intc.c 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572
  1. /*
  2. * Shared interrupt handling code for IPR and INTC2 types of IRQs.
  3. *
  4. * Copyright (C) 2007 Magnus Damm
  5. *
  6. * Based on intc2.c and ipr.c
  7. *
  8. * Copyright (C) 1999 Niibe Yutaka & Takeshi Yaegashi
  9. * Copyright (C) 2000 Kazumoto Kojima
  10. * Copyright (C) 2001 David J. Mckay (david.mckay@st.com)
  11. * Copyright (C) 2003 Takashi Kusuda <kusuda-takashi@hitachi-ul.co.jp>
  12. * Copyright (C) 2005, 2006 Paul Mundt
  13. *
  14. * This file is subject to the terms and conditions of the GNU General Public
  15. * License. See the file "COPYING" in the main directory of this archive
  16. * for more details.
  17. */
  18. #include <linux/init.h>
  19. #include <linux/irq.h>
  20. #include <linux/module.h>
  21. #include <linux/io.h>
  22. #include <linux/interrupt.h>
  23. #include <linux/bootmem.h>
  24. #define _INTC_MK(fn, mode, addr_e, addr_d, width, shift) \
  25. ((shift) | ((width) << 5) | ((fn) << 9) | ((mode) << 13) | \
  26. ((addr_e) << 16) | ((addr_d << 24)))
  27. #define _INTC_SHIFT(h) (h & 0x1f)
  28. #define _INTC_WIDTH(h) ((h >> 5) & 0xf)
  29. #define _INTC_FN(h) ((h >> 9) & 0xf)
  30. #define _INTC_MODE(h) ((h >> 13) & 0x7)
  31. #define _INTC_ADDR_E(h) ((h >> 16) & 0xff)
  32. #define _INTC_ADDR_D(h) ((h >> 24) & 0xff)
  33. struct intc_handle_int {
  34. unsigned int irq;
  35. unsigned long handle;
  36. };
  37. struct intc_desc_int {
  38. unsigned long *reg;
  39. unsigned int nr_reg;
  40. struct intc_handle_int *prio;
  41. unsigned int nr_prio;
  42. struct intc_handle_int *sense;
  43. unsigned int nr_sense;
  44. struct irq_chip chip;
  45. };
  46. static unsigned int intc_prio_level[NR_IRQS]; /* for now */
  47. static inline struct intc_desc_int *get_intc_desc(unsigned int irq)
  48. {
  49. struct irq_chip *chip = get_irq_chip(irq);
  50. return (void *)((char *)chip - offsetof(struct intc_desc_int, chip));
  51. }
  52. static inline unsigned int set_field(unsigned int value,
  53. unsigned int field_value,
  54. unsigned int handle)
  55. {
  56. unsigned int width = _INTC_WIDTH(handle);
  57. unsigned int shift = _INTC_SHIFT(handle);
  58. value &= ~(((1 << width) - 1) << shift);
  59. value |= field_value << shift;
  60. return value;
  61. }
  62. static void write_8(unsigned long addr, unsigned long h, unsigned long data)
  63. {
  64. ctrl_outb(set_field(0, data, h), addr);
  65. }
  66. static void write_16(unsigned long addr, unsigned long h, unsigned long data)
  67. {
  68. ctrl_outw(set_field(0, data, h), addr);
  69. }
  70. static void write_32(unsigned long addr, unsigned long h, unsigned long data)
  71. {
  72. ctrl_outl(set_field(0, data, h), addr);
  73. }
  74. static void modify_8(unsigned long addr, unsigned long h, unsigned long data)
  75. {
  76. ctrl_outb(set_field(ctrl_inb(addr), data, h), addr);
  77. }
  78. static void modify_16(unsigned long addr, unsigned long h, unsigned long data)
  79. {
  80. ctrl_outw(set_field(ctrl_inw(addr), data, h), addr);
  81. }
  82. static void modify_32(unsigned long addr, unsigned long h, unsigned long data)
  83. {
  84. ctrl_outl(set_field(ctrl_inl(addr), data, h), addr);
  85. }
  86. enum { REG_FN_ERR = 0, REG_FN_WRITE_BASE = 1, REG_FN_MODIFY_BASE = 5 };
  87. static void (*intc_reg_fns[])(unsigned long addr,
  88. unsigned long h,
  89. unsigned long data) = {
  90. [REG_FN_WRITE_BASE + 0] = write_8,
  91. [REG_FN_WRITE_BASE + 1] = write_16,
  92. [REG_FN_WRITE_BASE + 3] = write_32,
  93. [REG_FN_MODIFY_BASE + 0] = modify_8,
  94. [REG_FN_MODIFY_BASE + 1] = modify_16,
  95. [REG_FN_MODIFY_BASE + 3] = modify_32,
  96. };
  97. enum { MODE_ENABLE_REG = 0, /* Bit(s) set -> interrupt enabled */
  98. MODE_MASK_REG, /* Bit(s) set -> interrupt disabled */
  99. MODE_DUAL_REG, /* Two registers, set bit to enable / disable */
  100. MODE_PRIO_REG, /* Priority value written to enable interrupt */
  101. MODE_PCLR_REG, /* Above plus all bits set to disable interrupt */
  102. };
  103. static void intc_mode_field(unsigned long addr,
  104. unsigned long handle,
  105. void (*fn)(unsigned long,
  106. unsigned long,
  107. unsigned long),
  108. unsigned int irq)
  109. {
  110. fn(addr, handle, ((1 << _INTC_WIDTH(handle)) - 1));
  111. }
  112. static void intc_mode_zero(unsigned long addr,
  113. unsigned long handle,
  114. void (*fn)(unsigned long,
  115. unsigned long,
  116. unsigned long),
  117. unsigned int irq)
  118. {
  119. fn(addr, handle, 0);
  120. }
  121. static void intc_mode_prio(unsigned long addr,
  122. unsigned long handle,
  123. void (*fn)(unsigned long,
  124. unsigned long,
  125. unsigned long),
  126. unsigned int irq)
  127. {
  128. fn(addr, handle, intc_prio_level[irq]);
  129. }
  130. static void (*intc_enable_fns[])(unsigned long addr,
  131. unsigned long handle,
  132. void (*fn)(unsigned long,
  133. unsigned long,
  134. unsigned long),
  135. unsigned int irq) = {
  136. [MODE_ENABLE_REG] = intc_mode_field,
  137. [MODE_MASK_REG] = intc_mode_zero,
  138. [MODE_DUAL_REG] = intc_mode_field,
  139. [MODE_PRIO_REG] = intc_mode_prio,
  140. [MODE_PCLR_REG] = intc_mode_prio,
  141. };
  142. static void (*intc_disable_fns[])(unsigned long addr,
  143. unsigned long handle,
  144. void (*fn)(unsigned long,
  145. unsigned long,
  146. unsigned long),
  147. unsigned int irq) = {
  148. [MODE_ENABLE_REG] = intc_mode_zero,
  149. [MODE_MASK_REG] = intc_mode_field,
  150. [MODE_DUAL_REG] = intc_mode_field,
  151. [MODE_PRIO_REG] = intc_mode_zero,
  152. [MODE_PCLR_REG] = intc_mode_field,
  153. };
  154. static inline void _intc_enable(unsigned int irq, unsigned long handle)
  155. {
  156. struct intc_desc_int *d = get_intc_desc(irq);
  157. unsigned long addr = d->reg[_INTC_ADDR_E(handle)];
  158. intc_enable_fns[_INTC_MODE(handle)](addr, handle,
  159. intc_reg_fns[_INTC_FN(handle)],
  160. irq);
  161. }
  162. static void intc_enable(unsigned int irq)
  163. {
  164. _intc_enable(irq, (unsigned long)get_irq_chip_data(irq));
  165. }
  166. static void intc_disable(unsigned int irq)
  167. {
  168. struct intc_desc_int *desc = get_intc_desc(irq);
  169. unsigned long handle = (unsigned long) get_irq_chip_data(irq);
  170. unsigned long addr = desc->reg[_INTC_ADDR_D(handle)];
  171. intc_disable_fns[_INTC_MODE(handle)](addr, handle,
  172. intc_reg_fns[_INTC_FN(handle)],
  173. irq);
  174. }
  175. static struct intc_handle_int *intc_find_irq(struct intc_handle_int *hp,
  176. unsigned int nr_hp,
  177. unsigned int irq)
  178. {
  179. int i;
  180. for (i = 0; i < nr_hp; i++) {
  181. if ((hp + i)->irq != irq)
  182. continue;
  183. return hp + i;
  184. }
  185. return NULL;
  186. }
  187. int intc_set_priority(unsigned int irq, unsigned int prio)
  188. {
  189. struct intc_desc_int *d = get_intc_desc(irq);
  190. struct intc_handle_int *ihp;
  191. if (!intc_prio_level[irq] || prio <= 1)
  192. return -EINVAL;
  193. ihp = intc_find_irq(d->prio, d->nr_prio, irq);
  194. if (ihp) {
  195. if (prio >= ((1 << _INTC_WIDTH(ihp->handle)) - 1))
  196. return -EINVAL;
  197. intc_prio_level[irq] = prio;
  198. /*
  199. * only set secondary masking method directly
  200. * primary masking method is using intc_prio_level[irq]
  201. * priority level will be set during next enable()
  202. */
  203. if (ihp->handle)
  204. _intc_enable(irq, ihp->handle);
  205. }
  206. return 0;
  207. }
  208. #define VALID(x) (x | 0x80)
  209. static unsigned char intc_irq_sense_table[IRQ_TYPE_SENSE_MASK + 1] = {
  210. [IRQ_TYPE_EDGE_FALLING] = VALID(0),
  211. [IRQ_TYPE_EDGE_RISING] = VALID(1),
  212. [IRQ_TYPE_LEVEL_LOW] = VALID(2),
  213. [IRQ_TYPE_LEVEL_HIGH] = VALID(3),
  214. };
  215. static int intc_set_sense(unsigned int irq, unsigned int type)
  216. {
  217. struct intc_desc_int *d = get_intc_desc(irq);
  218. unsigned char value = intc_irq_sense_table[type & IRQ_TYPE_SENSE_MASK];
  219. struct intc_handle_int *ihp;
  220. unsigned long addr;
  221. if (!value)
  222. return -EINVAL;
  223. ihp = intc_find_irq(d->sense, d->nr_sense, irq);
  224. if (ihp) {
  225. addr = d->reg[_INTC_ADDR_E(ihp->handle)];
  226. intc_reg_fns[_INTC_FN(ihp->handle)](addr, ihp->handle, value);
  227. }
  228. return 0;
  229. }
  230. static unsigned int __init intc_get_reg(struct intc_desc_int *d,
  231. unsigned long address)
  232. {
  233. unsigned int k;
  234. for (k = 0; k < d->nr_reg; k++) {
  235. if (d->reg[k] == address)
  236. return k;
  237. }
  238. BUG();
  239. return 0;
  240. }
  241. static intc_enum __init intc_grp_id(struct intc_desc *desc,
  242. intc_enum enum_id)
  243. {
  244. struct intc_group *g = desc->groups;
  245. unsigned int i, j;
  246. for (i = 0; g && enum_id && i < desc->nr_groups; i++) {
  247. g = desc->groups + i;
  248. for (j = 0; g->enum_ids[j]; j++) {
  249. if (g->enum_ids[j] != enum_id)
  250. continue;
  251. return g->enum_id;
  252. }
  253. }
  254. return 0;
  255. }
  256. static unsigned int __init intc_prio_value(struct intc_desc *desc,
  257. intc_enum enum_id, int do_grps)
  258. {
  259. struct intc_prio *p = desc->priorities;
  260. unsigned int i;
  261. for (i = 0; p && enum_id && i < desc->nr_priorities; i++) {
  262. p = desc->priorities + i;
  263. if (p->enum_id != enum_id)
  264. continue;
  265. return p->priority;
  266. }
  267. if (do_grps)
  268. return intc_prio_value(desc, intc_grp_id(desc, enum_id), 0);
  269. /* default to the lowest priority possible if no priority is set
  270. * - this needs to be at least 2 for 5-bit priorities on 7780
  271. */
  272. return 2;
  273. }
  274. static unsigned int __init intc_mask_data(struct intc_desc *desc,
  275. struct intc_desc_int *d,
  276. intc_enum enum_id, int do_grps)
  277. {
  278. struct intc_mask_reg *mr = desc->mask_regs;
  279. unsigned int i, j, fn, mode;
  280. unsigned long reg_e, reg_d;
  281. for (i = 0; mr && enum_id && i < desc->nr_mask_regs; i++) {
  282. mr = desc->mask_regs + i;
  283. for (j = 0; j < ARRAY_SIZE(mr->enum_ids); j++) {
  284. if (mr->enum_ids[j] != enum_id)
  285. continue;
  286. if (mr->set_reg && mr->clr_reg) {
  287. fn = REG_FN_WRITE_BASE;
  288. mode = MODE_DUAL_REG;
  289. reg_e = mr->clr_reg;
  290. reg_d = mr->set_reg;
  291. } else {
  292. fn = REG_FN_MODIFY_BASE;
  293. if (mr->set_reg) {
  294. mode = MODE_ENABLE_REG;
  295. reg_e = mr->set_reg;
  296. reg_d = mr->set_reg;
  297. } else {
  298. mode = MODE_MASK_REG;
  299. reg_e = mr->clr_reg;
  300. reg_d = mr->clr_reg;
  301. }
  302. }
  303. fn += (mr->reg_width >> 3) - 1;
  304. return _INTC_MK(fn, mode,
  305. intc_get_reg(d, reg_e),
  306. intc_get_reg(d, reg_d),
  307. 1,
  308. (mr->reg_width - 1) - j);
  309. }
  310. }
  311. if (do_grps)
  312. return intc_mask_data(desc, d, intc_grp_id(desc, enum_id), 0);
  313. return 0;
  314. }
  315. static unsigned int __init intc_prio_data(struct intc_desc *desc,
  316. struct intc_desc_int *d,
  317. intc_enum enum_id, int do_grps)
  318. {
  319. struct intc_prio_reg *pr = desc->prio_regs;
  320. unsigned int i, j, fn, mode, bit;
  321. unsigned long reg_e, reg_d;
  322. for (i = 0; pr && enum_id && i < desc->nr_prio_regs; i++) {
  323. pr = desc->prio_regs + i;
  324. for (j = 0; j < ARRAY_SIZE(pr->enum_ids); j++) {
  325. if (pr->enum_ids[j] != enum_id)
  326. continue;
  327. if (pr->set_reg && pr->clr_reg) {
  328. fn = REG_FN_WRITE_BASE;
  329. mode = MODE_PCLR_REG;
  330. reg_e = pr->set_reg;
  331. reg_d = pr->clr_reg;
  332. } else {
  333. fn = REG_FN_MODIFY_BASE;
  334. mode = MODE_PRIO_REG;
  335. if (!pr->set_reg)
  336. BUG();
  337. reg_e = pr->set_reg;
  338. reg_d = pr->set_reg;
  339. }
  340. fn += (pr->reg_width >> 3) - 1;
  341. bit = pr->reg_width - ((j + 1) * pr->field_width);
  342. BUG_ON(bit < 0);
  343. return _INTC_MK(fn, mode,
  344. intc_get_reg(d, reg_e),
  345. intc_get_reg(d, reg_d),
  346. pr->field_width, bit);
  347. }
  348. }
  349. if (do_grps)
  350. return intc_prio_data(desc, d, intc_grp_id(desc, enum_id), 0);
  351. return 0;
  352. }
  353. static unsigned int __init intc_sense_data(struct intc_desc *desc,
  354. struct intc_desc_int *d,
  355. intc_enum enum_id)
  356. {
  357. struct intc_sense_reg *sr = desc->sense_regs;
  358. unsigned int i, j, fn, bit;
  359. for (i = 0; sr && enum_id && i < desc->nr_sense_regs; i++) {
  360. sr = desc->sense_regs + i;
  361. for (j = 0; j < ARRAY_SIZE(sr->enum_ids); j++) {
  362. if (sr->enum_ids[j] != enum_id)
  363. continue;
  364. fn = REG_FN_MODIFY_BASE;
  365. fn += (sr->reg_width >> 3) - 1;
  366. bit = sr->reg_width - ((j + 1) * sr->field_width);
  367. BUG_ON(bit < 0);
  368. return _INTC_MK(fn, 0, intc_get_reg(d, sr->reg),
  369. 0, sr->field_width, bit);
  370. }
  371. }
  372. return 0;
  373. }
  374. static void __init intc_register_irq(struct intc_desc *desc,
  375. struct intc_desc_int *d,
  376. intc_enum enum_id,
  377. unsigned int irq)
  378. {
  379. unsigned int data[2], primary;
  380. /* Prefer single interrupt source bitmap over other combinations:
  381. * 1. bitmap, single interrupt source
  382. * 2. priority, single interrupt source
  383. * 3. bitmap, multiple interrupt sources (groups)
  384. * 4. priority, multiple interrupt sources (groups)
  385. */
  386. data[0] = intc_mask_data(desc, d, enum_id, 0);
  387. data[1] = intc_prio_data(desc, d, enum_id, 0);
  388. primary = 0;
  389. if (!data[0] && data[1])
  390. primary = 1;
  391. data[0] = data[0] ? data[0] : intc_mask_data(desc, d, enum_id, 1);
  392. data[1] = data[1] ? data[1] : intc_prio_data(desc, d, enum_id, 1);
  393. if (!data[primary])
  394. primary ^= 1;
  395. BUG_ON(!data[primary]); /* must have primary masking method */
  396. disable_irq_nosync(irq);
  397. set_irq_chip_and_handler_name(irq, &d->chip,
  398. handle_level_irq, "level");
  399. set_irq_chip_data(irq, (void *)data[primary]);
  400. /* record the desired priority level */
  401. intc_prio_level[irq] = intc_prio_value(desc, enum_id, 1);
  402. /* enable secondary masking method if present */
  403. if (data[!primary])
  404. _intc_enable(irq, data[!primary]);
  405. /* add irq to d->prio list if priority is available */
  406. if (data[1]) {
  407. (d->prio + d->nr_prio)->irq = irq;
  408. if (!primary) /* only secondary priority can access regs */
  409. (d->prio + d->nr_prio)->handle = data[1];
  410. d->nr_prio++;
  411. }
  412. /* add irq to d->sense list if sense is available */
  413. data[0] = intc_sense_data(desc, d, enum_id);
  414. if (data[0]) {
  415. (d->sense + d->nr_sense)->irq = irq;
  416. (d->sense + d->nr_sense)->handle = data[0];
  417. d->nr_sense++;
  418. }
  419. /* irq should be disabled by default */
  420. d->chip.mask(irq);
  421. }
  422. void __init register_intc_controller(struct intc_desc *desc)
  423. {
  424. unsigned int i, k;
  425. struct intc_desc_int *d;
  426. d = alloc_bootmem(sizeof(*d));
  427. d->nr_reg = desc->mask_regs ? desc->nr_mask_regs * 2 : 0;
  428. d->nr_reg += desc->prio_regs ? desc->nr_prio_regs * 2 : 0;
  429. d->nr_reg += desc->sense_regs ? desc->nr_sense_regs : 0;
  430. d->reg = alloc_bootmem(d->nr_reg * sizeof(*d->reg));
  431. k = 0;
  432. if (desc->mask_regs) {
  433. for (i = 0; i < desc->nr_mask_regs; i++) {
  434. if (desc->mask_regs[i].set_reg)
  435. d->reg[k++] = desc->mask_regs[i].set_reg;
  436. if (desc->mask_regs[i].clr_reg)
  437. d->reg[k++] = desc->mask_regs[i].clr_reg;
  438. }
  439. }
  440. if (desc->prio_regs) {
  441. d->prio = alloc_bootmem(desc->nr_vectors * sizeof(*d->prio));
  442. for (i = 0; i < desc->nr_prio_regs; i++) {
  443. if (desc->prio_regs[i].set_reg)
  444. d->reg[k++] = desc->prio_regs[i].set_reg;
  445. if (desc->prio_regs[i].clr_reg)
  446. d->reg[k++] = desc->prio_regs[i].clr_reg;
  447. }
  448. }
  449. if (desc->sense_regs) {
  450. d->sense = alloc_bootmem(desc->nr_vectors * sizeof(*d->sense));
  451. for (i = 0; i < desc->nr_sense_regs; i++) {
  452. if (desc->sense_regs[i].reg)
  453. d->reg[k++] = desc->sense_regs[i].reg;
  454. }
  455. }
  456. BUG_ON(k > 256); /* _INTC_ADDR_E() and _INTC_ADDR_D() are 8 bits */
  457. d->chip.name = desc->name;
  458. d->chip.mask = intc_disable;
  459. d->chip.unmask = intc_enable;
  460. d->chip.mask_ack = intc_disable;
  461. d->chip.set_type = intc_set_sense;
  462. for (i = 0; i < desc->nr_vectors; i++) {
  463. struct intc_vect *vect = desc->vectors + i;
  464. intc_register_irq(desc, d, vect->enum_id, evt2irq(vect->vect));
  465. }
  466. }