sata_mv.c 84 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088
  1. /*
  2. * sata_mv.c - Marvell SATA support
  3. *
  4. * Copyright 2008: Marvell Corporation, all rights reserved.
  5. * Copyright 2005: EMC Corporation, all rights reserved.
  6. * Copyright 2005 Red Hat, Inc. All rights reserved.
  7. *
  8. * Please ALWAYS copy linux-ide@vger.kernel.org on emails.
  9. *
  10. * This program is free software; you can redistribute it and/or modify
  11. * it under the terms of the GNU General Public License as published by
  12. * the Free Software Foundation; version 2 of the License.
  13. *
  14. * This program is distributed in the hope that it will be useful,
  15. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  16. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  17. * GNU General Public License for more details.
  18. *
  19. * You should have received a copy of the GNU General Public License
  20. * along with this program; if not, write to the Free Software
  21. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  22. *
  23. */
  24. /*
  25. * sata_mv TODO list:
  26. *
  27. * --> Errata workaround for NCQ device errors.
  28. *
  29. * --> More errata workarounds for PCI-X.
  30. *
  31. * --> Complete a full errata audit for all chipsets to identify others.
  32. *
  33. * --> ATAPI support (Marvell claims the 60xx/70xx chips can do it).
  34. *
  35. * --> Investigate problems with PCI Message Signalled Interrupts (MSI).
  36. *
  37. * --> Cache frequently-accessed registers in mv_port_priv to reduce overhead.
  38. *
  39. * --> Develop a low-power-consumption strategy, and implement it.
  40. *
  41. * --> [Experiment, low priority] Investigate interrupt coalescing.
  42. * Quite often, especially with PCI Message Signalled Interrupts (MSI),
  43. * the overhead reduced by interrupt mitigation is quite often not
  44. * worth the latency cost.
  45. *
  46. * --> [Experiment, Marvell value added] Is it possible to use target
  47. * mode to cross-connect two Linux boxes with Marvell cards? If so,
  48. * creating LibATA target mode support would be very interesting.
  49. *
  50. * Target mode, for those without docs, is the ability to directly
  51. * connect two SATA ports.
  52. */
  53. #include <linux/kernel.h>
  54. #include <linux/module.h>
  55. #include <linux/pci.h>
  56. #include <linux/init.h>
  57. #include <linux/blkdev.h>
  58. #include <linux/delay.h>
  59. #include <linux/interrupt.h>
  60. #include <linux/dmapool.h>
  61. #include <linux/dma-mapping.h>
  62. #include <linux/device.h>
  63. #include <linux/platform_device.h>
  64. #include <linux/ata_platform.h>
  65. #include <linux/mbus.h>
  66. #include <scsi/scsi_host.h>
  67. #include <scsi/scsi_cmnd.h>
  68. #include <scsi/scsi_device.h>
  69. #include <linux/libata.h>
  70. #define DRV_NAME "sata_mv"
  71. #define DRV_VERSION "1.20"
  72. enum {
  73. /* BAR's are enumerated in terms of pci_resource_start() terms */
  74. MV_PRIMARY_BAR = 0, /* offset 0x10: memory space */
  75. MV_IO_BAR = 2, /* offset 0x18: IO space */
  76. MV_MISC_BAR = 3, /* offset 0x1c: FLASH, NVRAM, SRAM */
  77. MV_MAJOR_REG_AREA_SZ = 0x10000, /* 64KB */
  78. MV_MINOR_REG_AREA_SZ = 0x2000, /* 8KB */
  79. MV_PCI_REG_BASE = 0,
  80. MV_IRQ_COAL_REG_BASE = 0x18000, /* 6xxx part only */
  81. MV_IRQ_COAL_CAUSE = (MV_IRQ_COAL_REG_BASE + 0x08),
  82. MV_IRQ_COAL_CAUSE_LO = (MV_IRQ_COAL_REG_BASE + 0x88),
  83. MV_IRQ_COAL_CAUSE_HI = (MV_IRQ_COAL_REG_BASE + 0x8c),
  84. MV_IRQ_COAL_THRESHOLD = (MV_IRQ_COAL_REG_BASE + 0xcc),
  85. MV_IRQ_COAL_TIME_THRESHOLD = (MV_IRQ_COAL_REG_BASE + 0xd0),
  86. MV_SATAHC0_REG_BASE = 0x20000,
  87. MV_FLASH_CTL = 0x1046c,
  88. MV_GPIO_PORT_CTL = 0x104f0,
  89. MV_RESET_CFG = 0x180d8,
  90. MV_PCI_REG_SZ = MV_MAJOR_REG_AREA_SZ,
  91. MV_SATAHC_REG_SZ = MV_MAJOR_REG_AREA_SZ,
  92. MV_SATAHC_ARBTR_REG_SZ = MV_MINOR_REG_AREA_SZ, /* arbiter */
  93. MV_PORT_REG_SZ = MV_MINOR_REG_AREA_SZ,
  94. MV_MAX_Q_DEPTH = 32,
  95. MV_MAX_Q_DEPTH_MASK = MV_MAX_Q_DEPTH - 1,
  96. /* CRQB needs alignment on a 1KB boundary. Size == 1KB
  97. * CRPB needs alignment on a 256B boundary. Size == 256B
  98. * ePRD (SG) entries need alignment on a 16B boundary. Size == 16B
  99. */
  100. MV_CRQB_Q_SZ = (32 * MV_MAX_Q_DEPTH),
  101. MV_CRPB_Q_SZ = (8 * MV_MAX_Q_DEPTH),
  102. MV_MAX_SG_CT = 256,
  103. MV_SG_TBL_SZ = (16 * MV_MAX_SG_CT),
  104. /* Determine hc from 0-7 port: hc = port >> MV_PORT_HC_SHIFT */
  105. MV_PORT_HC_SHIFT = 2,
  106. MV_PORTS_PER_HC = (1 << MV_PORT_HC_SHIFT), /* 4 */
  107. /* Determine hc port from 0-7 port: hardport = port & MV_PORT_MASK */
  108. MV_PORT_MASK = (MV_PORTS_PER_HC - 1), /* 3 */
  109. /* Host Flags */
  110. MV_FLAG_DUAL_HC = (1 << 30), /* two SATA Host Controllers */
  111. MV_FLAG_IRQ_COALESCE = (1 << 29), /* IRQ coalescing capability */
  112. /* SoC integrated controllers, no PCI interface */
  113. MV_FLAG_SOC = (1 << 28),
  114. MV_COMMON_FLAGS = ATA_FLAG_SATA | ATA_FLAG_NO_LEGACY |
  115. ATA_FLAG_MMIO | ATA_FLAG_NO_ATAPI |
  116. ATA_FLAG_PIO_POLLING,
  117. MV_6XXX_FLAGS = MV_FLAG_IRQ_COALESCE,
  118. CRQB_FLAG_READ = (1 << 0),
  119. CRQB_TAG_SHIFT = 1,
  120. CRQB_IOID_SHIFT = 6, /* CRQB Gen-II/IIE IO Id shift */
  121. CRQB_PMP_SHIFT = 12, /* CRQB Gen-II/IIE PMP shift */
  122. CRQB_HOSTQ_SHIFT = 17, /* CRQB Gen-II/IIE HostQueTag shift */
  123. CRQB_CMD_ADDR_SHIFT = 8,
  124. CRQB_CMD_CS = (0x2 << 11),
  125. CRQB_CMD_LAST = (1 << 15),
  126. CRPB_FLAG_STATUS_SHIFT = 8,
  127. CRPB_IOID_SHIFT_6 = 5, /* CRPB Gen-II IO Id shift */
  128. CRPB_IOID_SHIFT_7 = 7, /* CRPB Gen-IIE IO Id shift */
  129. EPRD_FLAG_END_OF_TBL = (1 << 31),
  130. /* PCI interface registers */
  131. PCI_COMMAND_OFS = 0xc00,
  132. PCI_MAIN_CMD_STS_OFS = 0xd30,
  133. STOP_PCI_MASTER = (1 << 2),
  134. PCI_MASTER_EMPTY = (1 << 3),
  135. GLOB_SFT_RST = (1 << 4),
  136. MV_PCI_MODE = 0xd00,
  137. MV_PCI_EXP_ROM_BAR_CTL = 0xd2c,
  138. MV_PCI_DISC_TIMER = 0xd04,
  139. MV_PCI_MSI_TRIGGER = 0xc38,
  140. MV_PCI_SERR_MASK = 0xc28,
  141. MV_PCI_XBAR_TMOUT = 0x1d04,
  142. MV_PCI_ERR_LOW_ADDRESS = 0x1d40,
  143. MV_PCI_ERR_HIGH_ADDRESS = 0x1d44,
  144. MV_PCI_ERR_ATTRIBUTE = 0x1d48,
  145. MV_PCI_ERR_COMMAND = 0x1d50,
  146. PCI_IRQ_CAUSE_OFS = 0x1d58,
  147. PCI_IRQ_MASK_OFS = 0x1d5c,
  148. PCI_UNMASK_ALL_IRQS = 0x7fffff, /* bits 22-0 */
  149. PCIE_IRQ_CAUSE_OFS = 0x1900,
  150. PCIE_IRQ_MASK_OFS = 0x1910,
  151. PCIE_UNMASK_ALL_IRQS = 0x40a, /* assorted bits */
  152. /* Host Controller Main Interrupt Cause/Mask registers (1 per-chip) */
  153. PCI_HC_MAIN_IRQ_CAUSE_OFS = 0x1d60,
  154. PCI_HC_MAIN_IRQ_MASK_OFS = 0x1d64,
  155. SOC_HC_MAIN_IRQ_CAUSE_OFS = 0x20020,
  156. SOC_HC_MAIN_IRQ_MASK_OFS = 0x20024,
  157. ERR_IRQ = (1 << 0), /* shift by port # */
  158. DONE_IRQ = (1 << 1), /* shift by port # */
  159. HC0_IRQ_PEND = 0x1ff, /* bits 0-8 = HC0's ports */
  160. HC_SHIFT = 9, /* bits 9-17 = HC1's ports */
  161. PCI_ERR = (1 << 18),
  162. TRAN_LO_DONE = (1 << 19), /* 6xxx: IRQ coalescing */
  163. TRAN_HI_DONE = (1 << 20), /* 6xxx: IRQ coalescing */
  164. PORTS_0_3_COAL_DONE = (1 << 8),
  165. PORTS_4_7_COAL_DONE = (1 << 17),
  166. PORTS_0_7_COAL_DONE = (1 << 21), /* 6xxx: IRQ coalescing */
  167. GPIO_INT = (1 << 22),
  168. SELF_INT = (1 << 23),
  169. TWSI_INT = (1 << 24),
  170. HC_MAIN_RSVD = (0x7f << 25), /* bits 31-25 */
  171. HC_MAIN_RSVD_5 = (0x1fff << 19), /* bits 31-19 */
  172. HC_MAIN_RSVD_SOC = (0x3fffffb << 6), /* bits 31-9, 7-6 */
  173. HC_MAIN_MASKED_IRQS = (TRAN_LO_DONE | TRAN_HI_DONE |
  174. PORTS_0_3_COAL_DONE | PORTS_4_7_COAL_DONE |
  175. PORTS_0_7_COAL_DONE | GPIO_INT | TWSI_INT |
  176. HC_MAIN_RSVD),
  177. HC_MAIN_MASKED_IRQS_5 = (PORTS_0_3_COAL_DONE | PORTS_4_7_COAL_DONE |
  178. HC_MAIN_RSVD_5),
  179. HC_MAIN_MASKED_IRQS_SOC = (PORTS_0_3_COAL_DONE | HC_MAIN_RSVD_SOC),
  180. /* SATAHC registers */
  181. HC_CFG_OFS = 0,
  182. HC_IRQ_CAUSE_OFS = 0x14,
  183. DMA_IRQ = (1 << 0), /* shift by port # */
  184. HC_COAL_IRQ = (1 << 4), /* IRQ coalescing */
  185. DEV_IRQ = (1 << 8), /* shift by port # */
  186. /* Shadow block registers */
  187. SHD_BLK_OFS = 0x100,
  188. SHD_CTL_AST_OFS = 0x20, /* ofs from SHD_BLK_OFS */
  189. /* SATA registers */
  190. SATA_STATUS_OFS = 0x300, /* ctrl, err regs follow status */
  191. SATA_ACTIVE_OFS = 0x350,
  192. SATA_FIS_IRQ_CAUSE_OFS = 0x364,
  193. LTMODE_OFS = 0x30c,
  194. LTMODE_BIT8 = (1 << 8), /* unknown, but necessary */
  195. PHY_MODE3 = 0x310,
  196. PHY_MODE4 = 0x314,
  197. PHY_MODE2 = 0x330,
  198. SATA_IFCTL_OFS = 0x344,
  199. SATA_IFSTAT_OFS = 0x34c,
  200. VENDOR_UNIQUE_FIS_OFS = 0x35c,
  201. FIS_CFG_OFS = 0x360,
  202. FIS_CFG_SINGLE_SYNC = (1 << 16), /* SYNC on DMA activation */
  203. MV5_PHY_MODE = 0x74,
  204. MV5_LT_MODE = 0x30,
  205. MV5_PHY_CTL = 0x0C,
  206. SATA_INTERFACE_CFG = 0x050,
  207. MV_M2_PREAMP_MASK = 0x7e0,
  208. /* Port registers */
  209. EDMA_CFG_OFS = 0,
  210. EDMA_CFG_Q_DEPTH = 0x1f, /* max device queue depth */
  211. EDMA_CFG_NCQ = (1 << 5), /* for R/W FPDMA queued */
  212. EDMA_CFG_NCQ_GO_ON_ERR = (1 << 14), /* continue on error */
  213. EDMA_CFG_RD_BRST_EXT = (1 << 11), /* read burst 512B */
  214. EDMA_CFG_WR_BUFF_LEN = (1 << 13), /* write buffer 512B */
  215. EDMA_CFG_EDMA_FBS = (1 << 16), /* EDMA FIS-Based Switching */
  216. EDMA_CFG_FBS = (1 << 26), /* FIS-Based Switching */
  217. EDMA_ERR_IRQ_CAUSE_OFS = 0x8,
  218. EDMA_ERR_IRQ_MASK_OFS = 0xc,
  219. EDMA_ERR_D_PAR = (1 << 0), /* UDMA data parity err */
  220. EDMA_ERR_PRD_PAR = (1 << 1), /* UDMA PRD parity err */
  221. EDMA_ERR_DEV = (1 << 2), /* device error */
  222. EDMA_ERR_DEV_DCON = (1 << 3), /* device disconnect */
  223. EDMA_ERR_DEV_CON = (1 << 4), /* device connected */
  224. EDMA_ERR_SERR = (1 << 5), /* SError bits [WBDST] raised */
  225. EDMA_ERR_SELF_DIS = (1 << 7), /* Gen II/IIE self-disable */
  226. EDMA_ERR_SELF_DIS_5 = (1 << 8), /* Gen I self-disable */
  227. EDMA_ERR_BIST_ASYNC = (1 << 8), /* BIST FIS or Async Notify */
  228. EDMA_ERR_TRANS_IRQ_7 = (1 << 8), /* Gen IIE transprt layer irq */
  229. EDMA_ERR_CRQB_PAR = (1 << 9), /* CRQB parity error */
  230. EDMA_ERR_CRPB_PAR = (1 << 10), /* CRPB parity error */
  231. EDMA_ERR_INTRL_PAR = (1 << 11), /* internal parity error */
  232. EDMA_ERR_IORDY = (1 << 12), /* IORdy timeout */
  233. EDMA_ERR_LNK_CTRL_RX = (0xf << 13), /* link ctrl rx error */
  234. EDMA_ERR_LNK_CTRL_RX_0 = (1 << 13), /* transient: CRC err */
  235. EDMA_ERR_LNK_CTRL_RX_1 = (1 << 14), /* transient: FIFO err */
  236. EDMA_ERR_LNK_CTRL_RX_2 = (1 << 15), /* fatal: caught SYNC */
  237. EDMA_ERR_LNK_CTRL_RX_3 = (1 << 16), /* transient: FIS rx err */
  238. EDMA_ERR_LNK_DATA_RX = (0xf << 17), /* link data rx error */
  239. EDMA_ERR_LNK_CTRL_TX = (0x1f << 21), /* link ctrl tx error */
  240. EDMA_ERR_LNK_CTRL_TX_0 = (1 << 21), /* transient: CRC err */
  241. EDMA_ERR_LNK_CTRL_TX_1 = (1 << 22), /* transient: FIFO err */
  242. EDMA_ERR_LNK_CTRL_TX_2 = (1 << 23), /* transient: caught SYNC */
  243. EDMA_ERR_LNK_CTRL_TX_3 = (1 << 24), /* transient: caught DMAT */
  244. EDMA_ERR_LNK_CTRL_TX_4 = (1 << 25), /* transient: FIS collision */
  245. EDMA_ERR_LNK_DATA_TX = (0x1f << 26), /* link data tx error */
  246. EDMA_ERR_TRANS_PROTO = (1 << 31), /* transport protocol error */
  247. EDMA_ERR_OVERRUN_5 = (1 << 5),
  248. EDMA_ERR_UNDERRUN_5 = (1 << 6),
  249. EDMA_ERR_IRQ_TRANSIENT = EDMA_ERR_LNK_CTRL_RX_0 |
  250. EDMA_ERR_LNK_CTRL_RX_1 |
  251. EDMA_ERR_LNK_CTRL_RX_3 |
  252. EDMA_ERR_LNK_CTRL_TX,
  253. EDMA_EH_FREEZE = EDMA_ERR_D_PAR |
  254. EDMA_ERR_PRD_PAR |
  255. EDMA_ERR_DEV_DCON |
  256. EDMA_ERR_DEV_CON |
  257. EDMA_ERR_SERR |
  258. EDMA_ERR_SELF_DIS |
  259. EDMA_ERR_CRQB_PAR |
  260. EDMA_ERR_CRPB_PAR |
  261. EDMA_ERR_INTRL_PAR |
  262. EDMA_ERR_IORDY |
  263. EDMA_ERR_LNK_CTRL_RX_2 |
  264. EDMA_ERR_LNK_DATA_RX |
  265. EDMA_ERR_LNK_DATA_TX |
  266. EDMA_ERR_TRANS_PROTO,
  267. EDMA_EH_FREEZE_5 = EDMA_ERR_D_PAR |
  268. EDMA_ERR_PRD_PAR |
  269. EDMA_ERR_DEV_DCON |
  270. EDMA_ERR_DEV_CON |
  271. EDMA_ERR_OVERRUN_5 |
  272. EDMA_ERR_UNDERRUN_5 |
  273. EDMA_ERR_SELF_DIS_5 |
  274. EDMA_ERR_CRQB_PAR |
  275. EDMA_ERR_CRPB_PAR |
  276. EDMA_ERR_INTRL_PAR |
  277. EDMA_ERR_IORDY,
  278. EDMA_REQ_Q_BASE_HI_OFS = 0x10,
  279. EDMA_REQ_Q_IN_PTR_OFS = 0x14, /* also contains BASE_LO */
  280. EDMA_REQ_Q_OUT_PTR_OFS = 0x18,
  281. EDMA_REQ_Q_PTR_SHIFT = 5,
  282. EDMA_RSP_Q_BASE_HI_OFS = 0x1c,
  283. EDMA_RSP_Q_IN_PTR_OFS = 0x20,
  284. EDMA_RSP_Q_OUT_PTR_OFS = 0x24, /* also contains BASE_LO */
  285. EDMA_RSP_Q_PTR_SHIFT = 3,
  286. EDMA_CMD_OFS = 0x28, /* EDMA command register */
  287. EDMA_EN = (1 << 0), /* enable EDMA */
  288. EDMA_DS = (1 << 1), /* disable EDMA; self-negated */
  289. ATA_RST = (1 << 2), /* reset trans/link/phy */
  290. EDMA_IORDY_TMOUT = 0x34,
  291. EDMA_ARB_CFG = 0x38,
  292. GEN_II_NCQ_MAX_SECTORS = 256, /* max sects/io on Gen2 w/NCQ */
  293. /* Host private flags (hp_flags) */
  294. MV_HP_FLAG_MSI = (1 << 0),
  295. MV_HP_ERRATA_50XXB0 = (1 << 1),
  296. MV_HP_ERRATA_50XXB2 = (1 << 2),
  297. MV_HP_ERRATA_60X1B2 = (1 << 3),
  298. MV_HP_ERRATA_60X1C0 = (1 << 4),
  299. MV_HP_ERRATA_XX42A0 = (1 << 5),
  300. MV_HP_GEN_I = (1 << 6), /* Generation I: 50xx */
  301. MV_HP_GEN_II = (1 << 7), /* Generation II: 60xx */
  302. MV_HP_GEN_IIE = (1 << 8), /* Generation IIE: 6042/7042 */
  303. MV_HP_PCIE = (1 << 9), /* PCIe bus/regs: 7042 */
  304. /* Port private flags (pp_flags) */
  305. MV_PP_FLAG_EDMA_EN = (1 << 0), /* is EDMA engine enabled? */
  306. MV_PP_FLAG_NCQ_EN = (1 << 1), /* is EDMA set up for NCQ? */
  307. };
  308. #define IS_GEN_I(hpriv) ((hpriv)->hp_flags & MV_HP_GEN_I)
  309. #define IS_GEN_II(hpriv) ((hpriv)->hp_flags & MV_HP_GEN_II)
  310. #define IS_GEN_IIE(hpriv) ((hpriv)->hp_flags & MV_HP_GEN_IIE)
  311. #define HAS_PCI(host) (!((host)->ports[0]->flags & MV_FLAG_SOC))
  312. #define WINDOW_CTRL(i) (0x20030 + ((i) << 4))
  313. #define WINDOW_BASE(i) (0x20034 + ((i) << 4))
  314. enum {
  315. /* DMA boundary 0xffff is required by the s/g splitting
  316. * we need on /length/ in mv_fill-sg().
  317. */
  318. MV_DMA_BOUNDARY = 0xffffU,
  319. /* mask of register bits containing lower 32 bits
  320. * of EDMA request queue DMA address
  321. */
  322. EDMA_REQ_Q_BASE_LO_MASK = 0xfffffc00U,
  323. /* ditto, for response queue */
  324. EDMA_RSP_Q_BASE_LO_MASK = 0xffffff00U,
  325. };
  326. enum chip_type {
  327. chip_504x,
  328. chip_508x,
  329. chip_5080,
  330. chip_604x,
  331. chip_608x,
  332. chip_6042,
  333. chip_7042,
  334. chip_soc,
  335. };
  336. /* Command ReQuest Block: 32B */
  337. struct mv_crqb {
  338. __le32 sg_addr;
  339. __le32 sg_addr_hi;
  340. __le16 ctrl_flags;
  341. __le16 ata_cmd[11];
  342. };
  343. struct mv_crqb_iie {
  344. __le32 addr;
  345. __le32 addr_hi;
  346. __le32 flags;
  347. __le32 len;
  348. __le32 ata_cmd[4];
  349. };
  350. /* Command ResPonse Block: 8B */
  351. struct mv_crpb {
  352. __le16 id;
  353. __le16 flags;
  354. __le32 tmstmp;
  355. };
  356. /* EDMA Physical Region Descriptor (ePRD); A.K.A. SG */
  357. struct mv_sg {
  358. __le32 addr;
  359. __le32 flags_size;
  360. __le32 addr_hi;
  361. __le32 reserved;
  362. };
  363. struct mv_port_priv {
  364. struct mv_crqb *crqb;
  365. dma_addr_t crqb_dma;
  366. struct mv_crpb *crpb;
  367. dma_addr_t crpb_dma;
  368. struct mv_sg *sg_tbl[MV_MAX_Q_DEPTH];
  369. dma_addr_t sg_tbl_dma[MV_MAX_Q_DEPTH];
  370. unsigned int req_idx;
  371. unsigned int resp_idx;
  372. u32 pp_flags;
  373. };
  374. struct mv_port_signal {
  375. u32 amps;
  376. u32 pre;
  377. };
  378. struct mv_host_priv {
  379. u32 hp_flags;
  380. struct mv_port_signal signal[8];
  381. const struct mv_hw_ops *ops;
  382. int n_ports;
  383. void __iomem *base;
  384. void __iomem *main_irq_cause_addr;
  385. void __iomem *main_irq_mask_addr;
  386. u32 irq_cause_ofs;
  387. u32 irq_mask_ofs;
  388. u32 unmask_all_irqs;
  389. /*
  390. * These consistent DMA memory pools give us guaranteed
  391. * alignment for hardware-accessed data structures,
  392. * and less memory waste in accomplishing the alignment.
  393. */
  394. struct dma_pool *crqb_pool;
  395. struct dma_pool *crpb_pool;
  396. struct dma_pool *sg_tbl_pool;
  397. };
  398. struct mv_hw_ops {
  399. void (*phy_errata)(struct mv_host_priv *hpriv, void __iomem *mmio,
  400. unsigned int port);
  401. void (*enable_leds)(struct mv_host_priv *hpriv, void __iomem *mmio);
  402. void (*read_preamp)(struct mv_host_priv *hpriv, int idx,
  403. void __iomem *mmio);
  404. int (*reset_hc)(struct mv_host_priv *hpriv, void __iomem *mmio,
  405. unsigned int n_hc);
  406. void (*reset_flash)(struct mv_host_priv *hpriv, void __iomem *mmio);
  407. void (*reset_bus)(struct ata_host *host, void __iomem *mmio);
  408. };
  409. static int mv_scr_read(struct ata_port *ap, unsigned int sc_reg_in, u32 *val);
  410. static int mv_scr_write(struct ata_port *ap, unsigned int sc_reg_in, u32 val);
  411. static int mv5_scr_read(struct ata_port *ap, unsigned int sc_reg_in, u32 *val);
  412. static int mv5_scr_write(struct ata_port *ap, unsigned int sc_reg_in, u32 val);
  413. static int mv_port_start(struct ata_port *ap);
  414. static void mv_port_stop(struct ata_port *ap);
  415. static void mv_qc_prep(struct ata_queued_cmd *qc);
  416. static void mv_qc_prep_iie(struct ata_queued_cmd *qc);
  417. static unsigned int mv_qc_issue(struct ata_queued_cmd *qc);
  418. static int mv_hardreset(struct ata_link *link, unsigned int *class,
  419. unsigned long deadline);
  420. static void mv_eh_freeze(struct ata_port *ap);
  421. static void mv_eh_thaw(struct ata_port *ap);
  422. static void mv6_dev_config(struct ata_device *dev);
  423. static void mv5_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
  424. unsigned int port);
  425. static void mv5_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio);
  426. static void mv5_read_preamp(struct mv_host_priv *hpriv, int idx,
  427. void __iomem *mmio);
  428. static int mv5_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
  429. unsigned int n_hc);
  430. static void mv5_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio);
  431. static void mv5_reset_bus(struct ata_host *host, void __iomem *mmio);
  432. static void mv6_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
  433. unsigned int port);
  434. static void mv6_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio);
  435. static void mv6_read_preamp(struct mv_host_priv *hpriv, int idx,
  436. void __iomem *mmio);
  437. static int mv6_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
  438. unsigned int n_hc);
  439. static void mv6_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio);
  440. static void mv_soc_enable_leds(struct mv_host_priv *hpriv,
  441. void __iomem *mmio);
  442. static void mv_soc_read_preamp(struct mv_host_priv *hpriv, int idx,
  443. void __iomem *mmio);
  444. static int mv_soc_reset_hc(struct mv_host_priv *hpriv,
  445. void __iomem *mmio, unsigned int n_hc);
  446. static void mv_soc_reset_flash(struct mv_host_priv *hpriv,
  447. void __iomem *mmio);
  448. static void mv_soc_reset_bus(struct ata_host *host, void __iomem *mmio);
  449. static void mv_reset_pci_bus(struct ata_host *host, void __iomem *mmio);
  450. static void mv_reset_channel(struct mv_host_priv *hpriv, void __iomem *mmio,
  451. unsigned int port_no);
  452. static int mv_stop_edma(struct ata_port *ap);
  453. static int mv_stop_edma_engine(void __iomem *port_mmio);
  454. static void mv_edma_cfg(struct ata_port *ap, int want_ncq);
  455. static void mv_pmp_select(struct ata_port *ap, int pmp);
  456. static int mv_pmp_hardreset(struct ata_link *link, unsigned int *class,
  457. unsigned long deadline);
  458. static int mv_softreset(struct ata_link *link, unsigned int *class,
  459. unsigned long deadline);
  460. /* .sg_tablesize is (MV_MAX_SG_CT / 2) in the structures below
  461. * because we have to allow room for worst case splitting of
  462. * PRDs for 64K boundaries in mv_fill_sg().
  463. */
  464. static struct scsi_host_template mv5_sht = {
  465. ATA_BASE_SHT(DRV_NAME),
  466. .sg_tablesize = MV_MAX_SG_CT / 2,
  467. .dma_boundary = MV_DMA_BOUNDARY,
  468. };
  469. static struct scsi_host_template mv6_sht = {
  470. ATA_NCQ_SHT(DRV_NAME),
  471. .can_queue = MV_MAX_Q_DEPTH - 1,
  472. .sg_tablesize = MV_MAX_SG_CT / 2,
  473. .dma_boundary = MV_DMA_BOUNDARY,
  474. };
  475. static struct ata_port_operations mv5_ops = {
  476. .inherits = &ata_sff_port_ops,
  477. .qc_prep = mv_qc_prep,
  478. .qc_issue = mv_qc_issue,
  479. .freeze = mv_eh_freeze,
  480. .thaw = mv_eh_thaw,
  481. .hardreset = mv_hardreset,
  482. .error_handler = ata_std_error_handler, /* avoid SFF EH */
  483. .post_internal_cmd = ATA_OP_NULL,
  484. .scr_read = mv5_scr_read,
  485. .scr_write = mv5_scr_write,
  486. .port_start = mv_port_start,
  487. .port_stop = mv_port_stop,
  488. };
  489. static struct ata_port_operations mv6_ops = {
  490. .inherits = &mv5_ops,
  491. .qc_defer = sata_pmp_qc_defer_cmd_switch,
  492. .dev_config = mv6_dev_config,
  493. .scr_read = mv_scr_read,
  494. .scr_write = mv_scr_write,
  495. .pmp_hardreset = mv_pmp_hardreset,
  496. .pmp_softreset = mv_softreset,
  497. .softreset = mv_softreset,
  498. .error_handler = sata_pmp_error_handler,
  499. };
  500. static struct ata_port_operations mv_iie_ops = {
  501. .inherits = &mv6_ops,
  502. .qc_defer = ata_std_qc_defer, /* FIS-based switching */
  503. .dev_config = ATA_OP_NULL,
  504. .qc_prep = mv_qc_prep_iie,
  505. };
  506. static const struct ata_port_info mv_port_info[] = {
  507. { /* chip_504x */
  508. .flags = MV_COMMON_FLAGS,
  509. .pio_mask = 0x1f, /* pio0-4 */
  510. .udma_mask = ATA_UDMA6,
  511. .port_ops = &mv5_ops,
  512. },
  513. { /* chip_508x */
  514. .flags = MV_COMMON_FLAGS | MV_FLAG_DUAL_HC,
  515. .pio_mask = 0x1f, /* pio0-4 */
  516. .udma_mask = ATA_UDMA6,
  517. .port_ops = &mv5_ops,
  518. },
  519. { /* chip_5080 */
  520. .flags = MV_COMMON_FLAGS | MV_FLAG_DUAL_HC,
  521. .pio_mask = 0x1f, /* pio0-4 */
  522. .udma_mask = ATA_UDMA6,
  523. .port_ops = &mv5_ops,
  524. },
  525. { /* chip_604x */
  526. .flags = MV_COMMON_FLAGS | MV_6XXX_FLAGS |
  527. ATA_FLAG_PMP | ATA_FLAG_ACPI_SATA |
  528. ATA_FLAG_NCQ,
  529. .pio_mask = 0x1f, /* pio0-4 */
  530. .udma_mask = ATA_UDMA6,
  531. .port_ops = &mv6_ops,
  532. },
  533. { /* chip_608x */
  534. .flags = MV_COMMON_FLAGS | MV_6XXX_FLAGS |
  535. ATA_FLAG_PMP | ATA_FLAG_ACPI_SATA |
  536. ATA_FLAG_NCQ | MV_FLAG_DUAL_HC,
  537. .pio_mask = 0x1f, /* pio0-4 */
  538. .udma_mask = ATA_UDMA6,
  539. .port_ops = &mv6_ops,
  540. },
  541. { /* chip_6042 */
  542. .flags = MV_COMMON_FLAGS | MV_6XXX_FLAGS |
  543. ATA_FLAG_PMP | ATA_FLAG_ACPI_SATA |
  544. ATA_FLAG_NCQ,
  545. .pio_mask = 0x1f, /* pio0-4 */
  546. .udma_mask = ATA_UDMA6,
  547. .port_ops = &mv_iie_ops,
  548. },
  549. { /* chip_7042 */
  550. .flags = MV_COMMON_FLAGS | MV_6XXX_FLAGS |
  551. ATA_FLAG_PMP | ATA_FLAG_ACPI_SATA |
  552. ATA_FLAG_NCQ,
  553. .pio_mask = 0x1f, /* pio0-4 */
  554. .udma_mask = ATA_UDMA6,
  555. .port_ops = &mv_iie_ops,
  556. },
  557. { /* chip_soc */
  558. .flags = MV_COMMON_FLAGS | MV_6XXX_FLAGS |
  559. ATA_FLAG_PMP | ATA_FLAG_ACPI_SATA |
  560. ATA_FLAG_NCQ | MV_FLAG_SOC,
  561. .pio_mask = 0x1f, /* pio0-4 */
  562. .udma_mask = ATA_UDMA6,
  563. .port_ops = &mv_iie_ops,
  564. },
  565. };
  566. static const struct pci_device_id mv_pci_tbl[] = {
  567. { PCI_VDEVICE(MARVELL, 0x5040), chip_504x },
  568. { PCI_VDEVICE(MARVELL, 0x5041), chip_504x },
  569. { PCI_VDEVICE(MARVELL, 0x5080), chip_5080 },
  570. { PCI_VDEVICE(MARVELL, 0x5081), chip_508x },
  571. /* RocketRAID 1740/174x have different identifiers */
  572. { PCI_VDEVICE(TTI, 0x1740), chip_508x },
  573. { PCI_VDEVICE(TTI, 0x1742), chip_508x },
  574. { PCI_VDEVICE(MARVELL, 0x6040), chip_604x },
  575. { PCI_VDEVICE(MARVELL, 0x6041), chip_604x },
  576. { PCI_VDEVICE(MARVELL, 0x6042), chip_6042 },
  577. { PCI_VDEVICE(MARVELL, 0x6080), chip_608x },
  578. { PCI_VDEVICE(MARVELL, 0x6081), chip_608x },
  579. { PCI_VDEVICE(ADAPTEC2, 0x0241), chip_604x },
  580. /* Adaptec 1430SA */
  581. { PCI_VDEVICE(ADAPTEC2, 0x0243), chip_7042 },
  582. /* Marvell 7042 support */
  583. { PCI_VDEVICE(MARVELL, 0x7042), chip_7042 },
  584. /* Highpoint RocketRAID PCIe series */
  585. { PCI_VDEVICE(TTI, 0x2300), chip_7042 },
  586. { PCI_VDEVICE(TTI, 0x2310), chip_7042 },
  587. { } /* terminate list */
  588. };
  589. static const struct mv_hw_ops mv5xxx_ops = {
  590. .phy_errata = mv5_phy_errata,
  591. .enable_leds = mv5_enable_leds,
  592. .read_preamp = mv5_read_preamp,
  593. .reset_hc = mv5_reset_hc,
  594. .reset_flash = mv5_reset_flash,
  595. .reset_bus = mv5_reset_bus,
  596. };
  597. static const struct mv_hw_ops mv6xxx_ops = {
  598. .phy_errata = mv6_phy_errata,
  599. .enable_leds = mv6_enable_leds,
  600. .read_preamp = mv6_read_preamp,
  601. .reset_hc = mv6_reset_hc,
  602. .reset_flash = mv6_reset_flash,
  603. .reset_bus = mv_reset_pci_bus,
  604. };
  605. static const struct mv_hw_ops mv_soc_ops = {
  606. .phy_errata = mv6_phy_errata,
  607. .enable_leds = mv_soc_enable_leds,
  608. .read_preamp = mv_soc_read_preamp,
  609. .reset_hc = mv_soc_reset_hc,
  610. .reset_flash = mv_soc_reset_flash,
  611. .reset_bus = mv_soc_reset_bus,
  612. };
  613. /*
  614. * Functions
  615. */
  616. static inline void writelfl(unsigned long data, void __iomem *addr)
  617. {
  618. writel(data, addr);
  619. (void) readl(addr); /* flush to avoid PCI posted write */
  620. }
  621. static inline unsigned int mv_hc_from_port(unsigned int port)
  622. {
  623. return port >> MV_PORT_HC_SHIFT;
  624. }
  625. static inline unsigned int mv_hardport_from_port(unsigned int port)
  626. {
  627. return port & MV_PORT_MASK;
  628. }
  629. /*
  630. * Consolidate some rather tricky bit shift calculations.
  631. * This is hot-path stuff, so not a function.
  632. * Simple code, with two return values, so macro rather than inline.
  633. *
  634. * port is the sole input, in range 0..7.
  635. * shift is one output, for use with main_irq_cause / main_irq_mask registers.
  636. * hardport is the other output, in range 0..3.
  637. *
  638. * Note that port and hardport may be the same variable in some cases.
  639. */
  640. #define MV_PORT_TO_SHIFT_AND_HARDPORT(port, shift, hardport) \
  641. { \
  642. shift = mv_hc_from_port(port) * HC_SHIFT; \
  643. hardport = mv_hardport_from_port(port); \
  644. shift += hardport * 2; \
  645. }
  646. static inline void __iomem *mv_hc_base(void __iomem *base, unsigned int hc)
  647. {
  648. return (base + MV_SATAHC0_REG_BASE + (hc * MV_SATAHC_REG_SZ));
  649. }
  650. static inline void __iomem *mv_hc_base_from_port(void __iomem *base,
  651. unsigned int port)
  652. {
  653. return mv_hc_base(base, mv_hc_from_port(port));
  654. }
  655. static inline void __iomem *mv_port_base(void __iomem *base, unsigned int port)
  656. {
  657. return mv_hc_base_from_port(base, port) +
  658. MV_SATAHC_ARBTR_REG_SZ +
  659. (mv_hardport_from_port(port) * MV_PORT_REG_SZ);
  660. }
  661. static void __iomem *mv5_phy_base(void __iomem *mmio, unsigned int port)
  662. {
  663. void __iomem *hc_mmio = mv_hc_base_from_port(mmio, port);
  664. unsigned long ofs = (mv_hardport_from_port(port) + 1) * 0x100UL;
  665. return hc_mmio + ofs;
  666. }
  667. static inline void __iomem *mv_host_base(struct ata_host *host)
  668. {
  669. struct mv_host_priv *hpriv = host->private_data;
  670. return hpriv->base;
  671. }
  672. static inline void __iomem *mv_ap_base(struct ata_port *ap)
  673. {
  674. return mv_port_base(mv_host_base(ap->host), ap->port_no);
  675. }
  676. static inline int mv_get_hc_count(unsigned long port_flags)
  677. {
  678. return ((port_flags & MV_FLAG_DUAL_HC) ? 2 : 1);
  679. }
  680. static void mv_set_edma_ptrs(void __iomem *port_mmio,
  681. struct mv_host_priv *hpriv,
  682. struct mv_port_priv *pp)
  683. {
  684. u32 index;
  685. /*
  686. * initialize request queue
  687. */
  688. pp->req_idx &= MV_MAX_Q_DEPTH_MASK; /* paranoia */
  689. index = pp->req_idx << EDMA_REQ_Q_PTR_SHIFT;
  690. WARN_ON(pp->crqb_dma & 0x3ff);
  691. writel((pp->crqb_dma >> 16) >> 16, port_mmio + EDMA_REQ_Q_BASE_HI_OFS);
  692. writelfl((pp->crqb_dma & EDMA_REQ_Q_BASE_LO_MASK) | index,
  693. port_mmio + EDMA_REQ_Q_IN_PTR_OFS);
  694. if (hpriv->hp_flags & MV_HP_ERRATA_XX42A0)
  695. writelfl((pp->crqb_dma & 0xffffffff) | index,
  696. port_mmio + EDMA_REQ_Q_OUT_PTR_OFS);
  697. else
  698. writelfl(index, port_mmio + EDMA_REQ_Q_OUT_PTR_OFS);
  699. /*
  700. * initialize response queue
  701. */
  702. pp->resp_idx &= MV_MAX_Q_DEPTH_MASK; /* paranoia */
  703. index = pp->resp_idx << EDMA_RSP_Q_PTR_SHIFT;
  704. WARN_ON(pp->crpb_dma & 0xff);
  705. writel((pp->crpb_dma >> 16) >> 16, port_mmio + EDMA_RSP_Q_BASE_HI_OFS);
  706. if (hpriv->hp_flags & MV_HP_ERRATA_XX42A0)
  707. writelfl((pp->crpb_dma & 0xffffffff) | index,
  708. port_mmio + EDMA_RSP_Q_IN_PTR_OFS);
  709. else
  710. writelfl(index, port_mmio + EDMA_RSP_Q_IN_PTR_OFS);
  711. writelfl((pp->crpb_dma & EDMA_RSP_Q_BASE_LO_MASK) | index,
  712. port_mmio + EDMA_RSP_Q_OUT_PTR_OFS);
  713. }
  714. /**
  715. * mv_start_dma - Enable eDMA engine
  716. * @base: port base address
  717. * @pp: port private data
  718. *
  719. * Verify the local cache of the eDMA state is accurate with a
  720. * WARN_ON.
  721. *
  722. * LOCKING:
  723. * Inherited from caller.
  724. */
  725. static void mv_start_dma(struct ata_port *ap, void __iomem *port_mmio,
  726. struct mv_port_priv *pp, u8 protocol)
  727. {
  728. int want_ncq = (protocol == ATA_PROT_NCQ);
  729. if (pp->pp_flags & MV_PP_FLAG_EDMA_EN) {
  730. int using_ncq = ((pp->pp_flags & MV_PP_FLAG_NCQ_EN) != 0);
  731. if (want_ncq != using_ncq)
  732. mv_stop_edma(ap);
  733. }
  734. if (!(pp->pp_flags & MV_PP_FLAG_EDMA_EN)) {
  735. struct mv_host_priv *hpriv = ap->host->private_data;
  736. int hardport = mv_hardport_from_port(ap->port_no);
  737. void __iomem *hc_mmio = mv_hc_base_from_port(
  738. mv_host_base(ap->host), hardport);
  739. u32 hc_irq_cause, ipending;
  740. /* clear EDMA event indicators, if any */
  741. writelfl(0, port_mmio + EDMA_ERR_IRQ_CAUSE_OFS);
  742. /* clear EDMA interrupt indicator, if any */
  743. hc_irq_cause = readl(hc_mmio + HC_IRQ_CAUSE_OFS);
  744. ipending = (DEV_IRQ | DMA_IRQ) << hardport;
  745. if (hc_irq_cause & ipending) {
  746. writelfl(hc_irq_cause & ~ipending,
  747. hc_mmio + HC_IRQ_CAUSE_OFS);
  748. }
  749. mv_edma_cfg(ap, want_ncq);
  750. /* clear FIS IRQ Cause */
  751. writelfl(0, port_mmio + SATA_FIS_IRQ_CAUSE_OFS);
  752. mv_set_edma_ptrs(port_mmio, hpriv, pp);
  753. writelfl(EDMA_EN, port_mmio + EDMA_CMD_OFS);
  754. pp->pp_flags |= MV_PP_FLAG_EDMA_EN;
  755. }
  756. }
  757. /**
  758. * mv_stop_edma_engine - Disable eDMA engine
  759. * @port_mmio: io base address
  760. *
  761. * LOCKING:
  762. * Inherited from caller.
  763. */
  764. static int mv_stop_edma_engine(void __iomem *port_mmio)
  765. {
  766. int i;
  767. /* Disable eDMA. The disable bit auto clears. */
  768. writelfl(EDMA_DS, port_mmio + EDMA_CMD_OFS);
  769. /* Wait for the chip to confirm eDMA is off. */
  770. for (i = 10000; i > 0; i--) {
  771. u32 reg = readl(port_mmio + EDMA_CMD_OFS);
  772. if (!(reg & EDMA_EN))
  773. return 0;
  774. udelay(10);
  775. }
  776. return -EIO;
  777. }
  778. static int mv_stop_edma(struct ata_port *ap)
  779. {
  780. void __iomem *port_mmio = mv_ap_base(ap);
  781. struct mv_port_priv *pp = ap->private_data;
  782. if (!(pp->pp_flags & MV_PP_FLAG_EDMA_EN))
  783. return 0;
  784. pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
  785. if (mv_stop_edma_engine(port_mmio)) {
  786. ata_port_printk(ap, KERN_ERR, "Unable to stop eDMA\n");
  787. return -EIO;
  788. }
  789. return 0;
  790. }
  791. #ifdef ATA_DEBUG
  792. static void mv_dump_mem(void __iomem *start, unsigned bytes)
  793. {
  794. int b, w;
  795. for (b = 0; b < bytes; ) {
  796. DPRINTK("%p: ", start + b);
  797. for (w = 0; b < bytes && w < 4; w++) {
  798. printk("%08x ", readl(start + b));
  799. b += sizeof(u32);
  800. }
  801. printk("\n");
  802. }
  803. }
  804. #endif
  805. static void mv_dump_pci_cfg(struct pci_dev *pdev, unsigned bytes)
  806. {
  807. #ifdef ATA_DEBUG
  808. int b, w;
  809. u32 dw;
  810. for (b = 0; b < bytes; ) {
  811. DPRINTK("%02x: ", b);
  812. for (w = 0; b < bytes && w < 4; w++) {
  813. (void) pci_read_config_dword(pdev, b, &dw);
  814. printk("%08x ", dw);
  815. b += sizeof(u32);
  816. }
  817. printk("\n");
  818. }
  819. #endif
  820. }
  821. static void mv_dump_all_regs(void __iomem *mmio_base, int port,
  822. struct pci_dev *pdev)
  823. {
  824. #ifdef ATA_DEBUG
  825. void __iomem *hc_base = mv_hc_base(mmio_base,
  826. port >> MV_PORT_HC_SHIFT);
  827. void __iomem *port_base;
  828. int start_port, num_ports, p, start_hc, num_hcs, hc;
  829. if (0 > port) {
  830. start_hc = start_port = 0;
  831. num_ports = 8; /* shld be benign for 4 port devs */
  832. num_hcs = 2;
  833. } else {
  834. start_hc = port >> MV_PORT_HC_SHIFT;
  835. start_port = port;
  836. num_ports = num_hcs = 1;
  837. }
  838. DPRINTK("All registers for port(s) %u-%u:\n", start_port,
  839. num_ports > 1 ? num_ports - 1 : start_port);
  840. if (NULL != pdev) {
  841. DPRINTK("PCI config space regs:\n");
  842. mv_dump_pci_cfg(pdev, 0x68);
  843. }
  844. DPRINTK("PCI regs:\n");
  845. mv_dump_mem(mmio_base+0xc00, 0x3c);
  846. mv_dump_mem(mmio_base+0xd00, 0x34);
  847. mv_dump_mem(mmio_base+0xf00, 0x4);
  848. mv_dump_mem(mmio_base+0x1d00, 0x6c);
  849. for (hc = start_hc; hc < start_hc + num_hcs; hc++) {
  850. hc_base = mv_hc_base(mmio_base, hc);
  851. DPRINTK("HC regs (HC %i):\n", hc);
  852. mv_dump_mem(hc_base, 0x1c);
  853. }
  854. for (p = start_port; p < start_port + num_ports; p++) {
  855. port_base = mv_port_base(mmio_base, p);
  856. DPRINTK("EDMA regs (port %i):\n", p);
  857. mv_dump_mem(port_base, 0x54);
  858. DPRINTK("SATA regs (port %i):\n", p);
  859. mv_dump_mem(port_base+0x300, 0x60);
  860. }
  861. #endif
  862. }
  863. static unsigned int mv_scr_offset(unsigned int sc_reg_in)
  864. {
  865. unsigned int ofs;
  866. switch (sc_reg_in) {
  867. case SCR_STATUS:
  868. case SCR_CONTROL:
  869. case SCR_ERROR:
  870. ofs = SATA_STATUS_OFS + (sc_reg_in * sizeof(u32));
  871. break;
  872. case SCR_ACTIVE:
  873. ofs = SATA_ACTIVE_OFS; /* active is not with the others */
  874. break;
  875. default:
  876. ofs = 0xffffffffU;
  877. break;
  878. }
  879. return ofs;
  880. }
  881. static int mv_scr_read(struct ata_port *ap, unsigned int sc_reg_in, u32 *val)
  882. {
  883. unsigned int ofs = mv_scr_offset(sc_reg_in);
  884. if (ofs != 0xffffffffU) {
  885. *val = readl(mv_ap_base(ap) + ofs);
  886. return 0;
  887. } else
  888. return -EINVAL;
  889. }
  890. static int mv_scr_write(struct ata_port *ap, unsigned int sc_reg_in, u32 val)
  891. {
  892. unsigned int ofs = mv_scr_offset(sc_reg_in);
  893. if (ofs != 0xffffffffU) {
  894. writelfl(val, mv_ap_base(ap) + ofs);
  895. return 0;
  896. } else
  897. return -EINVAL;
  898. }
  899. static void mv6_dev_config(struct ata_device *adev)
  900. {
  901. /*
  902. * Deal with Gen-II ("mv6") hardware quirks/restrictions:
  903. *
  904. * Gen-II does not support NCQ over a port multiplier
  905. * (no FIS-based switching).
  906. *
  907. * We don't have hob_nsect when doing NCQ commands on Gen-II.
  908. * See mv_qc_prep() for more info.
  909. */
  910. if (adev->flags & ATA_DFLAG_NCQ) {
  911. if (sata_pmp_attached(adev->link->ap)) {
  912. adev->flags &= ~ATA_DFLAG_NCQ;
  913. ata_dev_printk(adev, KERN_INFO,
  914. "NCQ disabled for command-based switching\n");
  915. } else if (adev->max_sectors > GEN_II_NCQ_MAX_SECTORS) {
  916. adev->max_sectors = GEN_II_NCQ_MAX_SECTORS;
  917. ata_dev_printk(adev, KERN_INFO,
  918. "max_sectors limited to %u for NCQ\n",
  919. adev->max_sectors);
  920. }
  921. }
  922. }
  923. static void mv_config_fbs(void __iomem *port_mmio, int enable_fbs)
  924. {
  925. u32 old_fcfg, new_fcfg, old_ltmode, new_ltmode;
  926. /*
  927. * Various bit settings required for operation
  928. * in FIS-based switching (fbs) mode on GenIIe:
  929. */
  930. old_fcfg = readl(port_mmio + FIS_CFG_OFS);
  931. old_ltmode = readl(port_mmio + LTMODE_OFS);
  932. if (enable_fbs) {
  933. new_fcfg = old_fcfg | FIS_CFG_SINGLE_SYNC;
  934. new_ltmode = old_ltmode | LTMODE_BIT8;
  935. } else { /* disable fbs */
  936. new_fcfg = old_fcfg & ~FIS_CFG_SINGLE_SYNC;
  937. new_ltmode = old_ltmode & ~LTMODE_BIT8;
  938. }
  939. if (new_fcfg != old_fcfg)
  940. writelfl(new_fcfg, port_mmio + FIS_CFG_OFS);
  941. if (new_ltmode != old_ltmode)
  942. writelfl(new_ltmode, port_mmio + LTMODE_OFS);
  943. }
  944. static void mv_edma_cfg(struct ata_port *ap, int want_ncq)
  945. {
  946. u32 cfg;
  947. struct mv_port_priv *pp = ap->private_data;
  948. struct mv_host_priv *hpriv = ap->host->private_data;
  949. void __iomem *port_mmio = mv_ap_base(ap);
  950. /* set up non-NCQ EDMA configuration */
  951. cfg = EDMA_CFG_Q_DEPTH; /* always 0x1f for *all* chips */
  952. if (IS_GEN_I(hpriv))
  953. cfg |= (1 << 8); /* enab config burst size mask */
  954. else if (IS_GEN_II(hpriv))
  955. cfg |= EDMA_CFG_RD_BRST_EXT | EDMA_CFG_WR_BUFF_LEN;
  956. else if (IS_GEN_IIE(hpriv)) {
  957. cfg |= (1 << 23); /* do not mask PM field in rx'd FIS */
  958. cfg |= (1 << 22); /* enab 4-entry host queue cache */
  959. cfg |= (1 << 18); /* enab early completion */
  960. cfg |= (1 << 17); /* enab cut-through (dis stor&forwrd) */
  961. if (want_ncq && sata_pmp_attached(ap)) {
  962. cfg |= EDMA_CFG_EDMA_FBS; /* FIS-based switching */
  963. mv_config_fbs(port_mmio, 1);
  964. } else {
  965. mv_config_fbs(port_mmio, 0);
  966. }
  967. }
  968. if (want_ncq) {
  969. cfg |= EDMA_CFG_NCQ;
  970. pp->pp_flags |= MV_PP_FLAG_NCQ_EN;
  971. } else
  972. pp->pp_flags &= ~MV_PP_FLAG_NCQ_EN;
  973. writelfl(cfg, port_mmio + EDMA_CFG_OFS);
  974. }
  975. static void mv_port_free_dma_mem(struct ata_port *ap)
  976. {
  977. struct mv_host_priv *hpriv = ap->host->private_data;
  978. struct mv_port_priv *pp = ap->private_data;
  979. int tag;
  980. if (pp->crqb) {
  981. dma_pool_free(hpriv->crqb_pool, pp->crqb, pp->crqb_dma);
  982. pp->crqb = NULL;
  983. }
  984. if (pp->crpb) {
  985. dma_pool_free(hpriv->crpb_pool, pp->crpb, pp->crpb_dma);
  986. pp->crpb = NULL;
  987. }
  988. /*
  989. * For GEN_I, there's no NCQ, so we have only a single sg_tbl.
  990. * For later hardware, we have one unique sg_tbl per NCQ tag.
  991. */
  992. for (tag = 0; tag < MV_MAX_Q_DEPTH; ++tag) {
  993. if (pp->sg_tbl[tag]) {
  994. if (tag == 0 || !IS_GEN_I(hpriv))
  995. dma_pool_free(hpriv->sg_tbl_pool,
  996. pp->sg_tbl[tag],
  997. pp->sg_tbl_dma[tag]);
  998. pp->sg_tbl[tag] = NULL;
  999. }
  1000. }
  1001. }
  1002. /**
  1003. * mv_port_start - Port specific init/start routine.
  1004. * @ap: ATA channel to manipulate
  1005. *
  1006. * Allocate and point to DMA memory, init port private memory,
  1007. * zero indices.
  1008. *
  1009. * LOCKING:
  1010. * Inherited from caller.
  1011. */
  1012. static int mv_port_start(struct ata_port *ap)
  1013. {
  1014. struct device *dev = ap->host->dev;
  1015. struct mv_host_priv *hpriv = ap->host->private_data;
  1016. struct mv_port_priv *pp;
  1017. int tag;
  1018. pp = devm_kzalloc(dev, sizeof(*pp), GFP_KERNEL);
  1019. if (!pp)
  1020. return -ENOMEM;
  1021. ap->private_data = pp;
  1022. pp->crqb = dma_pool_alloc(hpriv->crqb_pool, GFP_KERNEL, &pp->crqb_dma);
  1023. if (!pp->crqb)
  1024. return -ENOMEM;
  1025. memset(pp->crqb, 0, MV_CRQB_Q_SZ);
  1026. pp->crpb = dma_pool_alloc(hpriv->crpb_pool, GFP_KERNEL, &pp->crpb_dma);
  1027. if (!pp->crpb)
  1028. goto out_port_free_dma_mem;
  1029. memset(pp->crpb, 0, MV_CRPB_Q_SZ);
  1030. /*
  1031. * For GEN_I, there's no NCQ, so we only allocate a single sg_tbl.
  1032. * For later hardware, we need one unique sg_tbl per NCQ tag.
  1033. */
  1034. for (tag = 0; tag < MV_MAX_Q_DEPTH; ++tag) {
  1035. if (tag == 0 || !IS_GEN_I(hpriv)) {
  1036. pp->sg_tbl[tag] = dma_pool_alloc(hpriv->sg_tbl_pool,
  1037. GFP_KERNEL, &pp->sg_tbl_dma[tag]);
  1038. if (!pp->sg_tbl[tag])
  1039. goto out_port_free_dma_mem;
  1040. } else {
  1041. pp->sg_tbl[tag] = pp->sg_tbl[0];
  1042. pp->sg_tbl_dma[tag] = pp->sg_tbl_dma[0];
  1043. }
  1044. }
  1045. return 0;
  1046. out_port_free_dma_mem:
  1047. mv_port_free_dma_mem(ap);
  1048. return -ENOMEM;
  1049. }
  1050. /**
  1051. * mv_port_stop - Port specific cleanup/stop routine.
  1052. * @ap: ATA channel to manipulate
  1053. *
  1054. * Stop DMA, cleanup port memory.
  1055. *
  1056. * LOCKING:
  1057. * This routine uses the host lock to protect the DMA stop.
  1058. */
  1059. static void mv_port_stop(struct ata_port *ap)
  1060. {
  1061. mv_stop_edma(ap);
  1062. mv_port_free_dma_mem(ap);
  1063. }
  1064. /**
  1065. * mv_fill_sg - Fill out the Marvell ePRD (scatter gather) entries
  1066. * @qc: queued command whose SG list to source from
  1067. *
  1068. * Populate the SG list and mark the last entry.
  1069. *
  1070. * LOCKING:
  1071. * Inherited from caller.
  1072. */
  1073. static void mv_fill_sg(struct ata_queued_cmd *qc)
  1074. {
  1075. struct mv_port_priv *pp = qc->ap->private_data;
  1076. struct scatterlist *sg;
  1077. struct mv_sg *mv_sg, *last_sg = NULL;
  1078. unsigned int si;
  1079. mv_sg = pp->sg_tbl[qc->tag];
  1080. for_each_sg(qc->sg, sg, qc->n_elem, si) {
  1081. dma_addr_t addr = sg_dma_address(sg);
  1082. u32 sg_len = sg_dma_len(sg);
  1083. while (sg_len) {
  1084. u32 offset = addr & 0xffff;
  1085. u32 len = sg_len;
  1086. if ((offset + sg_len > 0x10000))
  1087. len = 0x10000 - offset;
  1088. mv_sg->addr = cpu_to_le32(addr & 0xffffffff);
  1089. mv_sg->addr_hi = cpu_to_le32((addr >> 16) >> 16);
  1090. mv_sg->flags_size = cpu_to_le32(len & 0xffff);
  1091. sg_len -= len;
  1092. addr += len;
  1093. last_sg = mv_sg;
  1094. mv_sg++;
  1095. }
  1096. }
  1097. if (likely(last_sg))
  1098. last_sg->flags_size |= cpu_to_le32(EPRD_FLAG_END_OF_TBL);
  1099. }
  1100. static void mv_crqb_pack_cmd(__le16 *cmdw, u8 data, u8 addr, unsigned last)
  1101. {
  1102. u16 tmp = data | (addr << CRQB_CMD_ADDR_SHIFT) | CRQB_CMD_CS |
  1103. (last ? CRQB_CMD_LAST : 0);
  1104. *cmdw = cpu_to_le16(tmp);
  1105. }
  1106. /**
  1107. * mv_qc_prep - Host specific command preparation.
  1108. * @qc: queued command to prepare
  1109. *
  1110. * This routine simply redirects to the general purpose routine
  1111. * if command is not DMA. Else, it handles prep of the CRQB
  1112. * (command request block), does some sanity checking, and calls
  1113. * the SG load routine.
  1114. *
  1115. * LOCKING:
  1116. * Inherited from caller.
  1117. */
  1118. static void mv_qc_prep(struct ata_queued_cmd *qc)
  1119. {
  1120. struct ata_port *ap = qc->ap;
  1121. struct mv_port_priv *pp = ap->private_data;
  1122. __le16 *cw;
  1123. struct ata_taskfile *tf;
  1124. u16 flags = 0;
  1125. unsigned in_index;
  1126. if ((qc->tf.protocol != ATA_PROT_DMA) &&
  1127. (qc->tf.protocol != ATA_PROT_NCQ))
  1128. return;
  1129. /* Fill in command request block
  1130. */
  1131. if (!(qc->tf.flags & ATA_TFLAG_WRITE))
  1132. flags |= CRQB_FLAG_READ;
  1133. WARN_ON(MV_MAX_Q_DEPTH <= qc->tag);
  1134. flags |= qc->tag << CRQB_TAG_SHIFT;
  1135. flags |= (qc->dev->link->pmp & 0xf) << CRQB_PMP_SHIFT;
  1136. /* get current queue index from software */
  1137. in_index = pp->req_idx;
  1138. pp->crqb[in_index].sg_addr =
  1139. cpu_to_le32(pp->sg_tbl_dma[qc->tag] & 0xffffffff);
  1140. pp->crqb[in_index].sg_addr_hi =
  1141. cpu_to_le32((pp->sg_tbl_dma[qc->tag] >> 16) >> 16);
  1142. pp->crqb[in_index].ctrl_flags = cpu_to_le16(flags);
  1143. cw = &pp->crqb[in_index].ata_cmd[0];
  1144. tf = &qc->tf;
  1145. /* Sadly, the CRQB cannot accomodate all registers--there are
  1146. * only 11 bytes...so we must pick and choose required
  1147. * registers based on the command. So, we drop feature and
  1148. * hob_feature for [RW] DMA commands, but they are needed for
  1149. * NCQ. NCQ will drop hob_nsect.
  1150. */
  1151. switch (tf->command) {
  1152. case ATA_CMD_READ:
  1153. case ATA_CMD_READ_EXT:
  1154. case ATA_CMD_WRITE:
  1155. case ATA_CMD_WRITE_EXT:
  1156. case ATA_CMD_WRITE_FUA_EXT:
  1157. mv_crqb_pack_cmd(cw++, tf->hob_nsect, ATA_REG_NSECT, 0);
  1158. break;
  1159. case ATA_CMD_FPDMA_READ:
  1160. case ATA_CMD_FPDMA_WRITE:
  1161. mv_crqb_pack_cmd(cw++, tf->hob_feature, ATA_REG_FEATURE, 0);
  1162. mv_crqb_pack_cmd(cw++, tf->feature, ATA_REG_FEATURE, 0);
  1163. break;
  1164. default:
  1165. /* The only other commands EDMA supports in non-queued and
  1166. * non-NCQ mode are: [RW] STREAM DMA and W DMA FUA EXT, none
  1167. * of which are defined/used by Linux. If we get here, this
  1168. * driver needs work.
  1169. *
  1170. * FIXME: modify libata to give qc_prep a return value and
  1171. * return error here.
  1172. */
  1173. BUG_ON(tf->command);
  1174. break;
  1175. }
  1176. mv_crqb_pack_cmd(cw++, tf->nsect, ATA_REG_NSECT, 0);
  1177. mv_crqb_pack_cmd(cw++, tf->hob_lbal, ATA_REG_LBAL, 0);
  1178. mv_crqb_pack_cmd(cw++, tf->lbal, ATA_REG_LBAL, 0);
  1179. mv_crqb_pack_cmd(cw++, tf->hob_lbam, ATA_REG_LBAM, 0);
  1180. mv_crqb_pack_cmd(cw++, tf->lbam, ATA_REG_LBAM, 0);
  1181. mv_crqb_pack_cmd(cw++, tf->hob_lbah, ATA_REG_LBAH, 0);
  1182. mv_crqb_pack_cmd(cw++, tf->lbah, ATA_REG_LBAH, 0);
  1183. mv_crqb_pack_cmd(cw++, tf->device, ATA_REG_DEVICE, 0);
  1184. mv_crqb_pack_cmd(cw++, tf->command, ATA_REG_CMD, 1); /* last */
  1185. if (!(qc->flags & ATA_QCFLAG_DMAMAP))
  1186. return;
  1187. mv_fill_sg(qc);
  1188. }
  1189. /**
  1190. * mv_qc_prep_iie - Host specific command preparation.
  1191. * @qc: queued command to prepare
  1192. *
  1193. * This routine simply redirects to the general purpose routine
  1194. * if command is not DMA. Else, it handles prep of the CRQB
  1195. * (command request block), does some sanity checking, and calls
  1196. * the SG load routine.
  1197. *
  1198. * LOCKING:
  1199. * Inherited from caller.
  1200. */
  1201. static void mv_qc_prep_iie(struct ata_queued_cmd *qc)
  1202. {
  1203. struct ata_port *ap = qc->ap;
  1204. struct mv_port_priv *pp = ap->private_data;
  1205. struct mv_crqb_iie *crqb;
  1206. struct ata_taskfile *tf;
  1207. unsigned in_index;
  1208. u32 flags = 0;
  1209. if ((qc->tf.protocol != ATA_PROT_DMA) &&
  1210. (qc->tf.protocol != ATA_PROT_NCQ))
  1211. return;
  1212. /* Fill in Gen IIE command request block */
  1213. if (!(qc->tf.flags & ATA_TFLAG_WRITE))
  1214. flags |= CRQB_FLAG_READ;
  1215. WARN_ON(MV_MAX_Q_DEPTH <= qc->tag);
  1216. flags |= qc->tag << CRQB_TAG_SHIFT;
  1217. flags |= qc->tag << CRQB_HOSTQ_SHIFT;
  1218. flags |= (qc->dev->link->pmp & 0xf) << CRQB_PMP_SHIFT;
  1219. /* get current queue index from software */
  1220. in_index = pp->req_idx;
  1221. crqb = (struct mv_crqb_iie *) &pp->crqb[in_index];
  1222. crqb->addr = cpu_to_le32(pp->sg_tbl_dma[qc->tag] & 0xffffffff);
  1223. crqb->addr_hi = cpu_to_le32((pp->sg_tbl_dma[qc->tag] >> 16) >> 16);
  1224. crqb->flags = cpu_to_le32(flags);
  1225. tf = &qc->tf;
  1226. crqb->ata_cmd[0] = cpu_to_le32(
  1227. (tf->command << 16) |
  1228. (tf->feature << 24)
  1229. );
  1230. crqb->ata_cmd[1] = cpu_to_le32(
  1231. (tf->lbal << 0) |
  1232. (tf->lbam << 8) |
  1233. (tf->lbah << 16) |
  1234. (tf->device << 24)
  1235. );
  1236. crqb->ata_cmd[2] = cpu_to_le32(
  1237. (tf->hob_lbal << 0) |
  1238. (tf->hob_lbam << 8) |
  1239. (tf->hob_lbah << 16) |
  1240. (tf->hob_feature << 24)
  1241. );
  1242. crqb->ata_cmd[3] = cpu_to_le32(
  1243. (tf->nsect << 0) |
  1244. (tf->hob_nsect << 8)
  1245. );
  1246. if (!(qc->flags & ATA_QCFLAG_DMAMAP))
  1247. return;
  1248. mv_fill_sg(qc);
  1249. }
  1250. /**
  1251. * mv_qc_issue - Initiate a command to the host
  1252. * @qc: queued command to start
  1253. *
  1254. * This routine simply redirects to the general purpose routine
  1255. * if command is not DMA. Else, it sanity checks our local
  1256. * caches of the request producer/consumer indices then enables
  1257. * DMA and bumps the request producer index.
  1258. *
  1259. * LOCKING:
  1260. * Inherited from caller.
  1261. */
  1262. static unsigned int mv_qc_issue(struct ata_queued_cmd *qc)
  1263. {
  1264. struct ata_port *ap = qc->ap;
  1265. void __iomem *port_mmio = mv_ap_base(ap);
  1266. struct mv_port_priv *pp = ap->private_data;
  1267. u32 in_index;
  1268. if ((qc->tf.protocol != ATA_PROT_DMA) &&
  1269. (qc->tf.protocol != ATA_PROT_NCQ)) {
  1270. /*
  1271. * We're about to send a non-EDMA capable command to the
  1272. * port. Turn off EDMA so there won't be problems accessing
  1273. * shadow block, etc registers.
  1274. */
  1275. mv_stop_edma(ap);
  1276. mv_pmp_select(ap, qc->dev->link->pmp);
  1277. return ata_sff_qc_issue(qc);
  1278. }
  1279. mv_start_dma(ap, port_mmio, pp, qc->tf.protocol);
  1280. pp->req_idx = (pp->req_idx + 1) & MV_MAX_Q_DEPTH_MASK;
  1281. in_index = pp->req_idx << EDMA_REQ_Q_PTR_SHIFT;
  1282. /* and write the request in pointer to kick the EDMA to life */
  1283. writelfl((pp->crqb_dma & EDMA_REQ_Q_BASE_LO_MASK) | in_index,
  1284. port_mmio + EDMA_REQ_Q_IN_PTR_OFS);
  1285. return 0;
  1286. }
  1287. static struct ata_queued_cmd *mv_get_active_qc(struct ata_port *ap)
  1288. {
  1289. struct mv_port_priv *pp = ap->private_data;
  1290. struct ata_queued_cmd *qc;
  1291. if (pp->pp_flags & MV_PP_FLAG_NCQ_EN)
  1292. return NULL;
  1293. qc = ata_qc_from_tag(ap, ap->link.active_tag);
  1294. if (qc && (qc->tf.flags & ATA_TFLAG_POLLING))
  1295. qc = NULL;
  1296. return qc;
  1297. }
  1298. static void mv_unexpected_intr(struct ata_port *ap)
  1299. {
  1300. struct mv_port_priv *pp = ap->private_data;
  1301. struct ata_eh_info *ehi = &ap->link.eh_info;
  1302. char *when = "";
  1303. /*
  1304. * We got a device interrupt from something that
  1305. * was supposed to be using EDMA or polling.
  1306. */
  1307. ata_ehi_clear_desc(ehi);
  1308. if (pp->pp_flags & MV_PP_FLAG_EDMA_EN) {
  1309. when = " while EDMA enabled";
  1310. } else {
  1311. struct ata_queued_cmd *qc = ata_qc_from_tag(ap, ap->link.active_tag);
  1312. if (qc && (qc->tf.flags & ATA_TFLAG_POLLING))
  1313. when = " while polling";
  1314. }
  1315. ata_ehi_push_desc(ehi, "unexpected device interrupt%s", when);
  1316. ehi->err_mask |= AC_ERR_OTHER;
  1317. ehi->action |= ATA_EH_RESET;
  1318. ata_port_freeze(ap);
  1319. }
  1320. /**
  1321. * mv_err_intr - Handle error interrupts on the port
  1322. * @ap: ATA channel to manipulate
  1323. * @qc: affected command (non-NCQ), or NULL
  1324. *
  1325. * Most cases require a full reset of the chip's state machine,
  1326. * which also performs a COMRESET.
  1327. * Also, if the port disabled DMA, update our cached copy to match.
  1328. *
  1329. * LOCKING:
  1330. * Inherited from caller.
  1331. */
  1332. static void mv_err_intr(struct ata_port *ap, struct ata_queued_cmd *qc)
  1333. {
  1334. void __iomem *port_mmio = mv_ap_base(ap);
  1335. u32 edma_err_cause, eh_freeze_mask, serr = 0;
  1336. struct mv_port_priv *pp = ap->private_data;
  1337. struct mv_host_priv *hpriv = ap->host->private_data;
  1338. unsigned int action = 0, err_mask = 0;
  1339. struct ata_eh_info *ehi = &ap->link.eh_info;
  1340. ata_ehi_clear_desc(ehi);
  1341. /*
  1342. * Read and clear the err_cause bits. This won't actually
  1343. * clear for some errors (eg. SError), but we will be doing
  1344. * a hard reset in those cases regardless, which *will* clear it.
  1345. */
  1346. edma_err_cause = readl(port_mmio + EDMA_ERR_IRQ_CAUSE_OFS);
  1347. writelfl(~edma_err_cause, port_mmio + EDMA_ERR_IRQ_CAUSE_OFS);
  1348. ata_ehi_push_desc(ehi, "edma_err_cause=%08x", edma_err_cause);
  1349. /*
  1350. * All generations share these EDMA error cause bits:
  1351. */
  1352. if (edma_err_cause & EDMA_ERR_DEV)
  1353. err_mask |= AC_ERR_DEV;
  1354. if (edma_err_cause & (EDMA_ERR_D_PAR | EDMA_ERR_PRD_PAR |
  1355. EDMA_ERR_CRQB_PAR | EDMA_ERR_CRPB_PAR |
  1356. EDMA_ERR_INTRL_PAR)) {
  1357. err_mask |= AC_ERR_ATA_BUS;
  1358. action |= ATA_EH_RESET;
  1359. ata_ehi_push_desc(ehi, "parity error");
  1360. }
  1361. if (edma_err_cause & (EDMA_ERR_DEV_DCON | EDMA_ERR_DEV_CON)) {
  1362. ata_ehi_hotplugged(ehi);
  1363. ata_ehi_push_desc(ehi, edma_err_cause & EDMA_ERR_DEV_DCON ?
  1364. "dev disconnect" : "dev connect");
  1365. action |= ATA_EH_RESET;
  1366. }
  1367. /*
  1368. * Gen-I has a different SELF_DIS bit,
  1369. * different FREEZE bits, and no SERR bit:
  1370. */
  1371. if (IS_GEN_I(hpriv)) {
  1372. eh_freeze_mask = EDMA_EH_FREEZE_5;
  1373. if (edma_err_cause & EDMA_ERR_SELF_DIS_5) {
  1374. pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
  1375. ata_ehi_push_desc(ehi, "EDMA self-disable");
  1376. }
  1377. } else {
  1378. eh_freeze_mask = EDMA_EH_FREEZE;
  1379. if (edma_err_cause & EDMA_ERR_SELF_DIS) {
  1380. pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
  1381. ata_ehi_push_desc(ehi, "EDMA self-disable");
  1382. }
  1383. if (edma_err_cause & EDMA_ERR_SERR) {
  1384. /*
  1385. * Ensure that we read our own SCR, not a pmp link SCR:
  1386. */
  1387. ap->ops->scr_read(ap, SCR_ERROR, &serr);
  1388. /*
  1389. * Don't clear SError here; leave it for libata-eh:
  1390. */
  1391. ata_ehi_push_desc(ehi, "SError=%08x", serr);
  1392. err_mask |= AC_ERR_ATA_BUS;
  1393. action |= ATA_EH_RESET;
  1394. }
  1395. }
  1396. if (!err_mask) {
  1397. err_mask = AC_ERR_OTHER;
  1398. action |= ATA_EH_RESET;
  1399. }
  1400. ehi->serror |= serr;
  1401. ehi->action |= action;
  1402. if (qc)
  1403. qc->err_mask |= err_mask;
  1404. else
  1405. ehi->err_mask |= err_mask;
  1406. if (edma_err_cause & eh_freeze_mask)
  1407. ata_port_freeze(ap);
  1408. else
  1409. ata_port_abort(ap);
  1410. }
  1411. static void mv_process_crpb_response(struct ata_port *ap,
  1412. struct mv_crpb *response, unsigned int tag, int ncq_enabled)
  1413. {
  1414. struct ata_queued_cmd *qc = ata_qc_from_tag(ap, tag);
  1415. if (qc) {
  1416. u8 ata_status;
  1417. u16 edma_status = le16_to_cpu(response->flags);
  1418. /*
  1419. * edma_status from a response queue entry:
  1420. * LSB is from EDMA_ERR_IRQ_CAUSE_OFS (non-NCQ only).
  1421. * MSB is saved ATA status from command completion.
  1422. */
  1423. if (!ncq_enabled) {
  1424. u8 err_cause = edma_status & 0xff & ~EDMA_ERR_DEV;
  1425. if (err_cause) {
  1426. /*
  1427. * Error will be seen/handled by mv_err_intr().
  1428. * So do nothing at all here.
  1429. */
  1430. return;
  1431. }
  1432. }
  1433. ata_status = edma_status >> CRPB_FLAG_STATUS_SHIFT;
  1434. qc->err_mask |= ac_err_mask(ata_status);
  1435. ata_qc_complete(qc);
  1436. } else {
  1437. ata_port_printk(ap, KERN_ERR, "%s: no qc for tag=%d\n",
  1438. __func__, tag);
  1439. }
  1440. }
  1441. static void mv_process_crpb_entries(struct ata_port *ap, struct mv_port_priv *pp)
  1442. {
  1443. void __iomem *port_mmio = mv_ap_base(ap);
  1444. struct mv_host_priv *hpriv = ap->host->private_data;
  1445. u32 in_index;
  1446. bool work_done = false;
  1447. int ncq_enabled = (pp->pp_flags & MV_PP_FLAG_NCQ_EN);
  1448. /* Get the hardware queue position index */
  1449. in_index = (readl(port_mmio + EDMA_RSP_Q_IN_PTR_OFS)
  1450. >> EDMA_RSP_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK;
  1451. /* Process new responses from since the last time we looked */
  1452. while (in_index != pp->resp_idx) {
  1453. unsigned int tag;
  1454. struct mv_crpb *response = &pp->crpb[pp->resp_idx];
  1455. pp->resp_idx = (pp->resp_idx + 1) & MV_MAX_Q_DEPTH_MASK;
  1456. if (IS_GEN_I(hpriv)) {
  1457. /* 50xx: no NCQ, only one command active at a time */
  1458. tag = ap->link.active_tag;
  1459. } else {
  1460. /* Gen II/IIE: get command tag from CRPB entry */
  1461. tag = le16_to_cpu(response->id) & 0x1f;
  1462. }
  1463. mv_process_crpb_response(ap, response, tag, ncq_enabled);
  1464. work_done = true;
  1465. }
  1466. /* Update the software queue position index in hardware */
  1467. if (work_done)
  1468. writelfl((pp->crpb_dma & EDMA_RSP_Q_BASE_LO_MASK) |
  1469. (pp->resp_idx << EDMA_RSP_Q_PTR_SHIFT),
  1470. port_mmio + EDMA_RSP_Q_OUT_PTR_OFS);
  1471. }
  1472. /**
  1473. * mv_host_intr - Handle all interrupts on the given host controller
  1474. * @host: host specific structure
  1475. * @main_irq_cause: Main interrupt cause register for the chip.
  1476. *
  1477. * LOCKING:
  1478. * Inherited from caller.
  1479. */
  1480. static int mv_host_intr(struct ata_host *host, u32 main_irq_cause)
  1481. {
  1482. struct mv_host_priv *hpriv = host->private_data;
  1483. void __iomem *mmio = hpriv->base, *hc_mmio = NULL;
  1484. u32 hc_irq_cause = 0;
  1485. unsigned int handled = 0, port;
  1486. for (port = 0; port < hpriv->n_ports; port++) {
  1487. struct ata_port *ap = host->ports[port];
  1488. struct mv_port_priv *pp;
  1489. unsigned int shift, hardport, port_cause;
  1490. /*
  1491. * When we move to the second hc, flag our cached
  1492. * copies of hc_mmio (and hc_irq_cause) as invalid again.
  1493. */
  1494. if (port == MV_PORTS_PER_HC)
  1495. hc_mmio = NULL;
  1496. /*
  1497. * Do nothing if port is not interrupting or is disabled:
  1498. */
  1499. MV_PORT_TO_SHIFT_AND_HARDPORT(port, shift, hardport);
  1500. port_cause = (main_irq_cause >> shift) & (DONE_IRQ | ERR_IRQ);
  1501. if (!port_cause || !ap || (ap->flags & ATA_FLAG_DISABLED))
  1502. continue;
  1503. /*
  1504. * Each hc within the host has its own hc_irq_cause register.
  1505. * We defer reading it until we know we need it, right now:
  1506. *
  1507. * FIXME later: we don't really need to read this register
  1508. * (some logic changes required below if we go that way),
  1509. * because it doesn't tell us anything new. But we do need
  1510. * to write to it, outside the top of this loop,
  1511. * to reset the interrupt triggers for next time.
  1512. */
  1513. if (!hc_mmio) {
  1514. hc_mmio = mv_hc_base_from_port(mmio, port);
  1515. hc_irq_cause = readl(hc_mmio + HC_IRQ_CAUSE_OFS);
  1516. writelfl(~hc_irq_cause, hc_mmio + HC_IRQ_CAUSE_OFS);
  1517. handled = 1;
  1518. }
  1519. /*
  1520. * Process completed CRPB response(s) before other events.
  1521. */
  1522. pp = ap->private_data;
  1523. if (hc_irq_cause & (DMA_IRQ << hardport)) {
  1524. if (pp->pp_flags & MV_PP_FLAG_EDMA_EN)
  1525. mv_process_crpb_entries(ap, pp);
  1526. }
  1527. /*
  1528. * Handle chip-reported errors, or continue on to handle PIO.
  1529. */
  1530. if (unlikely(port_cause & ERR_IRQ)) {
  1531. mv_err_intr(ap, mv_get_active_qc(ap));
  1532. } else if (hc_irq_cause & (DEV_IRQ << hardport)) {
  1533. if (!(pp->pp_flags & MV_PP_FLAG_EDMA_EN)) {
  1534. struct ata_queued_cmd *qc = mv_get_active_qc(ap);
  1535. if (qc) {
  1536. ata_sff_host_intr(ap, qc);
  1537. continue;
  1538. }
  1539. }
  1540. mv_unexpected_intr(ap);
  1541. }
  1542. }
  1543. return handled;
  1544. }
  1545. static int mv_pci_error(struct ata_host *host, void __iomem *mmio)
  1546. {
  1547. struct mv_host_priv *hpriv = host->private_data;
  1548. struct ata_port *ap;
  1549. struct ata_queued_cmd *qc;
  1550. struct ata_eh_info *ehi;
  1551. unsigned int i, err_mask, printed = 0;
  1552. u32 err_cause;
  1553. err_cause = readl(mmio + hpriv->irq_cause_ofs);
  1554. dev_printk(KERN_ERR, host->dev, "PCI ERROR; PCI IRQ cause=0x%08x\n",
  1555. err_cause);
  1556. DPRINTK("All regs @ PCI error\n");
  1557. mv_dump_all_regs(mmio, -1, to_pci_dev(host->dev));
  1558. writelfl(0, mmio + hpriv->irq_cause_ofs);
  1559. for (i = 0; i < host->n_ports; i++) {
  1560. ap = host->ports[i];
  1561. if (!ata_link_offline(&ap->link)) {
  1562. ehi = &ap->link.eh_info;
  1563. ata_ehi_clear_desc(ehi);
  1564. if (!printed++)
  1565. ata_ehi_push_desc(ehi,
  1566. "PCI err cause 0x%08x", err_cause);
  1567. err_mask = AC_ERR_HOST_BUS;
  1568. ehi->action = ATA_EH_RESET;
  1569. qc = ata_qc_from_tag(ap, ap->link.active_tag);
  1570. if (qc)
  1571. qc->err_mask |= err_mask;
  1572. else
  1573. ehi->err_mask |= err_mask;
  1574. ata_port_freeze(ap);
  1575. }
  1576. }
  1577. return 1; /* handled */
  1578. }
  1579. /**
  1580. * mv_interrupt - Main interrupt event handler
  1581. * @irq: unused
  1582. * @dev_instance: private data; in this case the host structure
  1583. *
  1584. * Read the read only register to determine if any host
  1585. * controllers have pending interrupts. If so, call lower level
  1586. * routine to handle. Also check for PCI errors which are only
  1587. * reported here.
  1588. *
  1589. * LOCKING:
  1590. * This routine holds the host lock while processing pending
  1591. * interrupts.
  1592. */
  1593. static irqreturn_t mv_interrupt(int irq, void *dev_instance)
  1594. {
  1595. struct ata_host *host = dev_instance;
  1596. struct mv_host_priv *hpriv = host->private_data;
  1597. unsigned int handled = 0;
  1598. u32 main_irq_cause, main_irq_mask;
  1599. spin_lock(&host->lock);
  1600. main_irq_cause = readl(hpriv->main_irq_cause_addr);
  1601. main_irq_mask = readl(hpriv->main_irq_mask_addr);
  1602. /*
  1603. * Deal with cases where we either have nothing pending, or have read
  1604. * a bogus register value which can indicate HW removal or PCI fault.
  1605. */
  1606. if ((main_irq_cause & main_irq_mask) && (main_irq_cause != 0xffffffffU)) {
  1607. if (unlikely((main_irq_cause & PCI_ERR) && HAS_PCI(host)))
  1608. handled = mv_pci_error(host, hpriv->base);
  1609. else
  1610. handled = mv_host_intr(host, main_irq_cause);
  1611. }
  1612. spin_unlock(&host->lock);
  1613. return IRQ_RETVAL(handled);
  1614. }
  1615. static unsigned int mv5_scr_offset(unsigned int sc_reg_in)
  1616. {
  1617. unsigned int ofs;
  1618. switch (sc_reg_in) {
  1619. case SCR_STATUS:
  1620. case SCR_ERROR:
  1621. case SCR_CONTROL:
  1622. ofs = sc_reg_in * sizeof(u32);
  1623. break;
  1624. default:
  1625. ofs = 0xffffffffU;
  1626. break;
  1627. }
  1628. return ofs;
  1629. }
  1630. static int mv5_scr_read(struct ata_port *ap, unsigned int sc_reg_in, u32 *val)
  1631. {
  1632. struct mv_host_priv *hpriv = ap->host->private_data;
  1633. void __iomem *mmio = hpriv->base;
  1634. void __iomem *addr = mv5_phy_base(mmio, ap->port_no);
  1635. unsigned int ofs = mv5_scr_offset(sc_reg_in);
  1636. if (ofs != 0xffffffffU) {
  1637. *val = readl(addr + ofs);
  1638. return 0;
  1639. } else
  1640. return -EINVAL;
  1641. }
  1642. static int mv5_scr_write(struct ata_port *ap, unsigned int sc_reg_in, u32 val)
  1643. {
  1644. struct mv_host_priv *hpriv = ap->host->private_data;
  1645. void __iomem *mmio = hpriv->base;
  1646. void __iomem *addr = mv5_phy_base(mmio, ap->port_no);
  1647. unsigned int ofs = mv5_scr_offset(sc_reg_in);
  1648. if (ofs != 0xffffffffU) {
  1649. writelfl(val, addr + ofs);
  1650. return 0;
  1651. } else
  1652. return -EINVAL;
  1653. }
  1654. static void mv5_reset_bus(struct ata_host *host, void __iomem *mmio)
  1655. {
  1656. struct pci_dev *pdev = to_pci_dev(host->dev);
  1657. int early_5080;
  1658. early_5080 = (pdev->device == 0x5080) && (pdev->revision == 0);
  1659. if (!early_5080) {
  1660. u32 tmp = readl(mmio + MV_PCI_EXP_ROM_BAR_CTL);
  1661. tmp |= (1 << 0);
  1662. writel(tmp, mmio + MV_PCI_EXP_ROM_BAR_CTL);
  1663. }
  1664. mv_reset_pci_bus(host, mmio);
  1665. }
  1666. static void mv5_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio)
  1667. {
  1668. writel(0x0fcfffff, mmio + MV_FLASH_CTL);
  1669. }
  1670. static void mv5_read_preamp(struct mv_host_priv *hpriv, int idx,
  1671. void __iomem *mmio)
  1672. {
  1673. void __iomem *phy_mmio = mv5_phy_base(mmio, idx);
  1674. u32 tmp;
  1675. tmp = readl(phy_mmio + MV5_PHY_MODE);
  1676. hpriv->signal[idx].pre = tmp & 0x1800; /* bits 12:11 */
  1677. hpriv->signal[idx].amps = tmp & 0xe0; /* bits 7:5 */
  1678. }
  1679. static void mv5_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio)
  1680. {
  1681. u32 tmp;
  1682. writel(0, mmio + MV_GPIO_PORT_CTL);
  1683. /* FIXME: handle MV_HP_ERRATA_50XXB2 errata */
  1684. tmp = readl(mmio + MV_PCI_EXP_ROM_BAR_CTL);
  1685. tmp |= ~(1 << 0);
  1686. writel(tmp, mmio + MV_PCI_EXP_ROM_BAR_CTL);
  1687. }
  1688. static void mv5_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
  1689. unsigned int port)
  1690. {
  1691. void __iomem *phy_mmio = mv5_phy_base(mmio, port);
  1692. const u32 mask = (1<<12) | (1<<11) | (1<<7) | (1<<6) | (1<<5);
  1693. u32 tmp;
  1694. int fix_apm_sq = (hpriv->hp_flags & MV_HP_ERRATA_50XXB0);
  1695. if (fix_apm_sq) {
  1696. tmp = readl(phy_mmio + MV5_LT_MODE);
  1697. tmp |= (1 << 19);
  1698. writel(tmp, phy_mmio + MV5_LT_MODE);
  1699. tmp = readl(phy_mmio + MV5_PHY_CTL);
  1700. tmp &= ~0x3;
  1701. tmp |= 0x1;
  1702. writel(tmp, phy_mmio + MV5_PHY_CTL);
  1703. }
  1704. tmp = readl(phy_mmio + MV5_PHY_MODE);
  1705. tmp &= ~mask;
  1706. tmp |= hpriv->signal[port].pre;
  1707. tmp |= hpriv->signal[port].amps;
  1708. writel(tmp, phy_mmio + MV5_PHY_MODE);
  1709. }
  1710. #undef ZERO
  1711. #define ZERO(reg) writel(0, port_mmio + (reg))
  1712. static void mv5_reset_hc_port(struct mv_host_priv *hpriv, void __iomem *mmio,
  1713. unsigned int port)
  1714. {
  1715. void __iomem *port_mmio = mv_port_base(mmio, port);
  1716. /*
  1717. * The datasheet warns against setting ATA_RST when EDMA is active
  1718. * (but doesn't say what the problem might be). So we first try
  1719. * to disable the EDMA engine before doing the ATA_RST operation.
  1720. */
  1721. mv_reset_channel(hpriv, mmio, port);
  1722. ZERO(0x028); /* command */
  1723. writel(0x11f, port_mmio + EDMA_CFG_OFS);
  1724. ZERO(0x004); /* timer */
  1725. ZERO(0x008); /* irq err cause */
  1726. ZERO(0x00c); /* irq err mask */
  1727. ZERO(0x010); /* rq bah */
  1728. ZERO(0x014); /* rq inp */
  1729. ZERO(0x018); /* rq outp */
  1730. ZERO(0x01c); /* respq bah */
  1731. ZERO(0x024); /* respq outp */
  1732. ZERO(0x020); /* respq inp */
  1733. ZERO(0x02c); /* test control */
  1734. writel(0xbc, port_mmio + EDMA_IORDY_TMOUT);
  1735. }
  1736. #undef ZERO
  1737. #define ZERO(reg) writel(0, hc_mmio + (reg))
  1738. static void mv5_reset_one_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
  1739. unsigned int hc)
  1740. {
  1741. void __iomem *hc_mmio = mv_hc_base(mmio, hc);
  1742. u32 tmp;
  1743. ZERO(0x00c);
  1744. ZERO(0x010);
  1745. ZERO(0x014);
  1746. ZERO(0x018);
  1747. tmp = readl(hc_mmio + 0x20);
  1748. tmp &= 0x1c1c1c1c;
  1749. tmp |= 0x03030303;
  1750. writel(tmp, hc_mmio + 0x20);
  1751. }
  1752. #undef ZERO
  1753. static int mv5_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
  1754. unsigned int n_hc)
  1755. {
  1756. unsigned int hc, port;
  1757. for (hc = 0; hc < n_hc; hc++) {
  1758. for (port = 0; port < MV_PORTS_PER_HC; port++)
  1759. mv5_reset_hc_port(hpriv, mmio,
  1760. (hc * MV_PORTS_PER_HC) + port);
  1761. mv5_reset_one_hc(hpriv, mmio, hc);
  1762. }
  1763. return 0;
  1764. }
  1765. #undef ZERO
  1766. #define ZERO(reg) writel(0, mmio + (reg))
  1767. static void mv_reset_pci_bus(struct ata_host *host, void __iomem *mmio)
  1768. {
  1769. struct mv_host_priv *hpriv = host->private_data;
  1770. u32 tmp;
  1771. tmp = readl(mmio + MV_PCI_MODE);
  1772. tmp &= 0xff00ffff;
  1773. writel(tmp, mmio + MV_PCI_MODE);
  1774. ZERO(MV_PCI_DISC_TIMER);
  1775. ZERO(MV_PCI_MSI_TRIGGER);
  1776. writel(0x000100ff, mmio + MV_PCI_XBAR_TMOUT);
  1777. ZERO(PCI_HC_MAIN_IRQ_MASK_OFS);
  1778. ZERO(MV_PCI_SERR_MASK);
  1779. ZERO(hpriv->irq_cause_ofs);
  1780. ZERO(hpriv->irq_mask_ofs);
  1781. ZERO(MV_PCI_ERR_LOW_ADDRESS);
  1782. ZERO(MV_PCI_ERR_HIGH_ADDRESS);
  1783. ZERO(MV_PCI_ERR_ATTRIBUTE);
  1784. ZERO(MV_PCI_ERR_COMMAND);
  1785. }
  1786. #undef ZERO
  1787. static void mv6_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio)
  1788. {
  1789. u32 tmp;
  1790. mv5_reset_flash(hpriv, mmio);
  1791. tmp = readl(mmio + MV_GPIO_PORT_CTL);
  1792. tmp &= 0x3;
  1793. tmp |= (1 << 5) | (1 << 6);
  1794. writel(tmp, mmio + MV_GPIO_PORT_CTL);
  1795. }
  1796. /**
  1797. * mv6_reset_hc - Perform the 6xxx global soft reset
  1798. * @mmio: base address of the HBA
  1799. *
  1800. * This routine only applies to 6xxx parts.
  1801. *
  1802. * LOCKING:
  1803. * Inherited from caller.
  1804. */
  1805. static int mv6_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
  1806. unsigned int n_hc)
  1807. {
  1808. void __iomem *reg = mmio + PCI_MAIN_CMD_STS_OFS;
  1809. int i, rc = 0;
  1810. u32 t;
  1811. /* Following procedure defined in PCI "main command and status
  1812. * register" table.
  1813. */
  1814. t = readl(reg);
  1815. writel(t | STOP_PCI_MASTER, reg);
  1816. for (i = 0; i < 1000; i++) {
  1817. udelay(1);
  1818. t = readl(reg);
  1819. if (PCI_MASTER_EMPTY & t)
  1820. break;
  1821. }
  1822. if (!(PCI_MASTER_EMPTY & t)) {
  1823. printk(KERN_ERR DRV_NAME ": PCI master won't flush\n");
  1824. rc = 1;
  1825. goto done;
  1826. }
  1827. /* set reset */
  1828. i = 5;
  1829. do {
  1830. writel(t | GLOB_SFT_RST, reg);
  1831. t = readl(reg);
  1832. udelay(1);
  1833. } while (!(GLOB_SFT_RST & t) && (i-- > 0));
  1834. if (!(GLOB_SFT_RST & t)) {
  1835. printk(KERN_ERR DRV_NAME ": can't set global reset\n");
  1836. rc = 1;
  1837. goto done;
  1838. }
  1839. /* clear reset and *reenable the PCI master* (not mentioned in spec) */
  1840. i = 5;
  1841. do {
  1842. writel(t & ~(GLOB_SFT_RST | STOP_PCI_MASTER), reg);
  1843. t = readl(reg);
  1844. udelay(1);
  1845. } while ((GLOB_SFT_RST & t) && (i-- > 0));
  1846. if (GLOB_SFT_RST & t) {
  1847. printk(KERN_ERR DRV_NAME ": can't clear global reset\n");
  1848. rc = 1;
  1849. }
  1850. done:
  1851. return rc;
  1852. }
  1853. static void mv6_read_preamp(struct mv_host_priv *hpriv, int idx,
  1854. void __iomem *mmio)
  1855. {
  1856. void __iomem *port_mmio;
  1857. u32 tmp;
  1858. tmp = readl(mmio + MV_RESET_CFG);
  1859. if ((tmp & (1 << 0)) == 0) {
  1860. hpriv->signal[idx].amps = 0x7 << 8;
  1861. hpriv->signal[idx].pre = 0x1 << 5;
  1862. return;
  1863. }
  1864. port_mmio = mv_port_base(mmio, idx);
  1865. tmp = readl(port_mmio + PHY_MODE2);
  1866. hpriv->signal[idx].amps = tmp & 0x700; /* bits 10:8 */
  1867. hpriv->signal[idx].pre = tmp & 0xe0; /* bits 7:5 */
  1868. }
  1869. static void mv6_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio)
  1870. {
  1871. writel(0x00000060, mmio + MV_GPIO_PORT_CTL);
  1872. }
  1873. static void mv6_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
  1874. unsigned int port)
  1875. {
  1876. void __iomem *port_mmio = mv_port_base(mmio, port);
  1877. u32 hp_flags = hpriv->hp_flags;
  1878. int fix_phy_mode2 =
  1879. hp_flags & (MV_HP_ERRATA_60X1B2 | MV_HP_ERRATA_60X1C0);
  1880. int fix_phy_mode4 =
  1881. hp_flags & (MV_HP_ERRATA_60X1B2 | MV_HP_ERRATA_60X1C0);
  1882. u32 m2, tmp;
  1883. if (fix_phy_mode2) {
  1884. m2 = readl(port_mmio + PHY_MODE2);
  1885. m2 &= ~(1 << 16);
  1886. m2 |= (1 << 31);
  1887. writel(m2, port_mmio + PHY_MODE2);
  1888. udelay(200);
  1889. m2 = readl(port_mmio + PHY_MODE2);
  1890. m2 &= ~((1 << 16) | (1 << 31));
  1891. writel(m2, port_mmio + PHY_MODE2);
  1892. udelay(200);
  1893. }
  1894. /* who knows what this magic does */
  1895. tmp = readl(port_mmio + PHY_MODE3);
  1896. tmp &= ~0x7F800000;
  1897. tmp |= 0x2A800000;
  1898. writel(tmp, port_mmio + PHY_MODE3);
  1899. if (fix_phy_mode4) {
  1900. u32 m4;
  1901. m4 = readl(port_mmio + PHY_MODE4);
  1902. if (hp_flags & MV_HP_ERRATA_60X1B2)
  1903. tmp = readl(port_mmio + PHY_MODE3);
  1904. /* workaround for errata FEr SATA#10 (part 1) */
  1905. m4 = (m4 & ~(1 << 1)) | (1 << 0);
  1906. writel(m4, port_mmio + PHY_MODE4);
  1907. if (hp_flags & MV_HP_ERRATA_60X1B2)
  1908. writel(tmp, port_mmio + PHY_MODE3);
  1909. }
  1910. /* Revert values of pre-emphasis and signal amps to the saved ones */
  1911. m2 = readl(port_mmio + PHY_MODE2);
  1912. m2 &= ~MV_M2_PREAMP_MASK;
  1913. m2 |= hpriv->signal[port].amps;
  1914. m2 |= hpriv->signal[port].pre;
  1915. m2 &= ~(1 << 16);
  1916. /* according to mvSata 3.6.1, some IIE values are fixed */
  1917. if (IS_GEN_IIE(hpriv)) {
  1918. m2 &= ~0xC30FF01F;
  1919. m2 |= 0x0000900F;
  1920. }
  1921. writel(m2, port_mmio + PHY_MODE2);
  1922. }
  1923. /* TODO: use the generic LED interface to configure the SATA Presence */
  1924. /* & Acitivy LEDs on the board */
  1925. static void mv_soc_enable_leds(struct mv_host_priv *hpriv,
  1926. void __iomem *mmio)
  1927. {
  1928. return;
  1929. }
  1930. static void mv_soc_read_preamp(struct mv_host_priv *hpriv, int idx,
  1931. void __iomem *mmio)
  1932. {
  1933. void __iomem *port_mmio;
  1934. u32 tmp;
  1935. port_mmio = mv_port_base(mmio, idx);
  1936. tmp = readl(port_mmio + PHY_MODE2);
  1937. hpriv->signal[idx].amps = tmp & 0x700; /* bits 10:8 */
  1938. hpriv->signal[idx].pre = tmp & 0xe0; /* bits 7:5 */
  1939. }
  1940. #undef ZERO
  1941. #define ZERO(reg) writel(0, port_mmio + (reg))
  1942. static void mv_soc_reset_hc_port(struct mv_host_priv *hpriv,
  1943. void __iomem *mmio, unsigned int port)
  1944. {
  1945. void __iomem *port_mmio = mv_port_base(mmio, port);
  1946. /*
  1947. * The datasheet warns against setting ATA_RST when EDMA is active
  1948. * (but doesn't say what the problem might be). So we first try
  1949. * to disable the EDMA engine before doing the ATA_RST operation.
  1950. */
  1951. mv_reset_channel(hpriv, mmio, port);
  1952. ZERO(0x028); /* command */
  1953. writel(0x101f, port_mmio + EDMA_CFG_OFS);
  1954. ZERO(0x004); /* timer */
  1955. ZERO(0x008); /* irq err cause */
  1956. ZERO(0x00c); /* irq err mask */
  1957. ZERO(0x010); /* rq bah */
  1958. ZERO(0x014); /* rq inp */
  1959. ZERO(0x018); /* rq outp */
  1960. ZERO(0x01c); /* respq bah */
  1961. ZERO(0x024); /* respq outp */
  1962. ZERO(0x020); /* respq inp */
  1963. ZERO(0x02c); /* test control */
  1964. writel(0xbc, port_mmio + EDMA_IORDY_TMOUT);
  1965. }
  1966. #undef ZERO
  1967. #define ZERO(reg) writel(0, hc_mmio + (reg))
  1968. static void mv_soc_reset_one_hc(struct mv_host_priv *hpriv,
  1969. void __iomem *mmio)
  1970. {
  1971. void __iomem *hc_mmio = mv_hc_base(mmio, 0);
  1972. ZERO(0x00c);
  1973. ZERO(0x010);
  1974. ZERO(0x014);
  1975. }
  1976. #undef ZERO
  1977. static int mv_soc_reset_hc(struct mv_host_priv *hpriv,
  1978. void __iomem *mmio, unsigned int n_hc)
  1979. {
  1980. unsigned int port;
  1981. for (port = 0; port < hpriv->n_ports; port++)
  1982. mv_soc_reset_hc_port(hpriv, mmio, port);
  1983. mv_soc_reset_one_hc(hpriv, mmio);
  1984. return 0;
  1985. }
  1986. static void mv_soc_reset_flash(struct mv_host_priv *hpriv,
  1987. void __iomem *mmio)
  1988. {
  1989. return;
  1990. }
  1991. static void mv_soc_reset_bus(struct ata_host *host, void __iomem *mmio)
  1992. {
  1993. return;
  1994. }
  1995. static void mv_setup_ifctl(void __iomem *port_mmio, int want_gen2i)
  1996. {
  1997. u32 ifctl = readl(port_mmio + SATA_INTERFACE_CFG);
  1998. ifctl = (ifctl & 0xf7f) | 0x9b1000; /* from chip spec */
  1999. if (want_gen2i)
  2000. ifctl |= (1 << 7); /* enable gen2i speed */
  2001. writelfl(ifctl, port_mmio + SATA_INTERFACE_CFG);
  2002. }
  2003. /*
  2004. * Caller must ensure that EDMA is not active,
  2005. * by first doing mv_stop_edma() where needed.
  2006. */
  2007. static void mv_reset_channel(struct mv_host_priv *hpriv, void __iomem *mmio,
  2008. unsigned int port_no)
  2009. {
  2010. void __iomem *port_mmio = mv_port_base(mmio, port_no);
  2011. mv_stop_edma_engine(port_mmio);
  2012. writelfl(ATA_RST, port_mmio + EDMA_CMD_OFS);
  2013. if (!IS_GEN_I(hpriv)) {
  2014. /* Enable 3.0gb/s link speed */
  2015. mv_setup_ifctl(port_mmio, 1);
  2016. }
  2017. /*
  2018. * Strobing ATA_RST here causes a hard reset of the SATA transport,
  2019. * link, and physical layers. It resets all SATA interface registers
  2020. * (except for SATA_INTERFACE_CFG), and issues a COMRESET to the dev.
  2021. */
  2022. writelfl(ATA_RST, port_mmio + EDMA_CMD_OFS);
  2023. udelay(25); /* allow reset propagation */
  2024. writelfl(0, port_mmio + EDMA_CMD_OFS);
  2025. hpriv->ops->phy_errata(hpriv, mmio, port_no);
  2026. if (IS_GEN_I(hpriv))
  2027. mdelay(1);
  2028. }
  2029. static void mv_pmp_select(struct ata_port *ap, int pmp)
  2030. {
  2031. if (sata_pmp_supported(ap)) {
  2032. void __iomem *port_mmio = mv_ap_base(ap);
  2033. u32 reg = readl(port_mmio + SATA_IFCTL_OFS);
  2034. int old = reg & 0xf;
  2035. if (old != pmp) {
  2036. reg = (reg & ~0xf) | pmp;
  2037. writelfl(reg, port_mmio + SATA_IFCTL_OFS);
  2038. }
  2039. }
  2040. }
  2041. static int mv_pmp_hardreset(struct ata_link *link, unsigned int *class,
  2042. unsigned long deadline)
  2043. {
  2044. mv_pmp_select(link->ap, sata_srst_pmp(link));
  2045. return sata_std_hardreset(link, class, deadline);
  2046. }
  2047. static int mv_softreset(struct ata_link *link, unsigned int *class,
  2048. unsigned long deadline)
  2049. {
  2050. mv_pmp_select(link->ap, sata_srst_pmp(link));
  2051. return ata_sff_softreset(link, class, deadline);
  2052. }
  2053. static int mv_hardreset(struct ata_link *link, unsigned int *class,
  2054. unsigned long deadline)
  2055. {
  2056. struct ata_port *ap = link->ap;
  2057. struct mv_host_priv *hpriv = ap->host->private_data;
  2058. struct mv_port_priv *pp = ap->private_data;
  2059. void __iomem *mmio = hpriv->base;
  2060. int rc, attempts = 0, extra = 0;
  2061. u32 sstatus;
  2062. bool online;
  2063. mv_reset_channel(hpriv, mmio, ap->port_no);
  2064. pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
  2065. /* Workaround for errata FEr SATA#10 (part 2) */
  2066. do {
  2067. const unsigned long *timing =
  2068. sata_ehc_deb_timing(&link->eh_context);
  2069. rc = sata_link_hardreset(link, timing, deadline + extra,
  2070. &online, NULL);
  2071. if (rc)
  2072. return rc;
  2073. sata_scr_read(link, SCR_STATUS, &sstatus);
  2074. if (!IS_GEN_I(hpriv) && ++attempts >= 5 && sstatus == 0x121) {
  2075. /* Force 1.5gb/s link speed and try again */
  2076. mv_setup_ifctl(mv_ap_base(ap), 0);
  2077. if (time_after(jiffies + HZ, deadline))
  2078. extra = HZ; /* only extend it once, max */
  2079. }
  2080. } while (sstatus != 0x0 && sstatus != 0x113 && sstatus != 0x123);
  2081. return rc;
  2082. }
  2083. static void mv_eh_freeze(struct ata_port *ap)
  2084. {
  2085. struct mv_host_priv *hpriv = ap->host->private_data;
  2086. unsigned int shift, hardport, port = ap->port_no;
  2087. u32 main_irq_mask;
  2088. /* FIXME: handle coalescing completion events properly */
  2089. mv_stop_edma(ap);
  2090. MV_PORT_TO_SHIFT_AND_HARDPORT(port, shift, hardport);
  2091. /* disable assertion of portN err, done events */
  2092. main_irq_mask = readl(hpriv->main_irq_mask_addr);
  2093. main_irq_mask &= ~((DONE_IRQ | ERR_IRQ) << shift);
  2094. writelfl(main_irq_mask, hpriv->main_irq_mask_addr);
  2095. }
  2096. static void mv_eh_thaw(struct ata_port *ap)
  2097. {
  2098. struct mv_host_priv *hpriv = ap->host->private_data;
  2099. unsigned int shift, hardport, port = ap->port_no;
  2100. void __iomem *hc_mmio = mv_hc_base_from_port(hpriv->base, port);
  2101. void __iomem *port_mmio = mv_ap_base(ap);
  2102. u32 main_irq_mask, hc_irq_cause;
  2103. /* FIXME: handle coalescing completion events properly */
  2104. MV_PORT_TO_SHIFT_AND_HARDPORT(port, shift, hardport);
  2105. /* clear EDMA errors on this port */
  2106. writel(0, port_mmio + EDMA_ERR_IRQ_CAUSE_OFS);
  2107. /* clear pending irq events */
  2108. hc_irq_cause = readl(hc_mmio + HC_IRQ_CAUSE_OFS);
  2109. hc_irq_cause &= ~((DEV_IRQ | DMA_IRQ) << hardport);
  2110. writelfl(hc_irq_cause, hc_mmio + HC_IRQ_CAUSE_OFS);
  2111. /* enable assertion of portN err, done events */
  2112. main_irq_mask = readl(hpriv->main_irq_mask_addr);
  2113. main_irq_mask |= ((DONE_IRQ | ERR_IRQ) << shift);
  2114. writelfl(main_irq_mask, hpriv->main_irq_mask_addr);
  2115. }
  2116. /**
  2117. * mv_port_init - Perform some early initialization on a single port.
  2118. * @port: libata data structure storing shadow register addresses
  2119. * @port_mmio: base address of the port
  2120. *
  2121. * Initialize shadow register mmio addresses, clear outstanding
  2122. * interrupts on the port, and unmask interrupts for the future
  2123. * start of the port.
  2124. *
  2125. * LOCKING:
  2126. * Inherited from caller.
  2127. */
  2128. static void mv_port_init(struct ata_ioports *port, void __iomem *port_mmio)
  2129. {
  2130. void __iomem *shd_base = port_mmio + SHD_BLK_OFS;
  2131. unsigned serr_ofs;
  2132. /* PIO related setup
  2133. */
  2134. port->data_addr = shd_base + (sizeof(u32) * ATA_REG_DATA);
  2135. port->error_addr =
  2136. port->feature_addr = shd_base + (sizeof(u32) * ATA_REG_ERR);
  2137. port->nsect_addr = shd_base + (sizeof(u32) * ATA_REG_NSECT);
  2138. port->lbal_addr = shd_base + (sizeof(u32) * ATA_REG_LBAL);
  2139. port->lbam_addr = shd_base + (sizeof(u32) * ATA_REG_LBAM);
  2140. port->lbah_addr = shd_base + (sizeof(u32) * ATA_REG_LBAH);
  2141. port->device_addr = shd_base + (sizeof(u32) * ATA_REG_DEVICE);
  2142. port->status_addr =
  2143. port->command_addr = shd_base + (sizeof(u32) * ATA_REG_STATUS);
  2144. /* special case: control/altstatus doesn't have ATA_REG_ address */
  2145. port->altstatus_addr = port->ctl_addr = shd_base + SHD_CTL_AST_OFS;
  2146. /* unused: */
  2147. port->cmd_addr = port->bmdma_addr = port->scr_addr = NULL;
  2148. /* Clear any currently outstanding port interrupt conditions */
  2149. serr_ofs = mv_scr_offset(SCR_ERROR);
  2150. writelfl(readl(port_mmio + serr_ofs), port_mmio + serr_ofs);
  2151. writelfl(0, port_mmio + EDMA_ERR_IRQ_CAUSE_OFS);
  2152. /* unmask all non-transient EDMA error interrupts */
  2153. writelfl(~EDMA_ERR_IRQ_TRANSIENT, port_mmio + EDMA_ERR_IRQ_MASK_OFS);
  2154. VPRINTK("EDMA cfg=0x%08x EDMA IRQ err cause/mask=0x%08x/0x%08x\n",
  2155. readl(port_mmio + EDMA_CFG_OFS),
  2156. readl(port_mmio + EDMA_ERR_IRQ_CAUSE_OFS),
  2157. readl(port_mmio + EDMA_ERR_IRQ_MASK_OFS));
  2158. }
  2159. static int mv_chip_id(struct ata_host *host, unsigned int board_idx)
  2160. {
  2161. struct pci_dev *pdev = to_pci_dev(host->dev);
  2162. struct mv_host_priv *hpriv = host->private_data;
  2163. u32 hp_flags = hpriv->hp_flags;
  2164. switch (board_idx) {
  2165. case chip_5080:
  2166. hpriv->ops = &mv5xxx_ops;
  2167. hp_flags |= MV_HP_GEN_I;
  2168. switch (pdev->revision) {
  2169. case 0x1:
  2170. hp_flags |= MV_HP_ERRATA_50XXB0;
  2171. break;
  2172. case 0x3:
  2173. hp_flags |= MV_HP_ERRATA_50XXB2;
  2174. break;
  2175. default:
  2176. dev_printk(KERN_WARNING, &pdev->dev,
  2177. "Applying 50XXB2 workarounds to unknown rev\n");
  2178. hp_flags |= MV_HP_ERRATA_50XXB2;
  2179. break;
  2180. }
  2181. break;
  2182. case chip_504x:
  2183. case chip_508x:
  2184. hpriv->ops = &mv5xxx_ops;
  2185. hp_flags |= MV_HP_GEN_I;
  2186. switch (pdev->revision) {
  2187. case 0x0:
  2188. hp_flags |= MV_HP_ERRATA_50XXB0;
  2189. break;
  2190. case 0x3:
  2191. hp_flags |= MV_HP_ERRATA_50XXB2;
  2192. break;
  2193. default:
  2194. dev_printk(KERN_WARNING, &pdev->dev,
  2195. "Applying B2 workarounds to unknown rev\n");
  2196. hp_flags |= MV_HP_ERRATA_50XXB2;
  2197. break;
  2198. }
  2199. break;
  2200. case chip_604x:
  2201. case chip_608x:
  2202. hpriv->ops = &mv6xxx_ops;
  2203. hp_flags |= MV_HP_GEN_II;
  2204. switch (pdev->revision) {
  2205. case 0x7:
  2206. hp_flags |= MV_HP_ERRATA_60X1B2;
  2207. break;
  2208. case 0x9:
  2209. hp_flags |= MV_HP_ERRATA_60X1C0;
  2210. break;
  2211. default:
  2212. dev_printk(KERN_WARNING, &pdev->dev,
  2213. "Applying B2 workarounds to unknown rev\n");
  2214. hp_flags |= MV_HP_ERRATA_60X1B2;
  2215. break;
  2216. }
  2217. break;
  2218. case chip_7042:
  2219. hp_flags |= MV_HP_PCIE;
  2220. if (pdev->vendor == PCI_VENDOR_ID_TTI &&
  2221. (pdev->device == 0x2300 || pdev->device == 0x2310))
  2222. {
  2223. /*
  2224. * Highpoint RocketRAID PCIe 23xx series cards:
  2225. *
  2226. * Unconfigured drives are treated as "Legacy"
  2227. * by the BIOS, and it overwrites sector 8 with
  2228. * a "Lgcy" metadata block prior to Linux boot.
  2229. *
  2230. * Configured drives (RAID or JBOD) leave sector 8
  2231. * alone, but instead overwrite a high numbered
  2232. * sector for the RAID metadata. This sector can
  2233. * be determined exactly, by truncating the physical
  2234. * drive capacity to a nice even GB value.
  2235. *
  2236. * RAID metadata is at: (dev->n_sectors & ~0xfffff)
  2237. *
  2238. * Warn the user, lest they think we're just buggy.
  2239. */
  2240. printk(KERN_WARNING DRV_NAME ": Highpoint RocketRAID"
  2241. " BIOS CORRUPTS DATA on all attached drives,"
  2242. " regardless of if/how they are configured."
  2243. " BEWARE!\n");
  2244. printk(KERN_WARNING DRV_NAME ": For data safety, do not"
  2245. " use sectors 8-9 on \"Legacy\" drives,"
  2246. " and avoid the final two gigabytes on"
  2247. " all RocketRAID BIOS initialized drives.\n");
  2248. }
  2249. case chip_6042:
  2250. hpriv->ops = &mv6xxx_ops;
  2251. hp_flags |= MV_HP_GEN_IIE;
  2252. switch (pdev->revision) {
  2253. case 0x0:
  2254. hp_flags |= MV_HP_ERRATA_XX42A0;
  2255. break;
  2256. case 0x1:
  2257. hp_flags |= MV_HP_ERRATA_60X1C0;
  2258. break;
  2259. default:
  2260. dev_printk(KERN_WARNING, &pdev->dev,
  2261. "Applying 60X1C0 workarounds to unknown rev\n");
  2262. hp_flags |= MV_HP_ERRATA_60X1C0;
  2263. break;
  2264. }
  2265. break;
  2266. case chip_soc:
  2267. hpriv->ops = &mv_soc_ops;
  2268. hp_flags |= MV_HP_ERRATA_60X1C0;
  2269. break;
  2270. default:
  2271. dev_printk(KERN_ERR, host->dev,
  2272. "BUG: invalid board index %u\n", board_idx);
  2273. return 1;
  2274. }
  2275. hpriv->hp_flags = hp_flags;
  2276. if (hp_flags & MV_HP_PCIE) {
  2277. hpriv->irq_cause_ofs = PCIE_IRQ_CAUSE_OFS;
  2278. hpriv->irq_mask_ofs = PCIE_IRQ_MASK_OFS;
  2279. hpriv->unmask_all_irqs = PCIE_UNMASK_ALL_IRQS;
  2280. } else {
  2281. hpriv->irq_cause_ofs = PCI_IRQ_CAUSE_OFS;
  2282. hpriv->irq_mask_ofs = PCI_IRQ_MASK_OFS;
  2283. hpriv->unmask_all_irqs = PCI_UNMASK_ALL_IRQS;
  2284. }
  2285. return 0;
  2286. }
  2287. /**
  2288. * mv_init_host - Perform some early initialization of the host.
  2289. * @host: ATA host to initialize
  2290. * @board_idx: controller index
  2291. *
  2292. * If possible, do an early global reset of the host. Then do
  2293. * our port init and clear/unmask all/relevant host interrupts.
  2294. *
  2295. * LOCKING:
  2296. * Inherited from caller.
  2297. */
  2298. static int mv_init_host(struct ata_host *host, unsigned int board_idx)
  2299. {
  2300. int rc = 0, n_hc, port, hc;
  2301. struct mv_host_priv *hpriv = host->private_data;
  2302. void __iomem *mmio = hpriv->base;
  2303. rc = mv_chip_id(host, board_idx);
  2304. if (rc)
  2305. goto done;
  2306. if (HAS_PCI(host)) {
  2307. hpriv->main_irq_cause_addr = mmio + PCI_HC_MAIN_IRQ_CAUSE_OFS;
  2308. hpriv->main_irq_mask_addr = mmio + PCI_HC_MAIN_IRQ_MASK_OFS;
  2309. } else {
  2310. hpriv->main_irq_cause_addr = mmio + SOC_HC_MAIN_IRQ_CAUSE_OFS;
  2311. hpriv->main_irq_mask_addr = mmio + SOC_HC_MAIN_IRQ_MASK_OFS;
  2312. }
  2313. /* global interrupt mask: 0 == mask everything */
  2314. writel(0, hpriv->main_irq_mask_addr);
  2315. n_hc = mv_get_hc_count(host->ports[0]->flags);
  2316. for (port = 0; port < host->n_ports; port++)
  2317. hpriv->ops->read_preamp(hpriv, port, mmio);
  2318. rc = hpriv->ops->reset_hc(hpriv, mmio, n_hc);
  2319. if (rc)
  2320. goto done;
  2321. hpriv->ops->reset_flash(hpriv, mmio);
  2322. hpriv->ops->reset_bus(host, mmio);
  2323. hpriv->ops->enable_leds(hpriv, mmio);
  2324. for (port = 0; port < host->n_ports; port++) {
  2325. struct ata_port *ap = host->ports[port];
  2326. void __iomem *port_mmio = mv_port_base(mmio, port);
  2327. mv_port_init(&ap->ioaddr, port_mmio);
  2328. #ifdef CONFIG_PCI
  2329. if (HAS_PCI(host)) {
  2330. unsigned int offset = port_mmio - mmio;
  2331. ata_port_pbar_desc(ap, MV_PRIMARY_BAR, -1, "mmio");
  2332. ata_port_pbar_desc(ap, MV_PRIMARY_BAR, offset, "port");
  2333. }
  2334. #endif
  2335. }
  2336. for (hc = 0; hc < n_hc; hc++) {
  2337. void __iomem *hc_mmio = mv_hc_base(mmio, hc);
  2338. VPRINTK("HC%i: HC config=0x%08x HC IRQ cause "
  2339. "(before clear)=0x%08x\n", hc,
  2340. readl(hc_mmio + HC_CFG_OFS),
  2341. readl(hc_mmio + HC_IRQ_CAUSE_OFS));
  2342. /* Clear any currently outstanding hc interrupt conditions */
  2343. writelfl(0, hc_mmio + HC_IRQ_CAUSE_OFS);
  2344. }
  2345. if (HAS_PCI(host)) {
  2346. /* Clear any currently outstanding host interrupt conditions */
  2347. writelfl(0, mmio + hpriv->irq_cause_ofs);
  2348. /* and unmask interrupt generation for host regs */
  2349. writelfl(hpriv->unmask_all_irqs, mmio + hpriv->irq_mask_ofs);
  2350. if (IS_GEN_I(hpriv))
  2351. writelfl(~HC_MAIN_MASKED_IRQS_5,
  2352. hpriv->main_irq_mask_addr);
  2353. else
  2354. writelfl(~HC_MAIN_MASKED_IRQS,
  2355. hpriv->main_irq_mask_addr);
  2356. VPRINTK("HC MAIN IRQ cause/mask=0x%08x/0x%08x "
  2357. "PCI int cause/mask=0x%08x/0x%08x\n",
  2358. readl(hpriv->main_irq_cause_addr),
  2359. readl(hpriv->main_irq_mask_addr),
  2360. readl(mmio + hpriv->irq_cause_ofs),
  2361. readl(mmio + hpriv->irq_mask_ofs));
  2362. } else {
  2363. writelfl(~HC_MAIN_MASKED_IRQS_SOC,
  2364. hpriv->main_irq_mask_addr);
  2365. VPRINTK("HC MAIN IRQ cause/mask=0x%08x/0x%08x\n",
  2366. readl(hpriv->main_irq_cause_addr),
  2367. readl(hpriv->main_irq_mask_addr));
  2368. }
  2369. done:
  2370. return rc;
  2371. }
  2372. static int mv_create_dma_pools(struct mv_host_priv *hpriv, struct device *dev)
  2373. {
  2374. hpriv->crqb_pool = dmam_pool_create("crqb_q", dev, MV_CRQB_Q_SZ,
  2375. MV_CRQB_Q_SZ, 0);
  2376. if (!hpriv->crqb_pool)
  2377. return -ENOMEM;
  2378. hpriv->crpb_pool = dmam_pool_create("crpb_q", dev, MV_CRPB_Q_SZ,
  2379. MV_CRPB_Q_SZ, 0);
  2380. if (!hpriv->crpb_pool)
  2381. return -ENOMEM;
  2382. hpriv->sg_tbl_pool = dmam_pool_create("sg_tbl", dev, MV_SG_TBL_SZ,
  2383. MV_SG_TBL_SZ, 0);
  2384. if (!hpriv->sg_tbl_pool)
  2385. return -ENOMEM;
  2386. return 0;
  2387. }
  2388. static void mv_conf_mbus_windows(struct mv_host_priv *hpriv,
  2389. struct mbus_dram_target_info *dram)
  2390. {
  2391. int i;
  2392. for (i = 0; i < 4; i++) {
  2393. writel(0, hpriv->base + WINDOW_CTRL(i));
  2394. writel(0, hpriv->base + WINDOW_BASE(i));
  2395. }
  2396. for (i = 0; i < dram->num_cs; i++) {
  2397. struct mbus_dram_window *cs = dram->cs + i;
  2398. writel(((cs->size - 1) & 0xffff0000) |
  2399. (cs->mbus_attr << 8) |
  2400. (dram->mbus_dram_target_id << 4) | 1,
  2401. hpriv->base + WINDOW_CTRL(i));
  2402. writel(cs->base, hpriv->base + WINDOW_BASE(i));
  2403. }
  2404. }
  2405. /**
  2406. * mv_platform_probe - handle a positive probe of an soc Marvell
  2407. * host
  2408. * @pdev: platform device found
  2409. *
  2410. * LOCKING:
  2411. * Inherited from caller.
  2412. */
  2413. static int mv_platform_probe(struct platform_device *pdev)
  2414. {
  2415. static int printed_version;
  2416. const struct mv_sata_platform_data *mv_platform_data;
  2417. const struct ata_port_info *ppi[] =
  2418. { &mv_port_info[chip_soc], NULL };
  2419. struct ata_host *host;
  2420. struct mv_host_priv *hpriv;
  2421. struct resource *res;
  2422. int n_ports, rc;
  2423. if (!printed_version++)
  2424. dev_printk(KERN_INFO, &pdev->dev, "version " DRV_VERSION "\n");
  2425. /*
  2426. * Simple resource validation ..
  2427. */
  2428. if (unlikely(pdev->num_resources != 2)) {
  2429. dev_err(&pdev->dev, "invalid number of resources\n");
  2430. return -EINVAL;
  2431. }
  2432. /*
  2433. * Get the register base first
  2434. */
  2435. res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  2436. if (res == NULL)
  2437. return -EINVAL;
  2438. /* allocate host */
  2439. mv_platform_data = pdev->dev.platform_data;
  2440. n_ports = mv_platform_data->n_ports;
  2441. host = ata_host_alloc_pinfo(&pdev->dev, ppi, n_ports);
  2442. hpriv = devm_kzalloc(&pdev->dev, sizeof(*hpriv), GFP_KERNEL);
  2443. if (!host || !hpriv)
  2444. return -ENOMEM;
  2445. host->private_data = hpriv;
  2446. hpriv->n_ports = n_ports;
  2447. host->iomap = NULL;
  2448. hpriv->base = devm_ioremap(&pdev->dev, res->start,
  2449. res->end - res->start + 1);
  2450. hpriv->base -= MV_SATAHC0_REG_BASE;
  2451. /*
  2452. * (Re-)program MBUS remapping windows if we are asked to.
  2453. */
  2454. if (mv_platform_data->dram != NULL)
  2455. mv_conf_mbus_windows(hpriv, mv_platform_data->dram);
  2456. rc = mv_create_dma_pools(hpriv, &pdev->dev);
  2457. if (rc)
  2458. return rc;
  2459. /* initialize adapter */
  2460. rc = mv_init_host(host, chip_soc);
  2461. if (rc)
  2462. return rc;
  2463. dev_printk(KERN_INFO, &pdev->dev,
  2464. "slots %u ports %d\n", (unsigned)MV_MAX_Q_DEPTH,
  2465. host->n_ports);
  2466. return ata_host_activate(host, platform_get_irq(pdev, 0), mv_interrupt,
  2467. IRQF_SHARED, &mv6_sht);
  2468. }
  2469. /*
  2470. *
  2471. * mv_platform_remove - unplug a platform interface
  2472. * @pdev: platform device
  2473. *
  2474. * A platform bus SATA device has been unplugged. Perform the needed
  2475. * cleanup. Also called on module unload for any active devices.
  2476. */
  2477. static int __devexit mv_platform_remove(struct platform_device *pdev)
  2478. {
  2479. struct device *dev = &pdev->dev;
  2480. struct ata_host *host = dev_get_drvdata(dev);
  2481. ata_host_detach(host);
  2482. return 0;
  2483. }
  2484. static struct platform_driver mv_platform_driver = {
  2485. .probe = mv_platform_probe,
  2486. .remove = __devexit_p(mv_platform_remove),
  2487. .driver = {
  2488. .name = DRV_NAME,
  2489. .owner = THIS_MODULE,
  2490. },
  2491. };
  2492. #ifdef CONFIG_PCI
  2493. static int mv_pci_init_one(struct pci_dev *pdev,
  2494. const struct pci_device_id *ent);
  2495. static struct pci_driver mv_pci_driver = {
  2496. .name = DRV_NAME,
  2497. .id_table = mv_pci_tbl,
  2498. .probe = mv_pci_init_one,
  2499. .remove = ata_pci_remove_one,
  2500. };
  2501. /*
  2502. * module options
  2503. */
  2504. static int msi; /* Use PCI msi; either zero (off, default) or non-zero */
  2505. /* move to PCI layer or libata core? */
  2506. static int pci_go_64(struct pci_dev *pdev)
  2507. {
  2508. int rc;
  2509. if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK)) {
  2510. rc = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK);
  2511. if (rc) {
  2512. rc = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK);
  2513. if (rc) {
  2514. dev_printk(KERN_ERR, &pdev->dev,
  2515. "64-bit DMA enable failed\n");
  2516. return rc;
  2517. }
  2518. }
  2519. } else {
  2520. rc = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
  2521. if (rc) {
  2522. dev_printk(KERN_ERR, &pdev->dev,
  2523. "32-bit DMA enable failed\n");
  2524. return rc;
  2525. }
  2526. rc = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK);
  2527. if (rc) {
  2528. dev_printk(KERN_ERR, &pdev->dev,
  2529. "32-bit consistent DMA enable failed\n");
  2530. return rc;
  2531. }
  2532. }
  2533. return rc;
  2534. }
  2535. /**
  2536. * mv_print_info - Dump key info to kernel log for perusal.
  2537. * @host: ATA host to print info about
  2538. *
  2539. * FIXME: complete this.
  2540. *
  2541. * LOCKING:
  2542. * Inherited from caller.
  2543. */
  2544. static void mv_print_info(struct ata_host *host)
  2545. {
  2546. struct pci_dev *pdev = to_pci_dev(host->dev);
  2547. struct mv_host_priv *hpriv = host->private_data;
  2548. u8 scc;
  2549. const char *scc_s, *gen;
  2550. /* Use this to determine the HW stepping of the chip so we know
  2551. * what errata to workaround
  2552. */
  2553. pci_read_config_byte(pdev, PCI_CLASS_DEVICE, &scc);
  2554. if (scc == 0)
  2555. scc_s = "SCSI";
  2556. else if (scc == 0x01)
  2557. scc_s = "RAID";
  2558. else
  2559. scc_s = "?";
  2560. if (IS_GEN_I(hpriv))
  2561. gen = "I";
  2562. else if (IS_GEN_II(hpriv))
  2563. gen = "II";
  2564. else if (IS_GEN_IIE(hpriv))
  2565. gen = "IIE";
  2566. else
  2567. gen = "?";
  2568. dev_printk(KERN_INFO, &pdev->dev,
  2569. "Gen-%s %u slots %u ports %s mode IRQ via %s\n",
  2570. gen, (unsigned)MV_MAX_Q_DEPTH, host->n_ports,
  2571. scc_s, (MV_HP_FLAG_MSI & hpriv->hp_flags) ? "MSI" : "INTx");
  2572. }
  2573. /**
  2574. * mv_pci_init_one - handle a positive probe of a PCI Marvell host
  2575. * @pdev: PCI device found
  2576. * @ent: PCI device ID entry for the matched host
  2577. *
  2578. * LOCKING:
  2579. * Inherited from caller.
  2580. */
  2581. static int mv_pci_init_one(struct pci_dev *pdev,
  2582. const struct pci_device_id *ent)
  2583. {
  2584. static int printed_version;
  2585. unsigned int board_idx = (unsigned int)ent->driver_data;
  2586. const struct ata_port_info *ppi[] = { &mv_port_info[board_idx], NULL };
  2587. struct ata_host *host;
  2588. struct mv_host_priv *hpriv;
  2589. int n_ports, rc;
  2590. if (!printed_version++)
  2591. dev_printk(KERN_INFO, &pdev->dev, "version " DRV_VERSION "\n");
  2592. /* allocate host */
  2593. n_ports = mv_get_hc_count(ppi[0]->flags) * MV_PORTS_PER_HC;
  2594. host = ata_host_alloc_pinfo(&pdev->dev, ppi, n_ports);
  2595. hpriv = devm_kzalloc(&pdev->dev, sizeof(*hpriv), GFP_KERNEL);
  2596. if (!host || !hpriv)
  2597. return -ENOMEM;
  2598. host->private_data = hpriv;
  2599. hpriv->n_ports = n_ports;
  2600. /* acquire resources */
  2601. rc = pcim_enable_device(pdev);
  2602. if (rc)
  2603. return rc;
  2604. rc = pcim_iomap_regions(pdev, 1 << MV_PRIMARY_BAR, DRV_NAME);
  2605. if (rc == -EBUSY)
  2606. pcim_pin_device(pdev);
  2607. if (rc)
  2608. return rc;
  2609. host->iomap = pcim_iomap_table(pdev);
  2610. hpriv->base = host->iomap[MV_PRIMARY_BAR];
  2611. rc = pci_go_64(pdev);
  2612. if (rc)
  2613. return rc;
  2614. rc = mv_create_dma_pools(hpriv, &pdev->dev);
  2615. if (rc)
  2616. return rc;
  2617. /* initialize adapter */
  2618. rc = mv_init_host(host, board_idx);
  2619. if (rc)
  2620. return rc;
  2621. /* Enable interrupts */
  2622. if (msi && pci_enable_msi(pdev))
  2623. pci_intx(pdev, 1);
  2624. mv_dump_pci_cfg(pdev, 0x68);
  2625. mv_print_info(host);
  2626. pci_set_master(pdev);
  2627. pci_try_set_mwi(pdev);
  2628. return ata_host_activate(host, pdev->irq, mv_interrupt, IRQF_SHARED,
  2629. IS_GEN_I(hpriv) ? &mv5_sht : &mv6_sht);
  2630. }
  2631. #endif
  2632. static int mv_platform_probe(struct platform_device *pdev);
  2633. static int __devexit mv_platform_remove(struct platform_device *pdev);
  2634. static int __init mv_init(void)
  2635. {
  2636. int rc = -ENODEV;
  2637. #ifdef CONFIG_PCI
  2638. rc = pci_register_driver(&mv_pci_driver);
  2639. if (rc < 0)
  2640. return rc;
  2641. #endif
  2642. rc = platform_driver_register(&mv_platform_driver);
  2643. #ifdef CONFIG_PCI
  2644. if (rc < 0)
  2645. pci_unregister_driver(&mv_pci_driver);
  2646. #endif
  2647. return rc;
  2648. }
  2649. static void __exit mv_exit(void)
  2650. {
  2651. #ifdef CONFIG_PCI
  2652. pci_unregister_driver(&mv_pci_driver);
  2653. #endif
  2654. platform_driver_unregister(&mv_platform_driver);
  2655. }
  2656. MODULE_AUTHOR("Brett Russ");
  2657. MODULE_DESCRIPTION("SCSI low-level driver for Marvell SATA controllers");
  2658. MODULE_LICENSE("GPL");
  2659. MODULE_DEVICE_TABLE(pci, mv_pci_tbl);
  2660. MODULE_VERSION(DRV_VERSION);
  2661. MODULE_ALIAS("platform:" DRV_NAME);
  2662. #ifdef CONFIG_PCI
  2663. module_param(msi, int, 0444);
  2664. MODULE_PARM_DESC(msi, "Enable use of PCI MSI (0=off, 1=on)");
  2665. #endif
  2666. module_init(mv_init);
  2667. module_exit(mv_exit);