xfs_inode.c 120 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115
  1. /*
  2. * Copyright (c) 2000-2006 Silicon Graphics, Inc.
  3. * All Rights Reserved.
  4. *
  5. * This program is free software; you can redistribute it and/or
  6. * modify it under the terms of the GNU General Public License as
  7. * published by the Free Software Foundation.
  8. *
  9. * This program is distributed in the hope that it would be useful,
  10. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. * GNU General Public License for more details.
  13. *
  14. * You should have received a copy of the GNU General Public License
  15. * along with this program; if not, write the Free Software Foundation,
  16. * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
  17. */
  18. #include <linux/log2.h>
  19. #include "xfs.h"
  20. #include "xfs_fs.h"
  21. #include "xfs_types.h"
  22. #include "xfs_bit.h"
  23. #include "xfs_log.h"
  24. #include "xfs_inum.h"
  25. #include "xfs_trans.h"
  26. #include "xfs_trans_priv.h"
  27. #include "xfs_sb.h"
  28. #include "xfs_ag.h"
  29. #include "xfs_mount.h"
  30. #include "xfs_bmap_btree.h"
  31. #include "xfs_alloc_btree.h"
  32. #include "xfs_ialloc_btree.h"
  33. #include "xfs_attr_sf.h"
  34. #include "xfs_dinode.h"
  35. #include "xfs_inode.h"
  36. #include "xfs_buf_item.h"
  37. #include "xfs_inode_item.h"
  38. #include "xfs_btree.h"
  39. #include "xfs_btree_trace.h"
  40. #include "xfs_alloc.h"
  41. #include "xfs_ialloc.h"
  42. #include "xfs_bmap.h"
  43. #include "xfs_error.h"
  44. #include "xfs_utils.h"
  45. #include "xfs_quota.h"
  46. #include "xfs_filestream.h"
  47. #include "xfs_vnodeops.h"
  48. #include "xfs_trace.h"
  49. kmem_zone_t *xfs_ifork_zone;
  50. kmem_zone_t *xfs_inode_zone;
  51. /*
  52. * Used in xfs_itruncate(). This is the maximum number of extents
  53. * freed from a file in a single transaction.
  54. */
  55. #define XFS_ITRUNC_MAX_EXTENTS 2
  56. STATIC int xfs_iflush_int(xfs_inode_t *, xfs_buf_t *);
  57. STATIC int xfs_iformat_local(xfs_inode_t *, xfs_dinode_t *, int, int);
  58. STATIC int xfs_iformat_extents(xfs_inode_t *, xfs_dinode_t *, int);
  59. STATIC int xfs_iformat_btree(xfs_inode_t *, xfs_dinode_t *, int);
  60. #ifdef DEBUG
  61. /*
  62. * Make sure that the extents in the given memory buffer
  63. * are valid.
  64. */
  65. STATIC void
  66. xfs_validate_extents(
  67. xfs_ifork_t *ifp,
  68. int nrecs,
  69. xfs_exntfmt_t fmt)
  70. {
  71. xfs_bmbt_irec_t irec;
  72. xfs_bmbt_rec_host_t rec;
  73. int i;
  74. for (i = 0; i < nrecs; i++) {
  75. xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
  76. rec.l0 = get_unaligned(&ep->l0);
  77. rec.l1 = get_unaligned(&ep->l1);
  78. xfs_bmbt_get_all(&rec, &irec);
  79. if (fmt == XFS_EXTFMT_NOSTATE)
  80. ASSERT(irec.br_state == XFS_EXT_NORM);
  81. }
  82. }
  83. #else /* DEBUG */
  84. #define xfs_validate_extents(ifp, nrecs, fmt)
  85. #endif /* DEBUG */
  86. /*
  87. * Check that none of the inode's in the buffer have a next
  88. * unlinked field of 0.
  89. */
  90. #if defined(DEBUG)
  91. void
  92. xfs_inobp_check(
  93. xfs_mount_t *mp,
  94. xfs_buf_t *bp)
  95. {
  96. int i;
  97. int j;
  98. xfs_dinode_t *dip;
  99. j = mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog;
  100. for (i = 0; i < j; i++) {
  101. dip = (xfs_dinode_t *)xfs_buf_offset(bp,
  102. i * mp->m_sb.sb_inodesize);
  103. if (!dip->di_next_unlinked) {
  104. xfs_fs_cmn_err(CE_ALERT, mp,
  105. "Detected a bogus zero next_unlinked field in incore inode buffer 0x%p. About to pop an ASSERT.",
  106. bp);
  107. ASSERT(dip->di_next_unlinked);
  108. }
  109. }
  110. }
  111. #endif
  112. /*
  113. * Find the buffer associated with the given inode map
  114. * We do basic validation checks on the buffer once it has been
  115. * retrieved from disk.
  116. */
  117. STATIC int
  118. xfs_imap_to_bp(
  119. xfs_mount_t *mp,
  120. xfs_trans_t *tp,
  121. struct xfs_imap *imap,
  122. xfs_buf_t **bpp,
  123. uint buf_flags,
  124. uint iget_flags)
  125. {
  126. int error;
  127. int i;
  128. int ni;
  129. xfs_buf_t *bp;
  130. error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, imap->im_blkno,
  131. (int)imap->im_len, buf_flags, &bp);
  132. if (error) {
  133. if (error != EAGAIN) {
  134. cmn_err(CE_WARN,
  135. "xfs_imap_to_bp: xfs_trans_read_buf()returned "
  136. "an error %d on %s. Returning error.",
  137. error, mp->m_fsname);
  138. } else {
  139. ASSERT(buf_flags & XBF_TRYLOCK);
  140. }
  141. return error;
  142. }
  143. /*
  144. * Validate the magic number and version of every inode in the buffer
  145. * (if DEBUG kernel) or the first inode in the buffer, otherwise.
  146. */
  147. #ifdef DEBUG
  148. ni = BBTOB(imap->im_len) >> mp->m_sb.sb_inodelog;
  149. #else /* usual case */
  150. ni = 1;
  151. #endif
  152. for (i = 0; i < ni; i++) {
  153. int di_ok;
  154. xfs_dinode_t *dip;
  155. dip = (xfs_dinode_t *)xfs_buf_offset(bp,
  156. (i << mp->m_sb.sb_inodelog));
  157. di_ok = be16_to_cpu(dip->di_magic) == XFS_DINODE_MAGIC &&
  158. XFS_DINODE_GOOD_VERSION(dip->di_version);
  159. if (unlikely(XFS_TEST_ERROR(!di_ok, mp,
  160. XFS_ERRTAG_ITOBP_INOTOBP,
  161. XFS_RANDOM_ITOBP_INOTOBP))) {
  162. if (iget_flags & XFS_IGET_UNTRUSTED) {
  163. xfs_trans_brelse(tp, bp);
  164. return XFS_ERROR(EINVAL);
  165. }
  166. XFS_CORRUPTION_ERROR("xfs_imap_to_bp",
  167. XFS_ERRLEVEL_HIGH, mp, dip);
  168. #ifdef DEBUG
  169. cmn_err(CE_PANIC,
  170. "Device %s - bad inode magic/vsn "
  171. "daddr %lld #%d (magic=%x)",
  172. XFS_BUFTARG_NAME(mp->m_ddev_targp),
  173. (unsigned long long)imap->im_blkno, i,
  174. be16_to_cpu(dip->di_magic));
  175. #endif
  176. xfs_trans_brelse(tp, bp);
  177. return XFS_ERROR(EFSCORRUPTED);
  178. }
  179. }
  180. xfs_inobp_check(mp, bp);
  181. /*
  182. * Mark the buffer as an inode buffer now that it looks good
  183. */
  184. XFS_BUF_SET_VTYPE(bp, B_FS_INO);
  185. *bpp = bp;
  186. return 0;
  187. }
  188. /*
  189. * This routine is called to map an inode number within a file
  190. * system to the buffer containing the on-disk version of the
  191. * inode. It returns a pointer to the buffer containing the
  192. * on-disk inode in the bpp parameter, and in the dip parameter
  193. * it returns a pointer to the on-disk inode within that buffer.
  194. *
  195. * If a non-zero error is returned, then the contents of bpp and
  196. * dipp are undefined.
  197. *
  198. * Use xfs_imap() to determine the size and location of the
  199. * buffer to read from disk.
  200. */
  201. int
  202. xfs_inotobp(
  203. xfs_mount_t *mp,
  204. xfs_trans_t *tp,
  205. xfs_ino_t ino,
  206. xfs_dinode_t **dipp,
  207. xfs_buf_t **bpp,
  208. int *offset,
  209. uint imap_flags)
  210. {
  211. struct xfs_imap imap;
  212. xfs_buf_t *bp;
  213. int error;
  214. imap.im_blkno = 0;
  215. error = xfs_imap(mp, tp, ino, &imap, imap_flags);
  216. if (error)
  217. return error;
  218. error = xfs_imap_to_bp(mp, tp, &imap, &bp, XBF_LOCK, imap_flags);
  219. if (error)
  220. return error;
  221. *dipp = (xfs_dinode_t *)xfs_buf_offset(bp, imap.im_boffset);
  222. *bpp = bp;
  223. *offset = imap.im_boffset;
  224. return 0;
  225. }
  226. /*
  227. * This routine is called to map an inode to the buffer containing
  228. * the on-disk version of the inode. It returns a pointer to the
  229. * buffer containing the on-disk inode in the bpp parameter, and in
  230. * the dip parameter it returns a pointer to the on-disk inode within
  231. * that buffer.
  232. *
  233. * If a non-zero error is returned, then the contents of bpp and
  234. * dipp are undefined.
  235. *
  236. * The inode is expected to already been mapped to its buffer and read
  237. * in once, thus we can use the mapping information stored in the inode
  238. * rather than calling xfs_imap(). This allows us to avoid the overhead
  239. * of looking at the inode btree for small block file systems
  240. * (see xfs_imap()).
  241. */
  242. int
  243. xfs_itobp(
  244. xfs_mount_t *mp,
  245. xfs_trans_t *tp,
  246. xfs_inode_t *ip,
  247. xfs_dinode_t **dipp,
  248. xfs_buf_t **bpp,
  249. uint buf_flags)
  250. {
  251. xfs_buf_t *bp;
  252. int error;
  253. ASSERT(ip->i_imap.im_blkno != 0);
  254. error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &bp, buf_flags, 0);
  255. if (error)
  256. return error;
  257. if (!bp) {
  258. ASSERT(buf_flags & XBF_TRYLOCK);
  259. ASSERT(tp == NULL);
  260. *bpp = NULL;
  261. return EAGAIN;
  262. }
  263. *dipp = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_imap.im_boffset);
  264. *bpp = bp;
  265. return 0;
  266. }
  267. /*
  268. * Move inode type and inode format specific information from the
  269. * on-disk inode to the in-core inode. For fifos, devs, and sockets
  270. * this means set if_rdev to the proper value. For files, directories,
  271. * and symlinks this means to bring in the in-line data or extent
  272. * pointers. For a file in B-tree format, only the root is immediately
  273. * brought in-core. The rest will be in-lined in if_extents when it
  274. * is first referenced (see xfs_iread_extents()).
  275. */
  276. STATIC int
  277. xfs_iformat(
  278. xfs_inode_t *ip,
  279. xfs_dinode_t *dip)
  280. {
  281. xfs_attr_shortform_t *atp;
  282. int size;
  283. int error;
  284. xfs_fsize_t di_size;
  285. ip->i_df.if_ext_max =
  286. XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
  287. error = 0;
  288. if (unlikely(be32_to_cpu(dip->di_nextents) +
  289. be16_to_cpu(dip->di_anextents) >
  290. be64_to_cpu(dip->di_nblocks))) {
  291. xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
  292. "corrupt dinode %Lu, extent total = %d, nblocks = %Lu.",
  293. (unsigned long long)ip->i_ino,
  294. (int)(be32_to_cpu(dip->di_nextents) +
  295. be16_to_cpu(dip->di_anextents)),
  296. (unsigned long long)
  297. be64_to_cpu(dip->di_nblocks));
  298. XFS_CORRUPTION_ERROR("xfs_iformat(1)", XFS_ERRLEVEL_LOW,
  299. ip->i_mount, dip);
  300. return XFS_ERROR(EFSCORRUPTED);
  301. }
  302. if (unlikely(dip->di_forkoff > ip->i_mount->m_sb.sb_inodesize)) {
  303. xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
  304. "corrupt dinode %Lu, forkoff = 0x%x.",
  305. (unsigned long long)ip->i_ino,
  306. dip->di_forkoff);
  307. XFS_CORRUPTION_ERROR("xfs_iformat(2)", XFS_ERRLEVEL_LOW,
  308. ip->i_mount, dip);
  309. return XFS_ERROR(EFSCORRUPTED);
  310. }
  311. if (unlikely((ip->i_d.di_flags & XFS_DIFLAG_REALTIME) &&
  312. !ip->i_mount->m_rtdev_targp)) {
  313. xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
  314. "corrupt dinode %Lu, has realtime flag set.",
  315. ip->i_ino);
  316. XFS_CORRUPTION_ERROR("xfs_iformat(realtime)",
  317. XFS_ERRLEVEL_LOW, ip->i_mount, dip);
  318. return XFS_ERROR(EFSCORRUPTED);
  319. }
  320. switch (ip->i_d.di_mode & S_IFMT) {
  321. case S_IFIFO:
  322. case S_IFCHR:
  323. case S_IFBLK:
  324. case S_IFSOCK:
  325. if (unlikely(dip->di_format != XFS_DINODE_FMT_DEV)) {
  326. XFS_CORRUPTION_ERROR("xfs_iformat(3)", XFS_ERRLEVEL_LOW,
  327. ip->i_mount, dip);
  328. return XFS_ERROR(EFSCORRUPTED);
  329. }
  330. ip->i_d.di_size = 0;
  331. ip->i_size = 0;
  332. ip->i_df.if_u2.if_rdev = xfs_dinode_get_rdev(dip);
  333. break;
  334. case S_IFREG:
  335. case S_IFLNK:
  336. case S_IFDIR:
  337. switch (dip->di_format) {
  338. case XFS_DINODE_FMT_LOCAL:
  339. /*
  340. * no local regular files yet
  341. */
  342. if (unlikely((be16_to_cpu(dip->di_mode) & S_IFMT) == S_IFREG)) {
  343. xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
  344. "corrupt inode %Lu "
  345. "(local format for regular file).",
  346. (unsigned long long) ip->i_ino);
  347. XFS_CORRUPTION_ERROR("xfs_iformat(4)",
  348. XFS_ERRLEVEL_LOW,
  349. ip->i_mount, dip);
  350. return XFS_ERROR(EFSCORRUPTED);
  351. }
  352. di_size = be64_to_cpu(dip->di_size);
  353. if (unlikely(di_size > XFS_DFORK_DSIZE(dip, ip->i_mount))) {
  354. xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
  355. "corrupt inode %Lu "
  356. "(bad size %Ld for local inode).",
  357. (unsigned long long) ip->i_ino,
  358. (long long) di_size);
  359. XFS_CORRUPTION_ERROR("xfs_iformat(5)",
  360. XFS_ERRLEVEL_LOW,
  361. ip->i_mount, dip);
  362. return XFS_ERROR(EFSCORRUPTED);
  363. }
  364. size = (int)di_size;
  365. error = xfs_iformat_local(ip, dip, XFS_DATA_FORK, size);
  366. break;
  367. case XFS_DINODE_FMT_EXTENTS:
  368. error = xfs_iformat_extents(ip, dip, XFS_DATA_FORK);
  369. break;
  370. case XFS_DINODE_FMT_BTREE:
  371. error = xfs_iformat_btree(ip, dip, XFS_DATA_FORK);
  372. break;
  373. default:
  374. XFS_ERROR_REPORT("xfs_iformat(6)", XFS_ERRLEVEL_LOW,
  375. ip->i_mount);
  376. return XFS_ERROR(EFSCORRUPTED);
  377. }
  378. break;
  379. default:
  380. XFS_ERROR_REPORT("xfs_iformat(7)", XFS_ERRLEVEL_LOW, ip->i_mount);
  381. return XFS_ERROR(EFSCORRUPTED);
  382. }
  383. if (error) {
  384. return error;
  385. }
  386. if (!XFS_DFORK_Q(dip))
  387. return 0;
  388. ASSERT(ip->i_afp == NULL);
  389. ip->i_afp = kmem_zone_zalloc(xfs_ifork_zone, KM_SLEEP | KM_NOFS);
  390. ip->i_afp->if_ext_max =
  391. XFS_IFORK_ASIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
  392. switch (dip->di_aformat) {
  393. case XFS_DINODE_FMT_LOCAL:
  394. atp = (xfs_attr_shortform_t *)XFS_DFORK_APTR(dip);
  395. size = be16_to_cpu(atp->hdr.totsize);
  396. if (unlikely(size < sizeof(struct xfs_attr_sf_hdr))) {
  397. xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
  398. "corrupt inode %Lu "
  399. "(bad attr fork size %Ld).",
  400. (unsigned long long) ip->i_ino,
  401. (long long) size);
  402. XFS_CORRUPTION_ERROR("xfs_iformat(8)",
  403. XFS_ERRLEVEL_LOW,
  404. ip->i_mount, dip);
  405. return XFS_ERROR(EFSCORRUPTED);
  406. }
  407. error = xfs_iformat_local(ip, dip, XFS_ATTR_FORK, size);
  408. break;
  409. case XFS_DINODE_FMT_EXTENTS:
  410. error = xfs_iformat_extents(ip, dip, XFS_ATTR_FORK);
  411. break;
  412. case XFS_DINODE_FMT_BTREE:
  413. error = xfs_iformat_btree(ip, dip, XFS_ATTR_FORK);
  414. break;
  415. default:
  416. error = XFS_ERROR(EFSCORRUPTED);
  417. break;
  418. }
  419. if (error) {
  420. kmem_zone_free(xfs_ifork_zone, ip->i_afp);
  421. ip->i_afp = NULL;
  422. xfs_idestroy_fork(ip, XFS_DATA_FORK);
  423. }
  424. return error;
  425. }
  426. /*
  427. * The file is in-lined in the on-disk inode.
  428. * If it fits into if_inline_data, then copy
  429. * it there, otherwise allocate a buffer for it
  430. * and copy the data there. Either way, set
  431. * if_data to point at the data.
  432. * If we allocate a buffer for the data, make
  433. * sure that its size is a multiple of 4 and
  434. * record the real size in i_real_bytes.
  435. */
  436. STATIC int
  437. xfs_iformat_local(
  438. xfs_inode_t *ip,
  439. xfs_dinode_t *dip,
  440. int whichfork,
  441. int size)
  442. {
  443. xfs_ifork_t *ifp;
  444. int real_size;
  445. /*
  446. * If the size is unreasonable, then something
  447. * is wrong and we just bail out rather than crash in
  448. * kmem_alloc() or memcpy() below.
  449. */
  450. if (unlikely(size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
  451. xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
  452. "corrupt inode %Lu "
  453. "(bad size %d for local fork, size = %d).",
  454. (unsigned long long) ip->i_ino, size,
  455. XFS_DFORK_SIZE(dip, ip->i_mount, whichfork));
  456. XFS_CORRUPTION_ERROR("xfs_iformat_local", XFS_ERRLEVEL_LOW,
  457. ip->i_mount, dip);
  458. return XFS_ERROR(EFSCORRUPTED);
  459. }
  460. ifp = XFS_IFORK_PTR(ip, whichfork);
  461. real_size = 0;
  462. if (size == 0)
  463. ifp->if_u1.if_data = NULL;
  464. else if (size <= sizeof(ifp->if_u2.if_inline_data))
  465. ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
  466. else {
  467. real_size = roundup(size, 4);
  468. ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP | KM_NOFS);
  469. }
  470. ifp->if_bytes = size;
  471. ifp->if_real_bytes = real_size;
  472. if (size)
  473. memcpy(ifp->if_u1.if_data, XFS_DFORK_PTR(dip, whichfork), size);
  474. ifp->if_flags &= ~XFS_IFEXTENTS;
  475. ifp->if_flags |= XFS_IFINLINE;
  476. return 0;
  477. }
  478. /*
  479. * The file consists of a set of extents all
  480. * of which fit into the on-disk inode.
  481. * If there are few enough extents to fit into
  482. * the if_inline_ext, then copy them there.
  483. * Otherwise allocate a buffer for them and copy
  484. * them into it. Either way, set if_extents
  485. * to point at the extents.
  486. */
  487. STATIC int
  488. xfs_iformat_extents(
  489. xfs_inode_t *ip,
  490. xfs_dinode_t *dip,
  491. int whichfork)
  492. {
  493. xfs_bmbt_rec_t *dp;
  494. xfs_ifork_t *ifp;
  495. int nex;
  496. int size;
  497. int i;
  498. ifp = XFS_IFORK_PTR(ip, whichfork);
  499. nex = XFS_DFORK_NEXTENTS(dip, whichfork);
  500. size = nex * (uint)sizeof(xfs_bmbt_rec_t);
  501. /*
  502. * If the number of extents is unreasonable, then something
  503. * is wrong and we just bail out rather than crash in
  504. * kmem_alloc() or memcpy() below.
  505. */
  506. if (unlikely(size < 0 || size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
  507. xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
  508. "corrupt inode %Lu ((a)extents = %d).",
  509. (unsigned long long) ip->i_ino, nex);
  510. XFS_CORRUPTION_ERROR("xfs_iformat_extents(1)", XFS_ERRLEVEL_LOW,
  511. ip->i_mount, dip);
  512. return XFS_ERROR(EFSCORRUPTED);
  513. }
  514. ifp->if_real_bytes = 0;
  515. if (nex == 0)
  516. ifp->if_u1.if_extents = NULL;
  517. else if (nex <= XFS_INLINE_EXTS)
  518. ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
  519. else
  520. xfs_iext_add(ifp, 0, nex);
  521. ifp->if_bytes = size;
  522. if (size) {
  523. dp = (xfs_bmbt_rec_t *) XFS_DFORK_PTR(dip, whichfork);
  524. xfs_validate_extents(ifp, nex, XFS_EXTFMT_INODE(ip));
  525. for (i = 0; i < nex; i++, dp++) {
  526. xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
  527. ep->l0 = get_unaligned_be64(&dp->l0);
  528. ep->l1 = get_unaligned_be64(&dp->l1);
  529. }
  530. XFS_BMAP_TRACE_EXLIST(ip, nex, whichfork);
  531. if (whichfork != XFS_DATA_FORK ||
  532. XFS_EXTFMT_INODE(ip) == XFS_EXTFMT_NOSTATE)
  533. if (unlikely(xfs_check_nostate_extents(
  534. ifp, 0, nex))) {
  535. XFS_ERROR_REPORT("xfs_iformat_extents(2)",
  536. XFS_ERRLEVEL_LOW,
  537. ip->i_mount);
  538. return XFS_ERROR(EFSCORRUPTED);
  539. }
  540. }
  541. ifp->if_flags |= XFS_IFEXTENTS;
  542. return 0;
  543. }
  544. /*
  545. * The file has too many extents to fit into
  546. * the inode, so they are in B-tree format.
  547. * Allocate a buffer for the root of the B-tree
  548. * and copy the root into it. The i_extents
  549. * field will remain NULL until all of the
  550. * extents are read in (when they are needed).
  551. */
  552. STATIC int
  553. xfs_iformat_btree(
  554. xfs_inode_t *ip,
  555. xfs_dinode_t *dip,
  556. int whichfork)
  557. {
  558. xfs_bmdr_block_t *dfp;
  559. xfs_ifork_t *ifp;
  560. /* REFERENCED */
  561. int nrecs;
  562. int size;
  563. ifp = XFS_IFORK_PTR(ip, whichfork);
  564. dfp = (xfs_bmdr_block_t *)XFS_DFORK_PTR(dip, whichfork);
  565. size = XFS_BMAP_BROOT_SPACE(dfp);
  566. nrecs = be16_to_cpu(dfp->bb_numrecs);
  567. /*
  568. * blow out if -- fork has less extents than can fit in
  569. * fork (fork shouldn't be a btree format), root btree
  570. * block has more records than can fit into the fork,
  571. * or the number of extents is greater than the number of
  572. * blocks.
  573. */
  574. if (unlikely(XFS_IFORK_NEXTENTS(ip, whichfork) <= ifp->if_ext_max
  575. || XFS_BMDR_SPACE_CALC(nrecs) >
  576. XFS_DFORK_SIZE(dip, ip->i_mount, whichfork)
  577. || XFS_IFORK_NEXTENTS(ip, whichfork) > ip->i_d.di_nblocks)) {
  578. xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
  579. "corrupt inode %Lu (btree).",
  580. (unsigned long long) ip->i_ino);
  581. XFS_ERROR_REPORT("xfs_iformat_btree", XFS_ERRLEVEL_LOW,
  582. ip->i_mount);
  583. return XFS_ERROR(EFSCORRUPTED);
  584. }
  585. ifp->if_broot_bytes = size;
  586. ifp->if_broot = kmem_alloc(size, KM_SLEEP | KM_NOFS);
  587. ASSERT(ifp->if_broot != NULL);
  588. /*
  589. * Copy and convert from the on-disk structure
  590. * to the in-memory structure.
  591. */
  592. xfs_bmdr_to_bmbt(ip->i_mount, dfp,
  593. XFS_DFORK_SIZE(dip, ip->i_mount, whichfork),
  594. ifp->if_broot, size);
  595. ifp->if_flags &= ~XFS_IFEXTENTS;
  596. ifp->if_flags |= XFS_IFBROOT;
  597. return 0;
  598. }
  599. STATIC void
  600. xfs_dinode_from_disk(
  601. xfs_icdinode_t *to,
  602. xfs_dinode_t *from)
  603. {
  604. to->di_magic = be16_to_cpu(from->di_magic);
  605. to->di_mode = be16_to_cpu(from->di_mode);
  606. to->di_version = from ->di_version;
  607. to->di_format = from->di_format;
  608. to->di_onlink = be16_to_cpu(from->di_onlink);
  609. to->di_uid = be32_to_cpu(from->di_uid);
  610. to->di_gid = be32_to_cpu(from->di_gid);
  611. to->di_nlink = be32_to_cpu(from->di_nlink);
  612. to->di_projid = be16_to_cpu(from->di_projid);
  613. memcpy(to->di_pad, from->di_pad, sizeof(to->di_pad));
  614. to->di_flushiter = be16_to_cpu(from->di_flushiter);
  615. to->di_atime.t_sec = be32_to_cpu(from->di_atime.t_sec);
  616. to->di_atime.t_nsec = be32_to_cpu(from->di_atime.t_nsec);
  617. to->di_mtime.t_sec = be32_to_cpu(from->di_mtime.t_sec);
  618. to->di_mtime.t_nsec = be32_to_cpu(from->di_mtime.t_nsec);
  619. to->di_ctime.t_sec = be32_to_cpu(from->di_ctime.t_sec);
  620. to->di_ctime.t_nsec = be32_to_cpu(from->di_ctime.t_nsec);
  621. to->di_size = be64_to_cpu(from->di_size);
  622. to->di_nblocks = be64_to_cpu(from->di_nblocks);
  623. to->di_extsize = be32_to_cpu(from->di_extsize);
  624. to->di_nextents = be32_to_cpu(from->di_nextents);
  625. to->di_anextents = be16_to_cpu(from->di_anextents);
  626. to->di_forkoff = from->di_forkoff;
  627. to->di_aformat = from->di_aformat;
  628. to->di_dmevmask = be32_to_cpu(from->di_dmevmask);
  629. to->di_dmstate = be16_to_cpu(from->di_dmstate);
  630. to->di_flags = be16_to_cpu(from->di_flags);
  631. to->di_gen = be32_to_cpu(from->di_gen);
  632. }
  633. void
  634. xfs_dinode_to_disk(
  635. xfs_dinode_t *to,
  636. xfs_icdinode_t *from)
  637. {
  638. to->di_magic = cpu_to_be16(from->di_magic);
  639. to->di_mode = cpu_to_be16(from->di_mode);
  640. to->di_version = from ->di_version;
  641. to->di_format = from->di_format;
  642. to->di_onlink = cpu_to_be16(from->di_onlink);
  643. to->di_uid = cpu_to_be32(from->di_uid);
  644. to->di_gid = cpu_to_be32(from->di_gid);
  645. to->di_nlink = cpu_to_be32(from->di_nlink);
  646. to->di_projid = cpu_to_be16(from->di_projid);
  647. memcpy(to->di_pad, from->di_pad, sizeof(to->di_pad));
  648. to->di_flushiter = cpu_to_be16(from->di_flushiter);
  649. to->di_atime.t_sec = cpu_to_be32(from->di_atime.t_sec);
  650. to->di_atime.t_nsec = cpu_to_be32(from->di_atime.t_nsec);
  651. to->di_mtime.t_sec = cpu_to_be32(from->di_mtime.t_sec);
  652. to->di_mtime.t_nsec = cpu_to_be32(from->di_mtime.t_nsec);
  653. to->di_ctime.t_sec = cpu_to_be32(from->di_ctime.t_sec);
  654. to->di_ctime.t_nsec = cpu_to_be32(from->di_ctime.t_nsec);
  655. to->di_size = cpu_to_be64(from->di_size);
  656. to->di_nblocks = cpu_to_be64(from->di_nblocks);
  657. to->di_extsize = cpu_to_be32(from->di_extsize);
  658. to->di_nextents = cpu_to_be32(from->di_nextents);
  659. to->di_anextents = cpu_to_be16(from->di_anextents);
  660. to->di_forkoff = from->di_forkoff;
  661. to->di_aformat = from->di_aformat;
  662. to->di_dmevmask = cpu_to_be32(from->di_dmevmask);
  663. to->di_dmstate = cpu_to_be16(from->di_dmstate);
  664. to->di_flags = cpu_to_be16(from->di_flags);
  665. to->di_gen = cpu_to_be32(from->di_gen);
  666. }
  667. STATIC uint
  668. _xfs_dic2xflags(
  669. __uint16_t di_flags)
  670. {
  671. uint flags = 0;
  672. if (di_flags & XFS_DIFLAG_ANY) {
  673. if (di_flags & XFS_DIFLAG_REALTIME)
  674. flags |= XFS_XFLAG_REALTIME;
  675. if (di_flags & XFS_DIFLAG_PREALLOC)
  676. flags |= XFS_XFLAG_PREALLOC;
  677. if (di_flags & XFS_DIFLAG_IMMUTABLE)
  678. flags |= XFS_XFLAG_IMMUTABLE;
  679. if (di_flags & XFS_DIFLAG_APPEND)
  680. flags |= XFS_XFLAG_APPEND;
  681. if (di_flags & XFS_DIFLAG_SYNC)
  682. flags |= XFS_XFLAG_SYNC;
  683. if (di_flags & XFS_DIFLAG_NOATIME)
  684. flags |= XFS_XFLAG_NOATIME;
  685. if (di_flags & XFS_DIFLAG_NODUMP)
  686. flags |= XFS_XFLAG_NODUMP;
  687. if (di_flags & XFS_DIFLAG_RTINHERIT)
  688. flags |= XFS_XFLAG_RTINHERIT;
  689. if (di_flags & XFS_DIFLAG_PROJINHERIT)
  690. flags |= XFS_XFLAG_PROJINHERIT;
  691. if (di_flags & XFS_DIFLAG_NOSYMLINKS)
  692. flags |= XFS_XFLAG_NOSYMLINKS;
  693. if (di_flags & XFS_DIFLAG_EXTSIZE)
  694. flags |= XFS_XFLAG_EXTSIZE;
  695. if (di_flags & XFS_DIFLAG_EXTSZINHERIT)
  696. flags |= XFS_XFLAG_EXTSZINHERIT;
  697. if (di_flags & XFS_DIFLAG_NODEFRAG)
  698. flags |= XFS_XFLAG_NODEFRAG;
  699. if (di_flags & XFS_DIFLAG_FILESTREAM)
  700. flags |= XFS_XFLAG_FILESTREAM;
  701. }
  702. return flags;
  703. }
  704. uint
  705. xfs_ip2xflags(
  706. xfs_inode_t *ip)
  707. {
  708. xfs_icdinode_t *dic = &ip->i_d;
  709. return _xfs_dic2xflags(dic->di_flags) |
  710. (XFS_IFORK_Q(ip) ? XFS_XFLAG_HASATTR : 0);
  711. }
  712. uint
  713. xfs_dic2xflags(
  714. xfs_dinode_t *dip)
  715. {
  716. return _xfs_dic2xflags(be16_to_cpu(dip->di_flags)) |
  717. (XFS_DFORK_Q(dip) ? XFS_XFLAG_HASATTR : 0);
  718. }
  719. /*
  720. * Read the disk inode attributes into the in-core inode structure.
  721. */
  722. int
  723. xfs_iread(
  724. xfs_mount_t *mp,
  725. xfs_trans_t *tp,
  726. xfs_inode_t *ip,
  727. uint iget_flags)
  728. {
  729. xfs_buf_t *bp;
  730. xfs_dinode_t *dip;
  731. int error;
  732. /*
  733. * Fill in the location information in the in-core inode.
  734. */
  735. error = xfs_imap(mp, tp, ip->i_ino, &ip->i_imap, iget_flags);
  736. if (error)
  737. return error;
  738. /*
  739. * Get pointers to the on-disk inode and the buffer containing it.
  740. */
  741. error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &bp,
  742. XBF_LOCK, iget_flags);
  743. if (error)
  744. return error;
  745. dip = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_imap.im_boffset);
  746. /*
  747. * If we got something that isn't an inode it means someone
  748. * (nfs or dmi) has a stale handle.
  749. */
  750. if (be16_to_cpu(dip->di_magic) != XFS_DINODE_MAGIC) {
  751. #ifdef DEBUG
  752. xfs_fs_cmn_err(CE_ALERT, mp, "xfs_iread: "
  753. "dip->di_magic (0x%x) != "
  754. "XFS_DINODE_MAGIC (0x%x)",
  755. be16_to_cpu(dip->di_magic),
  756. XFS_DINODE_MAGIC);
  757. #endif /* DEBUG */
  758. error = XFS_ERROR(EINVAL);
  759. goto out_brelse;
  760. }
  761. /*
  762. * If the on-disk inode is already linked to a directory
  763. * entry, copy all of the inode into the in-core inode.
  764. * xfs_iformat() handles copying in the inode format
  765. * specific information.
  766. * Otherwise, just get the truly permanent information.
  767. */
  768. if (dip->di_mode) {
  769. xfs_dinode_from_disk(&ip->i_d, dip);
  770. error = xfs_iformat(ip, dip);
  771. if (error) {
  772. #ifdef DEBUG
  773. xfs_fs_cmn_err(CE_ALERT, mp, "xfs_iread: "
  774. "xfs_iformat() returned error %d",
  775. error);
  776. #endif /* DEBUG */
  777. goto out_brelse;
  778. }
  779. } else {
  780. ip->i_d.di_magic = be16_to_cpu(dip->di_magic);
  781. ip->i_d.di_version = dip->di_version;
  782. ip->i_d.di_gen = be32_to_cpu(dip->di_gen);
  783. ip->i_d.di_flushiter = be16_to_cpu(dip->di_flushiter);
  784. /*
  785. * Make sure to pull in the mode here as well in
  786. * case the inode is released without being used.
  787. * This ensures that xfs_inactive() will see that
  788. * the inode is already free and not try to mess
  789. * with the uninitialized part of it.
  790. */
  791. ip->i_d.di_mode = 0;
  792. /*
  793. * Initialize the per-fork minima and maxima for a new
  794. * inode here. xfs_iformat will do it for old inodes.
  795. */
  796. ip->i_df.if_ext_max =
  797. XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
  798. }
  799. /*
  800. * The inode format changed when we moved the link count and
  801. * made it 32 bits long. If this is an old format inode,
  802. * convert it in memory to look like a new one. If it gets
  803. * flushed to disk we will convert back before flushing or
  804. * logging it. We zero out the new projid field and the old link
  805. * count field. We'll handle clearing the pad field (the remains
  806. * of the old uuid field) when we actually convert the inode to
  807. * the new format. We don't change the version number so that we
  808. * can distinguish this from a real new format inode.
  809. */
  810. if (ip->i_d.di_version == 1) {
  811. ip->i_d.di_nlink = ip->i_d.di_onlink;
  812. ip->i_d.di_onlink = 0;
  813. ip->i_d.di_projid = 0;
  814. }
  815. ip->i_delayed_blks = 0;
  816. ip->i_size = ip->i_d.di_size;
  817. /*
  818. * Mark the buffer containing the inode as something to keep
  819. * around for a while. This helps to keep recently accessed
  820. * meta-data in-core longer.
  821. */
  822. XFS_BUF_SET_REF(bp, XFS_INO_REF);
  823. /*
  824. * Use xfs_trans_brelse() to release the buffer containing the
  825. * on-disk inode, because it was acquired with xfs_trans_read_buf()
  826. * in xfs_itobp() above. If tp is NULL, this is just a normal
  827. * brelse(). If we're within a transaction, then xfs_trans_brelse()
  828. * will only release the buffer if it is not dirty within the
  829. * transaction. It will be OK to release the buffer in this case,
  830. * because inodes on disk are never destroyed and we will be
  831. * locking the new in-core inode before putting it in the hash
  832. * table where other processes can find it. Thus we don't have
  833. * to worry about the inode being changed just because we released
  834. * the buffer.
  835. */
  836. out_brelse:
  837. xfs_trans_brelse(tp, bp);
  838. return error;
  839. }
  840. /*
  841. * Read in extents from a btree-format inode.
  842. * Allocate and fill in if_extents. Real work is done in xfs_bmap.c.
  843. */
  844. int
  845. xfs_iread_extents(
  846. xfs_trans_t *tp,
  847. xfs_inode_t *ip,
  848. int whichfork)
  849. {
  850. int error;
  851. xfs_ifork_t *ifp;
  852. xfs_extnum_t nextents;
  853. if (unlikely(XFS_IFORK_FORMAT(ip, whichfork) != XFS_DINODE_FMT_BTREE)) {
  854. XFS_ERROR_REPORT("xfs_iread_extents", XFS_ERRLEVEL_LOW,
  855. ip->i_mount);
  856. return XFS_ERROR(EFSCORRUPTED);
  857. }
  858. nextents = XFS_IFORK_NEXTENTS(ip, whichfork);
  859. ifp = XFS_IFORK_PTR(ip, whichfork);
  860. /*
  861. * We know that the size is valid (it's checked in iformat_btree)
  862. */
  863. ifp->if_lastex = NULLEXTNUM;
  864. ifp->if_bytes = ifp->if_real_bytes = 0;
  865. ifp->if_flags |= XFS_IFEXTENTS;
  866. xfs_iext_add(ifp, 0, nextents);
  867. error = xfs_bmap_read_extents(tp, ip, whichfork);
  868. if (error) {
  869. xfs_iext_destroy(ifp);
  870. ifp->if_flags &= ~XFS_IFEXTENTS;
  871. return error;
  872. }
  873. xfs_validate_extents(ifp, nextents, XFS_EXTFMT_INODE(ip));
  874. return 0;
  875. }
  876. /*
  877. * Allocate an inode on disk and return a copy of its in-core version.
  878. * The in-core inode is locked exclusively. Set mode, nlink, and rdev
  879. * appropriately within the inode. The uid and gid for the inode are
  880. * set according to the contents of the given cred structure.
  881. *
  882. * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc()
  883. * has a free inode available, call xfs_iget()
  884. * to obtain the in-core version of the allocated inode. Finally,
  885. * fill in the inode and log its initial contents. In this case,
  886. * ialloc_context would be set to NULL and call_again set to false.
  887. *
  888. * If xfs_dialloc() does not have an available inode,
  889. * it will replenish its supply by doing an allocation. Since we can
  890. * only do one allocation within a transaction without deadlocks, we
  891. * must commit the current transaction before returning the inode itself.
  892. * In this case, therefore, we will set call_again to true and return.
  893. * The caller should then commit the current transaction, start a new
  894. * transaction, and call xfs_ialloc() again to actually get the inode.
  895. *
  896. * To ensure that some other process does not grab the inode that
  897. * was allocated during the first call to xfs_ialloc(), this routine
  898. * also returns the [locked] bp pointing to the head of the freelist
  899. * as ialloc_context. The caller should hold this buffer across
  900. * the commit and pass it back into this routine on the second call.
  901. *
  902. * If we are allocating quota inodes, we do not have a parent inode
  903. * to attach to or associate with (i.e. pip == NULL) because they
  904. * are not linked into the directory structure - they are attached
  905. * directly to the superblock - and so have no parent.
  906. */
  907. int
  908. xfs_ialloc(
  909. xfs_trans_t *tp,
  910. xfs_inode_t *pip,
  911. mode_t mode,
  912. xfs_nlink_t nlink,
  913. xfs_dev_t rdev,
  914. cred_t *cr,
  915. xfs_prid_t prid,
  916. int okalloc,
  917. xfs_buf_t **ialloc_context,
  918. boolean_t *call_again,
  919. xfs_inode_t **ipp)
  920. {
  921. xfs_ino_t ino;
  922. xfs_inode_t *ip;
  923. uint flags;
  924. int error;
  925. timespec_t tv;
  926. int filestreams = 0;
  927. /*
  928. * Call the space management code to pick
  929. * the on-disk inode to be allocated.
  930. */
  931. error = xfs_dialloc(tp, pip ? pip->i_ino : 0, mode, okalloc,
  932. ialloc_context, call_again, &ino);
  933. if (error)
  934. return error;
  935. if (*call_again || ino == NULLFSINO) {
  936. *ipp = NULL;
  937. return 0;
  938. }
  939. ASSERT(*ialloc_context == NULL);
  940. /*
  941. * Get the in-core inode with the lock held exclusively.
  942. * This is because we're setting fields here we need
  943. * to prevent others from looking at until we're done.
  944. */
  945. error = xfs_trans_iget(tp->t_mountp, tp, ino,
  946. XFS_IGET_CREATE, XFS_ILOCK_EXCL, &ip);
  947. if (error)
  948. return error;
  949. ASSERT(ip != NULL);
  950. ip->i_d.di_mode = (__uint16_t)mode;
  951. ip->i_d.di_onlink = 0;
  952. ip->i_d.di_nlink = nlink;
  953. ASSERT(ip->i_d.di_nlink == nlink);
  954. ip->i_d.di_uid = current_fsuid();
  955. ip->i_d.di_gid = current_fsgid();
  956. ip->i_d.di_projid = prid;
  957. memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
  958. /*
  959. * If the superblock version is up to where we support new format
  960. * inodes and this is currently an old format inode, then change
  961. * the inode version number now. This way we only do the conversion
  962. * here rather than here and in the flush/logging code.
  963. */
  964. if (xfs_sb_version_hasnlink(&tp->t_mountp->m_sb) &&
  965. ip->i_d.di_version == 1) {
  966. ip->i_d.di_version = 2;
  967. /*
  968. * We've already zeroed the old link count, the projid field,
  969. * and the pad field.
  970. */
  971. }
  972. /*
  973. * Project ids won't be stored on disk if we are using a version 1 inode.
  974. */
  975. if ((prid != 0) && (ip->i_d.di_version == 1))
  976. xfs_bump_ino_vers2(tp, ip);
  977. if (pip && XFS_INHERIT_GID(pip)) {
  978. ip->i_d.di_gid = pip->i_d.di_gid;
  979. if ((pip->i_d.di_mode & S_ISGID) && (mode & S_IFMT) == S_IFDIR) {
  980. ip->i_d.di_mode |= S_ISGID;
  981. }
  982. }
  983. /*
  984. * If the group ID of the new file does not match the effective group
  985. * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
  986. * (and only if the irix_sgid_inherit compatibility variable is set).
  987. */
  988. if ((irix_sgid_inherit) &&
  989. (ip->i_d.di_mode & S_ISGID) &&
  990. (!in_group_p((gid_t)ip->i_d.di_gid))) {
  991. ip->i_d.di_mode &= ~S_ISGID;
  992. }
  993. ip->i_d.di_size = 0;
  994. ip->i_size = 0;
  995. ip->i_d.di_nextents = 0;
  996. ASSERT(ip->i_d.di_nblocks == 0);
  997. nanotime(&tv);
  998. ip->i_d.di_mtime.t_sec = (__int32_t)tv.tv_sec;
  999. ip->i_d.di_mtime.t_nsec = (__int32_t)tv.tv_nsec;
  1000. ip->i_d.di_atime = ip->i_d.di_mtime;
  1001. ip->i_d.di_ctime = ip->i_d.di_mtime;
  1002. /*
  1003. * di_gen will have been taken care of in xfs_iread.
  1004. */
  1005. ip->i_d.di_extsize = 0;
  1006. ip->i_d.di_dmevmask = 0;
  1007. ip->i_d.di_dmstate = 0;
  1008. ip->i_d.di_flags = 0;
  1009. flags = XFS_ILOG_CORE;
  1010. switch (mode & S_IFMT) {
  1011. case S_IFIFO:
  1012. case S_IFCHR:
  1013. case S_IFBLK:
  1014. case S_IFSOCK:
  1015. ip->i_d.di_format = XFS_DINODE_FMT_DEV;
  1016. ip->i_df.if_u2.if_rdev = rdev;
  1017. ip->i_df.if_flags = 0;
  1018. flags |= XFS_ILOG_DEV;
  1019. break;
  1020. case S_IFREG:
  1021. /*
  1022. * we can't set up filestreams until after the VFS inode
  1023. * is set up properly.
  1024. */
  1025. if (pip && xfs_inode_is_filestream(pip))
  1026. filestreams = 1;
  1027. /* fall through */
  1028. case S_IFDIR:
  1029. if (pip && (pip->i_d.di_flags & XFS_DIFLAG_ANY)) {
  1030. uint di_flags = 0;
  1031. if ((mode & S_IFMT) == S_IFDIR) {
  1032. if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
  1033. di_flags |= XFS_DIFLAG_RTINHERIT;
  1034. if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
  1035. di_flags |= XFS_DIFLAG_EXTSZINHERIT;
  1036. ip->i_d.di_extsize = pip->i_d.di_extsize;
  1037. }
  1038. } else if ((mode & S_IFMT) == S_IFREG) {
  1039. if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
  1040. di_flags |= XFS_DIFLAG_REALTIME;
  1041. if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
  1042. di_flags |= XFS_DIFLAG_EXTSIZE;
  1043. ip->i_d.di_extsize = pip->i_d.di_extsize;
  1044. }
  1045. }
  1046. if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) &&
  1047. xfs_inherit_noatime)
  1048. di_flags |= XFS_DIFLAG_NOATIME;
  1049. if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) &&
  1050. xfs_inherit_nodump)
  1051. di_flags |= XFS_DIFLAG_NODUMP;
  1052. if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) &&
  1053. xfs_inherit_sync)
  1054. di_flags |= XFS_DIFLAG_SYNC;
  1055. if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) &&
  1056. xfs_inherit_nosymlinks)
  1057. di_flags |= XFS_DIFLAG_NOSYMLINKS;
  1058. if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT)
  1059. di_flags |= XFS_DIFLAG_PROJINHERIT;
  1060. if ((pip->i_d.di_flags & XFS_DIFLAG_NODEFRAG) &&
  1061. xfs_inherit_nodefrag)
  1062. di_flags |= XFS_DIFLAG_NODEFRAG;
  1063. if (pip->i_d.di_flags & XFS_DIFLAG_FILESTREAM)
  1064. di_flags |= XFS_DIFLAG_FILESTREAM;
  1065. ip->i_d.di_flags |= di_flags;
  1066. }
  1067. /* FALLTHROUGH */
  1068. case S_IFLNK:
  1069. ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
  1070. ip->i_df.if_flags = XFS_IFEXTENTS;
  1071. ip->i_df.if_bytes = ip->i_df.if_real_bytes = 0;
  1072. ip->i_df.if_u1.if_extents = NULL;
  1073. break;
  1074. default:
  1075. ASSERT(0);
  1076. }
  1077. /*
  1078. * Attribute fork settings for new inode.
  1079. */
  1080. ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
  1081. ip->i_d.di_anextents = 0;
  1082. /*
  1083. * Log the new values stuffed into the inode.
  1084. */
  1085. xfs_trans_log_inode(tp, ip, flags);
  1086. /* now that we have an i_mode we can setup inode ops and unlock */
  1087. xfs_setup_inode(ip);
  1088. /* now we have set up the vfs inode we can associate the filestream */
  1089. if (filestreams) {
  1090. error = xfs_filestream_associate(pip, ip);
  1091. if (error < 0)
  1092. return -error;
  1093. if (!error)
  1094. xfs_iflags_set(ip, XFS_IFILESTREAM);
  1095. }
  1096. *ipp = ip;
  1097. return 0;
  1098. }
  1099. /*
  1100. * Check to make sure that there are no blocks allocated to the
  1101. * file beyond the size of the file. We don't check this for
  1102. * files with fixed size extents or real time extents, but we
  1103. * at least do it for regular files.
  1104. */
  1105. #ifdef DEBUG
  1106. void
  1107. xfs_isize_check(
  1108. xfs_mount_t *mp,
  1109. xfs_inode_t *ip,
  1110. xfs_fsize_t isize)
  1111. {
  1112. xfs_fileoff_t map_first;
  1113. int nimaps;
  1114. xfs_bmbt_irec_t imaps[2];
  1115. if ((ip->i_d.di_mode & S_IFMT) != S_IFREG)
  1116. return;
  1117. if (XFS_IS_REALTIME_INODE(ip))
  1118. return;
  1119. if (ip->i_d.di_flags & XFS_DIFLAG_EXTSIZE)
  1120. return;
  1121. nimaps = 2;
  1122. map_first = XFS_B_TO_FSB(mp, (xfs_ufsize_t)isize);
  1123. /*
  1124. * The filesystem could be shutting down, so bmapi may return
  1125. * an error.
  1126. */
  1127. if (xfs_bmapi(NULL, ip, map_first,
  1128. (XFS_B_TO_FSB(mp,
  1129. (xfs_ufsize_t)XFS_MAXIOFFSET(mp)) -
  1130. map_first),
  1131. XFS_BMAPI_ENTIRE, NULL, 0, imaps, &nimaps,
  1132. NULL))
  1133. return;
  1134. ASSERT(nimaps == 1);
  1135. ASSERT(imaps[0].br_startblock == HOLESTARTBLOCK);
  1136. }
  1137. #endif /* DEBUG */
  1138. /*
  1139. * Calculate the last possible buffered byte in a file. This must
  1140. * include data that was buffered beyond the EOF by the write code.
  1141. * This also needs to deal with overflowing the xfs_fsize_t type
  1142. * which can happen for sizes near the limit.
  1143. *
  1144. * We also need to take into account any blocks beyond the EOF. It
  1145. * may be the case that they were buffered by a write which failed.
  1146. * In that case the pages will still be in memory, but the inode size
  1147. * will never have been updated.
  1148. */
  1149. STATIC xfs_fsize_t
  1150. xfs_file_last_byte(
  1151. xfs_inode_t *ip)
  1152. {
  1153. xfs_mount_t *mp;
  1154. xfs_fsize_t last_byte;
  1155. xfs_fileoff_t last_block;
  1156. xfs_fileoff_t size_last_block;
  1157. int error;
  1158. ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL|XFS_IOLOCK_SHARED));
  1159. mp = ip->i_mount;
  1160. /*
  1161. * Only check for blocks beyond the EOF if the extents have
  1162. * been read in. This eliminates the need for the inode lock,
  1163. * and it also saves us from looking when it really isn't
  1164. * necessary.
  1165. */
  1166. if (ip->i_df.if_flags & XFS_IFEXTENTS) {
  1167. xfs_ilock(ip, XFS_ILOCK_SHARED);
  1168. error = xfs_bmap_last_offset(NULL, ip, &last_block,
  1169. XFS_DATA_FORK);
  1170. xfs_iunlock(ip, XFS_ILOCK_SHARED);
  1171. if (error) {
  1172. last_block = 0;
  1173. }
  1174. } else {
  1175. last_block = 0;
  1176. }
  1177. size_last_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)ip->i_size);
  1178. last_block = XFS_FILEOFF_MAX(last_block, size_last_block);
  1179. last_byte = XFS_FSB_TO_B(mp, last_block);
  1180. if (last_byte < 0) {
  1181. return XFS_MAXIOFFSET(mp);
  1182. }
  1183. last_byte += (1 << mp->m_writeio_log);
  1184. if (last_byte < 0) {
  1185. return XFS_MAXIOFFSET(mp);
  1186. }
  1187. return last_byte;
  1188. }
  1189. /*
  1190. * Start the truncation of the file to new_size. The new size
  1191. * must be smaller than the current size. This routine will
  1192. * clear the buffer and page caches of file data in the removed
  1193. * range, and xfs_itruncate_finish() will remove the underlying
  1194. * disk blocks.
  1195. *
  1196. * The inode must have its I/O lock locked EXCLUSIVELY, and it
  1197. * must NOT have the inode lock held at all. This is because we're
  1198. * calling into the buffer/page cache code and we can't hold the
  1199. * inode lock when we do so.
  1200. *
  1201. * We need to wait for any direct I/Os in flight to complete before we
  1202. * proceed with the truncate. This is needed to prevent the extents
  1203. * being read or written by the direct I/Os from being removed while the
  1204. * I/O is in flight as there is no other method of synchronising
  1205. * direct I/O with the truncate operation. Also, because we hold
  1206. * the IOLOCK in exclusive mode, we prevent new direct I/Os from being
  1207. * started until the truncate completes and drops the lock. Essentially,
  1208. * the xfs_ioend_wait() call forms an I/O barrier that provides strict
  1209. * ordering between direct I/Os and the truncate operation.
  1210. *
  1211. * The flags parameter can have either the value XFS_ITRUNC_DEFINITE
  1212. * or XFS_ITRUNC_MAYBE. The XFS_ITRUNC_MAYBE value should be used
  1213. * in the case that the caller is locking things out of order and
  1214. * may not be able to call xfs_itruncate_finish() with the inode lock
  1215. * held without dropping the I/O lock. If the caller must drop the
  1216. * I/O lock before calling xfs_itruncate_finish(), then xfs_itruncate_start()
  1217. * must be called again with all the same restrictions as the initial
  1218. * call.
  1219. */
  1220. int
  1221. xfs_itruncate_start(
  1222. xfs_inode_t *ip,
  1223. uint flags,
  1224. xfs_fsize_t new_size)
  1225. {
  1226. xfs_fsize_t last_byte;
  1227. xfs_off_t toss_start;
  1228. xfs_mount_t *mp;
  1229. int error = 0;
  1230. ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL));
  1231. ASSERT((new_size == 0) || (new_size <= ip->i_size));
  1232. ASSERT((flags == XFS_ITRUNC_DEFINITE) ||
  1233. (flags == XFS_ITRUNC_MAYBE));
  1234. mp = ip->i_mount;
  1235. /* wait for the completion of any pending DIOs */
  1236. if (new_size == 0 || new_size < ip->i_size)
  1237. xfs_ioend_wait(ip);
  1238. /*
  1239. * Call toss_pages or flushinval_pages to get rid of pages
  1240. * overlapping the region being removed. We have to use
  1241. * the less efficient flushinval_pages in the case that the
  1242. * caller may not be able to finish the truncate without
  1243. * dropping the inode's I/O lock. Make sure
  1244. * to catch any pages brought in by buffers overlapping
  1245. * the EOF by searching out beyond the isize by our
  1246. * block size. We round new_size up to a block boundary
  1247. * so that we don't toss things on the same block as
  1248. * new_size but before it.
  1249. *
  1250. * Before calling toss_page or flushinval_pages, make sure to
  1251. * call remapf() over the same region if the file is mapped.
  1252. * This frees up mapped file references to the pages in the
  1253. * given range and for the flushinval_pages case it ensures
  1254. * that we get the latest mapped changes flushed out.
  1255. */
  1256. toss_start = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
  1257. toss_start = XFS_FSB_TO_B(mp, toss_start);
  1258. if (toss_start < 0) {
  1259. /*
  1260. * The place to start tossing is beyond our maximum
  1261. * file size, so there is no way that the data extended
  1262. * out there.
  1263. */
  1264. return 0;
  1265. }
  1266. last_byte = xfs_file_last_byte(ip);
  1267. trace_xfs_itruncate_start(ip, flags, new_size, toss_start, last_byte);
  1268. if (last_byte > toss_start) {
  1269. if (flags & XFS_ITRUNC_DEFINITE) {
  1270. xfs_tosspages(ip, toss_start,
  1271. -1, FI_REMAPF_LOCKED);
  1272. } else {
  1273. error = xfs_flushinval_pages(ip, toss_start,
  1274. -1, FI_REMAPF_LOCKED);
  1275. }
  1276. }
  1277. #ifdef DEBUG
  1278. if (new_size == 0) {
  1279. ASSERT(VN_CACHED(VFS_I(ip)) == 0);
  1280. }
  1281. #endif
  1282. return error;
  1283. }
  1284. /*
  1285. * Shrink the file to the given new_size. The new size must be smaller than
  1286. * the current size. This will free up the underlying blocks in the removed
  1287. * range after a call to xfs_itruncate_start() or xfs_atruncate_start().
  1288. *
  1289. * The transaction passed to this routine must have made a permanent log
  1290. * reservation of at least XFS_ITRUNCATE_LOG_RES. This routine may commit the
  1291. * given transaction and start new ones, so make sure everything involved in
  1292. * the transaction is tidy before calling here. Some transaction will be
  1293. * returned to the caller to be committed. The incoming transaction must
  1294. * already include the inode, and both inode locks must be held exclusively.
  1295. * The inode must also be "held" within the transaction. On return the inode
  1296. * will be "held" within the returned transaction. This routine does NOT
  1297. * require any disk space to be reserved for it within the transaction.
  1298. *
  1299. * The fork parameter must be either xfs_attr_fork or xfs_data_fork, and it
  1300. * indicates the fork which is to be truncated. For the attribute fork we only
  1301. * support truncation to size 0.
  1302. *
  1303. * We use the sync parameter to indicate whether or not the first transaction
  1304. * we perform might have to be synchronous. For the attr fork, it needs to be
  1305. * so if the unlink of the inode is not yet known to be permanent in the log.
  1306. * This keeps us from freeing and reusing the blocks of the attribute fork
  1307. * before the unlink of the inode becomes permanent.
  1308. *
  1309. * For the data fork, we normally have to run synchronously if we're being
  1310. * called out of the inactive path or we're being called out of the create path
  1311. * where we're truncating an existing file. Either way, the truncate needs to
  1312. * be sync so blocks don't reappear in the file with altered data in case of a
  1313. * crash. wsync filesystems can run the first case async because anything that
  1314. * shrinks the inode has to run sync so by the time we're called here from
  1315. * inactive, the inode size is permanently set to 0.
  1316. *
  1317. * Calls from the truncate path always need to be sync unless we're in a wsync
  1318. * filesystem and the file has already been unlinked.
  1319. *
  1320. * The caller is responsible for correctly setting the sync parameter. It gets
  1321. * too hard for us to guess here which path we're being called out of just
  1322. * based on inode state.
  1323. *
  1324. * If we get an error, we must return with the inode locked and linked into the
  1325. * current transaction. This keeps things simple for the higher level code,
  1326. * because it always knows that the inode is locked and held in the transaction
  1327. * that returns to it whether errors occur or not. We don't mark the inode
  1328. * dirty on error so that transactions can be easily aborted if possible.
  1329. */
  1330. int
  1331. xfs_itruncate_finish(
  1332. xfs_trans_t **tp,
  1333. xfs_inode_t *ip,
  1334. xfs_fsize_t new_size,
  1335. int fork,
  1336. int sync)
  1337. {
  1338. xfs_fsblock_t first_block;
  1339. xfs_fileoff_t first_unmap_block;
  1340. xfs_fileoff_t last_block;
  1341. xfs_filblks_t unmap_len=0;
  1342. xfs_mount_t *mp;
  1343. xfs_trans_t *ntp;
  1344. int done;
  1345. int committed;
  1346. xfs_bmap_free_t free_list;
  1347. int error;
  1348. ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_IOLOCK_EXCL));
  1349. ASSERT((new_size == 0) || (new_size <= ip->i_size));
  1350. ASSERT(*tp != NULL);
  1351. ASSERT((*tp)->t_flags & XFS_TRANS_PERM_LOG_RES);
  1352. ASSERT(ip->i_transp == *tp);
  1353. ASSERT(ip->i_itemp != NULL);
  1354. ASSERT(ip->i_itemp->ili_lock_flags == 0);
  1355. ntp = *tp;
  1356. mp = (ntp)->t_mountp;
  1357. ASSERT(! XFS_NOT_DQATTACHED(mp, ip));
  1358. /*
  1359. * We only support truncating the entire attribute fork.
  1360. */
  1361. if (fork == XFS_ATTR_FORK) {
  1362. new_size = 0LL;
  1363. }
  1364. first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
  1365. trace_xfs_itruncate_finish_start(ip, new_size);
  1366. /*
  1367. * The first thing we do is set the size to new_size permanently
  1368. * on disk. This way we don't have to worry about anyone ever
  1369. * being able to look at the data being freed even in the face
  1370. * of a crash. What we're getting around here is the case where
  1371. * we free a block, it is allocated to another file, it is written
  1372. * to, and then we crash. If the new data gets written to the
  1373. * file but the log buffers containing the free and reallocation
  1374. * don't, then we'd end up with garbage in the blocks being freed.
  1375. * As long as we make the new_size permanent before actually
  1376. * freeing any blocks it doesn't matter if they get writtten to.
  1377. *
  1378. * The callers must signal into us whether or not the size
  1379. * setting here must be synchronous. There are a few cases
  1380. * where it doesn't have to be synchronous. Those cases
  1381. * occur if the file is unlinked and we know the unlink is
  1382. * permanent or if the blocks being truncated are guaranteed
  1383. * to be beyond the inode eof (regardless of the link count)
  1384. * and the eof value is permanent. Both of these cases occur
  1385. * only on wsync-mounted filesystems. In those cases, we're
  1386. * guaranteed that no user will ever see the data in the blocks
  1387. * that are being truncated so the truncate can run async.
  1388. * In the free beyond eof case, the file may wind up with
  1389. * more blocks allocated to it than it needs if we crash
  1390. * and that won't get fixed until the next time the file
  1391. * is re-opened and closed but that's ok as that shouldn't
  1392. * be too many blocks.
  1393. *
  1394. * However, we can't just make all wsync xactions run async
  1395. * because there's one call out of the create path that needs
  1396. * to run sync where it's truncating an existing file to size
  1397. * 0 whose size is > 0.
  1398. *
  1399. * It's probably possible to come up with a test in this
  1400. * routine that would correctly distinguish all the above
  1401. * cases from the values of the function parameters and the
  1402. * inode state but for sanity's sake, I've decided to let the
  1403. * layers above just tell us. It's simpler to correctly figure
  1404. * out in the layer above exactly under what conditions we
  1405. * can run async and I think it's easier for others read and
  1406. * follow the logic in case something has to be changed.
  1407. * cscope is your friend -- rcc.
  1408. *
  1409. * The attribute fork is much simpler.
  1410. *
  1411. * For the attribute fork we allow the caller to tell us whether
  1412. * the unlink of the inode that led to this call is yet permanent
  1413. * in the on disk log. If it is not and we will be freeing extents
  1414. * in this inode then we make the first transaction synchronous
  1415. * to make sure that the unlink is permanent by the time we free
  1416. * the blocks.
  1417. */
  1418. if (fork == XFS_DATA_FORK) {
  1419. if (ip->i_d.di_nextents > 0) {
  1420. /*
  1421. * If we are not changing the file size then do
  1422. * not update the on-disk file size - we may be
  1423. * called from xfs_inactive_free_eofblocks(). If we
  1424. * update the on-disk file size and then the system
  1425. * crashes before the contents of the file are
  1426. * flushed to disk then the files may be full of
  1427. * holes (ie NULL files bug).
  1428. */
  1429. if (ip->i_size != new_size) {
  1430. ip->i_d.di_size = new_size;
  1431. ip->i_size = new_size;
  1432. xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
  1433. }
  1434. }
  1435. } else if (sync) {
  1436. ASSERT(!(mp->m_flags & XFS_MOUNT_WSYNC));
  1437. if (ip->i_d.di_anextents > 0)
  1438. xfs_trans_set_sync(ntp);
  1439. }
  1440. ASSERT(fork == XFS_DATA_FORK ||
  1441. (fork == XFS_ATTR_FORK &&
  1442. ((sync && !(mp->m_flags & XFS_MOUNT_WSYNC)) ||
  1443. (sync == 0 && (mp->m_flags & XFS_MOUNT_WSYNC)))));
  1444. /*
  1445. * Since it is possible for space to become allocated beyond
  1446. * the end of the file (in a crash where the space is allocated
  1447. * but the inode size is not yet updated), simply remove any
  1448. * blocks which show up between the new EOF and the maximum
  1449. * possible file size. If the first block to be removed is
  1450. * beyond the maximum file size (ie it is the same as last_block),
  1451. * then there is nothing to do.
  1452. */
  1453. last_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)XFS_MAXIOFFSET(mp));
  1454. ASSERT(first_unmap_block <= last_block);
  1455. done = 0;
  1456. if (last_block == first_unmap_block) {
  1457. done = 1;
  1458. } else {
  1459. unmap_len = last_block - first_unmap_block + 1;
  1460. }
  1461. while (!done) {
  1462. /*
  1463. * Free up up to XFS_ITRUNC_MAX_EXTENTS. xfs_bunmapi()
  1464. * will tell us whether it freed the entire range or
  1465. * not. If this is a synchronous mount (wsync),
  1466. * then we can tell bunmapi to keep all the
  1467. * transactions asynchronous since the unlink
  1468. * transaction that made this inode inactive has
  1469. * already hit the disk. There's no danger of
  1470. * the freed blocks being reused, there being a
  1471. * crash, and the reused blocks suddenly reappearing
  1472. * in this file with garbage in them once recovery
  1473. * runs.
  1474. */
  1475. xfs_bmap_init(&free_list, &first_block);
  1476. error = xfs_bunmapi(ntp, ip,
  1477. first_unmap_block, unmap_len,
  1478. xfs_bmapi_aflag(fork),
  1479. XFS_ITRUNC_MAX_EXTENTS,
  1480. &first_block, &free_list,
  1481. &done);
  1482. if (error) {
  1483. /*
  1484. * If the bunmapi call encounters an error,
  1485. * return to the caller where the transaction
  1486. * can be properly aborted. We just need to
  1487. * make sure we're not holding any resources
  1488. * that we were not when we came in.
  1489. */
  1490. xfs_bmap_cancel(&free_list);
  1491. return error;
  1492. }
  1493. /*
  1494. * Duplicate the transaction that has the permanent
  1495. * reservation and commit the old transaction.
  1496. */
  1497. error = xfs_bmap_finish(tp, &free_list, &committed);
  1498. ntp = *tp;
  1499. if (committed)
  1500. xfs_trans_ijoin(ntp, ip);
  1501. if (error) {
  1502. /*
  1503. * If the bmap finish call encounters an error, return
  1504. * to the caller where the transaction can be properly
  1505. * aborted. We just need to make sure we're not
  1506. * holding any resources that we were not when we came
  1507. * in.
  1508. *
  1509. * Aborting from this point might lose some blocks in
  1510. * the file system, but oh well.
  1511. */
  1512. xfs_bmap_cancel(&free_list);
  1513. return error;
  1514. }
  1515. if (committed) {
  1516. /*
  1517. * Mark the inode dirty so it will be logged and
  1518. * moved forward in the log as part of every commit.
  1519. */
  1520. xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
  1521. }
  1522. ntp = xfs_trans_dup(ntp);
  1523. error = xfs_trans_commit(*tp, 0);
  1524. *tp = ntp;
  1525. xfs_trans_ijoin(ntp, ip);
  1526. if (error)
  1527. return error;
  1528. /*
  1529. * transaction commit worked ok so we can drop the extra ticket
  1530. * reference that we gained in xfs_trans_dup()
  1531. */
  1532. xfs_log_ticket_put(ntp->t_ticket);
  1533. error = xfs_trans_reserve(ntp, 0,
  1534. XFS_ITRUNCATE_LOG_RES(mp), 0,
  1535. XFS_TRANS_PERM_LOG_RES,
  1536. XFS_ITRUNCATE_LOG_COUNT);
  1537. if (error)
  1538. return error;
  1539. }
  1540. /*
  1541. * Only update the size in the case of the data fork, but
  1542. * always re-log the inode so that our permanent transaction
  1543. * can keep on rolling it forward in the log.
  1544. */
  1545. if (fork == XFS_DATA_FORK) {
  1546. xfs_isize_check(mp, ip, new_size);
  1547. /*
  1548. * If we are not changing the file size then do
  1549. * not update the on-disk file size - we may be
  1550. * called from xfs_inactive_free_eofblocks(). If we
  1551. * update the on-disk file size and then the system
  1552. * crashes before the contents of the file are
  1553. * flushed to disk then the files may be full of
  1554. * holes (ie NULL files bug).
  1555. */
  1556. if (ip->i_size != new_size) {
  1557. ip->i_d.di_size = new_size;
  1558. ip->i_size = new_size;
  1559. }
  1560. }
  1561. xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
  1562. ASSERT((new_size != 0) ||
  1563. (fork == XFS_ATTR_FORK) ||
  1564. (ip->i_delayed_blks == 0));
  1565. ASSERT((new_size != 0) ||
  1566. (fork == XFS_ATTR_FORK) ||
  1567. (ip->i_d.di_nextents == 0));
  1568. trace_xfs_itruncate_finish_end(ip, new_size);
  1569. return 0;
  1570. }
  1571. /*
  1572. * This is called when the inode's link count goes to 0.
  1573. * We place the on-disk inode on a list in the AGI. It
  1574. * will be pulled from this list when the inode is freed.
  1575. */
  1576. int
  1577. xfs_iunlink(
  1578. xfs_trans_t *tp,
  1579. xfs_inode_t *ip)
  1580. {
  1581. xfs_mount_t *mp;
  1582. xfs_agi_t *agi;
  1583. xfs_dinode_t *dip;
  1584. xfs_buf_t *agibp;
  1585. xfs_buf_t *ibp;
  1586. xfs_agino_t agino;
  1587. short bucket_index;
  1588. int offset;
  1589. int error;
  1590. ASSERT(ip->i_d.di_nlink == 0);
  1591. ASSERT(ip->i_d.di_mode != 0);
  1592. ASSERT(ip->i_transp == tp);
  1593. mp = tp->t_mountp;
  1594. /*
  1595. * Get the agi buffer first. It ensures lock ordering
  1596. * on the list.
  1597. */
  1598. error = xfs_read_agi(mp, tp, XFS_INO_TO_AGNO(mp, ip->i_ino), &agibp);
  1599. if (error)
  1600. return error;
  1601. agi = XFS_BUF_TO_AGI(agibp);
  1602. /*
  1603. * Get the index into the agi hash table for the
  1604. * list this inode will go on.
  1605. */
  1606. agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
  1607. ASSERT(agino != 0);
  1608. bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
  1609. ASSERT(agi->agi_unlinked[bucket_index]);
  1610. ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != agino);
  1611. if (be32_to_cpu(agi->agi_unlinked[bucket_index]) != NULLAGINO) {
  1612. /*
  1613. * There is already another inode in the bucket we need
  1614. * to add ourselves to. Add us at the front of the list.
  1615. * Here we put the head pointer into our next pointer,
  1616. * and then we fall through to point the head at us.
  1617. */
  1618. error = xfs_itobp(mp, tp, ip, &dip, &ibp, XBF_LOCK);
  1619. if (error)
  1620. return error;
  1621. ASSERT(be32_to_cpu(dip->di_next_unlinked) == NULLAGINO);
  1622. /* both on-disk, don't endian flip twice */
  1623. dip->di_next_unlinked = agi->agi_unlinked[bucket_index];
  1624. offset = ip->i_imap.im_boffset +
  1625. offsetof(xfs_dinode_t, di_next_unlinked);
  1626. xfs_trans_inode_buf(tp, ibp);
  1627. xfs_trans_log_buf(tp, ibp, offset,
  1628. (offset + sizeof(xfs_agino_t) - 1));
  1629. xfs_inobp_check(mp, ibp);
  1630. }
  1631. /*
  1632. * Point the bucket head pointer at the inode being inserted.
  1633. */
  1634. ASSERT(agino != 0);
  1635. agi->agi_unlinked[bucket_index] = cpu_to_be32(agino);
  1636. offset = offsetof(xfs_agi_t, agi_unlinked) +
  1637. (sizeof(xfs_agino_t) * bucket_index);
  1638. xfs_trans_log_buf(tp, agibp, offset,
  1639. (offset + sizeof(xfs_agino_t) - 1));
  1640. return 0;
  1641. }
  1642. /*
  1643. * Pull the on-disk inode from the AGI unlinked list.
  1644. */
  1645. STATIC int
  1646. xfs_iunlink_remove(
  1647. xfs_trans_t *tp,
  1648. xfs_inode_t *ip)
  1649. {
  1650. xfs_ino_t next_ino;
  1651. xfs_mount_t *mp;
  1652. xfs_agi_t *agi;
  1653. xfs_dinode_t *dip;
  1654. xfs_buf_t *agibp;
  1655. xfs_buf_t *ibp;
  1656. xfs_agnumber_t agno;
  1657. xfs_agino_t agino;
  1658. xfs_agino_t next_agino;
  1659. xfs_buf_t *last_ibp;
  1660. xfs_dinode_t *last_dip = NULL;
  1661. short bucket_index;
  1662. int offset, last_offset = 0;
  1663. int error;
  1664. mp = tp->t_mountp;
  1665. agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
  1666. /*
  1667. * Get the agi buffer first. It ensures lock ordering
  1668. * on the list.
  1669. */
  1670. error = xfs_read_agi(mp, tp, agno, &agibp);
  1671. if (error)
  1672. return error;
  1673. agi = XFS_BUF_TO_AGI(agibp);
  1674. /*
  1675. * Get the index into the agi hash table for the
  1676. * list this inode will go on.
  1677. */
  1678. agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
  1679. ASSERT(agino != 0);
  1680. bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
  1681. ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != NULLAGINO);
  1682. ASSERT(agi->agi_unlinked[bucket_index]);
  1683. if (be32_to_cpu(agi->agi_unlinked[bucket_index]) == agino) {
  1684. /*
  1685. * We're at the head of the list. Get the inode's
  1686. * on-disk buffer to see if there is anyone after us
  1687. * on the list. Only modify our next pointer if it
  1688. * is not already NULLAGINO. This saves us the overhead
  1689. * of dealing with the buffer when there is no need to
  1690. * change it.
  1691. */
  1692. error = xfs_itobp(mp, tp, ip, &dip, &ibp, XBF_LOCK);
  1693. if (error) {
  1694. cmn_err(CE_WARN,
  1695. "xfs_iunlink_remove: xfs_itobp() returned an error %d on %s. Returning error.",
  1696. error, mp->m_fsname);
  1697. return error;
  1698. }
  1699. next_agino = be32_to_cpu(dip->di_next_unlinked);
  1700. ASSERT(next_agino != 0);
  1701. if (next_agino != NULLAGINO) {
  1702. dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
  1703. offset = ip->i_imap.im_boffset +
  1704. offsetof(xfs_dinode_t, di_next_unlinked);
  1705. xfs_trans_inode_buf(tp, ibp);
  1706. xfs_trans_log_buf(tp, ibp, offset,
  1707. (offset + sizeof(xfs_agino_t) - 1));
  1708. xfs_inobp_check(mp, ibp);
  1709. } else {
  1710. xfs_trans_brelse(tp, ibp);
  1711. }
  1712. /*
  1713. * Point the bucket head pointer at the next inode.
  1714. */
  1715. ASSERT(next_agino != 0);
  1716. ASSERT(next_agino != agino);
  1717. agi->agi_unlinked[bucket_index] = cpu_to_be32(next_agino);
  1718. offset = offsetof(xfs_agi_t, agi_unlinked) +
  1719. (sizeof(xfs_agino_t) * bucket_index);
  1720. xfs_trans_log_buf(tp, agibp, offset,
  1721. (offset + sizeof(xfs_agino_t) - 1));
  1722. } else {
  1723. /*
  1724. * We need to search the list for the inode being freed.
  1725. */
  1726. next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
  1727. last_ibp = NULL;
  1728. while (next_agino != agino) {
  1729. /*
  1730. * If the last inode wasn't the one pointing to
  1731. * us, then release its buffer since we're not
  1732. * going to do anything with it.
  1733. */
  1734. if (last_ibp != NULL) {
  1735. xfs_trans_brelse(tp, last_ibp);
  1736. }
  1737. next_ino = XFS_AGINO_TO_INO(mp, agno, next_agino);
  1738. error = xfs_inotobp(mp, tp, next_ino, &last_dip,
  1739. &last_ibp, &last_offset, 0);
  1740. if (error) {
  1741. cmn_err(CE_WARN,
  1742. "xfs_iunlink_remove: xfs_inotobp() returned an error %d on %s. Returning error.",
  1743. error, mp->m_fsname);
  1744. return error;
  1745. }
  1746. next_agino = be32_to_cpu(last_dip->di_next_unlinked);
  1747. ASSERT(next_agino != NULLAGINO);
  1748. ASSERT(next_agino != 0);
  1749. }
  1750. /*
  1751. * Now last_ibp points to the buffer previous to us on
  1752. * the unlinked list. Pull us from the list.
  1753. */
  1754. error = xfs_itobp(mp, tp, ip, &dip, &ibp, XBF_LOCK);
  1755. if (error) {
  1756. cmn_err(CE_WARN,
  1757. "xfs_iunlink_remove: xfs_itobp() returned an error %d on %s. Returning error.",
  1758. error, mp->m_fsname);
  1759. return error;
  1760. }
  1761. next_agino = be32_to_cpu(dip->di_next_unlinked);
  1762. ASSERT(next_agino != 0);
  1763. ASSERT(next_agino != agino);
  1764. if (next_agino != NULLAGINO) {
  1765. dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
  1766. offset = ip->i_imap.im_boffset +
  1767. offsetof(xfs_dinode_t, di_next_unlinked);
  1768. xfs_trans_inode_buf(tp, ibp);
  1769. xfs_trans_log_buf(tp, ibp, offset,
  1770. (offset + sizeof(xfs_agino_t) - 1));
  1771. xfs_inobp_check(mp, ibp);
  1772. } else {
  1773. xfs_trans_brelse(tp, ibp);
  1774. }
  1775. /*
  1776. * Point the previous inode on the list to the next inode.
  1777. */
  1778. last_dip->di_next_unlinked = cpu_to_be32(next_agino);
  1779. ASSERT(next_agino != 0);
  1780. offset = last_offset + offsetof(xfs_dinode_t, di_next_unlinked);
  1781. xfs_trans_inode_buf(tp, last_ibp);
  1782. xfs_trans_log_buf(tp, last_ibp, offset,
  1783. (offset + sizeof(xfs_agino_t) - 1));
  1784. xfs_inobp_check(mp, last_ibp);
  1785. }
  1786. return 0;
  1787. }
  1788. STATIC void
  1789. xfs_ifree_cluster(
  1790. xfs_inode_t *free_ip,
  1791. xfs_trans_t *tp,
  1792. xfs_ino_t inum)
  1793. {
  1794. xfs_mount_t *mp = free_ip->i_mount;
  1795. int blks_per_cluster;
  1796. int nbufs;
  1797. int ninodes;
  1798. int i, j;
  1799. xfs_daddr_t blkno;
  1800. xfs_buf_t *bp;
  1801. xfs_inode_t *ip;
  1802. xfs_inode_log_item_t *iip;
  1803. xfs_log_item_t *lip;
  1804. struct xfs_perag *pag;
  1805. pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, inum));
  1806. if (mp->m_sb.sb_blocksize >= XFS_INODE_CLUSTER_SIZE(mp)) {
  1807. blks_per_cluster = 1;
  1808. ninodes = mp->m_sb.sb_inopblock;
  1809. nbufs = XFS_IALLOC_BLOCKS(mp);
  1810. } else {
  1811. blks_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) /
  1812. mp->m_sb.sb_blocksize;
  1813. ninodes = blks_per_cluster * mp->m_sb.sb_inopblock;
  1814. nbufs = XFS_IALLOC_BLOCKS(mp) / blks_per_cluster;
  1815. }
  1816. for (j = 0; j < nbufs; j++, inum += ninodes) {
  1817. int found = 0;
  1818. blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum),
  1819. XFS_INO_TO_AGBNO(mp, inum));
  1820. /*
  1821. * We obtain and lock the backing buffer first in the process
  1822. * here, as we have to ensure that any dirty inode that we
  1823. * can't get the flush lock on is attached to the buffer.
  1824. * If we scan the in-memory inodes first, then buffer IO can
  1825. * complete before we get a lock on it, and hence we may fail
  1826. * to mark all the active inodes on the buffer stale.
  1827. */
  1828. bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno,
  1829. mp->m_bsize * blks_per_cluster,
  1830. XBF_LOCK);
  1831. /*
  1832. * Walk the inodes already attached to the buffer and mark them
  1833. * stale. These will all have the flush locks held, so an
  1834. * in-memory inode walk can't lock them.
  1835. */
  1836. lip = XFS_BUF_FSPRIVATE(bp, xfs_log_item_t *);
  1837. while (lip) {
  1838. if (lip->li_type == XFS_LI_INODE) {
  1839. iip = (xfs_inode_log_item_t *)lip;
  1840. ASSERT(iip->ili_logged == 1);
  1841. lip->li_cb = xfs_istale_done;
  1842. xfs_trans_ail_copy_lsn(mp->m_ail,
  1843. &iip->ili_flush_lsn,
  1844. &iip->ili_item.li_lsn);
  1845. xfs_iflags_set(iip->ili_inode, XFS_ISTALE);
  1846. found++;
  1847. }
  1848. lip = lip->li_bio_list;
  1849. }
  1850. /*
  1851. * For each inode in memory attempt to add it to the inode
  1852. * buffer and set it up for being staled on buffer IO
  1853. * completion. This is safe as we've locked out tail pushing
  1854. * and flushing by locking the buffer.
  1855. *
  1856. * We have already marked every inode that was part of a
  1857. * transaction stale above, which means there is no point in
  1858. * even trying to lock them.
  1859. */
  1860. for (i = 0; i < ninodes; i++) {
  1861. read_lock(&pag->pag_ici_lock);
  1862. ip = radix_tree_lookup(&pag->pag_ici_root,
  1863. XFS_INO_TO_AGINO(mp, (inum + i)));
  1864. /* Inode not in memory or stale, nothing to do */
  1865. if (!ip || xfs_iflags_test(ip, XFS_ISTALE)) {
  1866. read_unlock(&pag->pag_ici_lock);
  1867. continue;
  1868. }
  1869. /* don't try to lock/unlock the current inode */
  1870. if (ip != free_ip &&
  1871. !xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
  1872. read_unlock(&pag->pag_ici_lock);
  1873. continue;
  1874. }
  1875. read_unlock(&pag->pag_ici_lock);
  1876. if (!xfs_iflock_nowait(ip)) {
  1877. if (ip != free_ip)
  1878. xfs_iunlock(ip, XFS_ILOCK_EXCL);
  1879. continue;
  1880. }
  1881. xfs_iflags_set(ip, XFS_ISTALE);
  1882. if (xfs_inode_clean(ip)) {
  1883. ASSERT(ip != free_ip);
  1884. xfs_ifunlock(ip);
  1885. xfs_iunlock(ip, XFS_ILOCK_EXCL);
  1886. continue;
  1887. }
  1888. iip = ip->i_itemp;
  1889. if (!iip) {
  1890. /* inode with unlogged changes only */
  1891. ASSERT(ip != free_ip);
  1892. ip->i_update_core = 0;
  1893. xfs_ifunlock(ip);
  1894. xfs_iunlock(ip, XFS_ILOCK_EXCL);
  1895. continue;
  1896. }
  1897. found++;
  1898. iip->ili_last_fields = iip->ili_format.ilf_fields;
  1899. iip->ili_format.ilf_fields = 0;
  1900. iip->ili_logged = 1;
  1901. xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
  1902. &iip->ili_item.li_lsn);
  1903. xfs_buf_attach_iodone(bp, xfs_istale_done,
  1904. &iip->ili_item);
  1905. if (ip != free_ip)
  1906. xfs_iunlock(ip, XFS_ILOCK_EXCL);
  1907. }
  1908. if (found)
  1909. xfs_trans_stale_inode_buf(tp, bp);
  1910. xfs_trans_binval(tp, bp);
  1911. }
  1912. xfs_perag_put(pag);
  1913. }
  1914. /*
  1915. * This is called to return an inode to the inode free list.
  1916. * The inode should already be truncated to 0 length and have
  1917. * no pages associated with it. This routine also assumes that
  1918. * the inode is already a part of the transaction.
  1919. *
  1920. * The on-disk copy of the inode will have been added to the list
  1921. * of unlinked inodes in the AGI. We need to remove the inode from
  1922. * that list atomically with respect to freeing it here.
  1923. */
  1924. int
  1925. xfs_ifree(
  1926. xfs_trans_t *tp,
  1927. xfs_inode_t *ip,
  1928. xfs_bmap_free_t *flist)
  1929. {
  1930. int error;
  1931. int delete;
  1932. xfs_ino_t first_ino;
  1933. xfs_dinode_t *dip;
  1934. xfs_buf_t *ibp;
  1935. ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
  1936. ASSERT(ip->i_transp == tp);
  1937. ASSERT(ip->i_d.di_nlink == 0);
  1938. ASSERT(ip->i_d.di_nextents == 0);
  1939. ASSERT(ip->i_d.di_anextents == 0);
  1940. ASSERT((ip->i_d.di_size == 0 && ip->i_size == 0) ||
  1941. ((ip->i_d.di_mode & S_IFMT) != S_IFREG));
  1942. ASSERT(ip->i_d.di_nblocks == 0);
  1943. /*
  1944. * Pull the on-disk inode from the AGI unlinked list.
  1945. */
  1946. error = xfs_iunlink_remove(tp, ip);
  1947. if (error != 0) {
  1948. return error;
  1949. }
  1950. error = xfs_difree(tp, ip->i_ino, flist, &delete, &first_ino);
  1951. if (error != 0) {
  1952. return error;
  1953. }
  1954. ip->i_d.di_mode = 0; /* mark incore inode as free */
  1955. ip->i_d.di_flags = 0;
  1956. ip->i_d.di_dmevmask = 0;
  1957. ip->i_d.di_forkoff = 0; /* mark the attr fork not in use */
  1958. ip->i_df.if_ext_max =
  1959. XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
  1960. ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
  1961. ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
  1962. /*
  1963. * Bump the generation count so no one will be confused
  1964. * by reincarnations of this inode.
  1965. */
  1966. ip->i_d.di_gen++;
  1967. xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
  1968. error = xfs_itobp(ip->i_mount, tp, ip, &dip, &ibp, XBF_LOCK);
  1969. if (error)
  1970. return error;
  1971. /*
  1972. * Clear the on-disk di_mode. This is to prevent xfs_bulkstat
  1973. * from picking up this inode when it is reclaimed (its incore state
  1974. * initialzed but not flushed to disk yet). The in-core di_mode is
  1975. * already cleared and a corresponding transaction logged.
  1976. * The hack here just synchronizes the in-core to on-disk
  1977. * di_mode value in advance before the actual inode sync to disk.
  1978. * This is OK because the inode is already unlinked and would never
  1979. * change its di_mode again for this inode generation.
  1980. * This is a temporary hack that would require a proper fix
  1981. * in the future.
  1982. */
  1983. dip->di_mode = 0;
  1984. if (delete) {
  1985. xfs_ifree_cluster(ip, tp, first_ino);
  1986. }
  1987. return 0;
  1988. }
  1989. /*
  1990. * Reallocate the space for if_broot based on the number of records
  1991. * being added or deleted as indicated in rec_diff. Move the records
  1992. * and pointers in if_broot to fit the new size. When shrinking this
  1993. * will eliminate holes between the records and pointers created by
  1994. * the caller. When growing this will create holes to be filled in
  1995. * by the caller.
  1996. *
  1997. * The caller must not request to add more records than would fit in
  1998. * the on-disk inode root. If the if_broot is currently NULL, then
  1999. * if we adding records one will be allocated. The caller must also
  2000. * not request that the number of records go below zero, although
  2001. * it can go to zero.
  2002. *
  2003. * ip -- the inode whose if_broot area is changing
  2004. * ext_diff -- the change in the number of records, positive or negative,
  2005. * requested for the if_broot array.
  2006. */
  2007. void
  2008. xfs_iroot_realloc(
  2009. xfs_inode_t *ip,
  2010. int rec_diff,
  2011. int whichfork)
  2012. {
  2013. struct xfs_mount *mp = ip->i_mount;
  2014. int cur_max;
  2015. xfs_ifork_t *ifp;
  2016. struct xfs_btree_block *new_broot;
  2017. int new_max;
  2018. size_t new_size;
  2019. char *np;
  2020. char *op;
  2021. /*
  2022. * Handle the degenerate case quietly.
  2023. */
  2024. if (rec_diff == 0) {
  2025. return;
  2026. }
  2027. ifp = XFS_IFORK_PTR(ip, whichfork);
  2028. if (rec_diff > 0) {
  2029. /*
  2030. * If there wasn't any memory allocated before, just
  2031. * allocate it now and get out.
  2032. */
  2033. if (ifp->if_broot_bytes == 0) {
  2034. new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(rec_diff);
  2035. ifp->if_broot = kmem_alloc(new_size, KM_SLEEP | KM_NOFS);
  2036. ifp->if_broot_bytes = (int)new_size;
  2037. return;
  2038. }
  2039. /*
  2040. * If there is already an existing if_broot, then we need
  2041. * to realloc() it and shift the pointers to their new
  2042. * location. The records don't change location because
  2043. * they are kept butted up against the btree block header.
  2044. */
  2045. cur_max = xfs_bmbt_maxrecs(mp, ifp->if_broot_bytes, 0);
  2046. new_max = cur_max + rec_diff;
  2047. new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max);
  2048. ifp->if_broot = kmem_realloc(ifp->if_broot, new_size,
  2049. (size_t)XFS_BMAP_BROOT_SPACE_CALC(cur_max), /* old size */
  2050. KM_SLEEP | KM_NOFS);
  2051. op = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1,
  2052. ifp->if_broot_bytes);
  2053. np = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1,
  2054. (int)new_size);
  2055. ifp->if_broot_bytes = (int)new_size;
  2056. ASSERT(ifp->if_broot_bytes <=
  2057. XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ);
  2058. memmove(np, op, cur_max * (uint)sizeof(xfs_dfsbno_t));
  2059. return;
  2060. }
  2061. /*
  2062. * rec_diff is less than 0. In this case, we are shrinking the
  2063. * if_broot buffer. It must already exist. If we go to zero
  2064. * records, just get rid of the root and clear the status bit.
  2065. */
  2066. ASSERT((ifp->if_broot != NULL) && (ifp->if_broot_bytes > 0));
  2067. cur_max = xfs_bmbt_maxrecs(mp, ifp->if_broot_bytes, 0);
  2068. new_max = cur_max + rec_diff;
  2069. ASSERT(new_max >= 0);
  2070. if (new_max > 0)
  2071. new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max);
  2072. else
  2073. new_size = 0;
  2074. if (new_size > 0) {
  2075. new_broot = kmem_alloc(new_size, KM_SLEEP | KM_NOFS);
  2076. /*
  2077. * First copy over the btree block header.
  2078. */
  2079. memcpy(new_broot, ifp->if_broot, XFS_BTREE_LBLOCK_LEN);
  2080. } else {
  2081. new_broot = NULL;
  2082. ifp->if_flags &= ~XFS_IFBROOT;
  2083. }
  2084. /*
  2085. * Only copy the records and pointers if there are any.
  2086. */
  2087. if (new_max > 0) {
  2088. /*
  2089. * First copy the records.
  2090. */
  2091. op = (char *)XFS_BMBT_REC_ADDR(mp, ifp->if_broot, 1);
  2092. np = (char *)XFS_BMBT_REC_ADDR(mp, new_broot, 1);
  2093. memcpy(np, op, new_max * (uint)sizeof(xfs_bmbt_rec_t));
  2094. /*
  2095. * Then copy the pointers.
  2096. */
  2097. op = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1,
  2098. ifp->if_broot_bytes);
  2099. np = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, new_broot, 1,
  2100. (int)new_size);
  2101. memcpy(np, op, new_max * (uint)sizeof(xfs_dfsbno_t));
  2102. }
  2103. kmem_free(ifp->if_broot);
  2104. ifp->if_broot = new_broot;
  2105. ifp->if_broot_bytes = (int)new_size;
  2106. ASSERT(ifp->if_broot_bytes <=
  2107. XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ);
  2108. return;
  2109. }
  2110. /*
  2111. * This is called when the amount of space needed for if_data
  2112. * is increased or decreased. The change in size is indicated by
  2113. * the number of bytes that need to be added or deleted in the
  2114. * byte_diff parameter.
  2115. *
  2116. * If the amount of space needed has decreased below the size of the
  2117. * inline buffer, then switch to using the inline buffer. Otherwise,
  2118. * use kmem_realloc() or kmem_alloc() to adjust the size of the buffer
  2119. * to what is needed.
  2120. *
  2121. * ip -- the inode whose if_data area is changing
  2122. * byte_diff -- the change in the number of bytes, positive or negative,
  2123. * requested for the if_data array.
  2124. */
  2125. void
  2126. xfs_idata_realloc(
  2127. xfs_inode_t *ip,
  2128. int byte_diff,
  2129. int whichfork)
  2130. {
  2131. xfs_ifork_t *ifp;
  2132. int new_size;
  2133. int real_size;
  2134. if (byte_diff == 0) {
  2135. return;
  2136. }
  2137. ifp = XFS_IFORK_PTR(ip, whichfork);
  2138. new_size = (int)ifp->if_bytes + byte_diff;
  2139. ASSERT(new_size >= 0);
  2140. if (new_size == 0) {
  2141. if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
  2142. kmem_free(ifp->if_u1.if_data);
  2143. }
  2144. ifp->if_u1.if_data = NULL;
  2145. real_size = 0;
  2146. } else if (new_size <= sizeof(ifp->if_u2.if_inline_data)) {
  2147. /*
  2148. * If the valid extents/data can fit in if_inline_ext/data,
  2149. * copy them from the malloc'd vector and free it.
  2150. */
  2151. if (ifp->if_u1.if_data == NULL) {
  2152. ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
  2153. } else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
  2154. ASSERT(ifp->if_real_bytes != 0);
  2155. memcpy(ifp->if_u2.if_inline_data, ifp->if_u1.if_data,
  2156. new_size);
  2157. kmem_free(ifp->if_u1.if_data);
  2158. ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
  2159. }
  2160. real_size = 0;
  2161. } else {
  2162. /*
  2163. * Stuck with malloc/realloc.
  2164. * For inline data, the underlying buffer must be
  2165. * a multiple of 4 bytes in size so that it can be
  2166. * logged and stay on word boundaries. We enforce
  2167. * that here.
  2168. */
  2169. real_size = roundup(new_size, 4);
  2170. if (ifp->if_u1.if_data == NULL) {
  2171. ASSERT(ifp->if_real_bytes == 0);
  2172. ifp->if_u1.if_data = kmem_alloc(real_size,
  2173. KM_SLEEP | KM_NOFS);
  2174. } else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
  2175. /*
  2176. * Only do the realloc if the underlying size
  2177. * is really changing.
  2178. */
  2179. if (ifp->if_real_bytes != real_size) {
  2180. ifp->if_u1.if_data =
  2181. kmem_realloc(ifp->if_u1.if_data,
  2182. real_size,
  2183. ifp->if_real_bytes,
  2184. KM_SLEEP | KM_NOFS);
  2185. }
  2186. } else {
  2187. ASSERT(ifp->if_real_bytes == 0);
  2188. ifp->if_u1.if_data = kmem_alloc(real_size,
  2189. KM_SLEEP | KM_NOFS);
  2190. memcpy(ifp->if_u1.if_data, ifp->if_u2.if_inline_data,
  2191. ifp->if_bytes);
  2192. }
  2193. }
  2194. ifp->if_real_bytes = real_size;
  2195. ifp->if_bytes = new_size;
  2196. ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
  2197. }
  2198. void
  2199. xfs_idestroy_fork(
  2200. xfs_inode_t *ip,
  2201. int whichfork)
  2202. {
  2203. xfs_ifork_t *ifp;
  2204. ifp = XFS_IFORK_PTR(ip, whichfork);
  2205. if (ifp->if_broot != NULL) {
  2206. kmem_free(ifp->if_broot);
  2207. ifp->if_broot = NULL;
  2208. }
  2209. /*
  2210. * If the format is local, then we can't have an extents
  2211. * array so just look for an inline data array. If we're
  2212. * not local then we may or may not have an extents list,
  2213. * so check and free it up if we do.
  2214. */
  2215. if (XFS_IFORK_FORMAT(ip, whichfork) == XFS_DINODE_FMT_LOCAL) {
  2216. if ((ifp->if_u1.if_data != ifp->if_u2.if_inline_data) &&
  2217. (ifp->if_u1.if_data != NULL)) {
  2218. ASSERT(ifp->if_real_bytes != 0);
  2219. kmem_free(ifp->if_u1.if_data);
  2220. ifp->if_u1.if_data = NULL;
  2221. ifp->if_real_bytes = 0;
  2222. }
  2223. } else if ((ifp->if_flags & XFS_IFEXTENTS) &&
  2224. ((ifp->if_flags & XFS_IFEXTIREC) ||
  2225. ((ifp->if_u1.if_extents != NULL) &&
  2226. (ifp->if_u1.if_extents != ifp->if_u2.if_inline_ext)))) {
  2227. ASSERT(ifp->if_real_bytes != 0);
  2228. xfs_iext_destroy(ifp);
  2229. }
  2230. ASSERT(ifp->if_u1.if_extents == NULL ||
  2231. ifp->if_u1.if_extents == ifp->if_u2.if_inline_ext);
  2232. ASSERT(ifp->if_real_bytes == 0);
  2233. if (whichfork == XFS_ATTR_FORK) {
  2234. kmem_zone_free(xfs_ifork_zone, ip->i_afp);
  2235. ip->i_afp = NULL;
  2236. }
  2237. }
  2238. /*
  2239. * This is called to unpin an inode. The caller must have the inode locked
  2240. * in at least shared mode so that the buffer cannot be subsequently pinned
  2241. * once someone is waiting for it to be unpinned.
  2242. */
  2243. static void
  2244. xfs_iunpin_nowait(
  2245. struct xfs_inode *ip)
  2246. {
  2247. ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
  2248. trace_xfs_inode_unpin_nowait(ip, _RET_IP_);
  2249. /* Give the log a push to start the unpinning I/O */
  2250. xfs_log_force_lsn(ip->i_mount, ip->i_itemp->ili_last_lsn, 0);
  2251. }
  2252. void
  2253. xfs_iunpin_wait(
  2254. struct xfs_inode *ip)
  2255. {
  2256. if (xfs_ipincount(ip)) {
  2257. xfs_iunpin_nowait(ip);
  2258. wait_event(ip->i_ipin_wait, (xfs_ipincount(ip) == 0));
  2259. }
  2260. }
  2261. /*
  2262. * xfs_iextents_copy()
  2263. *
  2264. * This is called to copy the REAL extents (as opposed to the delayed
  2265. * allocation extents) from the inode into the given buffer. It
  2266. * returns the number of bytes copied into the buffer.
  2267. *
  2268. * If there are no delayed allocation extents, then we can just
  2269. * memcpy() the extents into the buffer. Otherwise, we need to
  2270. * examine each extent in turn and skip those which are delayed.
  2271. */
  2272. int
  2273. xfs_iextents_copy(
  2274. xfs_inode_t *ip,
  2275. xfs_bmbt_rec_t *dp,
  2276. int whichfork)
  2277. {
  2278. int copied;
  2279. int i;
  2280. xfs_ifork_t *ifp;
  2281. int nrecs;
  2282. xfs_fsblock_t start_block;
  2283. ifp = XFS_IFORK_PTR(ip, whichfork);
  2284. ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
  2285. ASSERT(ifp->if_bytes > 0);
  2286. nrecs = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  2287. XFS_BMAP_TRACE_EXLIST(ip, nrecs, whichfork);
  2288. ASSERT(nrecs > 0);
  2289. /*
  2290. * There are some delayed allocation extents in the
  2291. * inode, so copy the extents one at a time and skip
  2292. * the delayed ones. There must be at least one
  2293. * non-delayed extent.
  2294. */
  2295. copied = 0;
  2296. for (i = 0; i < nrecs; i++) {
  2297. xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
  2298. start_block = xfs_bmbt_get_startblock(ep);
  2299. if (isnullstartblock(start_block)) {
  2300. /*
  2301. * It's a delayed allocation extent, so skip it.
  2302. */
  2303. continue;
  2304. }
  2305. /* Translate to on disk format */
  2306. put_unaligned(cpu_to_be64(ep->l0), &dp->l0);
  2307. put_unaligned(cpu_to_be64(ep->l1), &dp->l1);
  2308. dp++;
  2309. copied++;
  2310. }
  2311. ASSERT(copied != 0);
  2312. xfs_validate_extents(ifp, copied, XFS_EXTFMT_INODE(ip));
  2313. return (copied * (uint)sizeof(xfs_bmbt_rec_t));
  2314. }
  2315. /*
  2316. * Each of the following cases stores data into the same region
  2317. * of the on-disk inode, so only one of them can be valid at
  2318. * any given time. While it is possible to have conflicting formats
  2319. * and log flags, e.g. having XFS_ILOG_?DATA set when the fork is
  2320. * in EXTENTS format, this can only happen when the fork has
  2321. * changed formats after being modified but before being flushed.
  2322. * In these cases, the format always takes precedence, because the
  2323. * format indicates the current state of the fork.
  2324. */
  2325. /*ARGSUSED*/
  2326. STATIC void
  2327. xfs_iflush_fork(
  2328. xfs_inode_t *ip,
  2329. xfs_dinode_t *dip,
  2330. xfs_inode_log_item_t *iip,
  2331. int whichfork,
  2332. xfs_buf_t *bp)
  2333. {
  2334. char *cp;
  2335. xfs_ifork_t *ifp;
  2336. xfs_mount_t *mp;
  2337. #ifdef XFS_TRANS_DEBUG
  2338. int first;
  2339. #endif
  2340. static const short brootflag[2] =
  2341. { XFS_ILOG_DBROOT, XFS_ILOG_ABROOT };
  2342. static const short dataflag[2] =
  2343. { XFS_ILOG_DDATA, XFS_ILOG_ADATA };
  2344. static const short extflag[2] =
  2345. { XFS_ILOG_DEXT, XFS_ILOG_AEXT };
  2346. if (!iip)
  2347. return;
  2348. ifp = XFS_IFORK_PTR(ip, whichfork);
  2349. /*
  2350. * This can happen if we gave up in iformat in an error path,
  2351. * for the attribute fork.
  2352. */
  2353. if (!ifp) {
  2354. ASSERT(whichfork == XFS_ATTR_FORK);
  2355. return;
  2356. }
  2357. cp = XFS_DFORK_PTR(dip, whichfork);
  2358. mp = ip->i_mount;
  2359. switch (XFS_IFORK_FORMAT(ip, whichfork)) {
  2360. case XFS_DINODE_FMT_LOCAL:
  2361. if ((iip->ili_format.ilf_fields & dataflag[whichfork]) &&
  2362. (ifp->if_bytes > 0)) {
  2363. ASSERT(ifp->if_u1.if_data != NULL);
  2364. ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
  2365. memcpy(cp, ifp->if_u1.if_data, ifp->if_bytes);
  2366. }
  2367. break;
  2368. case XFS_DINODE_FMT_EXTENTS:
  2369. ASSERT((ifp->if_flags & XFS_IFEXTENTS) ||
  2370. !(iip->ili_format.ilf_fields & extflag[whichfork]));
  2371. ASSERT((xfs_iext_get_ext(ifp, 0) != NULL) ||
  2372. (ifp->if_bytes == 0));
  2373. ASSERT((xfs_iext_get_ext(ifp, 0) == NULL) ||
  2374. (ifp->if_bytes > 0));
  2375. if ((iip->ili_format.ilf_fields & extflag[whichfork]) &&
  2376. (ifp->if_bytes > 0)) {
  2377. ASSERT(XFS_IFORK_NEXTENTS(ip, whichfork) > 0);
  2378. (void)xfs_iextents_copy(ip, (xfs_bmbt_rec_t *)cp,
  2379. whichfork);
  2380. }
  2381. break;
  2382. case XFS_DINODE_FMT_BTREE:
  2383. if ((iip->ili_format.ilf_fields & brootflag[whichfork]) &&
  2384. (ifp->if_broot_bytes > 0)) {
  2385. ASSERT(ifp->if_broot != NULL);
  2386. ASSERT(ifp->if_broot_bytes <=
  2387. (XFS_IFORK_SIZE(ip, whichfork) +
  2388. XFS_BROOT_SIZE_ADJ));
  2389. xfs_bmbt_to_bmdr(mp, ifp->if_broot, ifp->if_broot_bytes,
  2390. (xfs_bmdr_block_t *)cp,
  2391. XFS_DFORK_SIZE(dip, mp, whichfork));
  2392. }
  2393. break;
  2394. case XFS_DINODE_FMT_DEV:
  2395. if (iip->ili_format.ilf_fields & XFS_ILOG_DEV) {
  2396. ASSERT(whichfork == XFS_DATA_FORK);
  2397. xfs_dinode_put_rdev(dip, ip->i_df.if_u2.if_rdev);
  2398. }
  2399. break;
  2400. case XFS_DINODE_FMT_UUID:
  2401. if (iip->ili_format.ilf_fields & XFS_ILOG_UUID) {
  2402. ASSERT(whichfork == XFS_DATA_FORK);
  2403. memcpy(XFS_DFORK_DPTR(dip),
  2404. &ip->i_df.if_u2.if_uuid,
  2405. sizeof(uuid_t));
  2406. }
  2407. break;
  2408. default:
  2409. ASSERT(0);
  2410. break;
  2411. }
  2412. }
  2413. STATIC int
  2414. xfs_iflush_cluster(
  2415. xfs_inode_t *ip,
  2416. xfs_buf_t *bp)
  2417. {
  2418. xfs_mount_t *mp = ip->i_mount;
  2419. struct xfs_perag *pag;
  2420. unsigned long first_index, mask;
  2421. unsigned long inodes_per_cluster;
  2422. int ilist_size;
  2423. xfs_inode_t **ilist;
  2424. xfs_inode_t *iq;
  2425. int nr_found;
  2426. int clcount = 0;
  2427. int bufwasdelwri;
  2428. int i;
  2429. pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
  2430. inodes_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) >> mp->m_sb.sb_inodelog;
  2431. ilist_size = inodes_per_cluster * sizeof(xfs_inode_t *);
  2432. ilist = kmem_alloc(ilist_size, KM_MAYFAIL|KM_NOFS);
  2433. if (!ilist)
  2434. goto out_put;
  2435. mask = ~(((XFS_INODE_CLUSTER_SIZE(mp) >> mp->m_sb.sb_inodelog)) - 1);
  2436. first_index = XFS_INO_TO_AGINO(mp, ip->i_ino) & mask;
  2437. read_lock(&pag->pag_ici_lock);
  2438. /* really need a gang lookup range call here */
  2439. nr_found = radix_tree_gang_lookup(&pag->pag_ici_root, (void**)ilist,
  2440. first_index, inodes_per_cluster);
  2441. if (nr_found == 0)
  2442. goto out_free;
  2443. for (i = 0; i < nr_found; i++) {
  2444. iq = ilist[i];
  2445. if (iq == ip)
  2446. continue;
  2447. /* if the inode lies outside this cluster, we're done. */
  2448. if ((XFS_INO_TO_AGINO(mp, iq->i_ino) & mask) != first_index)
  2449. break;
  2450. /*
  2451. * Do an un-protected check to see if the inode is dirty and
  2452. * is a candidate for flushing. These checks will be repeated
  2453. * later after the appropriate locks are acquired.
  2454. */
  2455. if (xfs_inode_clean(iq) && xfs_ipincount(iq) == 0)
  2456. continue;
  2457. /*
  2458. * Try to get locks. If any are unavailable or it is pinned,
  2459. * then this inode cannot be flushed and is skipped.
  2460. */
  2461. if (!xfs_ilock_nowait(iq, XFS_ILOCK_SHARED))
  2462. continue;
  2463. if (!xfs_iflock_nowait(iq)) {
  2464. xfs_iunlock(iq, XFS_ILOCK_SHARED);
  2465. continue;
  2466. }
  2467. if (xfs_ipincount(iq)) {
  2468. xfs_ifunlock(iq);
  2469. xfs_iunlock(iq, XFS_ILOCK_SHARED);
  2470. continue;
  2471. }
  2472. /*
  2473. * arriving here means that this inode can be flushed. First
  2474. * re-check that it's dirty before flushing.
  2475. */
  2476. if (!xfs_inode_clean(iq)) {
  2477. int error;
  2478. error = xfs_iflush_int(iq, bp);
  2479. if (error) {
  2480. xfs_iunlock(iq, XFS_ILOCK_SHARED);
  2481. goto cluster_corrupt_out;
  2482. }
  2483. clcount++;
  2484. } else {
  2485. xfs_ifunlock(iq);
  2486. }
  2487. xfs_iunlock(iq, XFS_ILOCK_SHARED);
  2488. }
  2489. if (clcount) {
  2490. XFS_STATS_INC(xs_icluster_flushcnt);
  2491. XFS_STATS_ADD(xs_icluster_flushinode, clcount);
  2492. }
  2493. out_free:
  2494. read_unlock(&pag->pag_ici_lock);
  2495. kmem_free(ilist);
  2496. out_put:
  2497. xfs_perag_put(pag);
  2498. return 0;
  2499. cluster_corrupt_out:
  2500. /*
  2501. * Corruption detected in the clustering loop. Invalidate the
  2502. * inode buffer and shut down the filesystem.
  2503. */
  2504. read_unlock(&pag->pag_ici_lock);
  2505. /*
  2506. * Clean up the buffer. If it was B_DELWRI, just release it --
  2507. * brelse can handle it with no problems. If not, shut down the
  2508. * filesystem before releasing the buffer.
  2509. */
  2510. bufwasdelwri = XFS_BUF_ISDELAYWRITE(bp);
  2511. if (bufwasdelwri)
  2512. xfs_buf_relse(bp);
  2513. xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
  2514. if (!bufwasdelwri) {
  2515. /*
  2516. * Just like incore_relse: if we have b_iodone functions,
  2517. * mark the buffer as an error and call them. Otherwise
  2518. * mark it as stale and brelse.
  2519. */
  2520. if (XFS_BUF_IODONE_FUNC(bp)) {
  2521. XFS_BUF_CLR_BDSTRAT_FUNC(bp);
  2522. XFS_BUF_UNDONE(bp);
  2523. XFS_BUF_STALE(bp);
  2524. XFS_BUF_ERROR(bp,EIO);
  2525. xfs_biodone(bp);
  2526. } else {
  2527. XFS_BUF_STALE(bp);
  2528. xfs_buf_relse(bp);
  2529. }
  2530. }
  2531. /*
  2532. * Unlocks the flush lock
  2533. */
  2534. xfs_iflush_abort(iq);
  2535. kmem_free(ilist);
  2536. xfs_perag_put(pag);
  2537. return XFS_ERROR(EFSCORRUPTED);
  2538. }
  2539. /*
  2540. * xfs_iflush() will write a modified inode's changes out to the
  2541. * inode's on disk home. The caller must have the inode lock held
  2542. * in at least shared mode and the inode flush completion must be
  2543. * active as well. The inode lock will still be held upon return from
  2544. * the call and the caller is free to unlock it.
  2545. * The inode flush will be completed when the inode reaches the disk.
  2546. * The flags indicate how the inode's buffer should be written out.
  2547. */
  2548. int
  2549. xfs_iflush(
  2550. xfs_inode_t *ip,
  2551. uint flags)
  2552. {
  2553. xfs_inode_log_item_t *iip;
  2554. xfs_buf_t *bp;
  2555. xfs_dinode_t *dip;
  2556. xfs_mount_t *mp;
  2557. int error;
  2558. XFS_STATS_INC(xs_iflush_count);
  2559. ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
  2560. ASSERT(!completion_done(&ip->i_flush));
  2561. ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
  2562. ip->i_d.di_nextents > ip->i_df.if_ext_max);
  2563. iip = ip->i_itemp;
  2564. mp = ip->i_mount;
  2565. /*
  2566. * We can't flush the inode until it is unpinned, so wait for it if we
  2567. * are allowed to block. We know noone new can pin it, because we are
  2568. * holding the inode lock shared and you need to hold it exclusively to
  2569. * pin the inode.
  2570. *
  2571. * If we are not allowed to block, force the log out asynchronously so
  2572. * that when we come back the inode will be unpinned. If other inodes
  2573. * in the same cluster are dirty, they will probably write the inode
  2574. * out for us if they occur after the log force completes.
  2575. */
  2576. if (!(flags & SYNC_WAIT) && xfs_ipincount(ip)) {
  2577. xfs_iunpin_nowait(ip);
  2578. xfs_ifunlock(ip);
  2579. return EAGAIN;
  2580. }
  2581. xfs_iunpin_wait(ip);
  2582. /*
  2583. * For stale inodes we cannot rely on the backing buffer remaining
  2584. * stale in cache for the remaining life of the stale inode and so
  2585. * xfs_itobp() below may give us a buffer that no longer contains
  2586. * inodes below. We have to check this after ensuring the inode is
  2587. * unpinned so that it is safe to reclaim the stale inode after the
  2588. * flush call.
  2589. */
  2590. if (xfs_iflags_test(ip, XFS_ISTALE)) {
  2591. xfs_ifunlock(ip);
  2592. return 0;
  2593. }
  2594. /*
  2595. * This may have been unpinned because the filesystem is shutting
  2596. * down forcibly. If that's the case we must not write this inode
  2597. * to disk, because the log record didn't make it to disk!
  2598. */
  2599. if (XFS_FORCED_SHUTDOWN(mp)) {
  2600. ip->i_update_core = 0;
  2601. if (iip)
  2602. iip->ili_format.ilf_fields = 0;
  2603. xfs_ifunlock(ip);
  2604. return XFS_ERROR(EIO);
  2605. }
  2606. /*
  2607. * Get the buffer containing the on-disk inode.
  2608. */
  2609. error = xfs_itobp(mp, NULL, ip, &dip, &bp,
  2610. (flags & SYNC_WAIT) ? XBF_LOCK : XBF_TRYLOCK);
  2611. if (error || !bp) {
  2612. xfs_ifunlock(ip);
  2613. return error;
  2614. }
  2615. /*
  2616. * First flush out the inode that xfs_iflush was called with.
  2617. */
  2618. error = xfs_iflush_int(ip, bp);
  2619. if (error)
  2620. goto corrupt_out;
  2621. /*
  2622. * If the buffer is pinned then push on the log now so we won't
  2623. * get stuck waiting in the write for too long.
  2624. */
  2625. if (XFS_BUF_ISPINNED(bp))
  2626. xfs_log_force(mp, 0);
  2627. /*
  2628. * inode clustering:
  2629. * see if other inodes can be gathered into this write
  2630. */
  2631. error = xfs_iflush_cluster(ip, bp);
  2632. if (error)
  2633. goto cluster_corrupt_out;
  2634. if (flags & SYNC_WAIT)
  2635. error = xfs_bwrite(mp, bp);
  2636. else
  2637. xfs_bdwrite(mp, bp);
  2638. return error;
  2639. corrupt_out:
  2640. xfs_buf_relse(bp);
  2641. xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
  2642. cluster_corrupt_out:
  2643. /*
  2644. * Unlocks the flush lock
  2645. */
  2646. xfs_iflush_abort(ip);
  2647. return XFS_ERROR(EFSCORRUPTED);
  2648. }
  2649. STATIC int
  2650. xfs_iflush_int(
  2651. xfs_inode_t *ip,
  2652. xfs_buf_t *bp)
  2653. {
  2654. xfs_inode_log_item_t *iip;
  2655. xfs_dinode_t *dip;
  2656. xfs_mount_t *mp;
  2657. #ifdef XFS_TRANS_DEBUG
  2658. int first;
  2659. #endif
  2660. ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
  2661. ASSERT(!completion_done(&ip->i_flush));
  2662. ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
  2663. ip->i_d.di_nextents > ip->i_df.if_ext_max);
  2664. iip = ip->i_itemp;
  2665. mp = ip->i_mount;
  2666. /* set *dip = inode's place in the buffer */
  2667. dip = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_imap.im_boffset);
  2668. /*
  2669. * Clear i_update_core before copying out the data.
  2670. * This is for coordination with our timestamp updates
  2671. * that don't hold the inode lock. They will always
  2672. * update the timestamps BEFORE setting i_update_core,
  2673. * so if we clear i_update_core after they set it we
  2674. * are guaranteed to see their updates to the timestamps.
  2675. * I believe that this depends on strongly ordered memory
  2676. * semantics, but we have that. We use the SYNCHRONIZE
  2677. * macro to make sure that the compiler does not reorder
  2678. * the i_update_core access below the data copy below.
  2679. */
  2680. ip->i_update_core = 0;
  2681. SYNCHRONIZE();
  2682. /*
  2683. * Make sure to get the latest timestamps from the Linux inode.
  2684. */
  2685. xfs_synchronize_times(ip);
  2686. if (XFS_TEST_ERROR(be16_to_cpu(dip->di_magic) != XFS_DINODE_MAGIC,
  2687. mp, XFS_ERRTAG_IFLUSH_1, XFS_RANDOM_IFLUSH_1)) {
  2688. xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
  2689. "xfs_iflush: Bad inode %Lu magic number 0x%x, ptr 0x%p",
  2690. ip->i_ino, be16_to_cpu(dip->di_magic), dip);
  2691. goto corrupt_out;
  2692. }
  2693. if (XFS_TEST_ERROR(ip->i_d.di_magic != XFS_DINODE_MAGIC,
  2694. mp, XFS_ERRTAG_IFLUSH_2, XFS_RANDOM_IFLUSH_2)) {
  2695. xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
  2696. "xfs_iflush: Bad inode %Lu, ptr 0x%p, magic number 0x%x",
  2697. ip->i_ino, ip, ip->i_d.di_magic);
  2698. goto corrupt_out;
  2699. }
  2700. if ((ip->i_d.di_mode & S_IFMT) == S_IFREG) {
  2701. if (XFS_TEST_ERROR(
  2702. (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
  2703. (ip->i_d.di_format != XFS_DINODE_FMT_BTREE),
  2704. mp, XFS_ERRTAG_IFLUSH_3, XFS_RANDOM_IFLUSH_3)) {
  2705. xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
  2706. "xfs_iflush: Bad regular inode %Lu, ptr 0x%p",
  2707. ip->i_ino, ip);
  2708. goto corrupt_out;
  2709. }
  2710. } else if ((ip->i_d.di_mode & S_IFMT) == S_IFDIR) {
  2711. if (XFS_TEST_ERROR(
  2712. (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
  2713. (ip->i_d.di_format != XFS_DINODE_FMT_BTREE) &&
  2714. (ip->i_d.di_format != XFS_DINODE_FMT_LOCAL),
  2715. mp, XFS_ERRTAG_IFLUSH_4, XFS_RANDOM_IFLUSH_4)) {
  2716. xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
  2717. "xfs_iflush: Bad directory inode %Lu, ptr 0x%p",
  2718. ip->i_ino, ip);
  2719. goto corrupt_out;
  2720. }
  2721. }
  2722. if (XFS_TEST_ERROR(ip->i_d.di_nextents + ip->i_d.di_anextents >
  2723. ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5,
  2724. XFS_RANDOM_IFLUSH_5)) {
  2725. xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
  2726. "xfs_iflush: detected corrupt incore inode %Lu, total extents = %d, nblocks = %Ld, ptr 0x%p",
  2727. ip->i_ino,
  2728. ip->i_d.di_nextents + ip->i_d.di_anextents,
  2729. ip->i_d.di_nblocks,
  2730. ip);
  2731. goto corrupt_out;
  2732. }
  2733. if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize,
  2734. mp, XFS_ERRTAG_IFLUSH_6, XFS_RANDOM_IFLUSH_6)) {
  2735. xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
  2736. "xfs_iflush: bad inode %Lu, forkoff 0x%x, ptr 0x%p",
  2737. ip->i_ino, ip->i_d.di_forkoff, ip);
  2738. goto corrupt_out;
  2739. }
  2740. /*
  2741. * bump the flush iteration count, used to detect flushes which
  2742. * postdate a log record during recovery.
  2743. */
  2744. ip->i_d.di_flushiter++;
  2745. /*
  2746. * Copy the dirty parts of the inode into the on-disk
  2747. * inode. We always copy out the core of the inode,
  2748. * because if the inode is dirty at all the core must
  2749. * be.
  2750. */
  2751. xfs_dinode_to_disk(dip, &ip->i_d);
  2752. /* Wrap, we never let the log put out DI_MAX_FLUSH */
  2753. if (ip->i_d.di_flushiter == DI_MAX_FLUSH)
  2754. ip->i_d.di_flushiter = 0;
  2755. /*
  2756. * If this is really an old format inode and the superblock version
  2757. * has not been updated to support only new format inodes, then
  2758. * convert back to the old inode format. If the superblock version
  2759. * has been updated, then make the conversion permanent.
  2760. */
  2761. ASSERT(ip->i_d.di_version == 1 || xfs_sb_version_hasnlink(&mp->m_sb));
  2762. if (ip->i_d.di_version == 1) {
  2763. if (!xfs_sb_version_hasnlink(&mp->m_sb)) {
  2764. /*
  2765. * Convert it back.
  2766. */
  2767. ASSERT(ip->i_d.di_nlink <= XFS_MAXLINK_1);
  2768. dip->di_onlink = cpu_to_be16(ip->i_d.di_nlink);
  2769. } else {
  2770. /*
  2771. * The superblock version has already been bumped,
  2772. * so just make the conversion to the new inode
  2773. * format permanent.
  2774. */
  2775. ip->i_d.di_version = 2;
  2776. dip->di_version = 2;
  2777. ip->i_d.di_onlink = 0;
  2778. dip->di_onlink = 0;
  2779. memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
  2780. memset(&(dip->di_pad[0]), 0,
  2781. sizeof(dip->di_pad));
  2782. ASSERT(ip->i_d.di_projid == 0);
  2783. }
  2784. }
  2785. xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK, bp);
  2786. if (XFS_IFORK_Q(ip))
  2787. xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK, bp);
  2788. xfs_inobp_check(mp, bp);
  2789. /*
  2790. * We've recorded everything logged in the inode, so we'd
  2791. * like to clear the ilf_fields bits so we don't log and
  2792. * flush things unnecessarily. However, we can't stop
  2793. * logging all this information until the data we've copied
  2794. * into the disk buffer is written to disk. If we did we might
  2795. * overwrite the copy of the inode in the log with all the
  2796. * data after re-logging only part of it, and in the face of
  2797. * a crash we wouldn't have all the data we need to recover.
  2798. *
  2799. * What we do is move the bits to the ili_last_fields field.
  2800. * When logging the inode, these bits are moved back to the
  2801. * ilf_fields field. In the xfs_iflush_done() routine we
  2802. * clear ili_last_fields, since we know that the information
  2803. * those bits represent is permanently on disk. As long as
  2804. * the flush completes before the inode is logged again, then
  2805. * both ilf_fields and ili_last_fields will be cleared.
  2806. *
  2807. * We can play with the ilf_fields bits here, because the inode
  2808. * lock must be held exclusively in order to set bits there
  2809. * and the flush lock protects the ili_last_fields bits.
  2810. * Set ili_logged so the flush done
  2811. * routine can tell whether or not to look in the AIL.
  2812. * Also, store the current LSN of the inode so that we can tell
  2813. * whether the item has moved in the AIL from xfs_iflush_done().
  2814. * In order to read the lsn we need the AIL lock, because
  2815. * it is a 64 bit value that cannot be read atomically.
  2816. */
  2817. if (iip != NULL && iip->ili_format.ilf_fields != 0) {
  2818. iip->ili_last_fields = iip->ili_format.ilf_fields;
  2819. iip->ili_format.ilf_fields = 0;
  2820. iip->ili_logged = 1;
  2821. xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
  2822. &iip->ili_item.li_lsn);
  2823. /*
  2824. * Attach the function xfs_iflush_done to the inode's
  2825. * buffer. This will remove the inode from the AIL
  2826. * and unlock the inode's flush lock when the inode is
  2827. * completely written to disk.
  2828. */
  2829. xfs_buf_attach_iodone(bp, xfs_iflush_done, &iip->ili_item);
  2830. ASSERT(XFS_BUF_FSPRIVATE(bp, void *) != NULL);
  2831. ASSERT(XFS_BUF_IODONE_FUNC(bp) != NULL);
  2832. } else {
  2833. /*
  2834. * We're flushing an inode which is not in the AIL and has
  2835. * not been logged but has i_update_core set. For this
  2836. * case we can use a B_DELWRI flush and immediately drop
  2837. * the inode flush lock because we can avoid the whole
  2838. * AIL state thing. It's OK to drop the flush lock now,
  2839. * because we've already locked the buffer and to do anything
  2840. * you really need both.
  2841. */
  2842. if (iip != NULL) {
  2843. ASSERT(iip->ili_logged == 0);
  2844. ASSERT(iip->ili_last_fields == 0);
  2845. ASSERT((iip->ili_item.li_flags & XFS_LI_IN_AIL) == 0);
  2846. }
  2847. xfs_ifunlock(ip);
  2848. }
  2849. return 0;
  2850. corrupt_out:
  2851. return XFS_ERROR(EFSCORRUPTED);
  2852. }
  2853. /*
  2854. * Return a pointer to the extent record at file index idx.
  2855. */
  2856. xfs_bmbt_rec_host_t *
  2857. xfs_iext_get_ext(
  2858. xfs_ifork_t *ifp, /* inode fork pointer */
  2859. xfs_extnum_t idx) /* index of target extent */
  2860. {
  2861. ASSERT(idx >= 0);
  2862. if ((ifp->if_flags & XFS_IFEXTIREC) && (idx == 0)) {
  2863. return ifp->if_u1.if_ext_irec->er_extbuf;
  2864. } else if (ifp->if_flags & XFS_IFEXTIREC) {
  2865. xfs_ext_irec_t *erp; /* irec pointer */
  2866. int erp_idx = 0; /* irec index */
  2867. xfs_extnum_t page_idx = idx; /* ext index in target list */
  2868. erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 0);
  2869. return &erp->er_extbuf[page_idx];
  2870. } else if (ifp->if_bytes) {
  2871. return &ifp->if_u1.if_extents[idx];
  2872. } else {
  2873. return NULL;
  2874. }
  2875. }
  2876. /*
  2877. * Insert new item(s) into the extent records for incore inode
  2878. * fork 'ifp'. 'count' new items are inserted at index 'idx'.
  2879. */
  2880. void
  2881. xfs_iext_insert(
  2882. xfs_inode_t *ip, /* incore inode pointer */
  2883. xfs_extnum_t idx, /* starting index of new items */
  2884. xfs_extnum_t count, /* number of inserted items */
  2885. xfs_bmbt_irec_t *new, /* items to insert */
  2886. int state) /* type of extent conversion */
  2887. {
  2888. xfs_ifork_t *ifp = (state & BMAP_ATTRFORK) ? ip->i_afp : &ip->i_df;
  2889. xfs_extnum_t i; /* extent record index */
  2890. trace_xfs_iext_insert(ip, idx, new, state, _RET_IP_);
  2891. ASSERT(ifp->if_flags & XFS_IFEXTENTS);
  2892. xfs_iext_add(ifp, idx, count);
  2893. for (i = idx; i < idx + count; i++, new++)
  2894. xfs_bmbt_set_all(xfs_iext_get_ext(ifp, i), new);
  2895. }
  2896. /*
  2897. * This is called when the amount of space required for incore file
  2898. * extents needs to be increased. The ext_diff parameter stores the
  2899. * number of new extents being added and the idx parameter contains
  2900. * the extent index where the new extents will be added. If the new
  2901. * extents are being appended, then we just need to (re)allocate and
  2902. * initialize the space. Otherwise, if the new extents are being
  2903. * inserted into the middle of the existing entries, a bit more work
  2904. * is required to make room for the new extents to be inserted. The
  2905. * caller is responsible for filling in the new extent entries upon
  2906. * return.
  2907. */
  2908. void
  2909. xfs_iext_add(
  2910. xfs_ifork_t *ifp, /* inode fork pointer */
  2911. xfs_extnum_t idx, /* index to begin adding exts */
  2912. int ext_diff) /* number of extents to add */
  2913. {
  2914. int byte_diff; /* new bytes being added */
  2915. int new_size; /* size of extents after adding */
  2916. xfs_extnum_t nextents; /* number of extents in file */
  2917. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  2918. ASSERT((idx >= 0) && (idx <= nextents));
  2919. byte_diff = ext_diff * sizeof(xfs_bmbt_rec_t);
  2920. new_size = ifp->if_bytes + byte_diff;
  2921. /*
  2922. * If the new number of extents (nextents + ext_diff)
  2923. * fits inside the inode, then continue to use the inline
  2924. * extent buffer.
  2925. */
  2926. if (nextents + ext_diff <= XFS_INLINE_EXTS) {
  2927. if (idx < nextents) {
  2928. memmove(&ifp->if_u2.if_inline_ext[idx + ext_diff],
  2929. &ifp->if_u2.if_inline_ext[idx],
  2930. (nextents - idx) * sizeof(xfs_bmbt_rec_t));
  2931. memset(&ifp->if_u2.if_inline_ext[idx], 0, byte_diff);
  2932. }
  2933. ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
  2934. ifp->if_real_bytes = 0;
  2935. ifp->if_lastex = nextents + ext_diff;
  2936. }
  2937. /*
  2938. * Otherwise use a linear (direct) extent list.
  2939. * If the extents are currently inside the inode,
  2940. * xfs_iext_realloc_direct will switch us from
  2941. * inline to direct extent allocation mode.
  2942. */
  2943. else if (nextents + ext_diff <= XFS_LINEAR_EXTS) {
  2944. xfs_iext_realloc_direct(ifp, new_size);
  2945. if (idx < nextents) {
  2946. memmove(&ifp->if_u1.if_extents[idx + ext_diff],
  2947. &ifp->if_u1.if_extents[idx],
  2948. (nextents - idx) * sizeof(xfs_bmbt_rec_t));
  2949. memset(&ifp->if_u1.if_extents[idx], 0, byte_diff);
  2950. }
  2951. }
  2952. /* Indirection array */
  2953. else {
  2954. xfs_ext_irec_t *erp;
  2955. int erp_idx = 0;
  2956. int page_idx = idx;
  2957. ASSERT(nextents + ext_diff > XFS_LINEAR_EXTS);
  2958. if (ifp->if_flags & XFS_IFEXTIREC) {
  2959. erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 1);
  2960. } else {
  2961. xfs_iext_irec_init(ifp);
  2962. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  2963. erp = ifp->if_u1.if_ext_irec;
  2964. }
  2965. /* Extents fit in target extent page */
  2966. if (erp && erp->er_extcount + ext_diff <= XFS_LINEAR_EXTS) {
  2967. if (page_idx < erp->er_extcount) {
  2968. memmove(&erp->er_extbuf[page_idx + ext_diff],
  2969. &erp->er_extbuf[page_idx],
  2970. (erp->er_extcount - page_idx) *
  2971. sizeof(xfs_bmbt_rec_t));
  2972. memset(&erp->er_extbuf[page_idx], 0, byte_diff);
  2973. }
  2974. erp->er_extcount += ext_diff;
  2975. xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
  2976. }
  2977. /* Insert a new extent page */
  2978. else if (erp) {
  2979. xfs_iext_add_indirect_multi(ifp,
  2980. erp_idx, page_idx, ext_diff);
  2981. }
  2982. /*
  2983. * If extent(s) are being appended to the last page in
  2984. * the indirection array and the new extent(s) don't fit
  2985. * in the page, then erp is NULL and erp_idx is set to
  2986. * the next index needed in the indirection array.
  2987. */
  2988. else {
  2989. int count = ext_diff;
  2990. while (count) {
  2991. erp = xfs_iext_irec_new(ifp, erp_idx);
  2992. erp->er_extcount = count;
  2993. count -= MIN(count, (int)XFS_LINEAR_EXTS);
  2994. if (count) {
  2995. erp_idx++;
  2996. }
  2997. }
  2998. }
  2999. }
  3000. ifp->if_bytes = new_size;
  3001. }
  3002. /*
  3003. * This is called when incore extents are being added to the indirection
  3004. * array and the new extents do not fit in the target extent list. The
  3005. * erp_idx parameter contains the irec index for the target extent list
  3006. * in the indirection array, and the idx parameter contains the extent
  3007. * index within the list. The number of extents being added is stored
  3008. * in the count parameter.
  3009. *
  3010. * |-------| |-------|
  3011. * | | | | idx - number of extents before idx
  3012. * | idx | | count |
  3013. * | | | | count - number of extents being inserted at idx
  3014. * |-------| |-------|
  3015. * | count | | nex2 | nex2 - number of extents after idx + count
  3016. * |-------| |-------|
  3017. */
  3018. void
  3019. xfs_iext_add_indirect_multi(
  3020. xfs_ifork_t *ifp, /* inode fork pointer */
  3021. int erp_idx, /* target extent irec index */
  3022. xfs_extnum_t idx, /* index within target list */
  3023. int count) /* new extents being added */
  3024. {
  3025. int byte_diff; /* new bytes being added */
  3026. xfs_ext_irec_t *erp; /* pointer to irec entry */
  3027. xfs_extnum_t ext_diff; /* number of extents to add */
  3028. xfs_extnum_t ext_cnt; /* new extents still needed */
  3029. xfs_extnum_t nex2; /* extents after idx + count */
  3030. xfs_bmbt_rec_t *nex2_ep = NULL; /* temp list for nex2 extents */
  3031. int nlists; /* number of irec's (lists) */
  3032. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3033. erp = &ifp->if_u1.if_ext_irec[erp_idx];
  3034. nex2 = erp->er_extcount - idx;
  3035. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  3036. /*
  3037. * Save second part of target extent list
  3038. * (all extents past */
  3039. if (nex2) {
  3040. byte_diff = nex2 * sizeof(xfs_bmbt_rec_t);
  3041. nex2_ep = (xfs_bmbt_rec_t *) kmem_alloc(byte_diff, KM_NOFS);
  3042. memmove(nex2_ep, &erp->er_extbuf[idx], byte_diff);
  3043. erp->er_extcount -= nex2;
  3044. xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -nex2);
  3045. memset(&erp->er_extbuf[idx], 0, byte_diff);
  3046. }
  3047. /*
  3048. * Add the new extents to the end of the target
  3049. * list, then allocate new irec record(s) and
  3050. * extent buffer(s) as needed to store the rest
  3051. * of the new extents.
  3052. */
  3053. ext_cnt = count;
  3054. ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS - erp->er_extcount);
  3055. if (ext_diff) {
  3056. erp->er_extcount += ext_diff;
  3057. xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
  3058. ext_cnt -= ext_diff;
  3059. }
  3060. while (ext_cnt) {
  3061. erp_idx++;
  3062. erp = xfs_iext_irec_new(ifp, erp_idx);
  3063. ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS);
  3064. erp->er_extcount = ext_diff;
  3065. xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
  3066. ext_cnt -= ext_diff;
  3067. }
  3068. /* Add nex2 extents back to indirection array */
  3069. if (nex2) {
  3070. xfs_extnum_t ext_avail;
  3071. int i;
  3072. byte_diff = nex2 * sizeof(xfs_bmbt_rec_t);
  3073. ext_avail = XFS_LINEAR_EXTS - erp->er_extcount;
  3074. i = 0;
  3075. /*
  3076. * If nex2 extents fit in the current page, append
  3077. * nex2_ep after the new extents.
  3078. */
  3079. if (nex2 <= ext_avail) {
  3080. i = erp->er_extcount;
  3081. }
  3082. /*
  3083. * Otherwise, check if space is available in the
  3084. * next page.
  3085. */
  3086. else if ((erp_idx < nlists - 1) &&
  3087. (nex2 <= (ext_avail = XFS_LINEAR_EXTS -
  3088. ifp->if_u1.if_ext_irec[erp_idx+1].er_extcount))) {
  3089. erp_idx++;
  3090. erp++;
  3091. /* Create a hole for nex2 extents */
  3092. memmove(&erp->er_extbuf[nex2], erp->er_extbuf,
  3093. erp->er_extcount * sizeof(xfs_bmbt_rec_t));
  3094. }
  3095. /*
  3096. * Final choice, create a new extent page for
  3097. * nex2 extents.
  3098. */
  3099. else {
  3100. erp_idx++;
  3101. erp = xfs_iext_irec_new(ifp, erp_idx);
  3102. }
  3103. memmove(&erp->er_extbuf[i], nex2_ep, byte_diff);
  3104. kmem_free(nex2_ep);
  3105. erp->er_extcount += nex2;
  3106. xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, nex2);
  3107. }
  3108. }
  3109. /*
  3110. * This is called when the amount of space required for incore file
  3111. * extents needs to be decreased. The ext_diff parameter stores the
  3112. * number of extents to be removed and the idx parameter contains
  3113. * the extent index where the extents will be removed from.
  3114. *
  3115. * If the amount of space needed has decreased below the linear
  3116. * limit, XFS_IEXT_BUFSZ, then switch to using the contiguous
  3117. * extent array. Otherwise, use kmem_realloc() to adjust the
  3118. * size to what is needed.
  3119. */
  3120. void
  3121. xfs_iext_remove(
  3122. xfs_inode_t *ip, /* incore inode pointer */
  3123. xfs_extnum_t idx, /* index to begin removing exts */
  3124. int ext_diff, /* number of extents to remove */
  3125. int state) /* type of extent conversion */
  3126. {
  3127. xfs_ifork_t *ifp = (state & BMAP_ATTRFORK) ? ip->i_afp : &ip->i_df;
  3128. xfs_extnum_t nextents; /* number of extents in file */
  3129. int new_size; /* size of extents after removal */
  3130. trace_xfs_iext_remove(ip, idx, state, _RET_IP_);
  3131. ASSERT(ext_diff > 0);
  3132. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  3133. new_size = (nextents - ext_diff) * sizeof(xfs_bmbt_rec_t);
  3134. if (new_size == 0) {
  3135. xfs_iext_destroy(ifp);
  3136. } else if (ifp->if_flags & XFS_IFEXTIREC) {
  3137. xfs_iext_remove_indirect(ifp, idx, ext_diff);
  3138. } else if (ifp->if_real_bytes) {
  3139. xfs_iext_remove_direct(ifp, idx, ext_diff);
  3140. } else {
  3141. xfs_iext_remove_inline(ifp, idx, ext_diff);
  3142. }
  3143. ifp->if_bytes = new_size;
  3144. }
  3145. /*
  3146. * This removes ext_diff extents from the inline buffer, beginning
  3147. * at extent index idx.
  3148. */
  3149. void
  3150. xfs_iext_remove_inline(
  3151. xfs_ifork_t *ifp, /* inode fork pointer */
  3152. xfs_extnum_t idx, /* index to begin removing exts */
  3153. int ext_diff) /* number of extents to remove */
  3154. {
  3155. int nextents; /* number of extents in file */
  3156. ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
  3157. ASSERT(idx < XFS_INLINE_EXTS);
  3158. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  3159. ASSERT(((nextents - ext_diff) > 0) &&
  3160. (nextents - ext_diff) < XFS_INLINE_EXTS);
  3161. if (idx + ext_diff < nextents) {
  3162. memmove(&ifp->if_u2.if_inline_ext[idx],
  3163. &ifp->if_u2.if_inline_ext[idx + ext_diff],
  3164. (nextents - (idx + ext_diff)) *
  3165. sizeof(xfs_bmbt_rec_t));
  3166. memset(&ifp->if_u2.if_inline_ext[nextents - ext_diff],
  3167. 0, ext_diff * sizeof(xfs_bmbt_rec_t));
  3168. } else {
  3169. memset(&ifp->if_u2.if_inline_ext[idx], 0,
  3170. ext_diff * sizeof(xfs_bmbt_rec_t));
  3171. }
  3172. }
  3173. /*
  3174. * This removes ext_diff extents from a linear (direct) extent list,
  3175. * beginning at extent index idx. If the extents are being removed
  3176. * from the end of the list (ie. truncate) then we just need to re-
  3177. * allocate the list to remove the extra space. Otherwise, if the
  3178. * extents are being removed from the middle of the existing extent
  3179. * entries, then we first need to move the extent records beginning
  3180. * at idx + ext_diff up in the list to overwrite the records being
  3181. * removed, then remove the extra space via kmem_realloc.
  3182. */
  3183. void
  3184. xfs_iext_remove_direct(
  3185. xfs_ifork_t *ifp, /* inode fork pointer */
  3186. xfs_extnum_t idx, /* index to begin removing exts */
  3187. int ext_diff) /* number of extents to remove */
  3188. {
  3189. xfs_extnum_t nextents; /* number of extents in file */
  3190. int new_size; /* size of extents after removal */
  3191. ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
  3192. new_size = ifp->if_bytes -
  3193. (ext_diff * sizeof(xfs_bmbt_rec_t));
  3194. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  3195. if (new_size == 0) {
  3196. xfs_iext_destroy(ifp);
  3197. return;
  3198. }
  3199. /* Move extents up in the list (if needed) */
  3200. if (idx + ext_diff < nextents) {
  3201. memmove(&ifp->if_u1.if_extents[idx],
  3202. &ifp->if_u1.if_extents[idx + ext_diff],
  3203. (nextents - (idx + ext_diff)) *
  3204. sizeof(xfs_bmbt_rec_t));
  3205. }
  3206. memset(&ifp->if_u1.if_extents[nextents - ext_diff],
  3207. 0, ext_diff * sizeof(xfs_bmbt_rec_t));
  3208. /*
  3209. * Reallocate the direct extent list. If the extents
  3210. * will fit inside the inode then xfs_iext_realloc_direct
  3211. * will switch from direct to inline extent allocation
  3212. * mode for us.
  3213. */
  3214. xfs_iext_realloc_direct(ifp, new_size);
  3215. ifp->if_bytes = new_size;
  3216. }
  3217. /*
  3218. * This is called when incore extents are being removed from the
  3219. * indirection array and the extents being removed span multiple extent
  3220. * buffers. The idx parameter contains the file extent index where we
  3221. * want to begin removing extents, and the count parameter contains
  3222. * how many extents need to be removed.
  3223. *
  3224. * |-------| |-------|
  3225. * | nex1 | | | nex1 - number of extents before idx
  3226. * |-------| | count |
  3227. * | | | | count - number of extents being removed at idx
  3228. * | count | |-------|
  3229. * | | | nex2 | nex2 - number of extents after idx + count
  3230. * |-------| |-------|
  3231. */
  3232. void
  3233. xfs_iext_remove_indirect(
  3234. xfs_ifork_t *ifp, /* inode fork pointer */
  3235. xfs_extnum_t idx, /* index to begin removing extents */
  3236. int count) /* number of extents to remove */
  3237. {
  3238. xfs_ext_irec_t *erp; /* indirection array pointer */
  3239. int erp_idx = 0; /* indirection array index */
  3240. xfs_extnum_t ext_cnt; /* extents left to remove */
  3241. xfs_extnum_t ext_diff; /* extents to remove in current list */
  3242. xfs_extnum_t nex1; /* number of extents before idx */
  3243. xfs_extnum_t nex2; /* extents after idx + count */
  3244. int page_idx = idx; /* index in target extent list */
  3245. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3246. erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 0);
  3247. ASSERT(erp != NULL);
  3248. nex1 = page_idx;
  3249. ext_cnt = count;
  3250. while (ext_cnt) {
  3251. nex2 = MAX((erp->er_extcount - (nex1 + ext_cnt)), 0);
  3252. ext_diff = MIN(ext_cnt, (erp->er_extcount - nex1));
  3253. /*
  3254. * Check for deletion of entire list;
  3255. * xfs_iext_irec_remove() updates extent offsets.
  3256. */
  3257. if (ext_diff == erp->er_extcount) {
  3258. xfs_iext_irec_remove(ifp, erp_idx);
  3259. ext_cnt -= ext_diff;
  3260. nex1 = 0;
  3261. if (ext_cnt) {
  3262. ASSERT(erp_idx < ifp->if_real_bytes /
  3263. XFS_IEXT_BUFSZ);
  3264. erp = &ifp->if_u1.if_ext_irec[erp_idx];
  3265. nex1 = 0;
  3266. continue;
  3267. } else {
  3268. break;
  3269. }
  3270. }
  3271. /* Move extents up (if needed) */
  3272. if (nex2) {
  3273. memmove(&erp->er_extbuf[nex1],
  3274. &erp->er_extbuf[nex1 + ext_diff],
  3275. nex2 * sizeof(xfs_bmbt_rec_t));
  3276. }
  3277. /* Zero out rest of page */
  3278. memset(&erp->er_extbuf[nex1 + nex2], 0, (XFS_IEXT_BUFSZ -
  3279. ((nex1 + nex2) * sizeof(xfs_bmbt_rec_t))));
  3280. /* Update remaining counters */
  3281. erp->er_extcount -= ext_diff;
  3282. xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -ext_diff);
  3283. ext_cnt -= ext_diff;
  3284. nex1 = 0;
  3285. erp_idx++;
  3286. erp++;
  3287. }
  3288. ifp->if_bytes -= count * sizeof(xfs_bmbt_rec_t);
  3289. xfs_iext_irec_compact(ifp);
  3290. }
  3291. /*
  3292. * Create, destroy, or resize a linear (direct) block of extents.
  3293. */
  3294. void
  3295. xfs_iext_realloc_direct(
  3296. xfs_ifork_t *ifp, /* inode fork pointer */
  3297. int new_size) /* new size of extents */
  3298. {
  3299. int rnew_size; /* real new size of extents */
  3300. rnew_size = new_size;
  3301. ASSERT(!(ifp->if_flags & XFS_IFEXTIREC) ||
  3302. ((new_size >= 0) && (new_size <= XFS_IEXT_BUFSZ) &&
  3303. (new_size != ifp->if_real_bytes)));
  3304. /* Free extent records */
  3305. if (new_size == 0) {
  3306. xfs_iext_destroy(ifp);
  3307. }
  3308. /* Resize direct extent list and zero any new bytes */
  3309. else if (ifp->if_real_bytes) {
  3310. /* Check if extents will fit inside the inode */
  3311. if (new_size <= XFS_INLINE_EXTS * sizeof(xfs_bmbt_rec_t)) {
  3312. xfs_iext_direct_to_inline(ifp, new_size /
  3313. (uint)sizeof(xfs_bmbt_rec_t));
  3314. ifp->if_bytes = new_size;
  3315. return;
  3316. }
  3317. if (!is_power_of_2(new_size)){
  3318. rnew_size = roundup_pow_of_two(new_size);
  3319. }
  3320. if (rnew_size != ifp->if_real_bytes) {
  3321. ifp->if_u1.if_extents =
  3322. kmem_realloc(ifp->if_u1.if_extents,
  3323. rnew_size,
  3324. ifp->if_real_bytes, KM_NOFS);
  3325. }
  3326. if (rnew_size > ifp->if_real_bytes) {
  3327. memset(&ifp->if_u1.if_extents[ifp->if_bytes /
  3328. (uint)sizeof(xfs_bmbt_rec_t)], 0,
  3329. rnew_size - ifp->if_real_bytes);
  3330. }
  3331. }
  3332. /*
  3333. * Switch from the inline extent buffer to a direct
  3334. * extent list. Be sure to include the inline extent
  3335. * bytes in new_size.
  3336. */
  3337. else {
  3338. new_size += ifp->if_bytes;
  3339. if (!is_power_of_2(new_size)) {
  3340. rnew_size = roundup_pow_of_two(new_size);
  3341. }
  3342. xfs_iext_inline_to_direct(ifp, rnew_size);
  3343. }
  3344. ifp->if_real_bytes = rnew_size;
  3345. ifp->if_bytes = new_size;
  3346. }
  3347. /*
  3348. * Switch from linear (direct) extent records to inline buffer.
  3349. */
  3350. void
  3351. xfs_iext_direct_to_inline(
  3352. xfs_ifork_t *ifp, /* inode fork pointer */
  3353. xfs_extnum_t nextents) /* number of extents in file */
  3354. {
  3355. ASSERT(ifp->if_flags & XFS_IFEXTENTS);
  3356. ASSERT(nextents <= XFS_INLINE_EXTS);
  3357. /*
  3358. * The inline buffer was zeroed when we switched
  3359. * from inline to direct extent allocation mode,
  3360. * so we don't need to clear it here.
  3361. */
  3362. memcpy(ifp->if_u2.if_inline_ext, ifp->if_u1.if_extents,
  3363. nextents * sizeof(xfs_bmbt_rec_t));
  3364. kmem_free(ifp->if_u1.if_extents);
  3365. ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
  3366. ifp->if_real_bytes = 0;
  3367. }
  3368. /*
  3369. * Switch from inline buffer to linear (direct) extent records.
  3370. * new_size should already be rounded up to the next power of 2
  3371. * by the caller (when appropriate), so use new_size as it is.
  3372. * However, since new_size may be rounded up, we can't update
  3373. * if_bytes here. It is the caller's responsibility to update
  3374. * if_bytes upon return.
  3375. */
  3376. void
  3377. xfs_iext_inline_to_direct(
  3378. xfs_ifork_t *ifp, /* inode fork pointer */
  3379. int new_size) /* number of extents in file */
  3380. {
  3381. ifp->if_u1.if_extents = kmem_alloc(new_size, KM_NOFS);
  3382. memset(ifp->if_u1.if_extents, 0, new_size);
  3383. if (ifp->if_bytes) {
  3384. memcpy(ifp->if_u1.if_extents, ifp->if_u2.if_inline_ext,
  3385. ifp->if_bytes);
  3386. memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS *
  3387. sizeof(xfs_bmbt_rec_t));
  3388. }
  3389. ifp->if_real_bytes = new_size;
  3390. }
  3391. /*
  3392. * Resize an extent indirection array to new_size bytes.
  3393. */
  3394. STATIC void
  3395. xfs_iext_realloc_indirect(
  3396. xfs_ifork_t *ifp, /* inode fork pointer */
  3397. int new_size) /* new indirection array size */
  3398. {
  3399. int nlists; /* number of irec's (ex lists) */
  3400. int size; /* current indirection array size */
  3401. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3402. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  3403. size = nlists * sizeof(xfs_ext_irec_t);
  3404. ASSERT(ifp->if_real_bytes);
  3405. ASSERT((new_size >= 0) && (new_size != size));
  3406. if (new_size == 0) {
  3407. xfs_iext_destroy(ifp);
  3408. } else {
  3409. ifp->if_u1.if_ext_irec = (xfs_ext_irec_t *)
  3410. kmem_realloc(ifp->if_u1.if_ext_irec,
  3411. new_size, size, KM_NOFS);
  3412. }
  3413. }
  3414. /*
  3415. * Switch from indirection array to linear (direct) extent allocations.
  3416. */
  3417. STATIC void
  3418. xfs_iext_indirect_to_direct(
  3419. xfs_ifork_t *ifp) /* inode fork pointer */
  3420. {
  3421. xfs_bmbt_rec_host_t *ep; /* extent record pointer */
  3422. xfs_extnum_t nextents; /* number of extents in file */
  3423. int size; /* size of file extents */
  3424. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3425. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  3426. ASSERT(nextents <= XFS_LINEAR_EXTS);
  3427. size = nextents * sizeof(xfs_bmbt_rec_t);
  3428. xfs_iext_irec_compact_pages(ifp);
  3429. ASSERT(ifp->if_real_bytes == XFS_IEXT_BUFSZ);
  3430. ep = ifp->if_u1.if_ext_irec->er_extbuf;
  3431. kmem_free(ifp->if_u1.if_ext_irec);
  3432. ifp->if_flags &= ~XFS_IFEXTIREC;
  3433. ifp->if_u1.if_extents = ep;
  3434. ifp->if_bytes = size;
  3435. if (nextents < XFS_LINEAR_EXTS) {
  3436. xfs_iext_realloc_direct(ifp, size);
  3437. }
  3438. }
  3439. /*
  3440. * Free incore file extents.
  3441. */
  3442. void
  3443. xfs_iext_destroy(
  3444. xfs_ifork_t *ifp) /* inode fork pointer */
  3445. {
  3446. if (ifp->if_flags & XFS_IFEXTIREC) {
  3447. int erp_idx;
  3448. int nlists;
  3449. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  3450. for (erp_idx = nlists - 1; erp_idx >= 0 ; erp_idx--) {
  3451. xfs_iext_irec_remove(ifp, erp_idx);
  3452. }
  3453. ifp->if_flags &= ~XFS_IFEXTIREC;
  3454. } else if (ifp->if_real_bytes) {
  3455. kmem_free(ifp->if_u1.if_extents);
  3456. } else if (ifp->if_bytes) {
  3457. memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS *
  3458. sizeof(xfs_bmbt_rec_t));
  3459. }
  3460. ifp->if_u1.if_extents = NULL;
  3461. ifp->if_real_bytes = 0;
  3462. ifp->if_bytes = 0;
  3463. }
  3464. /*
  3465. * Return a pointer to the extent record for file system block bno.
  3466. */
  3467. xfs_bmbt_rec_host_t * /* pointer to found extent record */
  3468. xfs_iext_bno_to_ext(
  3469. xfs_ifork_t *ifp, /* inode fork pointer */
  3470. xfs_fileoff_t bno, /* block number to search for */
  3471. xfs_extnum_t *idxp) /* index of target extent */
  3472. {
  3473. xfs_bmbt_rec_host_t *base; /* pointer to first extent */
  3474. xfs_filblks_t blockcount = 0; /* number of blocks in extent */
  3475. xfs_bmbt_rec_host_t *ep = NULL; /* pointer to target extent */
  3476. xfs_ext_irec_t *erp = NULL; /* indirection array pointer */
  3477. int high; /* upper boundary in search */
  3478. xfs_extnum_t idx = 0; /* index of target extent */
  3479. int low; /* lower boundary in search */
  3480. xfs_extnum_t nextents; /* number of file extents */
  3481. xfs_fileoff_t startoff = 0; /* start offset of extent */
  3482. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  3483. if (nextents == 0) {
  3484. *idxp = 0;
  3485. return NULL;
  3486. }
  3487. low = 0;
  3488. if (ifp->if_flags & XFS_IFEXTIREC) {
  3489. /* Find target extent list */
  3490. int erp_idx = 0;
  3491. erp = xfs_iext_bno_to_irec(ifp, bno, &erp_idx);
  3492. base = erp->er_extbuf;
  3493. high = erp->er_extcount - 1;
  3494. } else {
  3495. base = ifp->if_u1.if_extents;
  3496. high = nextents - 1;
  3497. }
  3498. /* Binary search extent records */
  3499. while (low <= high) {
  3500. idx = (low + high) >> 1;
  3501. ep = base + idx;
  3502. startoff = xfs_bmbt_get_startoff(ep);
  3503. blockcount = xfs_bmbt_get_blockcount(ep);
  3504. if (bno < startoff) {
  3505. high = idx - 1;
  3506. } else if (bno >= startoff + blockcount) {
  3507. low = idx + 1;
  3508. } else {
  3509. /* Convert back to file-based extent index */
  3510. if (ifp->if_flags & XFS_IFEXTIREC) {
  3511. idx += erp->er_extoff;
  3512. }
  3513. *idxp = idx;
  3514. return ep;
  3515. }
  3516. }
  3517. /* Convert back to file-based extent index */
  3518. if (ifp->if_flags & XFS_IFEXTIREC) {
  3519. idx += erp->er_extoff;
  3520. }
  3521. if (bno >= startoff + blockcount) {
  3522. if (++idx == nextents) {
  3523. ep = NULL;
  3524. } else {
  3525. ep = xfs_iext_get_ext(ifp, idx);
  3526. }
  3527. }
  3528. *idxp = idx;
  3529. return ep;
  3530. }
  3531. /*
  3532. * Return a pointer to the indirection array entry containing the
  3533. * extent record for filesystem block bno. Store the index of the
  3534. * target irec in *erp_idxp.
  3535. */
  3536. xfs_ext_irec_t * /* pointer to found extent record */
  3537. xfs_iext_bno_to_irec(
  3538. xfs_ifork_t *ifp, /* inode fork pointer */
  3539. xfs_fileoff_t bno, /* block number to search for */
  3540. int *erp_idxp) /* irec index of target ext list */
  3541. {
  3542. xfs_ext_irec_t *erp = NULL; /* indirection array pointer */
  3543. xfs_ext_irec_t *erp_next; /* next indirection array entry */
  3544. int erp_idx; /* indirection array index */
  3545. int nlists; /* number of extent irec's (lists) */
  3546. int high; /* binary search upper limit */
  3547. int low; /* binary search lower limit */
  3548. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3549. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  3550. erp_idx = 0;
  3551. low = 0;
  3552. high = nlists - 1;
  3553. while (low <= high) {
  3554. erp_idx = (low + high) >> 1;
  3555. erp = &ifp->if_u1.if_ext_irec[erp_idx];
  3556. erp_next = erp_idx < nlists - 1 ? erp + 1 : NULL;
  3557. if (bno < xfs_bmbt_get_startoff(erp->er_extbuf)) {
  3558. high = erp_idx - 1;
  3559. } else if (erp_next && bno >=
  3560. xfs_bmbt_get_startoff(erp_next->er_extbuf)) {
  3561. low = erp_idx + 1;
  3562. } else {
  3563. break;
  3564. }
  3565. }
  3566. *erp_idxp = erp_idx;
  3567. return erp;
  3568. }
  3569. /*
  3570. * Return a pointer to the indirection array entry containing the
  3571. * extent record at file extent index *idxp. Store the index of the
  3572. * target irec in *erp_idxp and store the page index of the target
  3573. * extent record in *idxp.
  3574. */
  3575. xfs_ext_irec_t *
  3576. xfs_iext_idx_to_irec(
  3577. xfs_ifork_t *ifp, /* inode fork pointer */
  3578. xfs_extnum_t *idxp, /* extent index (file -> page) */
  3579. int *erp_idxp, /* pointer to target irec */
  3580. int realloc) /* new bytes were just added */
  3581. {
  3582. xfs_ext_irec_t *prev; /* pointer to previous irec */
  3583. xfs_ext_irec_t *erp = NULL; /* pointer to current irec */
  3584. int erp_idx; /* indirection array index */
  3585. int nlists; /* number of irec's (ex lists) */
  3586. int high; /* binary search upper limit */
  3587. int low; /* binary search lower limit */
  3588. xfs_extnum_t page_idx = *idxp; /* extent index in target list */
  3589. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3590. ASSERT(page_idx >= 0 && page_idx <=
  3591. ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t));
  3592. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  3593. erp_idx = 0;
  3594. low = 0;
  3595. high = nlists - 1;
  3596. /* Binary search extent irec's */
  3597. while (low <= high) {
  3598. erp_idx = (low + high) >> 1;
  3599. erp = &ifp->if_u1.if_ext_irec[erp_idx];
  3600. prev = erp_idx > 0 ? erp - 1 : NULL;
  3601. if (page_idx < erp->er_extoff || (page_idx == erp->er_extoff &&
  3602. realloc && prev && prev->er_extcount < XFS_LINEAR_EXTS)) {
  3603. high = erp_idx - 1;
  3604. } else if (page_idx > erp->er_extoff + erp->er_extcount ||
  3605. (page_idx == erp->er_extoff + erp->er_extcount &&
  3606. !realloc)) {
  3607. low = erp_idx + 1;
  3608. } else if (page_idx == erp->er_extoff + erp->er_extcount &&
  3609. erp->er_extcount == XFS_LINEAR_EXTS) {
  3610. ASSERT(realloc);
  3611. page_idx = 0;
  3612. erp_idx++;
  3613. erp = erp_idx < nlists ? erp + 1 : NULL;
  3614. break;
  3615. } else {
  3616. page_idx -= erp->er_extoff;
  3617. break;
  3618. }
  3619. }
  3620. *idxp = page_idx;
  3621. *erp_idxp = erp_idx;
  3622. return(erp);
  3623. }
  3624. /*
  3625. * Allocate and initialize an indirection array once the space needed
  3626. * for incore extents increases above XFS_IEXT_BUFSZ.
  3627. */
  3628. void
  3629. xfs_iext_irec_init(
  3630. xfs_ifork_t *ifp) /* inode fork pointer */
  3631. {
  3632. xfs_ext_irec_t *erp; /* indirection array pointer */
  3633. xfs_extnum_t nextents; /* number of extents in file */
  3634. ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
  3635. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  3636. ASSERT(nextents <= XFS_LINEAR_EXTS);
  3637. erp = kmem_alloc(sizeof(xfs_ext_irec_t), KM_NOFS);
  3638. if (nextents == 0) {
  3639. ifp->if_u1.if_extents = kmem_alloc(XFS_IEXT_BUFSZ, KM_NOFS);
  3640. } else if (!ifp->if_real_bytes) {
  3641. xfs_iext_inline_to_direct(ifp, XFS_IEXT_BUFSZ);
  3642. } else if (ifp->if_real_bytes < XFS_IEXT_BUFSZ) {
  3643. xfs_iext_realloc_direct(ifp, XFS_IEXT_BUFSZ);
  3644. }
  3645. erp->er_extbuf = ifp->if_u1.if_extents;
  3646. erp->er_extcount = nextents;
  3647. erp->er_extoff = 0;
  3648. ifp->if_flags |= XFS_IFEXTIREC;
  3649. ifp->if_real_bytes = XFS_IEXT_BUFSZ;
  3650. ifp->if_bytes = nextents * sizeof(xfs_bmbt_rec_t);
  3651. ifp->if_u1.if_ext_irec = erp;
  3652. return;
  3653. }
  3654. /*
  3655. * Allocate and initialize a new entry in the indirection array.
  3656. */
  3657. xfs_ext_irec_t *
  3658. xfs_iext_irec_new(
  3659. xfs_ifork_t *ifp, /* inode fork pointer */
  3660. int erp_idx) /* index for new irec */
  3661. {
  3662. xfs_ext_irec_t *erp; /* indirection array pointer */
  3663. int i; /* loop counter */
  3664. int nlists; /* number of irec's (ex lists) */
  3665. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3666. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  3667. /* Resize indirection array */
  3668. xfs_iext_realloc_indirect(ifp, ++nlists *
  3669. sizeof(xfs_ext_irec_t));
  3670. /*
  3671. * Move records down in the array so the
  3672. * new page can use erp_idx.
  3673. */
  3674. erp = ifp->if_u1.if_ext_irec;
  3675. for (i = nlists - 1; i > erp_idx; i--) {
  3676. memmove(&erp[i], &erp[i-1], sizeof(xfs_ext_irec_t));
  3677. }
  3678. ASSERT(i == erp_idx);
  3679. /* Initialize new extent record */
  3680. erp = ifp->if_u1.if_ext_irec;
  3681. erp[erp_idx].er_extbuf = kmem_alloc(XFS_IEXT_BUFSZ, KM_NOFS);
  3682. ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ;
  3683. memset(erp[erp_idx].er_extbuf, 0, XFS_IEXT_BUFSZ);
  3684. erp[erp_idx].er_extcount = 0;
  3685. erp[erp_idx].er_extoff = erp_idx > 0 ?
  3686. erp[erp_idx-1].er_extoff + erp[erp_idx-1].er_extcount : 0;
  3687. return (&erp[erp_idx]);
  3688. }
  3689. /*
  3690. * Remove a record from the indirection array.
  3691. */
  3692. void
  3693. xfs_iext_irec_remove(
  3694. xfs_ifork_t *ifp, /* inode fork pointer */
  3695. int erp_idx) /* irec index to remove */
  3696. {
  3697. xfs_ext_irec_t *erp; /* indirection array pointer */
  3698. int i; /* loop counter */
  3699. int nlists; /* number of irec's (ex lists) */
  3700. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3701. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  3702. erp = &ifp->if_u1.if_ext_irec[erp_idx];
  3703. if (erp->er_extbuf) {
  3704. xfs_iext_irec_update_extoffs(ifp, erp_idx + 1,
  3705. -erp->er_extcount);
  3706. kmem_free(erp->er_extbuf);
  3707. }
  3708. /* Compact extent records */
  3709. erp = ifp->if_u1.if_ext_irec;
  3710. for (i = erp_idx; i < nlists - 1; i++) {
  3711. memmove(&erp[i], &erp[i+1], sizeof(xfs_ext_irec_t));
  3712. }
  3713. /*
  3714. * Manually free the last extent record from the indirection
  3715. * array. A call to xfs_iext_realloc_indirect() with a size
  3716. * of zero would result in a call to xfs_iext_destroy() which
  3717. * would in turn call this function again, creating a nasty
  3718. * infinite loop.
  3719. */
  3720. if (--nlists) {
  3721. xfs_iext_realloc_indirect(ifp,
  3722. nlists * sizeof(xfs_ext_irec_t));
  3723. } else {
  3724. kmem_free(ifp->if_u1.if_ext_irec);
  3725. }
  3726. ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ;
  3727. }
  3728. /*
  3729. * This is called to clean up large amounts of unused memory allocated
  3730. * by the indirection array. Before compacting anything though, verify
  3731. * that the indirection array is still needed and switch back to the
  3732. * linear extent list (or even the inline buffer) if possible. The
  3733. * compaction policy is as follows:
  3734. *
  3735. * Full Compaction: Extents fit into a single page (or inline buffer)
  3736. * Partial Compaction: Extents occupy less than 50% of allocated space
  3737. * No Compaction: Extents occupy at least 50% of allocated space
  3738. */
  3739. void
  3740. xfs_iext_irec_compact(
  3741. xfs_ifork_t *ifp) /* inode fork pointer */
  3742. {
  3743. xfs_extnum_t nextents; /* number of extents in file */
  3744. int nlists; /* number of irec's (ex lists) */
  3745. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3746. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  3747. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  3748. if (nextents == 0) {
  3749. xfs_iext_destroy(ifp);
  3750. } else if (nextents <= XFS_INLINE_EXTS) {
  3751. xfs_iext_indirect_to_direct(ifp);
  3752. xfs_iext_direct_to_inline(ifp, nextents);
  3753. } else if (nextents <= XFS_LINEAR_EXTS) {
  3754. xfs_iext_indirect_to_direct(ifp);
  3755. } else if (nextents < (nlists * XFS_LINEAR_EXTS) >> 1) {
  3756. xfs_iext_irec_compact_pages(ifp);
  3757. }
  3758. }
  3759. /*
  3760. * Combine extents from neighboring extent pages.
  3761. */
  3762. void
  3763. xfs_iext_irec_compact_pages(
  3764. xfs_ifork_t *ifp) /* inode fork pointer */
  3765. {
  3766. xfs_ext_irec_t *erp, *erp_next;/* pointers to irec entries */
  3767. int erp_idx = 0; /* indirection array index */
  3768. int nlists; /* number of irec's (ex lists) */
  3769. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3770. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  3771. while (erp_idx < nlists - 1) {
  3772. erp = &ifp->if_u1.if_ext_irec[erp_idx];
  3773. erp_next = erp + 1;
  3774. if (erp_next->er_extcount <=
  3775. (XFS_LINEAR_EXTS - erp->er_extcount)) {
  3776. memcpy(&erp->er_extbuf[erp->er_extcount],
  3777. erp_next->er_extbuf, erp_next->er_extcount *
  3778. sizeof(xfs_bmbt_rec_t));
  3779. erp->er_extcount += erp_next->er_extcount;
  3780. /*
  3781. * Free page before removing extent record
  3782. * so er_extoffs don't get modified in
  3783. * xfs_iext_irec_remove.
  3784. */
  3785. kmem_free(erp_next->er_extbuf);
  3786. erp_next->er_extbuf = NULL;
  3787. xfs_iext_irec_remove(ifp, erp_idx + 1);
  3788. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  3789. } else {
  3790. erp_idx++;
  3791. }
  3792. }
  3793. }
  3794. /*
  3795. * This is called to update the er_extoff field in the indirection
  3796. * array when extents have been added or removed from one of the
  3797. * extent lists. erp_idx contains the irec index to begin updating
  3798. * at and ext_diff contains the number of extents that were added
  3799. * or removed.
  3800. */
  3801. void
  3802. xfs_iext_irec_update_extoffs(
  3803. xfs_ifork_t *ifp, /* inode fork pointer */
  3804. int erp_idx, /* irec index to update */
  3805. int ext_diff) /* number of new extents */
  3806. {
  3807. int i; /* loop counter */
  3808. int nlists; /* number of irec's (ex lists */
  3809. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3810. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  3811. for (i = erp_idx; i < nlists; i++) {
  3812. ifp->if_u1.if_ext_irec[i].er_extoff += ext_diff;
  3813. }
  3814. }