs_buftarg_t *btp,
  1396. struct block_device *bdev)
  1397. {
  1398. return xfs_setsize_buftarg_flags(btp,
  1399. PAGE_CACHE_SIZE, bdev_hardsect_size(bdev), 0);
  1400. }
  1401. int
  1402. xfs_setsize_buftarg(
  1403. xfs_buftarg_t *btp,
  1404. unsigned int blocksize,
  1405. unsigned int sectorsize)
  1406. {
  1407. return xfs_setsize_buftarg_flags(btp, blocksize, sectorsize, 1);
  1408. }
  1409. STATIC int
  1410. xfs_mapping_buftarg(
  1411. xfs_buftarg_t *btp,
  1412. struct block_device *bdev)
  1413. {
  1414. struct backing_dev_info *bdi;
  1415. struct inode *inode;
  1416. struct address_space *mapping;
  1417. static struct address_space_operations mapping_aops = {
  1418. .sync_page = block_sync_page,
  1419. };
  1420. inode = new_inode(bdev->bd_inode->i_sb);
  1421. if (!inode) {
  1422. printk(KERN_WARNING
  1423. "XFS: Cannot allocate mapping inode for device %s\n",
  1424. XFS_BUFTARG_NAME(btp));
  1425. return ENOMEM;
  1426. }
  1427. inode->i_mode = S_IFBLK;
  1428. inode->i_bdev = bdev;
  1429. inode->i_rdev = bdev->bd_dev;
  1430. bdi = blk_get_backing_dev_info(bdev);
  1431. if (!bdi)
  1432. bdi = &default_backing_dev_info;
  1433. mapping = &inode->i_data;
  1434. mapping->a_ops = &mapping_aops;
  1435. mapping->backing_dev_info = bdi;
  1436. mapping_set_gfp_mask(mapping, GFP_NOFS);
  1437. btp->pbr_mapping = mapping;
  1438. return 0;
  1439. }
  1440. xfs_buftarg_t *
  1441. xfs_alloc_buftarg(
  1442. struct block_device *bdev,
  1443. int external)
  1444. {
  1445. xfs_buftarg_t *btp;
  1446. btp = kmem_zalloc(sizeof(*btp), KM_SLEEP);
  1447. btp->pbr_dev = bdev->bd_dev;
  1448. btp->pbr_bdev = bdev;
  1449. if (xfs_setsize_buftarg_early(btp, bdev))
  1450. goto error;
  1451. if (xfs_mapping_buftarg(btp, bdev))
  1452. goto error;
  1453. xfs_alloc_bufhash(btp, external);
  1454. return btp;
  1455. error:
  1456. kmem_free(btp, sizeof(*btp));
  1457. return NULL;
  1458. }
  1459. /*
  1460. * Pagebuf delayed write buffer handling
  1461. */
  1462. STATIC LIST_HEAD(pbd_delwrite_queue);
  1463. STATIC DEFINE_SPINLOCK(pbd_delwrite_lock);
  1464. STATIC void
  1465. pagebuf_delwri_queue(
  1466. xfs_buf_t *pb,
  1467. int unlock)
  1468. {
  1469. PB_TRACE(pb, "delwri_q", (long)unlock);
  1470. ASSERT((pb->pb_flags & (PBF_DELWRI|PBF_ASYNC)) ==
  1471. (PBF_DELWRI|PBF_ASYNC));
  1472. spin_lock(&pbd_delwrite_lock);
  1473. /* If already in the queue, dequeue and place at tail */
  1474. if (!list_empty(&pb->pb_list)) {
  1475. ASSERT(pb->pb_flags & _PBF_DELWRI_Q);
  1476. if (unlock) {
  1477. atomic_dec(&pb->pb_hold);
  1478. }
  1479. list_del(&pb->pb_list);
  1480. }
  1481. pb->pb_flags |= _PBF_DELWRI_Q;
  1482. list_add_tail(&pb->pb_list, &pbd_delwrite_queue);
  1483. pb->pb_queuetime = jiffies;
  1484. spin_unlock(&pbd_delwrite_lock);
  1485. if (unlock)
  1486. pagebuf_unlock(pb);
  1487. }
  1488. void
  1489. pagebuf_delwri_dequeue(
  1490. xfs_buf_t *pb)
  1491. {
  1492. int dequeued = 0;
  1493. spin_lock(&pbd_delwrite_lock);
  1494. if ((pb->pb_flags & PBF_DELWRI) && !list_empty(&pb->pb_list)) {
  1495. ASSERT(pb->pb_flags & _PBF_DELWRI_Q);
  1496. list_del_init(&pb->pb_list);
  1497. dequeued = 1;
  1498. }
  1499. pb->pb_flags &= ~(PBF_DELWRI|_PBF_DELWRI_Q);
  1500. spin_unlock(&pbd_delwrite_lock);
  1501. if (dequeued)
  1502. pagebuf_rele(pb);
  1503. PB_TRACE(pb, "delwri_dq", (long)dequeued);
  1504. }
  1505. STATIC void
  1506. pagebuf_runall_queues(
  1507. struct workqueue_struct *queue)
  1508. {
  1509. flush_workqueue(queue);
  1510. }
  1511. /* Defines for pagebuf daemon */
  1512. STATIC struct task_struct *xfsbufd_task;
  1513. STATIC int xfsbufd_force_flush;
  1514. STATIC int xfsbufd_force_sleep;
  1515. STATIC int
  1516. xfsbufd_wakeup(
  1517. int priority,
  1518. gfp_t mask)
  1519. {
  1520. if (xfsbufd_force_sleep)
  1521. return 0;
  1522. xfsbufd_force_flush = 1;
  1523. barrier();
  1524. wake_up_process(xfsbufd_task);
  1525. return 0;
  1526. }
  1527. STATIC int
  1528. xfsbufd(
  1529. void *data)
  1530. {
  1531. struct list_head tmp;
  1532. unsigned long age;
  1533. xfs_buftarg_t *target;
  1534. xfs_buf_t *pb, *n;
  1535. current->flags |= PF_MEMALLOC;
  1536. INIT_LIST_HEAD(&tmp);
  1537. do {
  1538. if (unlikely(freezing(current))) {
  1539. xfsbufd_force_sleep = 1;
  1540. refrigerator();
  1541. } else {
  1542. xfsbufd_force_sleep = 0;
  1543. }
  1544. schedule_timeout_interruptible
  1545. (xfs_buf_timer_centisecs * msecs_to_jiffies(10));
  1546. age = xfs_buf_age_centisecs * msecs_to_jiffies(10);
  1547. spin_lock(&pbd_delwrite_lock);
  1548. list_for_each_entry_safe(pb, n, &pbd_delwrite_queue, pb_list) {
  1549. PB_TRACE(pb, "walkq1", (long)pagebuf_ispin(pb));
  1550. ASSERT(pb->pb_flags & PBF_DELWRI);
  1551. if (!pagebuf_ispin(pb) && !pagebuf_cond_lock(pb)) {
  1552. if (!xfsbufd_force_flush &&
  1553. time_before(jiffies,
  1554. pb->pb_queuetime + age)) {
  1555. pagebuf_unlock(pb);
  1556. break;
  1557. }
  1558. pb->pb_flags &= ~(PBF_DELWRI|_PBF_DELWRI_Q);
  1559. pb->pb_flags |= PBF_WRITE;
  1560. list_move(&pb->pb_list, &tmp);
  1561. }
  1562. }
  1563. spin_unlock(&pbd_delwrite_lock);
  1564. while (!list_empty(&tmp)) {
  1565. pb = list_entry(tmp.next, xfs_buf_t, pb_list);
  1566. target = pb->pb_target;
  1567. list_del_init(&pb->pb_list);
  1568. pagebuf_iostrategy(pb);
  1569. blk_run_address_space(target->pbr_mapping);
  1570. }
  1571. if (as_list_len > 0)
  1572. purge_addresses();
  1573. xfsbufd_force_flush = 0;
  1574. } while (!kthread_should_stop());
  1575. return 0;
  1576. }
  1577. /*
  1578. * Go through all incore buffers, and release buffers if they belong to
  1579. * the given device. This is used in filesystem error handling to
  1580. * preserve the consistency of its metadata.
  1581. */
  1582. int
  1583. xfs_flush_buftarg(
  1584. xfs_buftarg_t *target,
  1585. int wait)
  1586. {
  1587. struct list_head tmp;
  1588. xfs_buf_t *pb, *n;
  1589. int pincount = 0;
  1590. pagebuf_runall_queues(xfsdatad_workqueue);
  1591. pagebuf_runall_queues(xfslogd_workqueue);
  1592. INIT_LIST_HEAD(&tmp);
  1593. spin_lock(&pbd_delwrite_lock);
  1594. list_for_each_entry_safe(pb, n, &pbd_delwrite_queue, pb_list) {
  1595. if (pb->pb_target != target)
  1596. continue;
  1597. ASSERT(pb->pb_flags & (PBF_DELWRI|_PBF_DELWRI_Q));
  1598. PB_TRACE(pb, "walkq2", (long)pagebuf_ispin(pb));
  1599. if (pagebuf_ispin(pb)) {
  1600. pincount++;
  1601. continue;
  1602. }
  1603. list_move(&pb->pb_list, &tmp);
  1604. }
  1605. spin_unlock(&pbd_delwrite_lock);
  1606. /*
  1607. * Dropped the delayed write list lock, now walk the temporary list
  1608. */
  1609. list_for_each_entry_safe(pb, n, &tmp, pb_list) {
  1610. pagebuf_lock(pb);
  1611. pb->pb_flags &= ~(PBF_DELWRI|_PBF_DELWRI_Q);
  1612. pb->pb_flags |= PBF_WRITE;
  1613. if (wait)
  1614. pb->pb_flags &= ~PBF_ASYNC;
  1615. else
  1616. list_del_init(&pb->pb_list);
  1617. pagebuf_iostrategy(pb);
  1618. }
  1619. /*
  1620. * Remaining list items must be flushed before returning
  1621. */
  1622. while (!list_empty(&tmp)) {
  1623. pb = list_entry(tmp.next, xfs_buf_t, pb_list);
  1624. list_del_init(&pb->pb_list);
  1625. xfs_iowait(pb);
  1626. xfs_buf_relse(pb);
  1627. }
  1628. if (wait)
  1629. blk_run_address_space(target->pbr_mapping);
  1630. return pincount;
  1631. }
  1632. int __init
  1633. pagebuf_init(void)
  1634. {
  1635. int error = -ENOMEM;
  1636. #ifdef PAGEBUF_TRACE
  1637. pagebuf_trace_buf = ktrace_alloc(PAGEBUF_TRACE_SIZE, KM_SLEEP);
  1638. #endif
  1639. pagebuf_zone = kmem_zone_init(sizeof(xfs_buf_t), "xfs_buf");
  1640. if (!pagebuf_zone)
  1641. goto out_free_trace_buf;
  1642. xfslogd_workqueue = create_workqueue("xfslogd");
  1643. if (!xfslogd_workqueue)
  1644. goto out_free_buf_zone;
  1645. xfsdatad_workqueue = create_workqueue("xfsdatad");
  1646. if (!xfsdatad_workqueue)
  1647. goto out_destroy_xfslogd_workqueue;
  1648. xfsbufd_task = kthread_run(xfsbufd, NULL, "xfsbufd");
  1649. if (IS_ERR(xfsbufd_task)) {
  1650. error = PTR_ERR(xfsbufd_task);
  1651. goto out_destroy_xfsdatad_workqueue;
  1652. }
  1653. pagebuf_shake = kmem_shake_register(xfsbufd_wakeup);
  1654. if (!pagebuf_shake)
  1655. goto out_stop_xfsbufd;
  1656. return 0;
  1657. out_stop_xfsbufd:
  1658. kthread_stop(xfsbufd_task);
  1659. out_destroy_xfsdatad_workqueue:
  1660. destroy_workqueue(xfsdatad_workqueue);
  1661. out_destroy_xfslogd_workqueue:
  1662. destroy_workqueue(xfslogd_workqueue);
  1663. out_free_buf_zone:
  1664. kmem_zone_destroy(pagebuf_zone);
  1665. out_free_trace_buf:
  1666. #ifdef PAGEBUF_TRACE
  1667. ktrace_free(pagebuf_trace_buf);
  1668. #endif
  1669. return error;
  1670. }
  1671. void
  1672. pagebuf_terminate(void)
  1673. {
  1674. kmem_shake_deregister(pagebuf_shake);
  1675. kthread_stop(xfsbufd_task);
  1676. destroy_workqueue(xfsdatad_workqueue);
  1677. destroy_workqueue(xfslogd_workqueue);
  1678. kmem_zone_destroy(pagebuf_zone);
  1679. #ifdef PAGEBUF_TRACE
  1680. ktrace_free(pagebuf_trace_buf);
  1681. #endif
  1682. }