intel_display.c 158 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474
  1. /*
  2. * Copyright © 2006-2007 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
  21. * DEALINGS IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eric Anholt <eric@anholt.net>
  25. */
  26. #include <linux/module.h>
  27. #include <linux/input.h>
  28. #include <linux/i2c.h>
  29. #include <linux/kernel.h>
  30. #include <linux/slab.h>
  31. #include "drmP.h"
  32. #include "intel_drv.h"
  33. #include "i915_drm.h"
  34. #include "i915_drv.h"
  35. #include "drm_dp_helper.h"
  36. #include "drm_crtc_helper.h"
  37. #define HAS_eDP (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
  38. bool intel_pipe_has_type (struct drm_crtc *crtc, int type);
  39. static void intel_update_watermarks(struct drm_device *dev);
  40. static void intel_increase_pllclock(struct drm_crtc *crtc, bool schedule);
  41. typedef struct {
  42. /* given values */
  43. int n;
  44. int m1, m2;
  45. int p1, p2;
  46. /* derived values */
  47. int dot;
  48. int vco;
  49. int m;
  50. int p;
  51. } intel_clock_t;
  52. typedef struct {
  53. int min, max;
  54. } intel_range_t;
  55. typedef struct {
  56. int dot_limit;
  57. int p2_slow, p2_fast;
  58. } intel_p2_t;
  59. #define INTEL_P2_NUM 2
  60. typedef struct intel_limit intel_limit_t;
  61. struct intel_limit {
  62. intel_range_t dot, vco, n, m, m1, m2, p, p1;
  63. intel_p2_t p2;
  64. bool (* find_pll)(const intel_limit_t *, struct drm_crtc *,
  65. int, int, intel_clock_t *);
  66. };
  67. #define I8XX_DOT_MIN 25000
  68. #define I8XX_DOT_MAX 350000
  69. #define I8XX_VCO_MIN 930000
  70. #define I8XX_VCO_MAX 1400000
  71. #define I8XX_N_MIN 3
  72. #define I8XX_N_MAX 16
  73. #define I8XX_M_MIN 96
  74. #define I8XX_M_MAX 140
  75. #define I8XX_M1_MIN 18
  76. #define I8XX_M1_MAX 26
  77. #define I8XX_M2_MIN 6
  78. #define I8XX_M2_MAX 16
  79. #define I8XX_P_MIN 4
  80. #define I8XX_P_MAX 128
  81. #define I8XX_P1_MIN 2
  82. #define I8XX_P1_MAX 33
  83. #define I8XX_P1_LVDS_MIN 1
  84. #define I8XX_P1_LVDS_MAX 6
  85. #define I8XX_P2_SLOW 4
  86. #define I8XX_P2_FAST 2
  87. #define I8XX_P2_LVDS_SLOW 14
  88. #define I8XX_P2_LVDS_FAST 7
  89. #define I8XX_P2_SLOW_LIMIT 165000
  90. #define I9XX_DOT_MIN 20000
  91. #define I9XX_DOT_MAX 400000
  92. #define I9XX_VCO_MIN 1400000
  93. #define I9XX_VCO_MAX 2800000
  94. #define PINEVIEW_VCO_MIN 1700000
  95. #define PINEVIEW_VCO_MAX 3500000
  96. #define I9XX_N_MIN 1
  97. #define I9XX_N_MAX 6
  98. /* Pineview's Ncounter is a ring counter */
  99. #define PINEVIEW_N_MIN 3
  100. #define PINEVIEW_N_MAX 6
  101. #define I9XX_M_MIN 70
  102. #define I9XX_M_MAX 120
  103. #define PINEVIEW_M_MIN 2
  104. #define PINEVIEW_M_MAX 256
  105. #define I9XX_M1_MIN 10
  106. #define I9XX_M1_MAX 22
  107. #define I9XX_M2_MIN 5
  108. #define I9XX_M2_MAX 9
  109. /* Pineview M1 is reserved, and must be 0 */
  110. #define PINEVIEW_M1_MIN 0
  111. #define PINEVIEW_M1_MAX 0
  112. #define PINEVIEW_M2_MIN 0
  113. #define PINEVIEW_M2_MAX 254
  114. #define I9XX_P_SDVO_DAC_MIN 5
  115. #define I9XX_P_SDVO_DAC_MAX 80
  116. #define I9XX_P_LVDS_MIN 7
  117. #define I9XX_P_LVDS_MAX 98
  118. #define PINEVIEW_P_LVDS_MIN 7
  119. #define PINEVIEW_P_LVDS_MAX 112
  120. #define I9XX_P1_MIN 1
  121. #define I9XX_P1_MAX 8
  122. #define I9XX_P2_SDVO_DAC_SLOW 10
  123. #define I9XX_P2_SDVO_DAC_FAST 5
  124. #define I9XX_P2_SDVO_DAC_SLOW_LIMIT 200000
  125. #define I9XX_P2_LVDS_SLOW 14
  126. #define I9XX_P2_LVDS_FAST 7
  127. #define I9XX_P2_LVDS_SLOW_LIMIT 112000
  128. /*The parameter is for SDVO on G4x platform*/
  129. #define G4X_DOT_SDVO_MIN 25000
  130. #define G4X_DOT_SDVO_MAX 270000
  131. #define G4X_VCO_MIN 1750000
  132. #define G4X_VCO_MAX 3500000
  133. #define G4X_N_SDVO_MIN 1
  134. #define G4X_N_SDVO_MAX 4
  135. #define G4X_M_SDVO_MIN 104
  136. #define G4X_M_SDVO_MAX 138
  137. #define G4X_M1_SDVO_MIN 17
  138. #define G4X_M1_SDVO_MAX 23
  139. #define G4X_M2_SDVO_MIN 5
  140. #define G4X_M2_SDVO_MAX 11
  141. #define G4X_P_SDVO_MIN 10
  142. #define G4X_P_SDVO_MAX 30
  143. #define G4X_P1_SDVO_MIN 1
  144. #define G4X_P1_SDVO_MAX 3
  145. #define G4X_P2_SDVO_SLOW 10
  146. #define G4X_P2_SDVO_FAST 10
  147. #define G4X_P2_SDVO_LIMIT 270000
  148. /*The parameter is for HDMI_DAC on G4x platform*/
  149. #define G4X_DOT_HDMI_DAC_MIN 22000
  150. #define G4X_DOT_HDMI_DAC_MAX 400000
  151. #define G4X_N_HDMI_DAC_MIN 1
  152. #define G4X_N_HDMI_DAC_MAX 4
  153. #define G4X_M_HDMI_DAC_MIN 104
  154. #define G4X_M_HDMI_DAC_MAX 138
  155. #define G4X_M1_HDMI_DAC_MIN 16
  156. #define G4X_M1_HDMI_DAC_MAX 23
  157. #define G4X_M2_HDMI_DAC_MIN 5
  158. #define G4X_M2_HDMI_DAC_MAX 11
  159. #define G4X_P_HDMI_DAC_MIN 5
  160. #define G4X_P_HDMI_DAC_MAX 80
  161. #define G4X_P1_HDMI_DAC_MIN 1
  162. #define G4X_P1_HDMI_DAC_MAX 8
  163. #define G4X_P2_HDMI_DAC_SLOW 10
  164. #define G4X_P2_HDMI_DAC_FAST 5
  165. #define G4X_P2_HDMI_DAC_LIMIT 165000
  166. /*The parameter is for SINGLE_CHANNEL_LVDS on G4x platform*/
  167. #define G4X_DOT_SINGLE_CHANNEL_LVDS_MIN 20000
  168. #define G4X_DOT_SINGLE_CHANNEL_LVDS_MAX 115000
  169. #define G4X_N_SINGLE_CHANNEL_LVDS_MIN 1
  170. #define G4X_N_SINGLE_CHANNEL_LVDS_MAX 3
  171. #define G4X_M_SINGLE_CHANNEL_LVDS_MIN 104
  172. #define G4X_M_SINGLE_CHANNEL_LVDS_MAX 138
  173. #define G4X_M1_SINGLE_CHANNEL_LVDS_MIN 17
  174. #define G4X_M1_SINGLE_CHANNEL_LVDS_MAX 23
  175. #define G4X_M2_SINGLE_CHANNEL_LVDS_MIN 5
  176. #define G4X_M2_SINGLE_CHANNEL_LVDS_MAX 11
  177. #define G4X_P_SINGLE_CHANNEL_LVDS_MIN 28
  178. #define G4X_P_SINGLE_CHANNEL_LVDS_MAX 112
  179. #define G4X_P1_SINGLE_CHANNEL_LVDS_MIN 2
  180. #define G4X_P1_SINGLE_CHANNEL_LVDS_MAX 8
  181. #define G4X_P2_SINGLE_CHANNEL_LVDS_SLOW 14
  182. #define G4X_P2_SINGLE_CHANNEL_LVDS_FAST 14
  183. #define G4X_P2_SINGLE_CHANNEL_LVDS_LIMIT 0
  184. /*The parameter is for DUAL_CHANNEL_LVDS on G4x platform*/
  185. #define G4X_DOT_DUAL_CHANNEL_LVDS_MIN 80000
  186. #define G4X_DOT_DUAL_CHANNEL_LVDS_MAX 224000
  187. #define G4X_N_DUAL_CHANNEL_LVDS_MIN 1
  188. #define G4X_N_DUAL_CHANNEL_LVDS_MAX 3
  189. #define G4X_M_DUAL_CHANNEL_LVDS_MIN 104
  190. #define G4X_M_DUAL_CHANNEL_LVDS_MAX 138
  191. #define G4X_M1_DUAL_CHANNEL_LVDS_MIN 17
  192. #define G4X_M1_DUAL_CHANNEL_LVDS_MAX 23
  193. #define G4X_M2_DUAL_CHANNEL_LVDS_MIN 5
  194. #define G4X_M2_DUAL_CHANNEL_LVDS_MAX 11
  195. #define G4X_P_DUAL_CHANNEL_LVDS_MIN 14
  196. #define G4X_P_DUAL_CHANNEL_LVDS_MAX 42
  197. #define G4X_P1_DUAL_CHANNEL_LVDS_MIN 2
  198. #define G4X_P1_DUAL_CHANNEL_LVDS_MAX 6
  199. #define G4X_P2_DUAL_CHANNEL_LVDS_SLOW 7
  200. #define G4X_P2_DUAL_CHANNEL_LVDS_FAST 7
  201. #define G4X_P2_DUAL_CHANNEL_LVDS_LIMIT 0
  202. /*The parameter is for DISPLAY PORT on G4x platform*/
  203. #define G4X_DOT_DISPLAY_PORT_MIN 161670
  204. #define G4X_DOT_DISPLAY_PORT_MAX 227000
  205. #define G4X_N_DISPLAY_PORT_MIN 1
  206. #define G4X_N_DISPLAY_PORT_MAX 2
  207. #define G4X_M_DISPLAY_PORT_MIN 97
  208. #define G4X_M_DISPLAY_PORT_MAX 108
  209. #define G4X_M1_DISPLAY_PORT_MIN 0x10
  210. #define G4X_M1_DISPLAY_PORT_MAX 0x12
  211. #define G4X_M2_DISPLAY_PORT_MIN 0x05
  212. #define G4X_M2_DISPLAY_PORT_MAX 0x06
  213. #define G4X_P_DISPLAY_PORT_MIN 10
  214. #define G4X_P_DISPLAY_PORT_MAX 20
  215. #define G4X_P1_DISPLAY_PORT_MIN 1
  216. #define G4X_P1_DISPLAY_PORT_MAX 2
  217. #define G4X_P2_DISPLAY_PORT_SLOW 10
  218. #define G4X_P2_DISPLAY_PORT_FAST 10
  219. #define G4X_P2_DISPLAY_PORT_LIMIT 0
  220. /* Ironlake / Sandybridge */
  221. /* as we calculate clock using (register_value + 2) for
  222. N/M1/M2, so here the range value for them is (actual_value-2).
  223. */
  224. #define IRONLAKE_DOT_MIN 25000
  225. #define IRONLAKE_DOT_MAX 350000
  226. #define IRONLAKE_VCO_MIN 1760000
  227. #define IRONLAKE_VCO_MAX 3510000
  228. #define IRONLAKE_M1_MIN 12
  229. #define IRONLAKE_M1_MAX 22
  230. #define IRONLAKE_M2_MIN 5
  231. #define IRONLAKE_M2_MAX 9
  232. #define IRONLAKE_P2_DOT_LIMIT 225000 /* 225Mhz */
  233. /* We have parameter ranges for different type of outputs. */
  234. /* DAC & HDMI Refclk 120Mhz */
  235. #define IRONLAKE_DAC_N_MIN 1
  236. #define IRONLAKE_DAC_N_MAX 5
  237. #define IRONLAKE_DAC_M_MIN 79
  238. #define IRONLAKE_DAC_M_MAX 127
  239. #define IRONLAKE_DAC_P_MIN 5
  240. #define IRONLAKE_DAC_P_MAX 80
  241. #define IRONLAKE_DAC_P1_MIN 1
  242. #define IRONLAKE_DAC_P1_MAX 8
  243. #define IRONLAKE_DAC_P2_SLOW 10
  244. #define IRONLAKE_DAC_P2_FAST 5
  245. /* LVDS single-channel 120Mhz refclk */
  246. #define IRONLAKE_LVDS_S_N_MIN 1
  247. #define IRONLAKE_LVDS_S_N_MAX 3
  248. #define IRONLAKE_LVDS_S_M_MIN 79
  249. #define IRONLAKE_LVDS_S_M_MAX 118
  250. #define IRONLAKE_LVDS_S_P_MIN 28
  251. #define IRONLAKE_LVDS_S_P_MAX 112
  252. #define IRONLAKE_LVDS_S_P1_MIN 2
  253. #define IRONLAKE_LVDS_S_P1_MAX 8
  254. #define IRONLAKE_LVDS_S_P2_SLOW 14
  255. #define IRONLAKE_LVDS_S_P2_FAST 14
  256. /* LVDS dual-channel 120Mhz refclk */
  257. #define IRONLAKE_LVDS_D_N_MIN 1
  258. #define IRONLAKE_LVDS_D_N_MAX 3
  259. #define IRONLAKE_LVDS_D_M_MIN 79
  260. #define IRONLAKE_LVDS_D_M_MAX 127
  261. #define IRONLAKE_LVDS_D_P_MIN 14
  262. #define IRONLAKE_LVDS_D_P_MAX 56
  263. #define IRONLAKE_LVDS_D_P1_MIN 2
  264. #define IRONLAKE_LVDS_D_P1_MAX 8
  265. #define IRONLAKE_LVDS_D_P2_SLOW 7
  266. #define IRONLAKE_LVDS_D_P2_FAST 7
  267. /* LVDS single-channel 100Mhz refclk */
  268. #define IRONLAKE_LVDS_S_SSC_N_MIN 1
  269. #define IRONLAKE_LVDS_S_SSC_N_MAX 2
  270. #define IRONLAKE_LVDS_S_SSC_M_MIN 79
  271. #define IRONLAKE_LVDS_S_SSC_M_MAX 126
  272. #define IRONLAKE_LVDS_S_SSC_P_MIN 28
  273. #define IRONLAKE_LVDS_S_SSC_P_MAX 112
  274. #define IRONLAKE_LVDS_S_SSC_P1_MIN 2
  275. #define IRONLAKE_LVDS_S_SSC_P1_MAX 8
  276. #define IRONLAKE_LVDS_S_SSC_P2_SLOW 14
  277. #define IRONLAKE_LVDS_S_SSC_P2_FAST 14
  278. /* LVDS dual-channel 100Mhz refclk */
  279. #define IRONLAKE_LVDS_D_SSC_N_MIN 1
  280. #define IRONLAKE_LVDS_D_SSC_N_MAX 3
  281. #define IRONLAKE_LVDS_D_SSC_M_MIN 79
  282. #define IRONLAKE_LVDS_D_SSC_M_MAX 126
  283. #define IRONLAKE_LVDS_D_SSC_P_MIN 14
  284. #define IRONLAKE_LVDS_D_SSC_P_MAX 42
  285. #define IRONLAKE_LVDS_D_SSC_P1_MIN 2
  286. #define IRONLAKE_LVDS_D_SSC_P1_MAX 6
  287. #define IRONLAKE_LVDS_D_SSC_P2_SLOW 7
  288. #define IRONLAKE_LVDS_D_SSC_P2_FAST 7
  289. /* DisplayPort */
  290. #define IRONLAKE_DP_N_MIN 1
  291. #define IRONLAKE_DP_N_MAX 2
  292. #define IRONLAKE_DP_M_MIN 81
  293. #define IRONLAKE_DP_M_MAX 90
  294. #define IRONLAKE_DP_P_MIN 10
  295. #define IRONLAKE_DP_P_MAX 20
  296. #define IRONLAKE_DP_P2_FAST 10
  297. #define IRONLAKE_DP_P2_SLOW 10
  298. #define IRONLAKE_DP_P2_LIMIT 0
  299. #define IRONLAKE_DP_P1_MIN 1
  300. #define IRONLAKE_DP_P1_MAX 2
  301. static bool
  302. intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
  303. int target, int refclk, intel_clock_t *best_clock);
  304. static bool
  305. intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
  306. int target, int refclk, intel_clock_t *best_clock);
  307. static bool
  308. intel_find_pll_g4x_dp(const intel_limit_t *, struct drm_crtc *crtc,
  309. int target, int refclk, intel_clock_t *best_clock);
  310. static bool
  311. intel_find_pll_ironlake_dp(const intel_limit_t *, struct drm_crtc *crtc,
  312. int target, int refclk, intel_clock_t *best_clock);
  313. static const intel_limit_t intel_limits_i8xx_dvo = {
  314. .dot = { .min = I8XX_DOT_MIN, .max = I8XX_DOT_MAX },
  315. .vco = { .min = I8XX_VCO_MIN, .max = I8XX_VCO_MAX },
  316. .n = { .min = I8XX_N_MIN, .max = I8XX_N_MAX },
  317. .m = { .min = I8XX_M_MIN, .max = I8XX_M_MAX },
  318. .m1 = { .min = I8XX_M1_MIN, .max = I8XX_M1_MAX },
  319. .m2 = { .min = I8XX_M2_MIN, .max = I8XX_M2_MAX },
  320. .p = { .min = I8XX_P_MIN, .max = I8XX_P_MAX },
  321. .p1 = { .min = I8XX_P1_MIN, .max = I8XX_P1_MAX },
  322. .p2 = { .dot_limit = I8XX_P2_SLOW_LIMIT,
  323. .p2_slow = I8XX_P2_SLOW, .p2_fast = I8XX_P2_FAST },
  324. .find_pll = intel_find_best_PLL,
  325. };
  326. static const intel_limit_t intel_limits_i8xx_lvds = {
  327. .dot = { .min = I8XX_DOT_MIN, .max = I8XX_DOT_MAX },
  328. .vco = { .min = I8XX_VCO_MIN, .max = I8XX_VCO_MAX },
  329. .n = { .min = I8XX_N_MIN, .max = I8XX_N_MAX },
  330. .m = { .min = I8XX_M_MIN, .max = I8XX_M_MAX },
  331. .m1 = { .min = I8XX_M1_MIN, .max = I8XX_M1_MAX },
  332. .m2 = { .min = I8XX_M2_MIN, .max = I8XX_M2_MAX },
  333. .p = { .min = I8XX_P_MIN, .max = I8XX_P_MAX },
  334. .p1 = { .min = I8XX_P1_LVDS_MIN, .max = I8XX_P1_LVDS_MAX },
  335. .p2 = { .dot_limit = I8XX_P2_SLOW_LIMIT,
  336. .p2_slow = I8XX_P2_LVDS_SLOW, .p2_fast = I8XX_P2_LVDS_FAST },
  337. .find_pll = intel_find_best_PLL,
  338. };
  339. static const intel_limit_t intel_limits_i9xx_sdvo = {
  340. .dot = { .min = I9XX_DOT_MIN, .max = I9XX_DOT_MAX },
  341. .vco = { .min = I9XX_VCO_MIN, .max = I9XX_VCO_MAX },
  342. .n = { .min = I9XX_N_MIN, .max = I9XX_N_MAX },
  343. .m = { .min = I9XX_M_MIN, .max = I9XX_M_MAX },
  344. .m1 = { .min = I9XX_M1_MIN, .max = I9XX_M1_MAX },
  345. .m2 = { .min = I9XX_M2_MIN, .max = I9XX_M2_MAX },
  346. .p = { .min = I9XX_P_SDVO_DAC_MIN, .max = I9XX_P_SDVO_DAC_MAX },
  347. .p1 = { .min = I9XX_P1_MIN, .max = I9XX_P1_MAX },
  348. .p2 = { .dot_limit = I9XX_P2_SDVO_DAC_SLOW_LIMIT,
  349. .p2_slow = I9XX_P2_SDVO_DAC_SLOW, .p2_fast = I9XX_P2_SDVO_DAC_FAST },
  350. .find_pll = intel_find_best_PLL,
  351. };
  352. static const intel_limit_t intel_limits_i9xx_lvds = {
  353. .dot = { .min = I9XX_DOT_MIN, .max = I9XX_DOT_MAX },
  354. .vco = { .min = I9XX_VCO_MIN, .max = I9XX_VCO_MAX },
  355. .n = { .min = I9XX_N_MIN, .max = I9XX_N_MAX },
  356. .m = { .min = I9XX_M_MIN, .max = I9XX_M_MAX },
  357. .m1 = { .min = I9XX_M1_MIN, .max = I9XX_M1_MAX },
  358. .m2 = { .min = I9XX_M2_MIN, .max = I9XX_M2_MAX },
  359. .p = { .min = I9XX_P_LVDS_MIN, .max = I9XX_P_LVDS_MAX },
  360. .p1 = { .min = I9XX_P1_MIN, .max = I9XX_P1_MAX },
  361. /* The single-channel range is 25-112Mhz, and dual-channel
  362. * is 80-224Mhz. Prefer single channel as much as possible.
  363. */
  364. .p2 = { .dot_limit = I9XX_P2_LVDS_SLOW_LIMIT,
  365. .p2_slow = I9XX_P2_LVDS_SLOW, .p2_fast = I9XX_P2_LVDS_FAST },
  366. .find_pll = intel_find_best_PLL,
  367. };
  368. /* below parameter and function is for G4X Chipset Family*/
  369. static const intel_limit_t intel_limits_g4x_sdvo = {
  370. .dot = { .min = G4X_DOT_SDVO_MIN, .max = G4X_DOT_SDVO_MAX },
  371. .vco = { .min = G4X_VCO_MIN, .max = G4X_VCO_MAX},
  372. .n = { .min = G4X_N_SDVO_MIN, .max = G4X_N_SDVO_MAX },
  373. .m = { .min = G4X_M_SDVO_MIN, .max = G4X_M_SDVO_MAX },
  374. .m1 = { .min = G4X_M1_SDVO_MIN, .max = G4X_M1_SDVO_MAX },
  375. .m2 = { .min = G4X_M2_SDVO_MIN, .max = G4X_M2_SDVO_MAX },
  376. .p = { .min = G4X_P_SDVO_MIN, .max = G4X_P_SDVO_MAX },
  377. .p1 = { .min = G4X_P1_SDVO_MIN, .max = G4X_P1_SDVO_MAX},
  378. .p2 = { .dot_limit = G4X_P2_SDVO_LIMIT,
  379. .p2_slow = G4X_P2_SDVO_SLOW,
  380. .p2_fast = G4X_P2_SDVO_FAST
  381. },
  382. .find_pll = intel_g4x_find_best_PLL,
  383. };
  384. static const intel_limit_t intel_limits_g4x_hdmi = {
  385. .dot = { .min = G4X_DOT_HDMI_DAC_MIN, .max = G4X_DOT_HDMI_DAC_MAX },
  386. .vco = { .min = G4X_VCO_MIN, .max = G4X_VCO_MAX},
  387. .n = { .min = G4X_N_HDMI_DAC_MIN, .max = G4X_N_HDMI_DAC_MAX },
  388. .m = { .min = G4X_M_HDMI_DAC_MIN, .max = G4X_M_HDMI_DAC_MAX },
  389. .m1 = { .min = G4X_M1_HDMI_DAC_MIN, .max = G4X_M1_HDMI_DAC_MAX },
  390. .m2 = { .min = G4X_M2_HDMI_DAC_MIN, .max = G4X_M2_HDMI_DAC_MAX },
  391. .p = { .min = G4X_P_HDMI_DAC_MIN, .max = G4X_P_HDMI_DAC_MAX },
  392. .p1 = { .min = G4X_P1_HDMI_DAC_MIN, .max = G4X_P1_HDMI_DAC_MAX},
  393. .p2 = { .dot_limit = G4X_P2_HDMI_DAC_LIMIT,
  394. .p2_slow = G4X_P2_HDMI_DAC_SLOW,
  395. .p2_fast = G4X_P2_HDMI_DAC_FAST
  396. },
  397. .find_pll = intel_g4x_find_best_PLL,
  398. };
  399. static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
  400. .dot = { .min = G4X_DOT_SINGLE_CHANNEL_LVDS_MIN,
  401. .max = G4X_DOT_SINGLE_CHANNEL_LVDS_MAX },
  402. .vco = { .min = G4X_VCO_MIN,
  403. .max = G4X_VCO_MAX },
  404. .n = { .min = G4X_N_SINGLE_CHANNEL_LVDS_MIN,
  405. .max = G4X_N_SINGLE_CHANNEL_LVDS_MAX },
  406. .m = { .min = G4X_M_SINGLE_CHANNEL_LVDS_MIN,
  407. .max = G4X_M_SINGLE_CHANNEL_LVDS_MAX },
  408. .m1 = { .min = G4X_M1_SINGLE_CHANNEL_LVDS_MIN,
  409. .max = G4X_M1_SINGLE_CHANNEL_LVDS_MAX },
  410. .m2 = { .min = G4X_M2_SINGLE_CHANNEL_LVDS_MIN,
  411. .max = G4X_M2_SINGLE_CHANNEL_LVDS_MAX },
  412. .p = { .min = G4X_P_SINGLE_CHANNEL_LVDS_MIN,
  413. .max = G4X_P_SINGLE_CHANNEL_LVDS_MAX },
  414. .p1 = { .min = G4X_P1_SINGLE_CHANNEL_LVDS_MIN,
  415. .max = G4X_P1_SINGLE_CHANNEL_LVDS_MAX },
  416. .p2 = { .dot_limit = G4X_P2_SINGLE_CHANNEL_LVDS_LIMIT,
  417. .p2_slow = G4X_P2_SINGLE_CHANNEL_LVDS_SLOW,
  418. .p2_fast = G4X_P2_SINGLE_CHANNEL_LVDS_FAST
  419. },
  420. .find_pll = intel_g4x_find_best_PLL,
  421. };
  422. static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
  423. .dot = { .min = G4X_DOT_DUAL_CHANNEL_LVDS_MIN,
  424. .max = G4X_DOT_DUAL_CHANNEL_LVDS_MAX },
  425. .vco = { .min = G4X_VCO_MIN,
  426. .max = G4X_VCO_MAX },
  427. .n = { .min = G4X_N_DUAL_CHANNEL_LVDS_MIN,
  428. .max = G4X_N_DUAL_CHANNEL_LVDS_MAX },
  429. .m = { .min = G4X_M_DUAL_CHANNEL_LVDS_MIN,
  430. .max = G4X_M_DUAL_CHANNEL_LVDS_MAX },
  431. .m1 = { .min = G4X_M1_DUAL_CHANNEL_LVDS_MIN,
  432. .max = G4X_M1_DUAL_CHANNEL_LVDS_MAX },
  433. .m2 = { .min = G4X_M2_DUAL_CHANNEL_LVDS_MIN,
  434. .max = G4X_M2_DUAL_CHANNEL_LVDS_MAX },
  435. .p = { .min = G4X_P_DUAL_CHANNEL_LVDS_MIN,
  436. .max = G4X_P_DUAL_CHANNEL_LVDS_MAX },
  437. .p1 = { .min = G4X_P1_DUAL_CHANNEL_LVDS_MIN,
  438. .max = G4X_P1_DUAL_CHANNEL_LVDS_MAX },
  439. .p2 = { .dot_limit = G4X_P2_DUAL_CHANNEL_LVDS_LIMIT,
  440. .p2_slow = G4X_P2_DUAL_CHANNEL_LVDS_SLOW,
  441. .p2_fast = G4X_P2_DUAL_CHANNEL_LVDS_FAST
  442. },
  443. .find_pll = intel_g4x_find_best_PLL,
  444. };
  445. static const intel_limit_t intel_limits_g4x_display_port = {
  446. .dot = { .min = G4X_DOT_DISPLAY_PORT_MIN,
  447. .max = G4X_DOT_DISPLAY_PORT_MAX },
  448. .vco = { .min = G4X_VCO_MIN,
  449. .max = G4X_VCO_MAX},
  450. .n = { .min = G4X_N_DISPLAY_PORT_MIN,
  451. .max = G4X_N_DISPLAY_PORT_MAX },
  452. .m = { .min = G4X_M_DISPLAY_PORT_MIN,
  453. .max = G4X_M_DISPLAY_PORT_MAX },
  454. .m1 = { .min = G4X_M1_DISPLAY_PORT_MIN,
  455. .max = G4X_M1_DISPLAY_PORT_MAX },
  456. .m2 = { .min = G4X_M2_DISPLAY_PORT_MIN,
  457. .max = G4X_M2_DISPLAY_PORT_MAX },
  458. .p = { .min = G4X_P_DISPLAY_PORT_MIN,
  459. .max = G4X_P_DISPLAY_PORT_MAX },
  460. .p1 = { .min = G4X_P1_DISPLAY_PORT_MIN,
  461. .max = G4X_P1_DISPLAY_PORT_MAX},
  462. .p2 = { .dot_limit = G4X_P2_DISPLAY_PORT_LIMIT,
  463. .p2_slow = G4X_P2_DISPLAY_PORT_SLOW,
  464. .p2_fast = G4X_P2_DISPLAY_PORT_FAST },
  465. .find_pll = intel_find_pll_g4x_dp,
  466. };
  467. static const intel_limit_t intel_limits_pineview_sdvo = {
  468. .dot = { .min = I9XX_DOT_MIN, .max = I9XX_DOT_MAX},
  469. .vco = { .min = PINEVIEW_VCO_MIN, .max = PINEVIEW_VCO_MAX },
  470. .n = { .min = PINEVIEW_N_MIN, .max = PINEVIEW_N_MAX },
  471. .m = { .min = PINEVIEW_M_MIN, .max = PINEVIEW_M_MAX },
  472. .m1 = { .min = PINEVIEW_M1_MIN, .max = PINEVIEW_M1_MAX },
  473. .m2 = { .min = PINEVIEW_M2_MIN, .max = PINEVIEW_M2_MAX },
  474. .p = { .min = I9XX_P_SDVO_DAC_MIN, .max = I9XX_P_SDVO_DAC_MAX },
  475. .p1 = { .min = I9XX_P1_MIN, .max = I9XX_P1_MAX },
  476. .p2 = { .dot_limit = I9XX_P2_SDVO_DAC_SLOW_LIMIT,
  477. .p2_slow = I9XX_P2_SDVO_DAC_SLOW, .p2_fast = I9XX_P2_SDVO_DAC_FAST },
  478. .find_pll = intel_find_best_PLL,
  479. };
  480. static const intel_limit_t intel_limits_pineview_lvds = {
  481. .dot = { .min = I9XX_DOT_MIN, .max = I9XX_DOT_MAX },
  482. .vco = { .min = PINEVIEW_VCO_MIN, .max = PINEVIEW_VCO_MAX },
  483. .n = { .min = PINEVIEW_N_MIN, .max = PINEVIEW_N_MAX },
  484. .m = { .min = PINEVIEW_M_MIN, .max = PINEVIEW_M_MAX },
  485. .m1 = { .min = PINEVIEW_M1_MIN, .max = PINEVIEW_M1_MAX },
  486. .m2 = { .min = PINEVIEW_M2_MIN, .max = PINEVIEW_M2_MAX },
  487. .p = { .min = PINEVIEW_P_LVDS_MIN, .max = PINEVIEW_P_LVDS_MAX },
  488. .p1 = { .min = I9XX_P1_MIN, .max = I9XX_P1_MAX },
  489. /* Pineview only supports single-channel mode. */
  490. .p2 = { .dot_limit = I9XX_P2_LVDS_SLOW_LIMIT,
  491. .p2_slow = I9XX_P2_LVDS_SLOW, .p2_fast = I9XX_P2_LVDS_SLOW },
  492. .find_pll = intel_find_best_PLL,
  493. };
  494. static const intel_limit_t intel_limits_ironlake_dac = {
  495. .dot = { .min = IRONLAKE_DOT_MIN, .max = IRONLAKE_DOT_MAX },
  496. .vco = { .min = IRONLAKE_VCO_MIN, .max = IRONLAKE_VCO_MAX },
  497. .n = { .min = IRONLAKE_DAC_N_MIN, .max = IRONLAKE_DAC_N_MAX },
  498. .m = { .min = IRONLAKE_DAC_M_MIN, .max = IRONLAKE_DAC_M_MAX },
  499. .m1 = { .min = IRONLAKE_M1_MIN, .max = IRONLAKE_M1_MAX },
  500. .m2 = { .min = IRONLAKE_M2_MIN, .max = IRONLAKE_M2_MAX },
  501. .p = { .min = IRONLAKE_DAC_P_MIN, .max = IRONLAKE_DAC_P_MAX },
  502. .p1 = { .min = IRONLAKE_DAC_P1_MIN, .max = IRONLAKE_DAC_P1_MAX },
  503. .p2 = { .dot_limit = IRONLAKE_P2_DOT_LIMIT,
  504. .p2_slow = IRONLAKE_DAC_P2_SLOW,
  505. .p2_fast = IRONLAKE_DAC_P2_FAST },
  506. .find_pll = intel_g4x_find_best_PLL,
  507. };
  508. static const intel_limit_t intel_limits_ironlake_single_lvds = {
  509. .dot = { .min = IRONLAKE_DOT_MIN, .max = IRONLAKE_DOT_MAX },
  510. .vco = { .min = IRONLAKE_VCO_MIN, .max = IRONLAKE_VCO_MAX },
  511. .n = { .min = IRONLAKE_LVDS_S_N_MIN, .max = IRONLAKE_LVDS_S_N_MAX },
  512. .m = { .min = IRONLAKE_LVDS_S_M_MIN, .max = IRONLAKE_LVDS_S_M_MAX },
  513. .m1 = { .min = IRONLAKE_M1_MIN, .max = IRONLAKE_M1_MAX },
  514. .m2 = { .min = IRONLAKE_M2_MIN, .max = IRONLAKE_M2_MAX },
  515. .p = { .min = IRONLAKE_LVDS_S_P_MIN, .max = IRONLAKE_LVDS_S_P_MAX },
  516. .p1 = { .min = IRONLAKE_LVDS_S_P1_MIN, .max = IRONLAKE_LVDS_S_P1_MAX },
  517. .p2 = { .dot_limit = IRONLAKE_P2_DOT_LIMIT,
  518. .p2_slow = IRONLAKE_LVDS_S_P2_SLOW,
  519. .p2_fast = IRONLAKE_LVDS_S_P2_FAST },
  520. .find_pll = intel_g4x_find_best_PLL,
  521. };
  522. static const intel_limit_t intel_limits_ironlake_dual_lvds = {
  523. .dot = { .min = IRONLAKE_DOT_MIN, .max = IRONLAKE_DOT_MAX },
  524. .vco = { .min = IRONLAKE_VCO_MIN, .max = IRONLAKE_VCO_MAX },
  525. .n = { .min = IRONLAKE_LVDS_D_N_MIN, .max = IRONLAKE_LVDS_D_N_MAX },
  526. .m = { .min = IRONLAKE_LVDS_D_M_MIN, .max = IRONLAKE_LVDS_D_M_MAX },
  527. .m1 = { .min = IRONLAKE_M1_MIN, .max = IRONLAKE_M1_MAX },
  528. .m2 = { .min = IRONLAKE_M2_MIN, .max = IRONLAKE_M2_MAX },
  529. .p = { .min = IRONLAKE_LVDS_D_P_MIN, .max = IRONLAKE_LVDS_D_P_MAX },
  530. .p1 = { .min = IRONLAKE_LVDS_D_P1_MIN, .max = IRONLAKE_LVDS_D_P1_MAX },
  531. .p2 = { .dot_limit = IRONLAKE_P2_DOT_LIMIT,
  532. .p2_slow = IRONLAKE_LVDS_D_P2_SLOW,
  533. .p2_fast = IRONLAKE_LVDS_D_P2_FAST },
  534. .find_pll = intel_g4x_find_best_PLL,
  535. };
  536. static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
  537. .dot = { .min = IRONLAKE_DOT_MIN, .max = IRONLAKE_DOT_MAX },
  538. .vco = { .min = IRONLAKE_VCO_MIN, .max = IRONLAKE_VCO_MAX },
  539. .n = { .min = IRONLAKE_LVDS_S_SSC_N_MIN, .max = IRONLAKE_LVDS_S_SSC_N_MAX },
  540. .m = { .min = IRONLAKE_LVDS_S_SSC_M_MIN, .max = IRONLAKE_LVDS_S_SSC_M_MAX },
  541. .m1 = { .min = IRONLAKE_M1_MIN, .max = IRONLAKE_M1_MAX },
  542. .m2 = { .min = IRONLAKE_M2_MIN, .max = IRONLAKE_M2_MAX },
  543. .p = { .min = IRONLAKE_LVDS_S_SSC_P_MIN, .max = IRONLAKE_LVDS_S_SSC_P_MAX },
  544. .p1 = { .min = IRONLAKE_LVDS_S_SSC_P1_MIN,.max = IRONLAKE_LVDS_S_SSC_P1_MAX },
  545. .p2 = { .dot_limit = IRONLAKE_P2_DOT_LIMIT,
  546. .p2_slow = IRONLAKE_LVDS_S_SSC_P2_SLOW,
  547. .p2_fast = IRONLAKE_LVDS_S_SSC_P2_FAST },
  548. .find_pll = intel_g4x_find_best_PLL,
  549. };
  550. static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
  551. .dot = { .min = IRONLAKE_DOT_MIN, .max = IRONLAKE_DOT_MAX },
  552. .vco = { .min = IRONLAKE_VCO_MIN, .max = IRONLAKE_VCO_MAX },
  553. .n = { .min = IRONLAKE_LVDS_D_SSC_N_MIN, .max = IRONLAKE_LVDS_D_SSC_N_MAX },
  554. .m = { .min = IRONLAKE_LVDS_D_SSC_M_MIN, .max = IRONLAKE_LVDS_D_SSC_M_MAX },
  555. .m1 = { .min = IRONLAKE_M1_MIN, .max = IRONLAKE_M1_MAX },
  556. .m2 = { .min = IRONLAKE_M2_MIN, .max = IRONLAKE_M2_MAX },
  557. .p = { .min = IRONLAKE_LVDS_D_SSC_P_MIN, .max = IRONLAKE_LVDS_D_SSC_P_MAX },
  558. .p1 = { .min = IRONLAKE_LVDS_D_SSC_P1_MIN,.max = IRONLAKE_LVDS_D_SSC_P1_MAX },
  559. .p2 = { .dot_limit = IRONLAKE_P2_DOT_LIMIT,
  560. .p2_slow = IRONLAKE_LVDS_D_SSC_P2_SLOW,
  561. .p2_fast = IRONLAKE_LVDS_D_SSC_P2_FAST },
  562. .find_pll = intel_g4x_find_best_PLL,
  563. };
  564. static const intel_limit_t intel_limits_ironlake_display_port = {
  565. .dot = { .min = IRONLAKE_DOT_MIN,
  566. .max = IRONLAKE_DOT_MAX },
  567. .vco = { .min = IRONLAKE_VCO_MIN,
  568. .max = IRONLAKE_VCO_MAX},
  569. .n = { .min = IRONLAKE_DP_N_MIN,
  570. .max = IRONLAKE_DP_N_MAX },
  571. .m = { .min = IRONLAKE_DP_M_MIN,
  572. .max = IRONLAKE_DP_M_MAX },
  573. .m1 = { .min = IRONLAKE_M1_MIN,
  574. .max = IRONLAKE_M1_MAX },
  575. .m2 = { .min = IRONLAKE_M2_MIN,
  576. .max = IRONLAKE_M2_MAX },
  577. .p = { .min = IRONLAKE_DP_P_MIN,
  578. .max = IRONLAKE_DP_P_MAX },
  579. .p1 = { .min = IRONLAKE_DP_P1_MIN,
  580. .max = IRONLAKE_DP_P1_MAX},
  581. .p2 = { .dot_limit = IRONLAKE_DP_P2_LIMIT,
  582. .p2_slow = IRONLAKE_DP_P2_SLOW,
  583. .p2_fast = IRONLAKE_DP_P2_FAST },
  584. .find_pll = intel_find_pll_ironlake_dp,
  585. };
  586. static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc)
  587. {
  588. struct drm_device *dev = crtc->dev;
  589. struct drm_i915_private *dev_priv = dev->dev_private;
  590. const intel_limit_t *limit;
  591. int refclk = 120;
  592. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  593. if (dev_priv->lvds_use_ssc && dev_priv->lvds_ssc_freq == 100)
  594. refclk = 100;
  595. if ((I915_READ(PCH_LVDS) & LVDS_CLKB_POWER_MASK) ==
  596. LVDS_CLKB_POWER_UP) {
  597. /* LVDS dual channel */
  598. if (refclk == 100)
  599. limit = &intel_limits_ironlake_dual_lvds_100m;
  600. else
  601. limit = &intel_limits_ironlake_dual_lvds;
  602. } else {
  603. if (refclk == 100)
  604. limit = &intel_limits_ironlake_single_lvds_100m;
  605. else
  606. limit = &intel_limits_ironlake_single_lvds;
  607. }
  608. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
  609. HAS_eDP)
  610. limit = &intel_limits_ironlake_display_port;
  611. else
  612. limit = &intel_limits_ironlake_dac;
  613. return limit;
  614. }
  615. static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
  616. {
  617. struct drm_device *dev = crtc->dev;
  618. struct drm_i915_private *dev_priv = dev->dev_private;
  619. const intel_limit_t *limit;
  620. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  621. if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
  622. LVDS_CLKB_POWER_UP)
  623. /* LVDS with dual channel */
  624. limit = &intel_limits_g4x_dual_channel_lvds;
  625. else
  626. /* LVDS with dual channel */
  627. limit = &intel_limits_g4x_single_channel_lvds;
  628. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
  629. intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
  630. limit = &intel_limits_g4x_hdmi;
  631. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
  632. limit = &intel_limits_g4x_sdvo;
  633. } else if (intel_pipe_has_type (crtc, INTEL_OUTPUT_DISPLAYPORT)) {
  634. limit = &intel_limits_g4x_display_port;
  635. } else /* The option is for other outputs */
  636. limit = &intel_limits_i9xx_sdvo;
  637. return limit;
  638. }
  639. static const intel_limit_t *intel_limit(struct drm_crtc *crtc)
  640. {
  641. struct drm_device *dev = crtc->dev;
  642. const intel_limit_t *limit;
  643. if (HAS_PCH_SPLIT(dev))
  644. limit = intel_ironlake_limit(crtc);
  645. else if (IS_G4X(dev)) {
  646. limit = intel_g4x_limit(crtc);
  647. } else if (IS_I9XX(dev) && !IS_PINEVIEW(dev)) {
  648. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
  649. limit = &intel_limits_i9xx_lvds;
  650. else
  651. limit = &intel_limits_i9xx_sdvo;
  652. } else if (IS_PINEVIEW(dev)) {
  653. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
  654. limit = &intel_limits_pineview_lvds;
  655. else
  656. limit = &intel_limits_pineview_sdvo;
  657. } else {
  658. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
  659. limit = &intel_limits_i8xx_lvds;
  660. else
  661. limit = &intel_limits_i8xx_dvo;
  662. }
  663. return limit;
  664. }
  665. /* m1 is reserved as 0 in Pineview, n is a ring counter */
  666. static void pineview_clock(int refclk, intel_clock_t *clock)
  667. {
  668. clock->m = clock->m2 + 2;
  669. clock->p = clock->p1 * clock->p2;
  670. clock->vco = refclk * clock->m / clock->n;
  671. clock->dot = clock->vco / clock->p;
  672. }
  673. static void intel_clock(struct drm_device *dev, int refclk, intel_clock_t *clock)
  674. {
  675. if (IS_PINEVIEW(dev)) {
  676. pineview_clock(refclk, clock);
  677. return;
  678. }
  679. clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2);
  680. clock->p = clock->p1 * clock->p2;
  681. clock->vco = refclk * clock->m / (clock->n + 2);
  682. clock->dot = clock->vco / clock->p;
  683. }
  684. /**
  685. * Returns whether any output on the specified pipe is of the specified type
  686. */
  687. bool intel_pipe_has_type (struct drm_crtc *crtc, int type)
  688. {
  689. struct drm_device *dev = crtc->dev;
  690. struct drm_mode_config *mode_config = &dev->mode_config;
  691. struct drm_encoder *l_entry;
  692. list_for_each_entry(l_entry, &mode_config->encoder_list, head) {
  693. if (l_entry && l_entry->crtc == crtc) {
  694. struct intel_encoder *intel_encoder = enc_to_intel_encoder(l_entry);
  695. if (intel_encoder->type == type)
  696. return true;
  697. }
  698. }
  699. return false;
  700. }
  701. #define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
  702. /**
  703. * Returns whether the given set of divisors are valid for a given refclk with
  704. * the given connectors.
  705. */
  706. static bool intel_PLL_is_valid(struct drm_crtc *crtc, intel_clock_t *clock)
  707. {
  708. const intel_limit_t *limit = intel_limit (crtc);
  709. struct drm_device *dev = crtc->dev;
  710. if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
  711. INTELPllInvalid ("p1 out of range\n");
  712. if (clock->p < limit->p.min || limit->p.max < clock->p)
  713. INTELPllInvalid ("p out of range\n");
  714. if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
  715. INTELPllInvalid ("m2 out of range\n");
  716. if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
  717. INTELPllInvalid ("m1 out of range\n");
  718. if (clock->m1 <= clock->m2 && !IS_PINEVIEW(dev))
  719. INTELPllInvalid ("m1 <= m2\n");
  720. if (clock->m < limit->m.min || limit->m.max < clock->m)
  721. INTELPllInvalid ("m out of range\n");
  722. if (clock->n < limit->n.min || limit->n.max < clock->n)
  723. INTELPllInvalid ("n out of range\n");
  724. if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
  725. INTELPllInvalid ("vco out of range\n");
  726. /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
  727. * connector, etc., rather than just a single range.
  728. */
  729. if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
  730. INTELPllInvalid ("dot out of range\n");
  731. return true;
  732. }
  733. static bool
  734. intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
  735. int target, int refclk, intel_clock_t *best_clock)
  736. {
  737. struct drm_device *dev = crtc->dev;
  738. struct drm_i915_private *dev_priv = dev->dev_private;
  739. intel_clock_t clock;
  740. int err = target;
  741. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
  742. (I915_READ(LVDS)) != 0) {
  743. /*
  744. * For LVDS, if the panel is on, just rely on its current
  745. * settings for dual-channel. We haven't figured out how to
  746. * reliably set up different single/dual channel state, if we
  747. * even can.
  748. */
  749. if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
  750. LVDS_CLKB_POWER_UP)
  751. clock.p2 = limit->p2.p2_fast;
  752. else
  753. clock.p2 = limit->p2.p2_slow;
  754. } else {
  755. if (target < limit->p2.dot_limit)
  756. clock.p2 = limit->p2.p2_slow;
  757. else
  758. clock.p2 = limit->p2.p2_fast;
  759. }
  760. memset (best_clock, 0, sizeof (*best_clock));
  761. for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
  762. clock.m1++) {
  763. for (clock.m2 = limit->m2.min;
  764. clock.m2 <= limit->m2.max; clock.m2++) {
  765. /* m1 is always 0 in Pineview */
  766. if (clock.m2 >= clock.m1 && !IS_PINEVIEW(dev))
  767. break;
  768. for (clock.n = limit->n.min;
  769. clock.n <= limit->n.max; clock.n++) {
  770. for (clock.p1 = limit->p1.min;
  771. clock.p1 <= limit->p1.max; clock.p1++) {
  772. int this_err;
  773. intel_clock(dev, refclk, &clock);
  774. if (!intel_PLL_is_valid(crtc, &clock))
  775. continue;
  776. this_err = abs(clock.dot - target);
  777. if (this_err < err) {
  778. *best_clock = clock;
  779. err = this_err;
  780. }
  781. }
  782. }
  783. }
  784. }
  785. return (err != target);
  786. }
  787. static bool
  788. intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
  789. int target, int refclk, intel_clock_t *best_clock)
  790. {
  791. struct drm_device *dev = crtc->dev;
  792. struct drm_i915_private *dev_priv = dev->dev_private;
  793. intel_clock_t clock;
  794. int max_n;
  795. bool found;
  796. /* approximately equals target * 0.00488 */
  797. int err_most = (target >> 8) + (target >> 10);
  798. found = false;
  799. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  800. int lvds_reg;
  801. if (HAS_PCH_SPLIT(dev))
  802. lvds_reg = PCH_LVDS;
  803. else
  804. lvds_reg = LVDS;
  805. if ((I915_READ(lvds_reg) & LVDS_CLKB_POWER_MASK) ==
  806. LVDS_CLKB_POWER_UP)
  807. clock.p2 = limit->p2.p2_fast;
  808. else
  809. clock.p2 = limit->p2.p2_slow;
  810. } else {
  811. if (target < limit->p2.dot_limit)
  812. clock.p2 = limit->p2.p2_slow;
  813. else
  814. clock.p2 = limit->p2.p2_fast;
  815. }
  816. memset(best_clock, 0, sizeof(*best_clock));
  817. max_n = limit->n.max;
  818. /* based on hardware requirement, prefer smaller n to precision */
  819. for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
  820. /* based on hardware requirement, prefere larger m1,m2 */
  821. for (clock.m1 = limit->m1.max;
  822. clock.m1 >= limit->m1.min; clock.m1--) {
  823. for (clock.m2 = limit->m2.max;
  824. clock.m2 >= limit->m2.min; clock.m2--) {
  825. for (clock.p1 = limit->p1.max;
  826. clock.p1 >= limit->p1.min; clock.p1--) {
  827. int this_err;
  828. intel_clock(dev, refclk, &clock);
  829. if (!intel_PLL_is_valid(crtc, &clock))
  830. continue;
  831. this_err = abs(clock.dot - target) ;
  832. if (this_err < err_most) {
  833. *best_clock = clock;
  834. err_most = this_err;
  835. max_n = clock.n;
  836. found = true;
  837. }
  838. }
  839. }
  840. }
  841. }
  842. return found;
  843. }
  844. static bool
  845. intel_find_pll_ironlake_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
  846. int target, int refclk, intel_clock_t *best_clock)
  847. {
  848. struct drm_device *dev = crtc->dev;
  849. intel_clock_t clock;
  850. /* return directly when it is eDP */
  851. if (HAS_eDP)
  852. return true;
  853. if (target < 200000) {
  854. clock.n = 1;
  855. clock.p1 = 2;
  856. clock.p2 = 10;
  857. clock.m1 = 12;
  858. clock.m2 = 9;
  859. } else {
  860. clock.n = 2;
  861. clock.p1 = 1;
  862. clock.p2 = 10;
  863. clock.m1 = 14;
  864. clock.m2 = 8;
  865. }
  866. intel_clock(dev, refclk, &clock);
  867. memcpy(best_clock, &clock, sizeof(intel_clock_t));
  868. return true;
  869. }
  870. /* DisplayPort has only two frequencies, 162MHz and 270MHz */
  871. static bool
  872. intel_find_pll_g4x_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
  873. int target, int refclk, intel_clock_t *best_clock)
  874. {
  875. intel_clock_t clock;
  876. if (target < 200000) {
  877. clock.p1 = 2;
  878. clock.p2 = 10;
  879. clock.n = 2;
  880. clock.m1 = 23;
  881. clock.m2 = 8;
  882. } else {
  883. clock.p1 = 1;
  884. clock.p2 = 10;
  885. clock.n = 1;
  886. clock.m1 = 14;
  887. clock.m2 = 2;
  888. }
  889. clock.m = 5 * (clock.m1 + 2) + (clock.m2 + 2);
  890. clock.p = (clock.p1 * clock.p2);
  891. clock.dot = 96000 * clock.m / (clock.n + 2) / clock.p;
  892. clock.vco = 0;
  893. memcpy(best_clock, &clock, sizeof(intel_clock_t));
  894. return true;
  895. }
  896. void
  897. intel_wait_for_vblank(struct drm_device *dev)
  898. {
  899. /* Wait for 20ms, i.e. one cycle at 50hz. */
  900. msleep(20);
  901. }
  902. /* Parameters have changed, update FBC info */
  903. static void i8xx_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
  904. {
  905. struct drm_device *dev = crtc->dev;
  906. struct drm_i915_private *dev_priv = dev->dev_private;
  907. struct drm_framebuffer *fb = crtc->fb;
  908. struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
  909. struct drm_i915_gem_object *obj_priv = to_intel_bo(intel_fb->obj);
  910. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  911. int plane, i;
  912. u32 fbc_ctl, fbc_ctl2;
  913. dev_priv->cfb_pitch = dev_priv->cfb_size / FBC_LL_SIZE;
  914. if (fb->pitch < dev_priv->cfb_pitch)
  915. dev_priv->cfb_pitch = fb->pitch;
  916. /* FBC_CTL wants 64B units */
  917. dev_priv->cfb_pitch = (dev_priv->cfb_pitch / 64) - 1;
  918. dev_priv->cfb_fence = obj_priv->fence_reg;
  919. dev_priv->cfb_plane = intel_crtc->plane;
  920. plane = dev_priv->cfb_plane == 0 ? FBC_CTL_PLANEA : FBC_CTL_PLANEB;
  921. /* Clear old tags */
  922. for (i = 0; i < (FBC_LL_SIZE / 32) + 1; i++)
  923. I915_WRITE(FBC_TAG + (i * 4), 0);
  924. /* Set it up... */
  925. fbc_ctl2 = FBC_CTL_FENCE_DBL | FBC_CTL_IDLE_IMM | plane;
  926. if (obj_priv->tiling_mode != I915_TILING_NONE)
  927. fbc_ctl2 |= FBC_CTL_CPU_FENCE;
  928. I915_WRITE(FBC_CONTROL2, fbc_ctl2);
  929. I915_WRITE(FBC_FENCE_OFF, crtc->y);
  930. /* enable it... */
  931. fbc_ctl = FBC_CTL_EN | FBC_CTL_PERIODIC;
  932. if (IS_I945GM(dev))
  933. fbc_ctl |= FBC_CTL_C3_IDLE; /* 945 needs special SR handling */
  934. fbc_ctl |= (dev_priv->cfb_pitch & 0xff) << FBC_CTL_STRIDE_SHIFT;
  935. fbc_ctl |= (interval & 0x2fff) << FBC_CTL_INTERVAL_SHIFT;
  936. if (obj_priv->tiling_mode != I915_TILING_NONE)
  937. fbc_ctl |= dev_priv->cfb_fence;
  938. I915_WRITE(FBC_CONTROL, fbc_ctl);
  939. DRM_DEBUG_KMS("enabled FBC, pitch %ld, yoff %d, plane %d, ",
  940. dev_priv->cfb_pitch, crtc->y, dev_priv->cfb_plane);
  941. }
  942. void i8xx_disable_fbc(struct drm_device *dev)
  943. {
  944. struct drm_i915_private *dev_priv = dev->dev_private;
  945. unsigned long timeout = jiffies + msecs_to_jiffies(1);
  946. u32 fbc_ctl;
  947. if (!I915_HAS_FBC(dev))
  948. return;
  949. if (!(I915_READ(FBC_CONTROL) & FBC_CTL_EN))
  950. return; /* Already off, just return */
  951. /* Disable compression */
  952. fbc_ctl = I915_READ(FBC_CONTROL);
  953. fbc_ctl &= ~FBC_CTL_EN;
  954. I915_WRITE(FBC_CONTROL, fbc_ctl);
  955. /* Wait for compressing bit to clear */
  956. while (I915_READ(FBC_STATUS) & FBC_STAT_COMPRESSING) {
  957. if (time_after(jiffies, timeout)) {
  958. DRM_DEBUG_DRIVER("FBC idle timed out\n");
  959. break;
  960. }
  961. ; /* do nothing */
  962. }
  963. intel_wait_for_vblank(dev);
  964. DRM_DEBUG_KMS("disabled FBC\n");
  965. }
  966. static bool i8xx_fbc_enabled(struct drm_device *dev)
  967. {
  968. struct drm_i915_private *dev_priv = dev->dev_private;
  969. return I915_READ(FBC_CONTROL) & FBC_CTL_EN;
  970. }
  971. static void g4x_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
  972. {
  973. struct drm_device *dev = crtc->dev;
  974. struct drm_i915_private *dev_priv = dev->dev_private;
  975. struct drm_framebuffer *fb = crtc->fb;
  976. struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
  977. struct drm_i915_gem_object *obj_priv = to_intel_bo(intel_fb->obj);
  978. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  979. int plane = (intel_crtc->plane == 0 ? DPFC_CTL_PLANEA :
  980. DPFC_CTL_PLANEB);
  981. unsigned long stall_watermark = 200;
  982. u32 dpfc_ctl;
  983. dev_priv->cfb_pitch = (dev_priv->cfb_pitch / 64) - 1;
  984. dev_priv->cfb_fence = obj_priv->fence_reg;
  985. dev_priv->cfb_plane = intel_crtc->plane;
  986. dpfc_ctl = plane | DPFC_SR_EN | DPFC_CTL_LIMIT_1X;
  987. if (obj_priv->tiling_mode != I915_TILING_NONE) {
  988. dpfc_ctl |= DPFC_CTL_FENCE_EN | dev_priv->cfb_fence;
  989. I915_WRITE(DPFC_CHICKEN, DPFC_HT_MODIFY);
  990. } else {
  991. I915_WRITE(DPFC_CHICKEN, ~DPFC_HT_MODIFY);
  992. }
  993. I915_WRITE(DPFC_CONTROL, dpfc_ctl);
  994. I915_WRITE(DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
  995. (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
  996. (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
  997. I915_WRITE(DPFC_FENCE_YOFF, crtc->y);
  998. /* enable it... */
  999. I915_WRITE(DPFC_CONTROL, I915_READ(DPFC_CONTROL) | DPFC_CTL_EN);
  1000. DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc->plane);
  1001. }
  1002. void g4x_disable_fbc(struct drm_device *dev)
  1003. {
  1004. struct drm_i915_private *dev_priv = dev->dev_private;
  1005. u32 dpfc_ctl;
  1006. /* Disable compression */
  1007. dpfc_ctl = I915_READ(DPFC_CONTROL);
  1008. dpfc_ctl &= ~DPFC_CTL_EN;
  1009. I915_WRITE(DPFC_CONTROL, dpfc_ctl);
  1010. intel_wait_for_vblank(dev);
  1011. DRM_DEBUG_KMS("disabled FBC\n");
  1012. }
  1013. static bool g4x_fbc_enabled(struct drm_device *dev)
  1014. {
  1015. struct drm_i915_private *dev_priv = dev->dev_private;
  1016. return I915_READ(DPFC_CONTROL) & DPFC_CTL_EN;
  1017. }
  1018. bool intel_fbc_enabled(struct drm_device *dev)
  1019. {
  1020. struct drm_i915_private *dev_priv = dev->dev_private;
  1021. if (!dev_priv->display.fbc_enabled)
  1022. return false;
  1023. return dev_priv->display.fbc_enabled(dev);
  1024. }
  1025. void intel_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
  1026. {
  1027. struct drm_i915_private *dev_priv = crtc->dev->dev_private;
  1028. if (!dev_priv->display.enable_fbc)
  1029. return;
  1030. dev_priv->display.enable_fbc(crtc, interval);
  1031. }
  1032. void intel_disable_fbc(struct drm_device *dev)
  1033. {
  1034. struct drm_i915_private *dev_priv = dev->dev_private;
  1035. if (!dev_priv->display.disable_fbc)
  1036. return;
  1037. dev_priv->display.disable_fbc(dev);
  1038. }
  1039. /**
  1040. * intel_update_fbc - enable/disable FBC as needed
  1041. * @crtc: CRTC to point the compressor at
  1042. * @mode: mode in use
  1043. *
  1044. * Set up the framebuffer compression hardware at mode set time. We
  1045. * enable it if possible:
  1046. * - plane A only (on pre-965)
  1047. * - no pixel mulitply/line duplication
  1048. * - no alpha buffer discard
  1049. * - no dual wide
  1050. * - framebuffer <= 2048 in width, 1536 in height
  1051. *
  1052. * We can't assume that any compression will take place (worst case),
  1053. * so the compressed buffer has to be the same size as the uncompressed
  1054. * one. It also must reside (along with the line length buffer) in
  1055. * stolen memory.
  1056. *
  1057. * We need to enable/disable FBC on a global basis.
  1058. */
  1059. static void intel_update_fbc(struct drm_crtc *crtc,
  1060. struct drm_display_mode *mode)
  1061. {
  1062. struct drm_device *dev = crtc->dev;
  1063. struct drm_i915_private *dev_priv = dev->dev_private;
  1064. struct drm_framebuffer *fb = crtc->fb;
  1065. struct intel_framebuffer *intel_fb;
  1066. struct drm_i915_gem_object *obj_priv;
  1067. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1068. int plane = intel_crtc->plane;
  1069. if (!i915_powersave)
  1070. return;
  1071. if (!I915_HAS_FBC(dev))
  1072. return;
  1073. if (!crtc->fb)
  1074. return;
  1075. intel_fb = to_intel_framebuffer(fb);
  1076. obj_priv = to_intel_bo(intel_fb->obj);
  1077. /*
  1078. * If FBC is already on, we just have to verify that we can
  1079. * keep it that way...
  1080. * Need to disable if:
  1081. * - changing FBC params (stride, fence, mode)
  1082. * - new fb is too large to fit in compressed buffer
  1083. * - going to an unsupported config (interlace, pixel multiply, etc.)
  1084. */
  1085. if (intel_fb->obj->size > dev_priv->cfb_size) {
  1086. DRM_DEBUG_KMS("framebuffer too large, disabling "
  1087. "compression\n");
  1088. dev_priv->no_fbc_reason = FBC_STOLEN_TOO_SMALL;
  1089. goto out_disable;
  1090. }
  1091. if ((mode->flags & DRM_MODE_FLAG_INTERLACE) ||
  1092. (mode->flags & DRM_MODE_FLAG_DBLSCAN)) {
  1093. DRM_DEBUG_KMS("mode incompatible with compression, "
  1094. "disabling\n");
  1095. dev_priv->no_fbc_reason = FBC_UNSUPPORTED_MODE;
  1096. goto out_disable;
  1097. }
  1098. if ((mode->hdisplay > 2048) ||
  1099. (mode->vdisplay > 1536)) {
  1100. DRM_DEBUG_KMS("mode too large for compression, disabling\n");
  1101. dev_priv->no_fbc_reason = FBC_MODE_TOO_LARGE;
  1102. goto out_disable;
  1103. }
  1104. if ((IS_I915GM(dev) || IS_I945GM(dev)) && plane != 0) {
  1105. DRM_DEBUG_KMS("plane not 0, disabling compression\n");
  1106. dev_priv->no_fbc_reason = FBC_BAD_PLANE;
  1107. goto out_disable;
  1108. }
  1109. if (obj_priv->tiling_mode != I915_TILING_X) {
  1110. DRM_DEBUG_KMS("framebuffer not tiled, disabling compression\n");
  1111. dev_priv->no_fbc_reason = FBC_NOT_TILED;
  1112. goto out_disable;
  1113. }
  1114. if (intel_fbc_enabled(dev)) {
  1115. /* We can re-enable it in this case, but need to update pitch */
  1116. if ((fb->pitch > dev_priv->cfb_pitch) ||
  1117. (obj_priv->fence_reg != dev_priv->cfb_fence) ||
  1118. (plane != dev_priv->cfb_plane))
  1119. intel_disable_fbc(dev);
  1120. }
  1121. /* Now try to turn it back on if possible */
  1122. if (!intel_fbc_enabled(dev))
  1123. intel_enable_fbc(crtc, 500);
  1124. return;
  1125. out_disable:
  1126. DRM_DEBUG_KMS("unsupported config, disabling FBC\n");
  1127. /* Multiple disables should be harmless */
  1128. if (intel_fbc_enabled(dev))
  1129. intel_disable_fbc(dev);
  1130. }
  1131. static int
  1132. intel_pin_and_fence_fb_obj(struct drm_device *dev, struct drm_gem_object *obj)
  1133. {
  1134. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1135. u32 alignment;
  1136. int ret;
  1137. switch (obj_priv->tiling_mode) {
  1138. case I915_TILING_NONE:
  1139. alignment = 64 * 1024;
  1140. break;
  1141. case I915_TILING_X:
  1142. /* pin() will align the object as required by fence */
  1143. alignment = 0;
  1144. break;
  1145. case I915_TILING_Y:
  1146. /* FIXME: Is this true? */
  1147. DRM_ERROR("Y tiled not allowed for scan out buffers\n");
  1148. return -EINVAL;
  1149. default:
  1150. BUG();
  1151. }
  1152. ret = i915_gem_object_pin(obj, alignment);
  1153. if (ret != 0)
  1154. return ret;
  1155. /* Install a fence for tiled scan-out. Pre-i965 always needs a
  1156. * fence, whereas 965+ only requires a fence if using
  1157. * framebuffer compression. For simplicity, we always install
  1158. * a fence as the cost is not that onerous.
  1159. */
  1160. if (obj_priv->fence_reg == I915_FENCE_REG_NONE &&
  1161. obj_priv->tiling_mode != I915_TILING_NONE) {
  1162. ret = i915_gem_object_get_fence_reg(obj);
  1163. if (ret != 0) {
  1164. i915_gem_object_unpin(obj);
  1165. return ret;
  1166. }
  1167. }
  1168. return 0;
  1169. }
  1170. static int
  1171. intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
  1172. struct drm_framebuffer *old_fb)
  1173. {
  1174. struct drm_device *dev = crtc->dev;
  1175. struct drm_i915_private *dev_priv = dev->dev_private;
  1176. struct drm_i915_master_private *master_priv;
  1177. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1178. struct intel_framebuffer *intel_fb;
  1179. struct drm_i915_gem_object *obj_priv;
  1180. struct drm_gem_object *obj;
  1181. int pipe = intel_crtc->pipe;
  1182. int plane = intel_crtc->plane;
  1183. unsigned long Start, Offset;
  1184. int dspbase = (plane == 0 ? DSPAADDR : DSPBADDR);
  1185. int dspsurf = (plane == 0 ? DSPASURF : DSPBSURF);
  1186. int dspstride = (plane == 0) ? DSPASTRIDE : DSPBSTRIDE;
  1187. int dsptileoff = (plane == 0 ? DSPATILEOFF : DSPBTILEOFF);
  1188. int dspcntr_reg = (plane == 0) ? DSPACNTR : DSPBCNTR;
  1189. u32 dspcntr;
  1190. int ret;
  1191. /* no fb bound */
  1192. if (!crtc->fb) {
  1193. DRM_DEBUG_KMS("No FB bound\n");
  1194. return 0;
  1195. }
  1196. switch (plane) {
  1197. case 0:
  1198. case 1:
  1199. break;
  1200. default:
  1201. DRM_ERROR("Can't update plane %d in SAREA\n", plane);
  1202. return -EINVAL;
  1203. }
  1204. intel_fb = to_intel_framebuffer(crtc->fb);
  1205. obj = intel_fb->obj;
  1206. obj_priv = to_intel_bo(obj);
  1207. mutex_lock(&dev->struct_mutex);
  1208. ret = intel_pin_and_fence_fb_obj(dev, obj);
  1209. if (ret != 0) {
  1210. mutex_unlock(&dev->struct_mutex);
  1211. return ret;
  1212. }
  1213. ret = i915_gem_object_set_to_display_plane(obj);
  1214. if (ret != 0) {
  1215. i915_gem_object_unpin(obj);
  1216. mutex_unlock(&dev->struct_mutex);
  1217. return ret;
  1218. }
  1219. dspcntr = I915_READ(dspcntr_reg);
  1220. /* Mask out pixel format bits in case we change it */
  1221. dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
  1222. switch (crtc->fb->bits_per_pixel) {
  1223. case 8:
  1224. dspcntr |= DISPPLANE_8BPP;
  1225. break;
  1226. case 16:
  1227. if (crtc->fb->depth == 15)
  1228. dspcntr |= DISPPLANE_15_16BPP;
  1229. else
  1230. dspcntr |= DISPPLANE_16BPP;
  1231. break;
  1232. case 24:
  1233. case 32:
  1234. if (crtc->fb->depth == 30)
  1235. dspcntr |= DISPPLANE_32BPP_30BIT_NO_ALPHA;
  1236. else
  1237. dspcntr |= DISPPLANE_32BPP_NO_ALPHA;
  1238. break;
  1239. default:
  1240. DRM_ERROR("Unknown color depth\n");
  1241. i915_gem_object_unpin(obj);
  1242. mutex_unlock(&dev->struct_mutex);
  1243. return -EINVAL;
  1244. }
  1245. if (IS_I965G(dev)) {
  1246. if (obj_priv->tiling_mode != I915_TILING_NONE)
  1247. dspcntr |= DISPPLANE_TILED;
  1248. else
  1249. dspcntr &= ~DISPPLANE_TILED;
  1250. }
  1251. if (HAS_PCH_SPLIT(dev))
  1252. /* must disable */
  1253. dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
  1254. I915_WRITE(dspcntr_reg, dspcntr);
  1255. Start = obj_priv->gtt_offset;
  1256. Offset = y * crtc->fb->pitch + x * (crtc->fb->bits_per_pixel / 8);
  1257. DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d\n", Start, Offset, x, y);
  1258. I915_WRITE(dspstride, crtc->fb->pitch);
  1259. if (IS_I965G(dev)) {
  1260. I915_WRITE(dspbase, Offset);
  1261. I915_READ(dspbase);
  1262. I915_WRITE(dspsurf, Start);
  1263. I915_READ(dspsurf);
  1264. I915_WRITE(dsptileoff, (y << 16) | x);
  1265. } else {
  1266. I915_WRITE(dspbase, Start + Offset);
  1267. I915_READ(dspbase);
  1268. }
  1269. if ((IS_I965G(dev) || plane == 0))
  1270. intel_update_fbc(crtc, &crtc->mode);
  1271. intel_wait_for_vblank(dev);
  1272. if (old_fb) {
  1273. intel_fb = to_intel_framebuffer(old_fb);
  1274. obj_priv = to_intel_bo(intel_fb->obj);
  1275. i915_gem_object_unpin(intel_fb->obj);
  1276. }
  1277. intel_increase_pllclock(crtc, true);
  1278. mutex_unlock(&dev->struct_mutex);
  1279. if (!dev->primary->master)
  1280. return 0;
  1281. master_priv = dev->primary->master->driver_priv;
  1282. if (!master_priv->sarea_priv)
  1283. return 0;
  1284. if (pipe) {
  1285. master_priv->sarea_priv->pipeB_x = x;
  1286. master_priv->sarea_priv->pipeB_y = y;
  1287. } else {
  1288. master_priv->sarea_priv->pipeA_x = x;
  1289. master_priv->sarea_priv->pipeA_y = y;
  1290. }
  1291. return 0;
  1292. }
  1293. /* Disable the VGA plane that we never use */
  1294. static void i915_disable_vga (struct drm_device *dev)
  1295. {
  1296. struct drm_i915_private *dev_priv = dev->dev_private;
  1297. u8 sr1;
  1298. u32 vga_reg;
  1299. if (HAS_PCH_SPLIT(dev))
  1300. vga_reg = CPU_VGACNTRL;
  1301. else
  1302. vga_reg = VGACNTRL;
  1303. if (I915_READ(vga_reg) & VGA_DISP_DISABLE)
  1304. return;
  1305. I915_WRITE8(VGA_SR_INDEX, 1);
  1306. sr1 = I915_READ8(VGA_SR_DATA);
  1307. I915_WRITE8(VGA_SR_DATA, sr1 | (1 << 5));
  1308. udelay(100);
  1309. I915_WRITE(vga_reg, VGA_DISP_DISABLE);
  1310. }
  1311. static void ironlake_disable_pll_edp (struct drm_crtc *crtc)
  1312. {
  1313. struct drm_device *dev = crtc->dev;
  1314. struct drm_i915_private *dev_priv = dev->dev_private;
  1315. u32 dpa_ctl;
  1316. DRM_DEBUG_KMS("\n");
  1317. dpa_ctl = I915_READ(DP_A);
  1318. dpa_ctl &= ~DP_PLL_ENABLE;
  1319. I915_WRITE(DP_A, dpa_ctl);
  1320. }
  1321. static void ironlake_enable_pll_edp (struct drm_crtc *crtc)
  1322. {
  1323. struct drm_device *dev = crtc->dev;
  1324. struct drm_i915_private *dev_priv = dev->dev_private;
  1325. u32 dpa_ctl;
  1326. dpa_ctl = I915_READ(DP_A);
  1327. dpa_ctl |= DP_PLL_ENABLE;
  1328. I915_WRITE(DP_A, dpa_ctl);
  1329. udelay(200);
  1330. }
  1331. static void ironlake_set_pll_edp (struct drm_crtc *crtc, int clock)
  1332. {
  1333. struct drm_device *dev = crtc->dev;
  1334. struct drm_i915_private *dev_priv = dev->dev_private;
  1335. u32 dpa_ctl;
  1336. DRM_DEBUG_KMS("eDP PLL enable for clock %d\n", clock);
  1337. dpa_ctl = I915_READ(DP_A);
  1338. dpa_ctl &= ~DP_PLL_FREQ_MASK;
  1339. if (clock < 200000) {
  1340. u32 temp;
  1341. dpa_ctl |= DP_PLL_FREQ_160MHZ;
  1342. /* workaround for 160Mhz:
  1343. 1) program 0x4600c bits 15:0 = 0x8124
  1344. 2) program 0x46010 bit 0 = 1
  1345. 3) program 0x46034 bit 24 = 1
  1346. 4) program 0x64000 bit 14 = 1
  1347. */
  1348. temp = I915_READ(0x4600c);
  1349. temp &= 0xffff0000;
  1350. I915_WRITE(0x4600c, temp | 0x8124);
  1351. temp = I915_READ(0x46010);
  1352. I915_WRITE(0x46010, temp | 1);
  1353. temp = I915_READ(0x46034);
  1354. I915_WRITE(0x46034, temp | (1 << 24));
  1355. } else {
  1356. dpa_ctl |= DP_PLL_FREQ_270MHZ;
  1357. }
  1358. I915_WRITE(DP_A, dpa_ctl);
  1359. udelay(500);
  1360. }
  1361. /* The FDI link training functions for ILK/Ibexpeak. */
  1362. static void ironlake_fdi_link_train(struct drm_crtc *crtc)
  1363. {
  1364. struct drm_device *dev = crtc->dev;
  1365. struct drm_i915_private *dev_priv = dev->dev_private;
  1366. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1367. int pipe = intel_crtc->pipe;
  1368. int fdi_tx_reg = (pipe == 0) ? FDI_TXA_CTL : FDI_TXB_CTL;
  1369. int fdi_rx_reg = (pipe == 0) ? FDI_RXA_CTL : FDI_RXB_CTL;
  1370. int fdi_rx_iir_reg = (pipe == 0) ? FDI_RXA_IIR : FDI_RXB_IIR;
  1371. int fdi_rx_imr_reg = (pipe == 0) ? FDI_RXA_IMR : FDI_RXB_IMR;
  1372. u32 temp, tries = 0;
  1373. /* enable CPU FDI TX and PCH FDI RX */
  1374. temp = I915_READ(fdi_tx_reg);
  1375. temp |= FDI_TX_ENABLE;
  1376. temp &= ~(7 << 19);
  1377. temp |= (intel_crtc->fdi_lanes - 1) << 19;
  1378. temp &= ~FDI_LINK_TRAIN_NONE;
  1379. temp |= FDI_LINK_TRAIN_PATTERN_1;
  1380. I915_WRITE(fdi_tx_reg, temp);
  1381. I915_READ(fdi_tx_reg);
  1382. temp = I915_READ(fdi_rx_reg);
  1383. temp &= ~FDI_LINK_TRAIN_NONE;
  1384. temp |= FDI_LINK_TRAIN_PATTERN_1;
  1385. I915_WRITE(fdi_rx_reg, temp | FDI_RX_ENABLE);
  1386. I915_READ(fdi_rx_reg);
  1387. udelay(150);
  1388. /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
  1389. for train result */
  1390. temp = I915_READ(fdi_rx_imr_reg);
  1391. temp &= ~FDI_RX_SYMBOL_LOCK;
  1392. temp &= ~FDI_RX_BIT_LOCK;
  1393. I915_WRITE(fdi_rx_imr_reg, temp);
  1394. I915_READ(fdi_rx_imr_reg);
  1395. udelay(150);
  1396. for (;;) {
  1397. temp = I915_READ(fdi_rx_iir_reg);
  1398. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  1399. if ((temp & FDI_RX_BIT_LOCK)) {
  1400. DRM_DEBUG_KMS("FDI train 1 done.\n");
  1401. I915_WRITE(fdi_rx_iir_reg,
  1402. temp | FDI_RX_BIT_LOCK);
  1403. break;
  1404. }
  1405. tries++;
  1406. if (tries > 5) {
  1407. DRM_DEBUG_KMS("FDI train 1 fail!\n");
  1408. break;
  1409. }
  1410. }
  1411. /* Train 2 */
  1412. temp = I915_READ(fdi_tx_reg);
  1413. temp &= ~FDI_LINK_TRAIN_NONE;
  1414. temp |= FDI_LINK_TRAIN_PATTERN_2;
  1415. I915_WRITE(fdi_tx_reg, temp);
  1416. temp = I915_READ(fdi_rx_reg);
  1417. temp &= ~FDI_LINK_TRAIN_NONE;
  1418. temp |= FDI_LINK_TRAIN_PATTERN_2;
  1419. I915_WRITE(fdi_rx_reg, temp);
  1420. udelay(150);
  1421. tries = 0;
  1422. for (;;) {
  1423. temp = I915_READ(fdi_rx_iir_reg);
  1424. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  1425. if (temp & FDI_RX_SYMBOL_LOCK) {
  1426. I915_WRITE(fdi_rx_iir_reg,
  1427. temp | FDI_RX_SYMBOL_LOCK);
  1428. DRM_DEBUG_KMS("FDI train 2 done.\n");
  1429. break;
  1430. }
  1431. tries++;
  1432. if (tries > 5) {
  1433. DRM_DEBUG_KMS("FDI train 2 fail!\n");
  1434. break;
  1435. }
  1436. }
  1437. DRM_DEBUG_KMS("FDI train done\n");
  1438. }
  1439. static int snb_b_fdi_train_param [] = {
  1440. FDI_LINK_TRAIN_400MV_0DB_SNB_B,
  1441. FDI_LINK_TRAIN_400MV_6DB_SNB_B,
  1442. FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
  1443. FDI_LINK_TRAIN_800MV_0DB_SNB_B,
  1444. };
  1445. /* The FDI link training functions for SNB/Cougarpoint. */
  1446. static void gen6_fdi_link_train(struct drm_crtc *crtc)
  1447. {
  1448. struct drm_device *dev = crtc->dev;
  1449. struct drm_i915_private *dev_priv = dev->dev_private;
  1450. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1451. int pipe = intel_crtc->pipe;
  1452. int fdi_tx_reg = (pipe == 0) ? FDI_TXA_CTL : FDI_TXB_CTL;
  1453. int fdi_rx_reg = (pipe == 0) ? FDI_RXA_CTL : FDI_RXB_CTL;
  1454. int fdi_rx_iir_reg = (pipe == 0) ? FDI_RXA_IIR : FDI_RXB_IIR;
  1455. int fdi_rx_imr_reg = (pipe == 0) ? FDI_RXA_IMR : FDI_RXB_IMR;
  1456. u32 temp, i;
  1457. /* enable CPU FDI TX and PCH FDI RX */
  1458. temp = I915_READ(fdi_tx_reg);
  1459. temp |= FDI_TX_ENABLE;
  1460. temp &= ~(7 << 19);
  1461. temp |= (intel_crtc->fdi_lanes - 1) << 19;
  1462. temp &= ~FDI_LINK_TRAIN_NONE;
  1463. temp |= FDI_LINK_TRAIN_PATTERN_1;
  1464. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  1465. /* SNB-B */
  1466. temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
  1467. I915_WRITE(fdi_tx_reg, temp);
  1468. I915_READ(fdi_tx_reg);
  1469. temp = I915_READ(fdi_rx_reg);
  1470. if (HAS_PCH_CPT(dev)) {
  1471. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  1472. temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
  1473. } else {
  1474. temp &= ~FDI_LINK_TRAIN_NONE;
  1475. temp |= FDI_LINK_TRAIN_PATTERN_1;
  1476. }
  1477. I915_WRITE(fdi_rx_reg, temp | FDI_RX_ENABLE);
  1478. I915_READ(fdi_rx_reg);
  1479. udelay(150);
  1480. /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
  1481. for train result */
  1482. temp = I915_READ(fdi_rx_imr_reg);
  1483. temp &= ~FDI_RX_SYMBOL_LOCK;
  1484. temp &= ~FDI_RX_BIT_LOCK;
  1485. I915_WRITE(fdi_rx_imr_reg, temp);
  1486. I915_READ(fdi_rx_imr_reg);
  1487. udelay(150);
  1488. for (i = 0; i < 4; i++ ) {
  1489. temp = I915_READ(fdi_tx_reg);
  1490. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  1491. temp |= snb_b_fdi_train_param[i];
  1492. I915_WRITE(fdi_tx_reg, temp);
  1493. udelay(500);
  1494. temp = I915_READ(fdi_rx_iir_reg);
  1495. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  1496. if (temp & FDI_RX_BIT_LOCK) {
  1497. I915_WRITE(fdi_rx_iir_reg,
  1498. temp | FDI_RX_BIT_LOCK);
  1499. DRM_DEBUG_KMS("FDI train 1 done.\n");
  1500. break;
  1501. }
  1502. }
  1503. if (i == 4)
  1504. DRM_DEBUG_KMS("FDI train 1 fail!\n");
  1505. /* Train 2 */
  1506. temp = I915_READ(fdi_tx_reg);
  1507. temp &= ~FDI_LINK_TRAIN_NONE;
  1508. temp |= FDI_LINK_TRAIN_PATTERN_2;
  1509. if (IS_GEN6(dev)) {
  1510. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  1511. /* SNB-B */
  1512. temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
  1513. }
  1514. I915_WRITE(fdi_tx_reg, temp);
  1515. temp = I915_READ(fdi_rx_reg);
  1516. if (HAS_PCH_CPT(dev)) {
  1517. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  1518. temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
  1519. } else {
  1520. temp &= ~FDI_LINK_TRAIN_NONE;
  1521. temp |= FDI_LINK_TRAIN_PATTERN_2;
  1522. }
  1523. I915_WRITE(fdi_rx_reg, temp);
  1524. udelay(150);
  1525. for (i = 0; i < 4; i++ ) {
  1526. temp = I915_READ(fdi_tx_reg);
  1527. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  1528. temp |= snb_b_fdi_train_param[i];
  1529. I915_WRITE(fdi_tx_reg, temp);
  1530. udelay(500);
  1531. temp = I915_READ(fdi_rx_iir_reg);
  1532. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  1533. if (temp & FDI_RX_SYMBOL_LOCK) {
  1534. I915_WRITE(fdi_rx_iir_reg,
  1535. temp | FDI_RX_SYMBOL_LOCK);
  1536. DRM_DEBUG_KMS("FDI train 2 done.\n");
  1537. break;
  1538. }
  1539. }
  1540. if (i == 4)
  1541. DRM_DEBUG_KMS("FDI train 2 fail!\n");
  1542. DRM_DEBUG_KMS("FDI train done.\n");
  1543. }
  1544. static void ironlake_crtc_dpms(struct drm_crtc *crtc, int mode)
  1545. {
  1546. struct drm_device *dev = crtc->dev;
  1547. struct drm_i915_private *dev_priv = dev->dev_private;
  1548. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1549. int pipe = intel_crtc->pipe;
  1550. int plane = intel_crtc->plane;
  1551. int pch_dpll_reg = (pipe == 0) ? PCH_DPLL_A : PCH_DPLL_B;
  1552. int pipeconf_reg = (pipe == 0) ? PIPEACONF : PIPEBCONF;
  1553. int dspcntr_reg = (plane == 0) ? DSPACNTR : DSPBCNTR;
  1554. int dspbase_reg = (plane == 0) ? DSPAADDR : DSPBADDR;
  1555. int fdi_tx_reg = (pipe == 0) ? FDI_TXA_CTL : FDI_TXB_CTL;
  1556. int fdi_rx_reg = (pipe == 0) ? FDI_RXA_CTL : FDI_RXB_CTL;
  1557. int transconf_reg = (pipe == 0) ? TRANSACONF : TRANSBCONF;
  1558. int pf_ctl_reg = (pipe == 0) ? PFA_CTL_1 : PFB_CTL_1;
  1559. int pf_win_size = (pipe == 0) ? PFA_WIN_SZ : PFB_WIN_SZ;
  1560. int pf_win_pos = (pipe == 0) ? PFA_WIN_POS : PFB_WIN_POS;
  1561. int cpu_htot_reg = (pipe == 0) ? HTOTAL_A : HTOTAL_B;
  1562. int cpu_hblank_reg = (pipe == 0) ? HBLANK_A : HBLANK_B;
  1563. int cpu_hsync_reg = (pipe == 0) ? HSYNC_A : HSYNC_B;
  1564. int cpu_vtot_reg = (pipe == 0) ? VTOTAL_A : VTOTAL_B;
  1565. int cpu_vblank_reg = (pipe == 0) ? VBLANK_A : VBLANK_B;
  1566. int cpu_vsync_reg = (pipe == 0) ? VSYNC_A : VSYNC_B;
  1567. int trans_htot_reg = (pipe == 0) ? TRANS_HTOTAL_A : TRANS_HTOTAL_B;
  1568. int trans_hblank_reg = (pipe == 0) ? TRANS_HBLANK_A : TRANS_HBLANK_B;
  1569. int trans_hsync_reg = (pipe == 0) ? TRANS_HSYNC_A : TRANS_HSYNC_B;
  1570. int trans_vtot_reg = (pipe == 0) ? TRANS_VTOTAL_A : TRANS_VTOTAL_B;
  1571. int trans_vblank_reg = (pipe == 0) ? TRANS_VBLANK_A : TRANS_VBLANK_B;
  1572. int trans_vsync_reg = (pipe == 0) ? TRANS_VSYNC_A : TRANS_VSYNC_B;
  1573. int trans_dpll_sel = (pipe == 0) ? 0 : 1;
  1574. u32 temp;
  1575. int n;
  1576. u32 pipe_bpc;
  1577. temp = I915_READ(pipeconf_reg);
  1578. pipe_bpc = temp & PIPE_BPC_MASK;
  1579. /* XXX: When our outputs are all unaware of DPMS modes other than off
  1580. * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
  1581. */
  1582. switch (mode) {
  1583. case DRM_MODE_DPMS_ON:
  1584. case DRM_MODE_DPMS_STANDBY:
  1585. case DRM_MODE_DPMS_SUSPEND:
  1586. DRM_DEBUG_KMS("crtc %d dpms on\n", pipe);
  1587. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  1588. temp = I915_READ(PCH_LVDS);
  1589. if ((temp & LVDS_PORT_EN) == 0) {
  1590. I915_WRITE(PCH_LVDS, temp | LVDS_PORT_EN);
  1591. POSTING_READ(PCH_LVDS);
  1592. }
  1593. }
  1594. if (HAS_eDP) {
  1595. /* enable eDP PLL */
  1596. ironlake_enable_pll_edp(crtc);
  1597. } else {
  1598. /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
  1599. temp = I915_READ(fdi_rx_reg);
  1600. /*
  1601. * make the BPC in FDI Rx be consistent with that in
  1602. * pipeconf reg.
  1603. */
  1604. temp &= ~(0x7 << 16);
  1605. temp |= (pipe_bpc << 11);
  1606. temp &= ~(7 << 19);
  1607. temp |= (intel_crtc->fdi_lanes - 1) << 19;
  1608. I915_WRITE(fdi_rx_reg, temp | FDI_RX_PLL_ENABLE);
  1609. I915_READ(fdi_rx_reg);
  1610. udelay(200);
  1611. /* Switch from Rawclk to PCDclk */
  1612. temp = I915_READ(fdi_rx_reg);
  1613. I915_WRITE(fdi_rx_reg, temp | FDI_SEL_PCDCLK);
  1614. I915_READ(fdi_rx_reg);
  1615. udelay(200);
  1616. /* Enable CPU FDI TX PLL, always on for Ironlake */
  1617. temp = I915_READ(fdi_tx_reg);
  1618. if ((temp & FDI_TX_PLL_ENABLE) == 0) {
  1619. I915_WRITE(fdi_tx_reg, temp | FDI_TX_PLL_ENABLE);
  1620. I915_READ(fdi_tx_reg);
  1621. udelay(100);
  1622. }
  1623. }
  1624. /* Enable panel fitting for LVDS */
  1625. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  1626. temp = I915_READ(pf_ctl_reg);
  1627. I915_WRITE(pf_ctl_reg, temp | PF_ENABLE | PF_FILTER_MED_3x3);
  1628. /* currently full aspect */
  1629. I915_WRITE(pf_win_pos, 0);
  1630. I915_WRITE(pf_win_size,
  1631. (dev_priv->panel_fixed_mode->hdisplay << 16) |
  1632. (dev_priv->panel_fixed_mode->vdisplay));
  1633. }
  1634. /* Enable CPU pipe */
  1635. temp = I915_READ(pipeconf_reg);
  1636. if ((temp & PIPEACONF_ENABLE) == 0) {
  1637. I915_WRITE(pipeconf_reg, temp | PIPEACONF_ENABLE);
  1638. I915_READ(pipeconf_reg);
  1639. udelay(100);
  1640. }
  1641. /* configure and enable CPU plane */
  1642. temp = I915_READ(dspcntr_reg);
  1643. if ((temp & DISPLAY_PLANE_ENABLE) == 0) {
  1644. I915_WRITE(dspcntr_reg, temp | DISPLAY_PLANE_ENABLE);
  1645. /* Flush the plane changes */
  1646. I915_WRITE(dspbase_reg, I915_READ(dspbase_reg));
  1647. }
  1648. if (!HAS_eDP) {
  1649. /* For PCH output, training FDI link */
  1650. if (IS_GEN6(dev))
  1651. gen6_fdi_link_train(crtc);
  1652. else
  1653. ironlake_fdi_link_train(crtc);
  1654. /* enable PCH DPLL */
  1655. temp = I915_READ(pch_dpll_reg);
  1656. if ((temp & DPLL_VCO_ENABLE) == 0) {
  1657. I915_WRITE(pch_dpll_reg, temp | DPLL_VCO_ENABLE);
  1658. I915_READ(pch_dpll_reg);
  1659. }
  1660. udelay(200);
  1661. if (HAS_PCH_CPT(dev)) {
  1662. /* Be sure PCH DPLL SEL is set */
  1663. temp = I915_READ(PCH_DPLL_SEL);
  1664. if (trans_dpll_sel == 0 &&
  1665. (temp & TRANSA_DPLL_ENABLE) == 0)
  1666. temp |= (TRANSA_DPLL_ENABLE | TRANSA_DPLLA_SEL);
  1667. else if (trans_dpll_sel == 1 &&
  1668. (temp & TRANSB_DPLL_ENABLE) == 0)
  1669. temp |= (TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
  1670. I915_WRITE(PCH_DPLL_SEL, temp);
  1671. I915_READ(PCH_DPLL_SEL);
  1672. }
  1673. /* set transcoder timing */
  1674. I915_WRITE(trans_htot_reg, I915_READ(cpu_htot_reg));
  1675. I915_WRITE(trans_hblank_reg, I915_READ(cpu_hblank_reg));
  1676. I915_WRITE(trans_hsync_reg, I915_READ(cpu_hsync_reg));
  1677. I915_WRITE(trans_vtot_reg, I915_READ(cpu_vtot_reg));
  1678. I915_WRITE(trans_vblank_reg, I915_READ(cpu_vblank_reg));
  1679. I915_WRITE(trans_vsync_reg, I915_READ(cpu_vsync_reg));
  1680. /* enable normal train */
  1681. temp = I915_READ(fdi_tx_reg);
  1682. temp &= ~FDI_LINK_TRAIN_NONE;
  1683. I915_WRITE(fdi_tx_reg, temp | FDI_LINK_TRAIN_NONE |
  1684. FDI_TX_ENHANCE_FRAME_ENABLE);
  1685. I915_READ(fdi_tx_reg);
  1686. temp = I915_READ(fdi_rx_reg);
  1687. if (HAS_PCH_CPT(dev)) {
  1688. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  1689. temp |= FDI_LINK_TRAIN_NORMAL_CPT;
  1690. } else {
  1691. temp &= ~FDI_LINK_TRAIN_NONE;
  1692. temp |= FDI_LINK_TRAIN_NONE;
  1693. }
  1694. I915_WRITE(fdi_rx_reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
  1695. I915_READ(fdi_rx_reg);
  1696. /* wait one idle pattern time */
  1697. udelay(100);
  1698. /* For PCH DP, enable TRANS_DP_CTL */
  1699. if (HAS_PCH_CPT(dev) &&
  1700. intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
  1701. int trans_dp_ctl = (pipe == 0) ? TRANS_DP_CTL_A : TRANS_DP_CTL_B;
  1702. int reg;
  1703. reg = I915_READ(trans_dp_ctl);
  1704. reg &= ~TRANS_DP_PORT_SEL_MASK;
  1705. reg = TRANS_DP_OUTPUT_ENABLE |
  1706. TRANS_DP_ENH_FRAMING |
  1707. TRANS_DP_VSYNC_ACTIVE_HIGH |
  1708. TRANS_DP_HSYNC_ACTIVE_HIGH;
  1709. switch (intel_trans_dp_port_sel(crtc)) {
  1710. case PCH_DP_B:
  1711. reg |= TRANS_DP_PORT_SEL_B;
  1712. break;
  1713. case PCH_DP_C:
  1714. reg |= TRANS_DP_PORT_SEL_C;
  1715. break;
  1716. case PCH_DP_D:
  1717. reg |= TRANS_DP_PORT_SEL_D;
  1718. break;
  1719. default:
  1720. DRM_DEBUG_KMS("Wrong PCH DP port return. Guess port B\n");
  1721. reg |= TRANS_DP_PORT_SEL_B;
  1722. break;
  1723. }
  1724. I915_WRITE(trans_dp_ctl, reg);
  1725. POSTING_READ(trans_dp_ctl);
  1726. }
  1727. /* enable PCH transcoder */
  1728. temp = I915_READ(transconf_reg);
  1729. /*
  1730. * make the BPC in transcoder be consistent with
  1731. * that in pipeconf reg.
  1732. */
  1733. temp &= ~PIPE_BPC_MASK;
  1734. temp |= pipe_bpc;
  1735. I915_WRITE(transconf_reg, temp | TRANS_ENABLE);
  1736. I915_READ(transconf_reg);
  1737. while ((I915_READ(transconf_reg) & TRANS_STATE_ENABLE) == 0)
  1738. ;
  1739. }
  1740. intel_crtc_load_lut(crtc);
  1741. break;
  1742. case DRM_MODE_DPMS_OFF:
  1743. DRM_DEBUG_KMS("crtc %d dpms off\n", pipe);
  1744. drm_vblank_off(dev, pipe);
  1745. /* Disable display plane */
  1746. temp = I915_READ(dspcntr_reg);
  1747. if ((temp & DISPLAY_PLANE_ENABLE) != 0) {
  1748. I915_WRITE(dspcntr_reg, temp & ~DISPLAY_PLANE_ENABLE);
  1749. /* Flush the plane changes */
  1750. I915_WRITE(dspbase_reg, I915_READ(dspbase_reg));
  1751. I915_READ(dspbase_reg);
  1752. }
  1753. i915_disable_vga(dev);
  1754. /* disable cpu pipe, disable after all planes disabled */
  1755. temp = I915_READ(pipeconf_reg);
  1756. if ((temp & PIPEACONF_ENABLE) != 0) {
  1757. I915_WRITE(pipeconf_reg, temp & ~PIPEACONF_ENABLE);
  1758. I915_READ(pipeconf_reg);
  1759. n = 0;
  1760. /* wait for cpu pipe off, pipe state */
  1761. while ((I915_READ(pipeconf_reg) & I965_PIPECONF_ACTIVE) != 0) {
  1762. n++;
  1763. if (n < 60) {
  1764. udelay(500);
  1765. continue;
  1766. } else {
  1767. DRM_DEBUG_KMS("pipe %d off delay\n",
  1768. pipe);
  1769. break;
  1770. }
  1771. }
  1772. } else
  1773. DRM_DEBUG_KMS("crtc %d is disabled\n", pipe);
  1774. udelay(100);
  1775. /* Disable PF */
  1776. temp = I915_READ(pf_ctl_reg);
  1777. if ((temp & PF_ENABLE) != 0) {
  1778. I915_WRITE(pf_ctl_reg, temp & ~PF_ENABLE);
  1779. I915_READ(pf_ctl_reg);
  1780. }
  1781. I915_WRITE(pf_win_size, 0);
  1782. POSTING_READ(pf_win_size);
  1783. /* disable CPU FDI tx and PCH FDI rx */
  1784. temp = I915_READ(fdi_tx_reg);
  1785. I915_WRITE(fdi_tx_reg, temp & ~FDI_TX_ENABLE);
  1786. I915_READ(fdi_tx_reg);
  1787. temp = I915_READ(fdi_rx_reg);
  1788. /* BPC in FDI rx is consistent with that in pipeconf */
  1789. temp &= ~(0x07 << 16);
  1790. temp |= (pipe_bpc << 11);
  1791. I915_WRITE(fdi_rx_reg, temp & ~FDI_RX_ENABLE);
  1792. I915_READ(fdi_rx_reg);
  1793. udelay(100);
  1794. /* still set train pattern 1 */
  1795. temp = I915_READ(fdi_tx_reg);
  1796. temp &= ~FDI_LINK_TRAIN_NONE;
  1797. temp |= FDI_LINK_TRAIN_PATTERN_1;
  1798. I915_WRITE(fdi_tx_reg, temp);
  1799. POSTING_READ(fdi_tx_reg);
  1800. temp = I915_READ(fdi_rx_reg);
  1801. if (HAS_PCH_CPT(dev)) {
  1802. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  1803. temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
  1804. } else {
  1805. temp &= ~FDI_LINK_TRAIN_NONE;
  1806. temp |= FDI_LINK_TRAIN_PATTERN_1;
  1807. }
  1808. I915_WRITE(fdi_rx_reg, temp);
  1809. POSTING_READ(fdi_rx_reg);
  1810. udelay(100);
  1811. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  1812. temp = I915_READ(PCH_LVDS);
  1813. I915_WRITE(PCH_LVDS, temp & ~LVDS_PORT_EN);
  1814. I915_READ(PCH_LVDS);
  1815. udelay(100);
  1816. }
  1817. /* disable PCH transcoder */
  1818. temp = I915_READ(transconf_reg);
  1819. if ((temp & TRANS_ENABLE) != 0) {
  1820. I915_WRITE(transconf_reg, temp & ~TRANS_ENABLE);
  1821. I915_READ(transconf_reg);
  1822. n = 0;
  1823. /* wait for PCH transcoder off, transcoder state */
  1824. while ((I915_READ(transconf_reg) & TRANS_STATE_ENABLE) != 0) {
  1825. n++;
  1826. if (n < 60) {
  1827. udelay(500);
  1828. continue;
  1829. } else {
  1830. DRM_DEBUG_KMS("transcoder %d off "
  1831. "delay\n", pipe);
  1832. break;
  1833. }
  1834. }
  1835. }
  1836. temp = I915_READ(transconf_reg);
  1837. /* BPC in transcoder is consistent with that in pipeconf */
  1838. temp &= ~PIPE_BPC_MASK;
  1839. temp |= pipe_bpc;
  1840. I915_WRITE(transconf_reg, temp);
  1841. I915_READ(transconf_reg);
  1842. udelay(100);
  1843. if (HAS_PCH_CPT(dev)) {
  1844. /* disable TRANS_DP_CTL */
  1845. int trans_dp_ctl = (pipe == 0) ? TRANS_DP_CTL_A : TRANS_DP_CTL_B;
  1846. int reg;
  1847. reg = I915_READ(trans_dp_ctl);
  1848. reg &= ~(TRANS_DP_OUTPUT_ENABLE | TRANS_DP_PORT_SEL_MASK);
  1849. I915_WRITE(trans_dp_ctl, reg);
  1850. POSTING_READ(trans_dp_ctl);
  1851. /* disable DPLL_SEL */
  1852. temp = I915_READ(PCH_DPLL_SEL);
  1853. if (trans_dpll_sel == 0)
  1854. temp &= ~(TRANSA_DPLL_ENABLE | TRANSA_DPLLB_SEL);
  1855. else
  1856. temp &= ~(TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
  1857. I915_WRITE(PCH_DPLL_SEL, temp);
  1858. I915_READ(PCH_DPLL_SEL);
  1859. }
  1860. /* disable PCH DPLL */
  1861. temp = I915_READ(pch_dpll_reg);
  1862. I915_WRITE(pch_dpll_reg, temp & ~DPLL_VCO_ENABLE);
  1863. I915_READ(pch_dpll_reg);
  1864. if (HAS_eDP) {
  1865. ironlake_disable_pll_edp(crtc);
  1866. }
  1867. /* Switch from PCDclk to Rawclk */
  1868. temp = I915_READ(fdi_rx_reg);
  1869. temp &= ~FDI_SEL_PCDCLK;
  1870. I915_WRITE(fdi_rx_reg, temp);
  1871. I915_READ(fdi_rx_reg);
  1872. /* Disable CPU FDI TX PLL */
  1873. temp = I915_READ(fdi_tx_reg);
  1874. I915_WRITE(fdi_tx_reg, temp & ~FDI_TX_PLL_ENABLE);
  1875. I915_READ(fdi_tx_reg);
  1876. udelay(100);
  1877. temp = I915_READ(fdi_rx_reg);
  1878. temp &= ~FDI_RX_PLL_ENABLE;
  1879. I915_WRITE(fdi_rx_reg, temp);
  1880. I915_READ(fdi_rx_reg);
  1881. /* Wait for the clocks to turn off. */
  1882. udelay(100);
  1883. break;
  1884. }
  1885. }
  1886. static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
  1887. {
  1888. struct intel_overlay *overlay;
  1889. int ret;
  1890. if (!enable && intel_crtc->overlay) {
  1891. overlay = intel_crtc->overlay;
  1892. mutex_lock(&overlay->dev->struct_mutex);
  1893. for (;;) {
  1894. ret = intel_overlay_switch_off(overlay);
  1895. if (ret == 0)
  1896. break;
  1897. ret = intel_overlay_recover_from_interrupt(overlay, 0);
  1898. if (ret != 0) {
  1899. /* overlay doesn't react anymore. Usually
  1900. * results in a black screen and an unkillable
  1901. * X server. */
  1902. BUG();
  1903. overlay->hw_wedged = HW_WEDGED;
  1904. break;
  1905. }
  1906. }
  1907. mutex_unlock(&overlay->dev->struct_mutex);
  1908. }
  1909. /* Let userspace switch the overlay on again. In most cases userspace
  1910. * has to recompute where to put it anyway. */
  1911. return;
  1912. }
  1913. static void i9xx_crtc_dpms(struct drm_crtc *crtc, int mode)
  1914. {
  1915. struct drm_device *dev = crtc->dev;
  1916. struct drm_i915_private *dev_priv = dev->dev_private;
  1917. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1918. int pipe = intel_crtc->pipe;
  1919. int plane = intel_crtc->plane;
  1920. int dpll_reg = (pipe == 0) ? DPLL_A : DPLL_B;
  1921. int dspcntr_reg = (plane == 0) ? DSPACNTR : DSPBCNTR;
  1922. int dspbase_reg = (plane == 0) ? DSPAADDR : DSPBADDR;
  1923. int pipeconf_reg = (pipe == 0) ? PIPEACONF : PIPEBCONF;
  1924. u32 temp;
  1925. /* XXX: When our outputs are all unaware of DPMS modes other than off
  1926. * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
  1927. */
  1928. switch (mode) {
  1929. case DRM_MODE_DPMS_ON:
  1930. case DRM_MODE_DPMS_STANDBY:
  1931. case DRM_MODE_DPMS_SUSPEND:
  1932. intel_update_watermarks(dev);
  1933. /* Enable the DPLL */
  1934. temp = I915_READ(dpll_reg);
  1935. if ((temp & DPLL_VCO_ENABLE) == 0) {
  1936. I915_WRITE(dpll_reg, temp);
  1937. I915_READ(dpll_reg);
  1938. /* Wait for the clocks to stabilize. */
  1939. udelay(150);
  1940. I915_WRITE(dpll_reg, temp | DPLL_VCO_ENABLE);
  1941. I915_READ(dpll_reg);
  1942. /* Wait for the clocks to stabilize. */
  1943. udelay(150);
  1944. I915_WRITE(dpll_reg, temp | DPLL_VCO_ENABLE);
  1945. I915_READ(dpll_reg);
  1946. /* Wait for the clocks to stabilize. */
  1947. udelay(150);
  1948. }
  1949. /* Enable the pipe */
  1950. temp = I915_READ(pipeconf_reg);
  1951. if ((temp & PIPEACONF_ENABLE) == 0)
  1952. I915_WRITE(pipeconf_reg, temp | PIPEACONF_ENABLE);
  1953. /* Enable the plane */
  1954. temp = I915_READ(dspcntr_reg);
  1955. if ((temp & DISPLAY_PLANE_ENABLE) == 0) {
  1956. I915_WRITE(dspcntr_reg, temp | DISPLAY_PLANE_ENABLE);
  1957. /* Flush the plane changes */
  1958. I915_WRITE(dspbase_reg, I915_READ(dspbase_reg));
  1959. }
  1960. intel_crtc_load_lut(crtc);
  1961. if ((IS_I965G(dev) || plane == 0))
  1962. intel_update_fbc(crtc, &crtc->mode);
  1963. /* Give the overlay scaler a chance to enable if it's on this pipe */
  1964. intel_crtc_dpms_overlay(intel_crtc, true);
  1965. break;
  1966. case DRM_MODE_DPMS_OFF:
  1967. intel_update_watermarks(dev);
  1968. /* Give the overlay scaler a chance to disable if it's on this pipe */
  1969. intel_crtc_dpms_overlay(intel_crtc, false);
  1970. drm_vblank_off(dev, pipe);
  1971. if (dev_priv->cfb_plane == plane &&
  1972. dev_priv->display.disable_fbc)
  1973. dev_priv->display.disable_fbc(dev);
  1974. /* Disable the VGA plane that we never use */
  1975. i915_disable_vga(dev);
  1976. /* Disable display plane */
  1977. temp = I915_READ(dspcntr_reg);
  1978. if ((temp & DISPLAY_PLANE_ENABLE) != 0) {
  1979. I915_WRITE(dspcntr_reg, temp & ~DISPLAY_PLANE_ENABLE);
  1980. /* Flush the plane changes */
  1981. I915_WRITE(dspbase_reg, I915_READ(dspbase_reg));
  1982. I915_READ(dspbase_reg);
  1983. }
  1984. if (!IS_I9XX(dev)) {
  1985. /* Wait for vblank for the disable to take effect */
  1986. intel_wait_for_vblank(dev);
  1987. }
  1988. /* Next, disable display pipes */
  1989. temp = I915_READ(pipeconf_reg);
  1990. if ((temp & PIPEACONF_ENABLE) != 0) {
  1991. I915_WRITE(pipeconf_reg, temp & ~PIPEACONF_ENABLE);
  1992. I915_READ(pipeconf_reg);
  1993. }
  1994. /* Wait for vblank for the disable to take effect. */
  1995. intel_wait_for_vblank(dev);
  1996. temp = I915_READ(dpll_reg);
  1997. if ((temp & DPLL_VCO_ENABLE) != 0) {
  1998. I915_WRITE(dpll_reg, temp & ~DPLL_VCO_ENABLE);
  1999. I915_READ(dpll_reg);
  2000. }
  2001. /* Wait for the clocks to turn off. */
  2002. udelay(150);
  2003. break;
  2004. }
  2005. }
  2006. /**
  2007. * Sets the power management mode of the pipe and plane.
  2008. *
  2009. * This code should probably grow support for turning the cursor off and back
  2010. * on appropriately at the same time as we're turning the pipe off/on.
  2011. */
  2012. static void intel_crtc_dpms(struct drm_crtc *crtc, int mode)
  2013. {
  2014. struct drm_device *dev = crtc->dev;
  2015. struct drm_i915_private *dev_priv = dev->dev_private;
  2016. struct drm_i915_master_private *master_priv;
  2017. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2018. int pipe = intel_crtc->pipe;
  2019. bool enabled;
  2020. dev_priv->display.dpms(crtc, mode);
  2021. intel_crtc->dpms_mode = mode;
  2022. if (!dev->primary->master)
  2023. return;
  2024. master_priv = dev->primary->master->driver_priv;
  2025. if (!master_priv->sarea_priv)
  2026. return;
  2027. enabled = crtc->enabled && mode != DRM_MODE_DPMS_OFF;
  2028. switch (pipe) {
  2029. case 0:
  2030. master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
  2031. master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
  2032. break;
  2033. case 1:
  2034. master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
  2035. master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
  2036. break;
  2037. default:
  2038. DRM_ERROR("Can't update pipe %d in SAREA\n", pipe);
  2039. break;
  2040. }
  2041. }
  2042. static void intel_crtc_prepare (struct drm_crtc *crtc)
  2043. {
  2044. struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
  2045. crtc_funcs->dpms(crtc, DRM_MODE_DPMS_OFF);
  2046. }
  2047. static void intel_crtc_commit (struct drm_crtc *crtc)
  2048. {
  2049. struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
  2050. crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
  2051. }
  2052. void intel_encoder_prepare (struct drm_encoder *encoder)
  2053. {
  2054. struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
  2055. /* lvds has its own version of prepare see intel_lvds_prepare */
  2056. encoder_funcs->dpms(encoder, DRM_MODE_DPMS_OFF);
  2057. }
  2058. void intel_encoder_commit (struct drm_encoder *encoder)
  2059. {
  2060. struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
  2061. /* lvds has its own version of commit see intel_lvds_commit */
  2062. encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
  2063. }
  2064. static bool intel_crtc_mode_fixup(struct drm_crtc *crtc,
  2065. struct drm_display_mode *mode,
  2066. struct drm_display_mode *adjusted_mode)
  2067. {
  2068. struct drm_device *dev = crtc->dev;
  2069. if (HAS_PCH_SPLIT(dev)) {
  2070. /* FDI link clock is fixed at 2.7G */
  2071. if (mode->clock * 3 > 27000 * 4)
  2072. return MODE_CLOCK_HIGH;
  2073. }
  2074. drm_mode_set_crtcinfo(adjusted_mode, 0);
  2075. return true;
  2076. }
  2077. static int i945_get_display_clock_speed(struct drm_device *dev)
  2078. {
  2079. return 400000;
  2080. }
  2081. static int i915_get_display_clock_speed(struct drm_device *dev)
  2082. {
  2083. return 333000;
  2084. }
  2085. static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
  2086. {
  2087. return 200000;
  2088. }
  2089. static int i915gm_get_display_clock_speed(struct drm_device *dev)
  2090. {
  2091. u16 gcfgc = 0;
  2092. pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
  2093. if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
  2094. return 133000;
  2095. else {
  2096. switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
  2097. case GC_DISPLAY_CLOCK_333_MHZ:
  2098. return 333000;
  2099. default:
  2100. case GC_DISPLAY_CLOCK_190_200_MHZ:
  2101. return 190000;
  2102. }
  2103. }
  2104. }
  2105. static int i865_get_display_clock_speed(struct drm_device *dev)
  2106. {
  2107. return 266000;
  2108. }
  2109. static int i855_get_display_clock_speed(struct drm_device *dev)
  2110. {
  2111. u16 hpllcc = 0;
  2112. /* Assume that the hardware is in the high speed state. This
  2113. * should be the default.
  2114. */
  2115. switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
  2116. case GC_CLOCK_133_200:
  2117. case GC_CLOCK_100_200:
  2118. return 200000;
  2119. case GC_CLOCK_166_250:
  2120. return 250000;
  2121. case GC_CLOCK_100_133:
  2122. return 133000;
  2123. }
  2124. /* Shouldn't happen */
  2125. return 0;
  2126. }
  2127. static int i830_get_display_clock_speed(struct drm_device *dev)
  2128. {
  2129. return 133000;
  2130. }
  2131. /**
  2132. * Return the pipe currently connected to the panel fitter,
  2133. * or -1 if the panel fitter is not present or not in use
  2134. */
  2135. int intel_panel_fitter_pipe (struct drm_device *dev)
  2136. {
  2137. struct drm_i915_private *dev_priv = dev->dev_private;
  2138. u32 pfit_control;
  2139. /* i830 doesn't have a panel fitter */
  2140. if (IS_I830(dev))
  2141. return -1;
  2142. pfit_control = I915_READ(PFIT_CONTROL);
  2143. /* See if the panel fitter is in use */
  2144. if ((pfit_control & PFIT_ENABLE) == 0)
  2145. return -1;
  2146. /* 965 can place panel fitter on either pipe */
  2147. if (IS_I965G(dev))
  2148. return (pfit_control >> 29) & 0x3;
  2149. /* older chips can only use pipe 1 */
  2150. return 1;
  2151. }
  2152. struct fdi_m_n {
  2153. u32 tu;
  2154. u32 gmch_m;
  2155. u32 gmch_n;
  2156. u32 link_m;
  2157. u32 link_n;
  2158. };
  2159. static void
  2160. fdi_reduce_ratio(u32 *num, u32 *den)
  2161. {
  2162. while (*num > 0xffffff || *den > 0xffffff) {
  2163. *num >>= 1;
  2164. *den >>= 1;
  2165. }
  2166. }
  2167. #define DATA_N 0x800000
  2168. #define LINK_N 0x80000
  2169. static void
  2170. ironlake_compute_m_n(int bits_per_pixel, int nlanes, int pixel_clock,
  2171. int link_clock, struct fdi_m_n *m_n)
  2172. {
  2173. u64 temp;
  2174. m_n->tu = 64; /* default size */
  2175. temp = (u64) DATA_N * pixel_clock;
  2176. temp = div_u64(temp, link_clock);
  2177. m_n->gmch_m = div_u64(temp * bits_per_pixel, nlanes);
  2178. m_n->gmch_m >>= 3; /* convert to bytes_per_pixel */
  2179. m_n->gmch_n = DATA_N;
  2180. fdi_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
  2181. temp = (u64) LINK_N * pixel_clock;
  2182. m_n->link_m = div_u64(temp, link_clock);
  2183. m_n->link_n = LINK_N;
  2184. fdi_reduce_ratio(&m_n->link_m, &m_n->link_n);
  2185. }
  2186. struct intel_watermark_params {
  2187. unsigned long fifo_size;
  2188. unsigned long max_wm;
  2189. unsigned long default_wm;
  2190. unsigned long guard_size;
  2191. unsigned long cacheline_size;
  2192. };
  2193. /* Pineview has different values for various configs */
  2194. static struct intel_watermark_params pineview_display_wm = {
  2195. PINEVIEW_DISPLAY_FIFO,
  2196. PINEVIEW_MAX_WM,
  2197. PINEVIEW_DFT_WM,
  2198. PINEVIEW_GUARD_WM,
  2199. PINEVIEW_FIFO_LINE_SIZE
  2200. };
  2201. static struct intel_watermark_params pineview_display_hplloff_wm = {
  2202. PINEVIEW_DISPLAY_FIFO,
  2203. PINEVIEW_MAX_WM,
  2204. PINEVIEW_DFT_HPLLOFF_WM,
  2205. PINEVIEW_GUARD_WM,
  2206. PINEVIEW_FIFO_LINE_SIZE
  2207. };
  2208. static struct intel_watermark_params pineview_cursor_wm = {
  2209. PINEVIEW_CURSOR_FIFO,
  2210. PINEVIEW_CURSOR_MAX_WM,
  2211. PINEVIEW_CURSOR_DFT_WM,
  2212. PINEVIEW_CURSOR_GUARD_WM,
  2213. PINEVIEW_FIFO_LINE_SIZE,
  2214. };
  2215. static struct intel_watermark_params pineview_cursor_hplloff_wm = {
  2216. PINEVIEW_CURSOR_FIFO,
  2217. PINEVIEW_CURSOR_MAX_WM,
  2218. PINEVIEW_CURSOR_DFT_WM,
  2219. PINEVIEW_CURSOR_GUARD_WM,
  2220. PINEVIEW_FIFO_LINE_SIZE
  2221. };
  2222. static struct intel_watermark_params g4x_wm_info = {
  2223. G4X_FIFO_SIZE,
  2224. G4X_MAX_WM,
  2225. G4X_MAX_WM,
  2226. 2,
  2227. G4X_FIFO_LINE_SIZE,
  2228. };
  2229. static struct intel_watermark_params i945_wm_info = {
  2230. I945_FIFO_SIZE,
  2231. I915_MAX_WM,
  2232. 1,
  2233. 2,
  2234. I915_FIFO_LINE_SIZE
  2235. };
  2236. static struct intel_watermark_params i915_wm_info = {
  2237. I915_FIFO_SIZE,
  2238. I915_MAX_WM,
  2239. 1,
  2240. 2,
  2241. I915_FIFO_LINE_SIZE
  2242. };
  2243. static struct intel_watermark_params i855_wm_info = {
  2244. I855GM_FIFO_SIZE,
  2245. I915_MAX_WM,
  2246. 1,
  2247. 2,
  2248. I830_FIFO_LINE_SIZE
  2249. };
  2250. static struct intel_watermark_params i830_wm_info = {
  2251. I830_FIFO_SIZE,
  2252. I915_MAX_WM,
  2253. 1,
  2254. 2,
  2255. I830_FIFO_LINE_SIZE
  2256. };
  2257. static struct intel_watermark_params ironlake_display_wm_info = {
  2258. ILK_DISPLAY_FIFO,
  2259. ILK_DISPLAY_MAXWM,
  2260. ILK_DISPLAY_DFTWM,
  2261. 2,
  2262. ILK_FIFO_LINE_SIZE
  2263. };
  2264. static struct intel_watermark_params ironlake_display_srwm_info = {
  2265. ILK_DISPLAY_SR_FIFO,
  2266. ILK_DISPLAY_MAX_SRWM,
  2267. ILK_DISPLAY_DFT_SRWM,
  2268. 2,
  2269. ILK_FIFO_LINE_SIZE
  2270. };
  2271. static struct intel_watermark_params ironlake_cursor_srwm_info = {
  2272. ILK_CURSOR_SR_FIFO,
  2273. ILK_CURSOR_MAX_SRWM,
  2274. ILK_CURSOR_DFT_SRWM,
  2275. 2,
  2276. ILK_FIFO_LINE_SIZE
  2277. };
  2278. /**
  2279. * intel_calculate_wm - calculate watermark level
  2280. * @clock_in_khz: pixel clock
  2281. * @wm: chip FIFO params
  2282. * @pixel_size: display pixel size
  2283. * @latency_ns: memory latency for the platform
  2284. *
  2285. * Calculate the watermark level (the level at which the display plane will
  2286. * start fetching from memory again). Each chip has a different display
  2287. * FIFO size and allocation, so the caller needs to figure that out and pass
  2288. * in the correct intel_watermark_params structure.
  2289. *
  2290. * As the pixel clock runs, the FIFO will be drained at a rate that depends
  2291. * on the pixel size. When it reaches the watermark level, it'll start
  2292. * fetching FIFO line sized based chunks from memory until the FIFO fills
  2293. * past the watermark point. If the FIFO drains completely, a FIFO underrun
  2294. * will occur, and a display engine hang could result.
  2295. */
  2296. static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
  2297. struct intel_watermark_params *wm,
  2298. int pixel_size,
  2299. unsigned long latency_ns)
  2300. {
  2301. long entries_required, wm_size;
  2302. /*
  2303. * Note: we need to make sure we don't overflow for various clock &
  2304. * latency values.
  2305. * clocks go from a few thousand to several hundred thousand.
  2306. * latency is usually a few thousand
  2307. */
  2308. entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
  2309. 1000;
  2310. entries_required /= wm->cacheline_size;
  2311. DRM_DEBUG_KMS("FIFO entries required for mode: %d\n", entries_required);
  2312. wm_size = wm->fifo_size - (entries_required + wm->guard_size);
  2313. DRM_DEBUG_KMS("FIFO watermark level: %d\n", wm_size);
  2314. /* Don't promote wm_size to unsigned... */
  2315. if (wm_size > (long)wm->max_wm)
  2316. wm_size = wm->max_wm;
  2317. if (wm_size <= 0)
  2318. wm_size = wm->default_wm;
  2319. return wm_size;
  2320. }
  2321. struct cxsr_latency {
  2322. int is_desktop;
  2323. unsigned long fsb_freq;
  2324. unsigned long mem_freq;
  2325. unsigned long display_sr;
  2326. unsigned long display_hpll_disable;
  2327. unsigned long cursor_sr;
  2328. unsigned long cursor_hpll_disable;
  2329. };
  2330. static struct cxsr_latency cxsr_latency_table[] = {
  2331. {1, 800, 400, 3382, 33382, 3983, 33983}, /* DDR2-400 SC */
  2332. {1, 800, 667, 3354, 33354, 3807, 33807}, /* DDR2-667 SC */
  2333. {1, 800, 800, 3347, 33347, 3763, 33763}, /* DDR2-800 SC */
  2334. {1, 667, 400, 3400, 33400, 4021, 34021}, /* DDR2-400 SC */
  2335. {1, 667, 667, 3372, 33372, 3845, 33845}, /* DDR2-667 SC */
  2336. {1, 667, 800, 3386, 33386, 3822, 33822}, /* DDR2-800 SC */
  2337. {1, 400, 400, 3472, 33472, 4173, 34173}, /* DDR2-400 SC */
  2338. {1, 400, 667, 3443, 33443, 3996, 33996}, /* DDR2-667 SC */
  2339. {1, 400, 800, 3430, 33430, 3946, 33946}, /* DDR2-800 SC */
  2340. {0, 800, 400, 3438, 33438, 4065, 34065}, /* DDR2-400 SC */
  2341. {0, 800, 667, 3410, 33410, 3889, 33889}, /* DDR2-667 SC */
  2342. {0, 800, 800, 3403, 33403, 3845, 33845}, /* DDR2-800 SC */
  2343. {0, 667, 400, 3456, 33456, 4103, 34106}, /* DDR2-400 SC */
  2344. {0, 667, 667, 3428, 33428, 3927, 33927}, /* DDR2-667 SC */
  2345. {0, 667, 800, 3443, 33443, 3905, 33905}, /* DDR2-800 SC */
  2346. {0, 400, 400, 3528, 33528, 4255, 34255}, /* DDR2-400 SC */
  2347. {0, 400, 667, 3500, 33500, 4079, 34079}, /* DDR2-667 SC */
  2348. {0, 400, 800, 3487, 33487, 4029, 34029}, /* DDR2-800 SC */
  2349. };
  2350. static struct cxsr_latency *intel_get_cxsr_latency(int is_desktop, int fsb,
  2351. int mem)
  2352. {
  2353. int i;
  2354. struct cxsr_latency *latency;
  2355. if (fsb == 0 || mem == 0)
  2356. return NULL;
  2357. for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
  2358. latency = &cxsr_latency_table[i];
  2359. if (is_desktop == latency->is_desktop &&
  2360. fsb == latency->fsb_freq && mem == latency->mem_freq)
  2361. return latency;
  2362. }
  2363. DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
  2364. return NULL;
  2365. }
  2366. static void pineview_disable_cxsr(struct drm_device *dev)
  2367. {
  2368. struct drm_i915_private *dev_priv = dev->dev_private;
  2369. u32 reg;
  2370. /* deactivate cxsr */
  2371. reg = I915_READ(DSPFW3);
  2372. reg &= ~(PINEVIEW_SELF_REFRESH_EN);
  2373. I915_WRITE(DSPFW3, reg);
  2374. DRM_INFO("Big FIFO is disabled\n");
  2375. }
  2376. /*
  2377. * Latency for FIFO fetches is dependent on several factors:
  2378. * - memory configuration (speed, channels)
  2379. * - chipset
  2380. * - current MCH state
  2381. * It can be fairly high in some situations, so here we assume a fairly
  2382. * pessimal value. It's a tradeoff between extra memory fetches (if we
  2383. * set this value too high, the FIFO will fetch frequently to stay full)
  2384. * and power consumption (set it too low to save power and we might see
  2385. * FIFO underruns and display "flicker").
  2386. *
  2387. * A value of 5us seems to be a good balance; safe for very low end
  2388. * platforms but not overly aggressive on lower latency configs.
  2389. */
  2390. static const int latency_ns = 5000;
  2391. static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
  2392. {
  2393. struct drm_i915_private *dev_priv = dev->dev_private;
  2394. uint32_t dsparb = I915_READ(DSPARB);
  2395. int size;
  2396. if (plane == 0)
  2397. size = dsparb & 0x7f;
  2398. else
  2399. size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) -
  2400. (dsparb & 0x7f);
  2401. DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
  2402. plane ? "B" : "A", size);
  2403. return size;
  2404. }
  2405. static int i85x_get_fifo_size(struct drm_device *dev, int plane)
  2406. {
  2407. struct drm_i915_private *dev_priv = dev->dev_private;
  2408. uint32_t dsparb = I915_READ(DSPARB);
  2409. int size;
  2410. if (plane == 0)
  2411. size = dsparb & 0x1ff;
  2412. else
  2413. size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) -
  2414. (dsparb & 0x1ff);
  2415. size >>= 1; /* Convert to cachelines */
  2416. DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
  2417. plane ? "B" : "A", size);
  2418. return size;
  2419. }
  2420. static int i845_get_fifo_size(struct drm_device *dev, int plane)
  2421. {
  2422. struct drm_i915_private *dev_priv = dev->dev_private;
  2423. uint32_t dsparb = I915_READ(DSPARB);
  2424. int size;
  2425. size = dsparb & 0x7f;
  2426. size >>= 2; /* Convert to cachelines */
  2427. DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
  2428. plane ? "B" : "A",
  2429. size);
  2430. return size;
  2431. }
  2432. static int i830_get_fifo_size(struct drm_device *dev, int plane)
  2433. {
  2434. struct drm_i915_private *dev_priv = dev->dev_private;
  2435. uint32_t dsparb = I915_READ(DSPARB);
  2436. int size;
  2437. size = dsparb & 0x7f;
  2438. size >>= 1; /* Convert to cachelines */
  2439. DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
  2440. plane ? "B" : "A", size);
  2441. return size;
  2442. }
  2443. static void pineview_update_wm(struct drm_device *dev, int planea_clock,
  2444. int planeb_clock, int sr_hdisplay, int pixel_size)
  2445. {
  2446. struct drm_i915_private *dev_priv = dev->dev_private;
  2447. u32 reg;
  2448. unsigned long wm;
  2449. struct cxsr_latency *latency;
  2450. int sr_clock;
  2451. latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->fsb_freq,
  2452. dev_priv->mem_freq);
  2453. if (!latency) {
  2454. DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
  2455. pineview_disable_cxsr(dev);
  2456. return;
  2457. }
  2458. if (!planea_clock || !planeb_clock) {
  2459. sr_clock = planea_clock ? planea_clock : planeb_clock;
  2460. /* Display SR */
  2461. wm = intel_calculate_wm(sr_clock, &pineview_display_wm,
  2462. pixel_size, latency->display_sr);
  2463. reg = I915_READ(DSPFW1);
  2464. reg &= ~DSPFW_SR_MASK;
  2465. reg |= wm << DSPFW_SR_SHIFT;
  2466. I915_WRITE(DSPFW1, reg);
  2467. DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
  2468. /* cursor SR */
  2469. wm = intel_calculate_wm(sr_clock, &pineview_cursor_wm,
  2470. pixel_size, latency->cursor_sr);
  2471. reg = I915_READ(DSPFW3);
  2472. reg &= ~DSPFW_CURSOR_SR_MASK;
  2473. reg |= (wm & 0x3f) << DSPFW_CURSOR_SR_SHIFT;
  2474. I915_WRITE(DSPFW3, reg);
  2475. /* Display HPLL off SR */
  2476. wm = intel_calculate_wm(sr_clock, &pineview_display_hplloff_wm,
  2477. pixel_size, latency->display_hpll_disable);
  2478. reg = I915_READ(DSPFW3);
  2479. reg &= ~DSPFW_HPLL_SR_MASK;
  2480. reg |= wm & DSPFW_HPLL_SR_MASK;
  2481. I915_WRITE(DSPFW3, reg);
  2482. /* cursor HPLL off SR */
  2483. wm = intel_calculate_wm(sr_clock, &pineview_cursor_hplloff_wm,
  2484. pixel_size, latency->cursor_hpll_disable);
  2485. reg = I915_READ(DSPFW3);
  2486. reg &= ~DSPFW_HPLL_CURSOR_MASK;
  2487. reg |= (wm & 0x3f) << DSPFW_HPLL_CURSOR_SHIFT;
  2488. I915_WRITE(DSPFW3, reg);
  2489. DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
  2490. /* activate cxsr */
  2491. reg = I915_READ(DSPFW3);
  2492. reg |= PINEVIEW_SELF_REFRESH_EN;
  2493. I915_WRITE(DSPFW3, reg);
  2494. DRM_DEBUG_KMS("Self-refresh is enabled\n");
  2495. } else {
  2496. pineview_disable_cxsr(dev);
  2497. DRM_DEBUG_KMS("Self-refresh is disabled\n");
  2498. }
  2499. }
  2500. static void g4x_update_wm(struct drm_device *dev, int planea_clock,
  2501. int planeb_clock, int sr_hdisplay, int pixel_size)
  2502. {
  2503. struct drm_i915_private *dev_priv = dev->dev_private;
  2504. int total_size, cacheline_size;
  2505. int planea_wm, planeb_wm, cursora_wm, cursorb_wm, cursor_sr;
  2506. struct intel_watermark_params planea_params, planeb_params;
  2507. unsigned long line_time_us;
  2508. int sr_clock, sr_entries = 0, entries_required;
  2509. /* Create copies of the base settings for each pipe */
  2510. planea_params = planeb_params = g4x_wm_info;
  2511. /* Grab a couple of global values before we overwrite them */
  2512. total_size = planea_params.fifo_size;
  2513. cacheline_size = planea_params.cacheline_size;
  2514. /*
  2515. * Note: we need to make sure we don't overflow for various clock &
  2516. * latency values.
  2517. * clocks go from a few thousand to several hundred thousand.
  2518. * latency is usually a few thousand
  2519. */
  2520. entries_required = ((planea_clock / 1000) * pixel_size * latency_ns) /
  2521. 1000;
  2522. entries_required /= G4X_FIFO_LINE_SIZE;
  2523. planea_wm = entries_required + planea_params.guard_size;
  2524. entries_required = ((planeb_clock / 1000) * pixel_size * latency_ns) /
  2525. 1000;
  2526. entries_required /= G4X_FIFO_LINE_SIZE;
  2527. planeb_wm = entries_required + planeb_params.guard_size;
  2528. cursora_wm = cursorb_wm = 16;
  2529. cursor_sr = 32;
  2530. DRM_DEBUG("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
  2531. /* Calc sr entries for one plane configs */
  2532. if (sr_hdisplay && (!planea_clock || !planeb_clock)) {
  2533. /* self-refresh has much higher latency */
  2534. static const int sr_latency_ns = 12000;
  2535. sr_clock = planea_clock ? planea_clock : planeb_clock;
  2536. line_time_us = ((sr_hdisplay * 1000) / sr_clock);
  2537. /* Use ns/us then divide to preserve precision */
  2538. sr_entries = (((sr_latency_ns / line_time_us) + 1) *
  2539. pixel_size * sr_hdisplay) / 1000;
  2540. sr_entries = roundup(sr_entries / cacheline_size, 1);
  2541. DRM_DEBUG("self-refresh entries: %d\n", sr_entries);
  2542. I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
  2543. } else {
  2544. /* Turn off self refresh if both pipes are enabled */
  2545. I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF)
  2546. & ~FW_BLC_SELF_EN);
  2547. }
  2548. DRM_DEBUG("Setting FIFO watermarks - A: %d, B: %d, SR %d\n",
  2549. planea_wm, planeb_wm, sr_entries);
  2550. planea_wm &= 0x3f;
  2551. planeb_wm &= 0x3f;
  2552. I915_WRITE(DSPFW1, (sr_entries << DSPFW_SR_SHIFT) |
  2553. (cursorb_wm << DSPFW_CURSORB_SHIFT) |
  2554. (planeb_wm << DSPFW_PLANEB_SHIFT) | planea_wm);
  2555. I915_WRITE(DSPFW2, (I915_READ(DSPFW2) & DSPFW_CURSORA_MASK) |
  2556. (cursora_wm << DSPFW_CURSORA_SHIFT));
  2557. /* HPLL off in SR has some issues on G4x... disable it */
  2558. I915_WRITE(DSPFW3, (I915_READ(DSPFW3) & ~DSPFW_HPLL_SR_EN) |
  2559. (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
  2560. }
  2561. static void i965_update_wm(struct drm_device *dev, int planea_clock,
  2562. int planeb_clock, int sr_hdisplay, int pixel_size)
  2563. {
  2564. struct drm_i915_private *dev_priv = dev->dev_private;
  2565. unsigned long line_time_us;
  2566. int sr_clock, sr_entries, srwm = 1;
  2567. /* Calc sr entries for one plane configs */
  2568. if (sr_hdisplay && (!planea_clock || !planeb_clock)) {
  2569. /* self-refresh has much higher latency */
  2570. static const int sr_latency_ns = 12000;
  2571. sr_clock = planea_clock ? planea_clock : planeb_clock;
  2572. line_time_us = ((sr_hdisplay * 1000) / sr_clock);
  2573. /* Use ns/us then divide to preserve precision */
  2574. sr_entries = (((sr_latency_ns / line_time_us) + 1) *
  2575. pixel_size * sr_hdisplay) / 1000;
  2576. sr_entries = roundup(sr_entries / I915_FIFO_LINE_SIZE, 1);
  2577. DRM_DEBUG("self-refresh entries: %d\n", sr_entries);
  2578. srwm = I945_FIFO_SIZE - sr_entries;
  2579. if (srwm < 0)
  2580. srwm = 1;
  2581. srwm &= 0x3f;
  2582. I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
  2583. } else {
  2584. /* Turn off self refresh if both pipes are enabled */
  2585. I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF)
  2586. & ~FW_BLC_SELF_EN);
  2587. }
  2588. DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
  2589. srwm);
  2590. /* 965 has limitations... */
  2591. I915_WRITE(DSPFW1, (srwm << DSPFW_SR_SHIFT) | (8 << 16) | (8 << 8) |
  2592. (8 << 0));
  2593. I915_WRITE(DSPFW2, (8 << 8) | (8 << 0));
  2594. }
  2595. static void i9xx_update_wm(struct drm_device *dev, int planea_clock,
  2596. int planeb_clock, int sr_hdisplay, int pixel_size)
  2597. {
  2598. struct drm_i915_private *dev_priv = dev->dev_private;
  2599. uint32_t fwater_lo;
  2600. uint32_t fwater_hi;
  2601. int total_size, cacheline_size, cwm, srwm = 1;
  2602. int planea_wm, planeb_wm;
  2603. struct intel_watermark_params planea_params, planeb_params;
  2604. unsigned long line_time_us;
  2605. int sr_clock, sr_entries = 0;
  2606. /* Create copies of the base settings for each pipe */
  2607. if (IS_I965GM(dev) || IS_I945GM(dev))
  2608. planea_params = planeb_params = i945_wm_info;
  2609. else if (IS_I9XX(dev))
  2610. planea_params = planeb_params = i915_wm_info;
  2611. else
  2612. planea_params = planeb_params = i855_wm_info;
  2613. /* Grab a couple of global values before we overwrite them */
  2614. total_size = planea_params.fifo_size;
  2615. cacheline_size = planea_params.cacheline_size;
  2616. /* Update per-plane FIFO sizes */
  2617. planea_params.fifo_size = dev_priv->display.get_fifo_size(dev, 0);
  2618. planeb_params.fifo_size = dev_priv->display.get_fifo_size(dev, 1);
  2619. planea_wm = intel_calculate_wm(planea_clock, &planea_params,
  2620. pixel_size, latency_ns);
  2621. planeb_wm = intel_calculate_wm(planeb_clock, &planeb_params,
  2622. pixel_size, latency_ns);
  2623. DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
  2624. /*
  2625. * Overlay gets an aggressive default since video jitter is bad.
  2626. */
  2627. cwm = 2;
  2628. /* Calc sr entries for one plane configs */
  2629. if (HAS_FW_BLC(dev) && sr_hdisplay &&
  2630. (!planea_clock || !planeb_clock)) {
  2631. /* self-refresh has much higher latency */
  2632. static const int sr_latency_ns = 6000;
  2633. sr_clock = planea_clock ? planea_clock : planeb_clock;
  2634. line_time_us = ((sr_hdisplay * 1000) / sr_clock);
  2635. /* Use ns/us then divide to preserve precision */
  2636. sr_entries = (((sr_latency_ns / line_time_us) + 1) *
  2637. pixel_size * sr_hdisplay) / 1000;
  2638. sr_entries = roundup(sr_entries / cacheline_size, 1);
  2639. DRM_DEBUG_KMS("self-refresh entries: %d\n", sr_entries);
  2640. srwm = total_size - sr_entries;
  2641. if (srwm < 0)
  2642. srwm = 1;
  2643. if (IS_I945G(dev) || IS_I945GM(dev))
  2644. I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
  2645. else if (IS_I915GM(dev)) {
  2646. /* 915M has a smaller SRWM field */
  2647. I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
  2648. I915_WRITE(INSTPM, I915_READ(INSTPM) | INSTPM_SELF_EN);
  2649. }
  2650. } else {
  2651. /* Turn off self refresh if both pipes are enabled */
  2652. if (IS_I945G(dev) || IS_I945GM(dev)) {
  2653. I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF)
  2654. & ~FW_BLC_SELF_EN);
  2655. } else if (IS_I915GM(dev)) {
  2656. I915_WRITE(INSTPM, I915_READ(INSTPM) & ~INSTPM_SELF_EN);
  2657. }
  2658. }
  2659. DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
  2660. planea_wm, planeb_wm, cwm, srwm);
  2661. fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
  2662. fwater_hi = (cwm & 0x1f);
  2663. /* Set request length to 8 cachelines per fetch */
  2664. fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
  2665. fwater_hi = fwater_hi | (1 << 8);
  2666. I915_WRITE(FW_BLC, fwater_lo);
  2667. I915_WRITE(FW_BLC2, fwater_hi);
  2668. }
  2669. static void i830_update_wm(struct drm_device *dev, int planea_clock, int unused,
  2670. int unused2, int pixel_size)
  2671. {
  2672. struct drm_i915_private *dev_priv = dev->dev_private;
  2673. uint32_t fwater_lo = I915_READ(FW_BLC) & ~0xfff;
  2674. int planea_wm;
  2675. i830_wm_info.fifo_size = dev_priv->display.get_fifo_size(dev, 0);
  2676. planea_wm = intel_calculate_wm(planea_clock, &i830_wm_info,
  2677. pixel_size, latency_ns);
  2678. fwater_lo |= (3<<8) | planea_wm;
  2679. DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
  2680. I915_WRITE(FW_BLC, fwater_lo);
  2681. }
  2682. #define ILK_LP0_PLANE_LATENCY 700
  2683. static void ironlake_update_wm(struct drm_device *dev, int planea_clock,
  2684. int planeb_clock, int sr_hdisplay, int pixel_size)
  2685. {
  2686. struct drm_i915_private *dev_priv = dev->dev_private;
  2687. int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
  2688. int sr_wm, cursor_wm;
  2689. unsigned long line_time_us;
  2690. int sr_clock, entries_required;
  2691. u32 reg_value;
  2692. /* Calculate and update the watermark for plane A */
  2693. if (planea_clock) {
  2694. entries_required = ((planea_clock / 1000) * pixel_size *
  2695. ILK_LP0_PLANE_LATENCY) / 1000;
  2696. entries_required = DIV_ROUND_UP(entries_required,
  2697. ironlake_display_wm_info.cacheline_size);
  2698. planea_wm = entries_required +
  2699. ironlake_display_wm_info.guard_size;
  2700. if (planea_wm > (int)ironlake_display_wm_info.max_wm)
  2701. planea_wm = ironlake_display_wm_info.max_wm;
  2702. cursora_wm = 16;
  2703. reg_value = I915_READ(WM0_PIPEA_ILK);
  2704. reg_value &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
  2705. reg_value |= (planea_wm << WM0_PIPE_PLANE_SHIFT) |
  2706. (cursora_wm & WM0_PIPE_CURSOR_MASK);
  2707. I915_WRITE(WM0_PIPEA_ILK, reg_value);
  2708. DRM_DEBUG_KMS("FIFO watermarks For pipe A - plane %d, "
  2709. "cursor: %d\n", planea_wm, cursora_wm);
  2710. }
  2711. /* Calculate and update the watermark for plane B */
  2712. if (planeb_clock) {
  2713. entries_required = ((planeb_clock / 1000) * pixel_size *
  2714. ILK_LP0_PLANE_LATENCY) / 1000;
  2715. entries_required = DIV_ROUND_UP(entries_required,
  2716. ironlake_display_wm_info.cacheline_size);
  2717. planeb_wm = entries_required +
  2718. ironlake_display_wm_info.guard_size;
  2719. if (planeb_wm > (int)ironlake_display_wm_info.max_wm)
  2720. planeb_wm = ironlake_display_wm_info.max_wm;
  2721. cursorb_wm = 16;
  2722. reg_value = I915_READ(WM0_PIPEB_ILK);
  2723. reg_value &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
  2724. reg_value |= (planeb_wm << WM0_PIPE_PLANE_SHIFT) |
  2725. (cursorb_wm & WM0_PIPE_CURSOR_MASK);
  2726. I915_WRITE(WM0_PIPEB_ILK, reg_value);
  2727. DRM_DEBUG_KMS("FIFO watermarks For pipe B - plane %d, "
  2728. "cursor: %d\n", planeb_wm, cursorb_wm);
  2729. }
  2730. /*
  2731. * Calculate and update the self-refresh watermark only when one
  2732. * display plane is used.
  2733. */
  2734. if (!planea_clock || !planeb_clock) {
  2735. int line_count;
  2736. /* Read the self-refresh latency. The unit is 0.5us */
  2737. int ilk_sr_latency = I915_READ(MLTR_ILK) & ILK_SRLT_MASK;
  2738. sr_clock = planea_clock ? planea_clock : planeb_clock;
  2739. line_time_us = ((sr_hdisplay * 1000) / sr_clock);
  2740. /* Use ns/us then divide to preserve precision */
  2741. line_count = ((ilk_sr_latency * 500) / line_time_us + 1000)
  2742. / 1000;
  2743. /* calculate the self-refresh watermark for display plane */
  2744. entries_required = line_count * sr_hdisplay * pixel_size;
  2745. entries_required = DIV_ROUND_UP(entries_required,
  2746. ironlake_display_srwm_info.cacheline_size);
  2747. sr_wm = entries_required +
  2748. ironlake_display_srwm_info.guard_size;
  2749. /* calculate the self-refresh watermark for display cursor */
  2750. entries_required = line_count * pixel_size * 64;
  2751. entries_required = DIV_ROUND_UP(entries_required,
  2752. ironlake_cursor_srwm_info.cacheline_size);
  2753. cursor_wm = entries_required +
  2754. ironlake_cursor_srwm_info.guard_size;
  2755. /* configure watermark and enable self-refresh */
  2756. reg_value = I915_READ(WM1_LP_ILK);
  2757. reg_value &= ~(WM1_LP_LATENCY_MASK | WM1_LP_SR_MASK |
  2758. WM1_LP_CURSOR_MASK);
  2759. reg_value |= WM1_LP_SR_EN |
  2760. (ilk_sr_latency << WM1_LP_LATENCY_SHIFT) |
  2761. (sr_wm << WM1_LP_SR_SHIFT) | cursor_wm;
  2762. I915_WRITE(WM1_LP_ILK, reg_value);
  2763. DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
  2764. "cursor %d\n", sr_wm, cursor_wm);
  2765. } else {
  2766. /* Turn off self refresh if both pipes are enabled */
  2767. I915_WRITE(WM1_LP_ILK, I915_READ(WM1_LP_ILK) & ~WM1_LP_SR_EN);
  2768. }
  2769. }
  2770. /**
  2771. * intel_update_watermarks - update FIFO watermark values based on current modes
  2772. *
  2773. * Calculate watermark values for the various WM regs based on current mode
  2774. * and plane configuration.
  2775. *
  2776. * There are several cases to deal with here:
  2777. * - normal (i.e. non-self-refresh)
  2778. * - self-refresh (SR) mode
  2779. * - lines are large relative to FIFO size (buffer can hold up to 2)
  2780. * - lines are small relative to FIFO size (buffer can hold more than 2
  2781. * lines), so need to account for TLB latency
  2782. *
  2783. * The normal calculation is:
  2784. * watermark = dotclock * bytes per pixel * latency
  2785. * where latency is platform & configuration dependent (we assume pessimal
  2786. * values here).
  2787. *
  2788. * The SR calculation is:
  2789. * watermark = (trunc(latency/line time)+1) * surface width *
  2790. * bytes per pixel
  2791. * where
  2792. * line time = htotal / dotclock
  2793. * and latency is assumed to be high, as above.
  2794. *
  2795. * The final value programmed to the register should always be rounded up,
  2796. * and include an extra 2 entries to account for clock crossings.
  2797. *
  2798. * We don't use the sprite, so we can ignore that. And on Crestline we have
  2799. * to set the non-SR watermarks to 8.
  2800. */
  2801. static void intel_update_watermarks(struct drm_device *dev)
  2802. {
  2803. struct drm_i915_private *dev_priv = dev->dev_private;
  2804. struct drm_crtc *crtc;
  2805. struct intel_crtc *intel_crtc;
  2806. int sr_hdisplay = 0;
  2807. unsigned long planea_clock = 0, planeb_clock = 0, sr_clock = 0;
  2808. int enabled = 0, pixel_size = 0;
  2809. if (!dev_priv->display.update_wm)
  2810. return;
  2811. /* Get the clock config from both planes */
  2812. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  2813. intel_crtc = to_intel_crtc(crtc);
  2814. if (crtc->enabled) {
  2815. enabled++;
  2816. if (intel_crtc->plane == 0) {
  2817. DRM_DEBUG_KMS("plane A (pipe %d) clock: %d\n",
  2818. intel_crtc->pipe, crtc->mode.clock);
  2819. planea_clock = crtc->mode.clock;
  2820. } else {
  2821. DRM_DEBUG_KMS("plane B (pipe %d) clock: %d\n",
  2822. intel_crtc->pipe, crtc->mode.clock);
  2823. planeb_clock = crtc->mode.clock;
  2824. }
  2825. sr_hdisplay = crtc->mode.hdisplay;
  2826. sr_clock = crtc->mode.clock;
  2827. if (crtc->fb)
  2828. pixel_size = crtc->fb->bits_per_pixel / 8;
  2829. else
  2830. pixel_size = 4; /* by default */
  2831. }
  2832. }
  2833. if (enabled <= 0)
  2834. return;
  2835. dev_priv->display.update_wm(dev, planea_clock, planeb_clock,
  2836. sr_hdisplay, pixel_size);
  2837. }
  2838. static int intel_crtc_mode_set(struct drm_crtc *crtc,
  2839. struct drm_display_mode *mode,
  2840. struct drm_display_mode *adjusted_mode,
  2841. int x, int y,
  2842. struct drm_framebuffer *old_fb)
  2843. {
  2844. struct drm_device *dev = crtc->dev;
  2845. struct drm_i915_private *dev_priv = dev->dev_private;
  2846. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2847. int pipe = intel_crtc->pipe;
  2848. int plane = intel_crtc->plane;
  2849. int fp_reg = (pipe == 0) ? FPA0 : FPB0;
  2850. int dpll_reg = (pipe == 0) ? DPLL_A : DPLL_B;
  2851. int dpll_md_reg = (intel_crtc->pipe == 0) ? DPLL_A_MD : DPLL_B_MD;
  2852. int dspcntr_reg = (plane == 0) ? DSPACNTR : DSPBCNTR;
  2853. int pipeconf_reg = (pipe == 0) ? PIPEACONF : PIPEBCONF;
  2854. int htot_reg = (pipe == 0) ? HTOTAL_A : HTOTAL_B;
  2855. int hblank_reg = (pipe == 0) ? HBLANK_A : HBLANK_B;
  2856. int hsync_reg = (pipe == 0) ? HSYNC_A : HSYNC_B;
  2857. int vtot_reg = (pipe == 0) ? VTOTAL_A : VTOTAL_B;
  2858. int vblank_reg = (pipe == 0) ? VBLANK_A : VBLANK_B;
  2859. int vsync_reg = (pipe == 0) ? VSYNC_A : VSYNC_B;
  2860. int dspsize_reg = (plane == 0) ? DSPASIZE : DSPBSIZE;
  2861. int dsppos_reg = (plane == 0) ? DSPAPOS : DSPBPOS;
  2862. int pipesrc_reg = (pipe == 0) ? PIPEASRC : PIPEBSRC;
  2863. int refclk, num_connectors = 0;
  2864. intel_clock_t clock, reduced_clock;
  2865. u32 dpll = 0, fp = 0, fp2 = 0, dspcntr, pipeconf;
  2866. bool ok, has_reduced_clock = false, is_sdvo = false, is_dvo = false;
  2867. bool is_crt = false, is_lvds = false, is_tv = false, is_dp = false;
  2868. bool is_edp = false;
  2869. struct drm_mode_config *mode_config = &dev->mode_config;
  2870. struct drm_encoder *encoder;
  2871. struct intel_encoder *intel_encoder = NULL;
  2872. const intel_limit_t *limit;
  2873. int ret;
  2874. struct fdi_m_n m_n = {0};
  2875. int data_m1_reg = (pipe == 0) ? PIPEA_DATA_M1 : PIPEB_DATA_M1;
  2876. int data_n1_reg = (pipe == 0) ? PIPEA_DATA_N1 : PIPEB_DATA_N1;
  2877. int link_m1_reg = (pipe == 0) ? PIPEA_LINK_M1 : PIPEB_LINK_M1;
  2878. int link_n1_reg = (pipe == 0) ? PIPEA_LINK_N1 : PIPEB_LINK_N1;
  2879. int pch_fp_reg = (pipe == 0) ? PCH_FPA0 : PCH_FPB0;
  2880. int pch_dpll_reg = (pipe == 0) ? PCH_DPLL_A : PCH_DPLL_B;
  2881. int fdi_rx_reg = (pipe == 0) ? FDI_RXA_CTL : FDI_RXB_CTL;
  2882. int fdi_tx_reg = (pipe == 0) ? FDI_TXA_CTL : FDI_TXB_CTL;
  2883. int trans_dpll_sel = (pipe == 0) ? 0 : 1;
  2884. int lvds_reg = LVDS;
  2885. u32 temp;
  2886. int sdvo_pixel_multiply;
  2887. int target_clock;
  2888. drm_vblank_pre_modeset(dev, pipe);
  2889. list_for_each_entry(encoder, &mode_config->encoder_list, head) {
  2890. if (!encoder || encoder->crtc != crtc)
  2891. continue;
  2892. intel_encoder = enc_to_intel_encoder(encoder);
  2893. switch (intel_encoder->type) {
  2894. case INTEL_OUTPUT_LVDS:
  2895. is_lvds = true;
  2896. break;
  2897. case INTEL_OUTPUT_SDVO:
  2898. case INTEL_OUTPUT_HDMI:
  2899. is_sdvo = true;
  2900. if (intel_encoder->needs_tv_clock)
  2901. is_tv = true;
  2902. break;
  2903. case INTEL_OUTPUT_DVO:
  2904. is_dvo = true;
  2905. break;
  2906. case INTEL_OUTPUT_TVOUT:
  2907. is_tv = true;
  2908. break;
  2909. case INTEL_OUTPUT_ANALOG:
  2910. is_crt = true;
  2911. break;
  2912. case INTEL_OUTPUT_DISPLAYPORT:
  2913. is_dp = true;
  2914. break;
  2915. case INTEL_OUTPUT_EDP:
  2916. is_edp = true;
  2917. break;
  2918. }
  2919. num_connectors++;
  2920. }
  2921. if (is_lvds && dev_priv->lvds_use_ssc && num_connectors < 2) {
  2922. refclk = dev_priv->lvds_ssc_freq * 1000;
  2923. DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
  2924. refclk / 1000);
  2925. } else if (IS_I9XX(dev)) {
  2926. refclk = 96000;
  2927. if (HAS_PCH_SPLIT(dev))
  2928. refclk = 120000; /* 120Mhz refclk */
  2929. } else {
  2930. refclk = 48000;
  2931. }
  2932. /*
  2933. * Returns a set of divisors for the desired target clock with the given
  2934. * refclk, or FALSE. The returned values represent the clock equation:
  2935. * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
  2936. */
  2937. limit = intel_limit(crtc);
  2938. ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, &clock);
  2939. if (!ok) {
  2940. DRM_ERROR("Couldn't find PLL settings for mode!\n");
  2941. drm_vblank_post_modeset(dev, pipe);
  2942. return -EINVAL;
  2943. }
  2944. if (is_lvds && dev_priv->lvds_downclock_avail) {
  2945. has_reduced_clock = limit->find_pll(limit, crtc,
  2946. dev_priv->lvds_downclock,
  2947. refclk,
  2948. &reduced_clock);
  2949. if (has_reduced_clock && (clock.p != reduced_clock.p)) {
  2950. /*
  2951. * If the different P is found, it means that we can't
  2952. * switch the display clock by using the FP0/FP1.
  2953. * In such case we will disable the LVDS downclock
  2954. * feature.
  2955. */
  2956. DRM_DEBUG_KMS("Different P is found for "
  2957. "LVDS clock/downclock\n");
  2958. has_reduced_clock = 0;
  2959. }
  2960. }
  2961. /* SDVO TV has fixed PLL values depend on its clock range,
  2962. this mirrors vbios setting. */
  2963. if (is_sdvo && is_tv) {
  2964. if (adjusted_mode->clock >= 100000
  2965. && adjusted_mode->clock < 140500) {
  2966. clock.p1 = 2;
  2967. clock.p2 = 10;
  2968. clock.n = 3;
  2969. clock.m1 = 16;
  2970. clock.m2 = 8;
  2971. } else if (adjusted_mode->clock >= 140500
  2972. && adjusted_mode->clock <= 200000) {
  2973. clock.p1 = 1;
  2974. clock.p2 = 10;
  2975. clock.n = 6;
  2976. clock.m1 = 12;
  2977. clock.m2 = 8;
  2978. }
  2979. }
  2980. /* FDI link */
  2981. if (HAS_PCH_SPLIT(dev)) {
  2982. int lane = 0, link_bw, bpp;
  2983. /* eDP doesn't require FDI link, so just set DP M/N
  2984. according to current link config */
  2985. if (is_edp) {
  2986. target_clock = mode->clock;
  2987. intel_edp_link_config(intel_encoder,
  2988. &lane, &link_bw);
  2989. } else {
  2990. /* DP over FDI requires target mode clock
  2991. instead of link clock */
  2992. if (is_dp)
  2993. target_clock = mode->clock;
  2994. else
  2995. target_clock = adjusted_mode->clock;
  2996. link_bw = 270000;
  2997. }
  2998. /* determine panel color depth */
  2999. temp = I915_READ(pipeconf_reg);
  3000. temp &= ~PIPE_BPC_MASK;
  3001. if (is_lvds) {
  3002. int lvds_reg = I915_READ(PCH_LVDS);
  3003. /* the BPC will be 6 if it is 18-bit LVDS panel */
  3004. if ((lvds_reg & LVDS_A3_POWER_MASK) == LVDS_A3_POWER_UP)
  3005. temp |= PIPE_8BPC;
  3006. else
  3007. temp |= PIPE_6BPC;
  3008. } else if (is_edp) {
  3009. switch (dev_priv->edp_bpp/3) {
  3010. case 8:
  3011. temp |= PIPE_8BPC;
  3012. break;
  3013. case 10:
  3014. temp |= PIPE_10BPC;
  3015. break;
  3016. case 6:
  3017. temp |= PIPE_6BPC;
  3018. break;
  3019. case 12:
  3020. temp |= PIPE_12BPC;
  3021. break;
  3022. }
  3023. } else
  3024. temp |= PIPE_8BPC;
  3025. I915_WRITE(pipeconf_reg, temp);
  3026. I915_READ(pipeconf_reg);
  3027. switch (temp & PIPE_BPC_MASK) {
  3028. case PIPE_8BPC:
  3029. bpp = 24;
  3030. break;
  3031. case PIPE_10BPC:
  3032. bpp = 30;
  3033. break;
  3034. case PIPE_6BPC:
  3035. bpp = 18;
  3036. break;
  3037. case PIPE_12BPC:
  3038. bpp = 36;
  3039. break;
  3040. default:
  3041. DRM_ERROR("unknown pipe bpc value\n");
  3042. bpp = 24;
  3043. }
  3044. if (!lane) {
  3045. /*
  3046. * Account for spread spectrum to avoid
  3047. * oversubscribing the link. Max center spread
  3048. * is 2.5%; use 5% for safety's sake.
  3049. */
  3050. u32 bps = target_clock * bpp * 21 / 20;
  3051. lane = bps / (link_bw * 8) + 1;
  3052. }
  3053. intel_crtc->fdi_lanes = lane;
  3054. ironlake_compute_m_n(bpp, lane, target_clock, link_bw, &m_n);
  3055. }
  3056. /* Ironlake: try to setup display ref clock before DPLL
  3057. * enabling. This is only under driver's control after
  3058. * PCH B stepping, previous chipset stepping should be
  3059. * ignoring this setting.
  3060. */
  3061. if (HAS_PCH_SPLIT(dev)) {
  3062. temp = I915_READ(PCH_DREF_CONTROL);
  3063. /* Always enable nonspread source */
  3064. temp &= ~DREF_NONSPREAD_SOURCE_MASK;
  3065. temp |= DREF_NONSPREAD_SOURCE_ENABLE;
  3066. I915_WRITE(PCH_DREF_CONTROL, temp);
  3067. POSTING_READ(PCH_DREF_CONTROL);
  3068. temp &= ~DREF_SSC_SOURCE_MASK;
  3069. temp |= DREF_SSC_SOURCE_ENABLE;
  3070. I915_WRITE(PCH_DREF_CONTROL, temp);
  3071. POSTING_READ(PCH_DREF_CONTROL);
  3072. udelay(200);
  3073. if (is_edp) {
  3074. if (dev_priv->lvds_use_ssc) {
  3075. temp |= DREF_SSC1_ENABLE;
  3076. I915_WRITE(PCH_DREF_CONTROL, temp);
  3077. POSTING_READ(PCH_DREF_CONTROL);
  3078. udelay(200);
  3079. temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
  3080. temp |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
  3081. I915_WRITE(PCH_DREF_CONTROL, temp);
  3082. POSTING_READ(PCH_DREF_CONTROL);
  3083. } else {
  3084. temp |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
  3085. I915_WRITE(PCH_DREF_CONTROL, temp);
  3086. POSTING_READ(PCH_DREF_CONTROL);
  3087. }
  3088. }
  3089. }
  3090. if (IS_PINEVIEW(dev)) {
  3091. fp = (1 << clock.n) << 16 | clock.m1 << 8 | clock.m2;
  3092. if (has_reduced_clock)
  3093. fp2 = (1 << reduced_clock.n) << 16 |
  3094. reduced_clock.m1 << 8 | reduced_clock.m2;
  3095. } else {
  3096. fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
  3097. if (has_reduced_clock)
  3098. fp2 = reduced_clock.n << 16 | reduced_clock.m1 << 8 |
  3099. reduced_clock.m2;
  3100. }
  3101. if (!HAS_PCH_SPLIT(dev))
  3102. dpll = DPLL_VGA_MODE_DIS;
  3103. if (IS_I9XX(dev)) {
  3104. if (is_lvds)
  3105. dpll |= DPLLB_MODE_LVDS;
  3106. else
  3107. dpll |= DPLLB_MODE_DAC_SERIAL;
  3108. if (is_sdvo) {
  3109. dpll |= DPLL_DVO_HIGH_SPEED;
  3110. sdvo_pixel_multiply = adjusted_mode->clock / mode->clock;
  3111. if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
  3112. dpll |= (sdvo_pixel_multiply - 1) << SDVO_MULTIPLIER_SHIFT_HIRES;
  3113. else if (HAS_PCH_SPLIT(dev))
  3114. dpll |= (sdvo_pixel_multiply - 1) << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
  3115. }
  3116. if (is_dp)
  3117. dpll |= DPLL_DVO_HIGH_SPEED;
  3118. /* compute bitmask from p1 value */
  3119. if (IS_PINEVIEW(dev))
  3120. dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
  3121. else {
  3122. dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
  3123. /* also FPA1 */
  3124. if (HAS_PCH_SPLIT(dev))
  3125. dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
  3126. if (IS_G4X(dev) && has_reduced_clock)
  3127. dpll |= (1 << (reduced_clock.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
  3128. }
  3129. switch (clock.p2) {
  3130. case 5:
  3131. dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
  3132. break;
  3133. case 7:
  3134. dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
  3135. break;
  3136. case 10:
  3137. dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
  3138. break;
  3139. case 14:
  3140. dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
  3141. break;
  3142. }
  3143. if (IS_I965G(dev) && !HAS_PCH_SPLIT(dev))
  3144. dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
  3145. } else {
  3146. if (is_lvds) {
  3147. dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
  3148. } else {
  3149. if (clock.p1 == 2)
  3150. dpll |= PLL_P1_DIVIDE_BY_TWO;
  3151. else
  3152. dpll |= (clock.p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
  3153. if (clock.p2 == 4)
  3154. dpll |= PLL_P2_DIVIDE_BY_4;
  3155. }
  3156. }
  3157. if (is_sdvo && is_tv)
  3158. dpll |= PLL_REF_INPUT_TVCLKINBC;
  3159. else if (is_tv)
  3160. /* XXX: just matching BIOS for now */
  3161. /* dpll |= PLL_REF_INPUT_TVCLKINBC; */
  3162. dpll |= 3;
  3163. else if (is_lvds && dev_priv->lvds_use_ssc && num_connectors < 2)
  3164. dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
  3165. else
  3166. dpll |= PLL_REF_INPUT_DREFCLK;
  3167. /* setup pipeconf */
  3168. pipeconf = I915_READ(pipeconf_reg);
  3169. /* Set up the display plane register */
  3170. dspcntr = DISPPLANE_GAMMA_ENABLE;
  3171. /* Ironlake's plane is forced to pipe, bit 24 is to
  3172. enable color space conversion */
  3173. if (!HAS_PCH_SPLIT(dev)) {
  3174. if (pipe == 0)
  3175. dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
  3176. else
  3177. dspcntr |= DISPPLANE_SEL_PIPE_B;
  3178. }
  3179. if (pipe == 0 && !IS_I965G(dev)) {
  3180. /* Enable pixel doubling when the dot clock is > 90% of the (display)
  3181. * core speed.
  3182. *
  3183. * XXX: No double-wide on 915GM pipe B. Is that the only reason for the
  3184. * pipe == 0 check?
  3185. */
  3186. if (mode->clock >
  3187. dev_priv->display.get_display_clock_speed(dev) * 9 / 10)
  3188. pipeconf |= PIPEACONF_DOUBLE_WIDE;
  3189. else
  3190. pipeconf &= ~PIPEACONF_DOUBLE_WIDE;
  3191. }
  3192. /* Disable the panel fitter if it was on our pipe */
  3193. if (!HAS_PCH_SPLIT(dev) && intel_panel_fitter_pipe(dev) == pipe)
  3194. I915_WRITE(PFIT_CONTROL, 0);
  3195. DRM_DEBUG_KMS("Mode for pipe %c:\n", pipe == 0 ? 'A' : 'B');
  3196. drm_mode_debug_printmodeline(mode);
  3197. /* assign to Ironlake registers */
  3198. if (HAS_PCH_SPLIT(dev)) {
  3199. fp_reg = pch_fp_reg;
  3200. dpll_reg = pch_dpll_reg;
  3201. }
  3202. if (is_edp) {
  3203. ironlake_disable_pll_edp(crtc);
  3204. } else if ((dpll & DPLL_VCO_ENABLE)) {
  3205. I915_WRITE(fp_reg, fp);
  3206. I915_WRITE(dpll_reg, dpll & ~DPLL_VCO_ENABLE);
  3207. I915_READ(dpll_reg);
  3208. udelay(150);
  3209. }
  3210. /* enable transcoder DPLL */
  3211. if (HAS_PCH_CPT(dev)) {
  3212. temp = I915_READ(PCH_DPLL_SEL);
  3213. if (trans_dpll_sel == 0)
  3214. temp |= (TRANSA_DPLL_ENABLE | TRANSA_DPLLA_SEL);
  3215. else
  3216. temp |= (TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
  3217. I915_WRITE(PCH_DPLL_SEL, temp);
  3218. I915_READ(PCH_DPLL_SEL);
  3219. udelay(150);
  3220. }
  3221. /* The LVDS pin pair needs to be on before the DPLLs are enabled.
  3222. * This is an exception to the general rule that mode_set doesn't turn
  3223. * things on.
  3224. */
  3225. if (is_lvds) {
  3226. u32 lvds;
  3227. if (HAS_PCH_SPLIT(dev))
  3228. lvds_reg = PCH_LVDS;
  3229. lvds = I915_READ(lvds_reg);
  3230. lvds |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
  3231. if (pipe == 1) {
  3232. if (HAS_PCH_CPT(dev))
  3233. lvds |= PORT_TRANS_B_SEL_CPT;
  3234. else
  3235. lvds |= LVDS_PIPEB_SELECT;
  3236. } else {
  3237. if (HAS_PCH_CPT(dev))
  3238. lvds &= ~PORT_TRANS_SEL_MASK;
  3239. else
  3240. lvds &= ~LVDS_PIPEB_SELECT;
  3241. }
  3242. /* set the corresponsding LVDS_BORDER bit */
  3243. lvds |= dev_priv->lvds_border_bits;
  3244. /* Set the B0-B3 data pairs corresponding to whether we're going to
  3245. * set the DPLLs for dual-channel mode or not.
  3246. */
  3247. if (clock.p2 == 7)
  3248. lvds |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
  3249. else
  3250. lvds &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
  3251. /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
  3252. * appropriately here, but we need to look more thoroughly into how
  3253. * panels behave in the two modes.
  3254. */
  3255. /* set the dithering flag */
  3256. if (IS_I965G(dev)) {
  3257. if (dev_priv->lvds_dither) {
  3258. if (HAS_PCH_SPLIT(dev)) {
  3259. pipeconf |= PIPE_ENABLE_DITHER;
  3260. pipeconf |= PIPE_DITHER_TYPE_ST01;
  3261. } else
  3262. lvds |= LVDS_ENABLE_DITHER;
  3263. } else {
  3264. if (HAS_PCH_SPLIT(dev)) {
  3265. pipeconf &= ~PIPE_ENABLE_DITHER;
  3266. pipeconf &= ~PIPE_DITHER_TYPE_MASK;
  3267. } else
  3268. lvds &= ~LVDS_ENABLE_DITHER;
  3269. }
  3270. }
  3271. I915_WRITE(lvds_reg, lvds);
  3272. I915_READ(lvds_reg);
  3273. }
  3274. if (is_dp)
  3275. intel_dp_set_m_n(crtc, mode, adjusted_mode);
  3276. else if (HAS_PCH_SPLIT(dev)) {
  3277. /* For non-DP output, clear any trans DP clock recovery setting.*/
  3278. if (pipe == 0) {
  3279. I915_WRITE(TRANSA_DATA_M1, 0);
  3280. I915_WRITE(TRANSA_DATA_N1, 0);
  3281. I915_WRITE(TRANSA_DP_LINK_M1, 0);
  3282. I915_WRITE(TRANSA_DP_LINK_N1, 0);
  3283. } else {
  3284. I915_WRITE(TRANSB_DATA_M1, 0);
  3285. I915_WRITE(TRANSB_DATA_N1, 0);
  3286. I915_WRITE(TRANSB_DP_LINK_M1, 0);
  3287. I915_WRITE(TRANSB_DP_LINK_N1, 0);
  3288. }
  3289. }
  3290. if (!is_edp) {
  3291. I915_WRITE(fp_reg, fp);
  3292. I915_WRITE(dpll_reg, dpll);
  3293. I915_READ(dpll_reg);
  3294. /* Wait for the clocks to stabilize. */
  3295. udelay(150);
  3296. if (IS_I965G(dev) && !HAS_PCH_SPLIT(dev)) {
  3297. if (is_sdvo) {
  3298. sdvo_pixel_multiply = adjusted_mode->clock / mode->clock;
  3299. I915_WRITE(dpll_md_reg, (0 << DPLL_MD_UDI_DIVIDER_SHIFT) |
  3300. ((sdvo_pixel_multiply - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT));
  3301. } else
  3302. I915_WRITE(dpll_md_reg, 0);
  3303. } else {
  3304. /* write it again -- the BIOS does, after all */
  3305. I915_WRITE(dpll_reg, dpll);
  3306. }
  3307. I915_READ(dpll_reg);
  3308. /* Wait for the clocks to stabilize. */
  3309. udelay(150);
  3310. }
  3311. if (is_lvds && has_reduced_clock && i915_powersave) {
  3312. I915_WRITE(fp_reg + 4, fp2);
  3313. intel_crtc->lowfreq_avail = true;
  3314. if (HAS_PIPE_CXSR(dev)) {
  3315. DRM_DEBUG_KMS("enabling CxSR downclocking\n");
  3316. pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
  3317. }
  3318. } else {
  3319. I915_WRITE(fp_reg + 4, fp);
  3320. intel_crtc->lowfreq_avail = false;
  3321. if (HAS_PIPE_CXSR(dev)) {
  3322. DRM_DEBUG_KMS("disabling CxSR downclocking\n");
  3323. pipeconf &= ~PIPECONF_CXSR_DOWNCLOCK;
  3324. }
  3325. }
  3326. if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
  3327. pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
  3328. /* the chip adds 2 halflines automatically */
  3329. adjusted_mode->crtc_vdisplay -= 1;
  3330. adjusted_mode->crtc_vtotal -= 1;
  3331. adjusted_mode->crtc_vblank_start -= 1;
  3332. adjusted_mode->crtc_vblank_end -= 1;
  3333. adjusted_mode->crtc_vsync_end -= 1;
  3334. adjusted_mode->crtc_vsync_start -= 1;
  3335. } else
  3336. pipeconf &= ~PIPECONF_INTERLACE_W_FIELD_INDICATION; /* progressive */
  3337. I915_WRITE(htot_reg, (adjusted_mode->crtc_hdisplay - 1) |
  3338. ((adjusted_mode->crtc_htotal - 1) << 16));
  3339. I915_WRITE(hblank_reg, (adjusted_mode->crtc_hblank_start - 1) |
  3340. ((adjusted_mode->crtc_hblank_end - 1) << 16));
  3341. I915_WRITE(hsync_reg, (adjusted_mode->crtc_hsync_start - 1) |
  3342. ((adjusted_mode->crtc_hsync_end - 1) << 16));
  3343. I915_WRITE(vtot_reg, (adjusted_mode->crtc_vdisplay - 1) |
  3344. ((adjusted_mode->crtc_vtotal - 1) << 16));
  3345. I915_WRITE(vblank_reg, (adjusted_mode->crtc_vblank_start - 1) |
  3346. ((adjusted_mode->crtc_vblank_end - 1) << 16));
  3347. I915_WRITE(vsync_reg, (adjusted_mode->crtc_vsync_start - 1) |
  3348. ((adjusted_mode->crtc_vsync_end - 1) << 16));
  3349. /* pipesrc and dspsize control the size that is scaled from, which should
  3350. * always be the user's requested size.
  3351. */
  3352. if (!HAS_PCH_SPLIT(dev)) {
  3353. I915_WRITE(dspsize_reg, ((mode->vdisplay - 1) << 16) |
  3354. (mode->hdisplay - 1));
  3355. I915_WRITE(dsppos_reg, 0);
  3356. }
  3357. I915_WRITE(pipesrc_reg, ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
  3358. if (HAS_PCH_SPLIT(dev)) {
  3359. I915_WRITE(data_m1_reg, TU_SIZE(m_n.tu) | m_n.gmch_m);
  3360. I915_WRITE(data_n1_reg, TU_SIZE(m_n.tu) | m_n.gmch_n);
  3361. I915_WRITE(link_m1_reg, m_n.link_m);
  3362. I915_WRITE(link_n1_reg, m_n.link_n);
  3363. if (is_edp) {
  3364. ironlake_set_pll_edp(crtc, adjusted_mode->clock);
  3365. } else {
  3366. /* enable FDI RX PLL too */
  3367. temp = I915_READ(fdi_rx_reg);
  3368. I915_WRITE(fdi_rx_reg, temp | FDI_RX_PLL_ENABLE);
  3369. I915_READ(fdi_rx_reg);
  3370. udelay(200);
  3371. /* enable FDI TX PLL too */
  3372. temp = I915_READ(fdi_tx_reg);
  3373. I915_WRITE(fdi_tx_reg, temp | FDI_TX_PLL_ENABLE);
  3374. I915_READ(fdi_tx_reg);
  3375. /* enable FDI RX PCDCLK */
  3376. temp = I915_READ(fdi_rx_reg);
  3377. I915_WRITE(fdi_rx_reg, temp | FDI_SEL_PCDCLK);
  3378. I915_READ(fdi_rx_reg);
  3379. udelay(200);
  3380. }
  3381. }
  3382. I915_WRITE(pipeconf_reg, pipeconf);
  3383. I915_READ(pipeconf_reg);
  3384. intel_wait_for_vblank(dev);
  3385. if (IS_IRONLAKE(dev)) {
  3386. /* enable address swizzle for tiling buffer */
  3387. temp = I915_READ(DISP_ARB_CTL);
  3388. I915_WRITE(DISP_ARB_CTL, temp | DISP_TILE_SURFACE_SWIZZLING);
  3389. }
  3390. I915_WRITE(dspcntr_reg, dspcntr);
  3391. /* Flush the plane changes */
  3392. ret = intel_pipe_set_base(crtc, x, y, old_fb);
  3393. if ((IS_I965G(dev) || plane == 0))
  3394. intel_update_fbc(crtc, &crtc->mode);
  3395. intel_update_watermarks(dev);
  3396. drm_vblank_post_modeset(dev, pipe);
  3397. return ret;
  3398. }
  3399. /** Loads the palette/gamma unit for the CRTC with the prepared values */
  3400. void intel_crtc_load_lut(struct drm_crtc *crtc)
  3401. {
  3402. struct drm_device *dev = crtc->dev;
  3403. struct drm_i915_private *dev_priv = dev->dev_private;
  3404. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3405. int palreg = (intel_crtc->pipe == 0) ? PALETTE_A : PALETTE_B;
  3406. int i;
  3407. /* The clocks have to be on to load the palette. */
  3408. if (!crtc->enabled)
  3409. return;
  3410. /* use legacy palette for Ironlake */
  3411. if (HAS_PCH_SPLIT(dev))
  3412. palreg = (intel_crtc->pipe == 0) ? LGC_PALETTE_A :
  3413. LGC_PALETTE_B;
  3414. for (i = 0; i < 256; i++) {
  3415. I915_WRITE(palreg + 4 * i,
  3416. (intel_crtc->lut_r[i] << 16) |
  3417. (intel_crtc->lut_g[i] << 8) |
  3418. intel_crtc->lut_b[i]);
  3419. }
  3420. }
  3421. static int intel_crtc_cursor_set(struct drm_crtc *crtc,
  3422. struct drm_file *file_priv,
  3423. uint32_t handle,
  3424. uint32_t width, uint32_t height)
  3425. {
  3426. struct drm_device *dev = crtc->dev;
  3427. struct drm_i915_private *dev_priv = dev->dev_private;
  3428. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3429. struct drm_gem_object *bo;
  3430. struct drm_i915_gem_object *obj_priv;
  3431. int pipe = intel_crtc->pipe;
  3432. uint32_t control = (pipe == 0) ? CURACNTR : CURBCNTR;
  3433. uint32_t base = (pipe == 0) ? CURABASE : CURBBASE;
  3434. uint32_t temp = I915_READ(control);
  3435. size_t addr;
  3436. int ret;
  3437. DRM_DEBUG_KMS("\n");
  3438. /* if we want to turn off the cursor ignore width and height */
  3439. if (!handle) {
  3440. DRM_DEBUG_KMS("cursor off\n");
  3441. if (IS_MOBILE(dev) || IS_I9XX(dev)) {
  3442. temp &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
  3443. temp |= CURSOR_MODE_DISABLE;
  3444. } else {
  3445. temp &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
  3446. }
  3447. addr = 0;
  3448. bo = NULL;
  3449. mutex_lock(&dev->struct_mutex);
  3450. goto finish;
  3451. }
  3452. /* Currently we only support 64x64 cursors */
  3453. if (width != 64 || height != 64) {
  3454. DRM_ERROR("we currently only support 64x64 cursors\n");
  3455. return -EINVAL;
  3456. }
  3457. bo = drm_gem_object_lookup(dev, file_priv, handle);
  3458. if (!bo)
  3459. return -ENOENT;
  3460. obj_priv = to_intel_bo(bo);
  3461. if (bo->size < width * height * 4) {
  3462. DRM_ERROR("buffer is to small\n");
  3463. ret = -ENOMEM;
  3464. goto fail;
  3465. }
  3466. /* we only need to pin inside GTT if cursor is non-phy */
  3467. mutex_lock(&dev->struct_mutex);
  3468. if (!dev_priv->info->cursor_needs_physical) {
  3469. ret = i915_gem_object_pin(bo, PAGE_SIZE);
  3470. if (ret) {
  3471. DRM_ERROR("failed to pin cursor bo\n");
  3472. goto fail_locked;
  3473. }
  3474. addr = obj_priv->gtt_offset;
  3475. } else {
  3476. ret = i915_gem_attach_phys_object(dev, bo, (pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1);
  3477. if (ret) {
  3478. DRM_ERROR("failed to attach phys object\n");
  3479. goto fail_locked;
  3480. }
  3481. addr = obj_priv->phys_obj->handle->busaddr;
  3482. }
  3483. if (!IS_I9XX(dev))
  3484. I915_WRITE(CURSIZE, (height << 12) | width);
  3485. /* Hooray for CUR*CNTR differences */
  3486. if (IS_MOBILE(dev) || IS_I9XX(dev)) {
  3487. temp &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
  3488. temp |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
  3489. temp |= (pipe << 28); /* Connect to correct pipe */
  3490. } else {
  3491. temp &= ~(CURSOR_FORMAT_MASK);
  3492. temp |= CURSOR_ENABLE;
  3493. temp |= CURSOR_FORMAT_ARGB | CURSOR_GAMMA_ENABLE;
  3494. }
  3495. finish:
  3496. I915_WRITE(control, temp);
  3497. I915_WRITE(base, addr);
  3498. if (intel_crtc->cursor_bo) {
  3499. if (dev_priv->info->cursor_needs_physical) {
  3500. if (intel_crtc->cursor_bo != bo)
  3501. i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
  3502. } else
  3503. i915_gem_object_unpin(intel_crtc->cursor_bo);
  3504. drm_gem_object_unreference(intel_crtc->cursor_bo);
  3505. }
  3506. mutex_unlock(&dev->struct_mutex);
  3507. intel_crtc->cursor_addr = addr;
  3508. intel_crtc->cursor_bo = bo;
  3509. return 0;
  3510. fail_locked:
  3511. mutex_unlock(&dev->struct_mutex);
  3512. fail:
  3513. drm_gem_object_unreference_unlocked(bo);
  3514. return ret;
  3515. }
  3516. static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
  3517. {
  3518. struct drm_device *dev = crtc->dev;
  3519. struct drm_i915_private *dev_priv = dev->dev_private;
  3520. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3521. struct intel_framebuffer *intel_fb;
  3522. int pipe = intel_crtc->pipe;
  3523. uint32_t temp = 0;
  3524. uint32_t adder;
  3525. if (crtc->fb) {
  3526. intel_fb = to_intel_framebuffer(crtc->fb);
  3527. intel_mark_busy(dev, intel_fb->obj);
  3528. }
  3529. if (x < 0) {
  3530. temp |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
  3531. x = -x;
  3532. }
  3533. if (y < 0) {
  3534. temp |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
  3535. y = -y;
  3536. }
  3537. temp |= x << CURSOR_X_SHIFT;
  3538. temp |= y << CURSOR_Y_SHIFT;
  3539. adder = intel_crtc->cursor_addr;
  3540. I915_WRITE((pipe == 0) ? CURAPOS : CURBPOS, temp);
  3541. I915_WRITE((pipe == 0) ? CURABASE : CURBBASE, adder);
  3542. return 0;
  3543. }
  3544. /** Sets the color ramps on behalf of RandR */
  3545. void intel_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green,
  3546. u16 blue, int regno)
  3547. {
  3548. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3549. intel_crtc->lut_r[regno] = red >> 8;
  3550. intel_crtc->lut_g[regno] = green >> 8;
  3551. intel_crtc->lut_b[regno] = blue >> 8;
  3552. }
  3553. void intel_crtc_fb_gamma_get(struct drm_crtc *crtc, u16 *red, u16 *green,
  3554. u16 *blue, int regno)
  3555. {
  3556. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3557. *red = intel_crtc->lut_r[regno] << 8;
  3558. *green = intel_crtc->lut_g[regno] << 8;
  3559. *blue = intel_crtc->lut_b[regno] << 8;
  3560. }
  3561. static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
  3562. u16 *blue, uint32_t size)
  3563. {
  3564. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3565. int i;
  3566. if (size != 256)
  3567. return;
  3568. for (i = 0; i < 256; i++) {
  3569. intel_crtc->lut_r[i] = red[i] >> 8;
  3570. intel_crtc->lut_g[i] = green[i] >> 8;
  3571. intel_crtc->lut_b[i] = blue[i] >> 8;
  3572. }
  3573. intel_crtc_load_lut(crtc);
  3574. }
  3575. /**
  3576. * Get a pipe with a simple mode set on it for doing load-based monitor
  3577. * detection.
  3578. *
  3579. * It will be up to the load-detect code to adjust the pipe as appropriate for
  3580. * its requirements. The pipe will be connected to no other encoders.
  3581. *
  3582. * Currently this code will only succeed if there is a pipe with no encoders
  3583. * configured for it. In the future, it could choose to temporarily disable
  3584. * some outputs to free up a pipe for its use.
  3585. *
  3586. * \return crtc, or NULL if no pipes are available.
  3587. */
  3588. /* VESA 640x480x72Hz mode to set on the pipe */
  3589. static struct drm_display_mode load_detect_mode = {
  3590. DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
  3591. 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
  3592. };
  3593. struct drm_crtc *intel_get_load_detect_pipe(struct intel_encoder *intel_encoder,
  3594. struct drm_connector *connector,
  3595. struct drm_display_mode *mode,
  3596. int *dpms_mode)
  3597. {
  3598. struct intel_crtc *intel_crtc;
  3599. struct drm_crtc *possible_crtc;
  3600. struct drm_crtc *supported_crtc =NULL;
  3601. struct drm_encoder *encoder = &intel_encoder->enc;
  3602. struct drm_crtc *crtc = NULL;
  3603. struct drm_device *dev = encoder->dev;
  3604. struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
  3605. struct drm_crtc_helper_funcs *crtc_funcs;
  3606. int i = -1;
  3607. /*
  3608. * Algorithm gets a little messy:
  3609. * - if the connector already has an assigned crtc, use it (but make
  3610. * sure it's on first)
  3611. * - try to find the first unused crtc that can drive this connector,
  3612. * and use that if we find one
  3613. * - if there are no unused crtcs available, try to use the first
  3614. * one we found that supports the connector
  3615. */
  3616. /* See if we already have a CRTC for this connector */
  3617. if (encoder->crtc) {
  3618. crtc = encoder->crtc;
  3619. /* Make sure the crtc and connector are running */
  3620. intel_crtc = to_intel_crtc(crtc);
  3621. *dpms_mode = intel_crtc->dpms_mode;
  3622. if (intel_crtc->dpms_mode != DRM_MODE_DPMS_ON) {
  3623. crtc_funcs = crtc->helper_private;
  3624. crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
  3625. encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
  3626. }
  3627. return crtc;
  3628. }
  3629. /* Find an unused one (if possible) */
  3630. list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
  3631. i++;
  3632. if (!(encoder->possible_crtcs & (1 << i)))
  3633. continue;
  3634. if (!possible_crtc->enabled) {
  3635. crtc = possible_crtc;
  3636. break;
  3637. }
  3638. if (!supported_crtc)
  3639. supported_crtc = possible_crtc;
  3640. }
  3641. /*
  3642. * If we didn't find an unused CRTC, don't use any.
  3643. */
  3644. if (!crtc) {
  3645. return NULL;
  3646. }
  3647. encoder->crtc = crtc;
  3648. connector->encoder = encoder;
  3649. intel_encoder->load_detect_temp = true;
  3650. intel_crtc = to_intel_crtc(crtc);
  3651. *dpms_mode = intel_crtc->dpms_mode;
  3652. if (!crtc->enabled) {
  3653. if (!mode)
  3654. mode = &load_detect_mode;
  3655. drm_crtc_helper_set_mode(crtc, mode, 0, 0, crtc->fb);
  3656. } else {
  3657. if (intel_crtc->dpms_mode != DRM_MODE_DPMS_ON) {
  3658. crtc_funcs = crtc->helper_private;
  3659. crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
  3660. }
  3661. /* Add this connector to the crtc */
  3662. encoder_funcs->mode_set(encoder, &crtc->mode, &crtc->mode);
  3663. encoder_funcs->commit(encoder);
  3664. }
  3665. /* let the connector get through one full cycle before testing */
  3666. intel_wait_for_vblank(dev);
  3667. return crtc;
  3668. }
  3669. void intel_release_load_detect_pipe(struct intel_encoder *intel_encoder,
  3670. struct drm_connector *connector, int dpms_mode)
  3671. {
  3672. struct drm_encoder *encoder = &intel_encoder->enc;
  3673. struct drm_device *dev = encoder->dev;
  3674. struct drm_crtc *crtc = encoder->crtc;
  3675. struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
  3676. struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
  3677. if (intel_encoder->load_detect_temp) {
  3678. encoder->crtc = NULL;
  3679. connector->encoder = NULL;
  3680. intel_encoder->load_detect_temp = false;
  3681. crtc->enabled = drm_helper_crtc_in_use(crtc);
  3682. drm_helper_disable_unused_functions(dev);
  3683. }
  3684. /* Switch crtc and encoder back off if necessary */
  3685. if (crtc->enabled && dpms_mode != DRM_MODE_DPMS_ON) {
  3686. if (encoder->crtc == crtc)
  3687. encoder_funcs->dpms(encoder, dpms_mode);
  3688. crtc_funcs->dpms(crtc, dpms_mode);
  3689. }
  3690. }
  3691. /* Returns the clock of the currently programmed mode of the given pipe. */
  3692. static int intel_crtc_clock_get(struct drm_device *dev, struct drm_crtc *crtc)
  3693. {
  3694. struct drm_i915_private *dev_priv = dev->dev_private;
  3695. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3696. int pipe = intel_crtc->pipe;
  3697. u32 dpll = I915_READ((pipe == 0) ? DPLL_A : DPLL_B);
  3698. u32 fp;
  3699. intel_clock_t clock;
  3700. if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
  3701. fp = I915_READ((pipe == 0) ? FPA0 : FPB0);
  3702. else
  3703. fp = I915_READ((pipe == 0) ? FPA1 : FPB1);
  3704. clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
  3705. if (IS_PINEVIEW(dev)) {
  3706. clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
  3707. clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
  3708. } else {
  3709. clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
  3710. clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
  3711. }
  3712. if (IS_I9XX(dev)) {
  3713. if (IS_PINEVIEW(dev))
  3714. clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
  3715. DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
  3716. else
  3717. clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
  3718. DPLL_FPA01_P1_POST_DIV_SHIFT);
  3719. switch (dpll & DPLL_MODE_MASK) {
  3720. case DPLLB_MODE_DAC_SERIAL:
  3721. clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
  3722. 5 : 10;
  3723. break;
  3724. case DPLLB_MODE_LVDS:
  3725. clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
  3726. 7 : 14;
  3727. break;
  3728. default:
  3729. DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
  3730. "mode\n", (int)(dpll & DPLL_MODE_MASK));
  3731. return 0;
  3732. }
  3733. /* XXX: Handle the 100Mhz refclk */
  3734. intel_clock(dev, 96000, &clock);
  3735. } else {
  3736. bool is_lvds = (pipe == 1) && (I915_READ(LVDS) & LVDS_PORT_EN);
  3737. if (is_lvds) {
  3738. clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
  3739. DPLL_FPA01_P1_POST_DIV_SHIFT);
  3740. clock.p2 = 14;
  3741. if ((dpll & PLL_REF_INPUT_MASK) ==
  3742. PLLB_REF_INPUT_SPREADSPECTRUMIN) {
  3743. /* XXX: might not be 66MHz */
  3744. intel_clock(dev, 66000, &clock);
  3745. } else
  3746. intel_clock(dev, 48000, &clock);
  3747. } else {
  3748. if (dpll & PLL_P1_DIVIDE_BY_TWO)
  3749. clock.p1 = 2;
  3750. else {
  3751. clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
  3752. DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
  3753. }
  3754. if (dpll & PLL_P2_DIVIDE_BY_4)
  3755. clock.p2 = 4;
  3756. else
  3757. clock.p2 = 2;
  3758. intel_clock(dev, 48000, &clock);
  3759. }
  3760. }
  3761. /* XXX: It would be nice to validate the clocks, but we can't reuse
  3762. * i830PllIsValid() because it relies on the xf86_config connector
  3763. * configuration being accurate, which it isn't necessarily.
  3764. */
  3765. return clock.dot;
  3766. }
  3767. /** Returns the currently programmed mode of the given pipe. */
  3768. struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
  3769. struct drm_crtc *crtc)
  3770. {
  3771. struct drm_i915_private *dev_priv = dev->dev_private;
  3772. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3773. int pipe = intel_crtc->pipe;
  3774. struct drm_display_mode *mode;
  3775. int htot = I915_READ((pipe == 0) ? HTOTAL_A : HTOTAL_B);
  3776. int hsync = I915_READ((pipe == 0) ? HSYNC_A : HSYNC_B);
  3777. int vtot = I915_READ((pipe == 0) ? VTOTAL_A : VTOTAL_B);
  3778. int vsync = I915_READ((pipe == 0) ? VSYNC_A : VSYNC_B);
  3779. mode = kzalloc(sizeof(*mode), GFP_KERNEL);
  3780. if (!mode)
  3781. return NULL;
  3782. mode->clock = intel_crtc_clock_get(dev, crtc);
  3783. mode->hdisplay = (htot & 0xffff) + 1;
  3784. mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
  3785. mode->hsync_start = (hsync & 0xffff) + 1;
  3786. mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
  3787. mode->vdisplay = (vtot & 0xffff) + 1;
  3788. mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
  3789. mode->vsync_start = (vsync & 0xffff) + 1;
  3790. mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
  3791. drm_mode_set_name(mode);
  3792. drm_mode_set_crtcinfo(mode, 0);
  3793. return mode;
  3794. }
  3795. #define GPU_IDLE_TIMEOUT 500 /* ms */
  3796. /* When this timer fires, we've been idle for awhile */
  3797. static void intel_gpu_idle_timer(unsigned long arg)
  3798. {
  3799. struct drm_device *dev = (struct drm_device *)arg;
  3800. drm_i915_private_t *dev_priv = dev->dev_private;
  3801. DRM_DEBUG_DRIVER("idle timer fired, downclocking\n");
  3802. dev_priv->busy = false;
  3803. queue_work(dev_priv->wq, &dev_priv->idle_work);
  3804. }
  3805. #define CRTC_IDLE_TIMEOUT 1000 /* ms */
  3806. static void intel_crtc_idle_timer(unsigned long arg)
  3807. {
  3808. struct intel_crtc *intel_crtc = (struct intel_crtc *)arg;
  3809. struct drm_crtc *crtc = &intel_crtc->base;
  3810. drm_i915_private_t *dev_priv = crtc->dev->dev_private;
  3811. DRM_DEBUG_DRIVER("idle timer fired, downclocking\n");
  3812. intel_crtc->busy = false;
  3813. queue_work(dev_priv->wq, &dev_priv->idle_work);
  3814. }
  3815. static void intel_increase_pllclock(struct drm_crtc *crtc, bool schedule)
  3816. {
  3817. struct drm_device *dev = crtc->dev;
  3818. drm_i915_private_t *dev_priv = dev->dev_private;
  3819. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3820. int pipe = intel_crtc->pipe;
  3821. int dpll_reg = (pipe == 0) ? DPLL_A : DPLL_B;
  3822. int dpll = I915_READ(dpll_reg);
  3823. if (HAS_PCH_SPLIT(dev))
  3824. return;
  3825. if (!dev_priv->lvds_downclock_avail)
  3826. return;
  3827. if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
  3828. DRM_DEBUG_DRIVER("upclocking LVDS\n");
  3829. /* Unlock panel regs */
  3830. I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) | (0xabcd << 16));
  3831. dpll &= ~DISPLAY_RATE_SELECT_FPA1;
  3832. I915_WRITE(dpll_reg, dpll);
  3833. dpll = I915_READ(dpll_reg);
  3834. intel_wait_for_vblank(dev);
  3835. dpll = I915_READ(dpll_reg);
  3836. if (dpll & DISPLAY_RATE_SELECT_FPA1)
  3837. DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
  3838. /* ...and lock them again */
  3839. I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) & 0x3);
  3840. }
  3841. /* Schedule downclock */
  3842. if (schedule)
  3843. mod_timer(&intel_crtc->idle_timer, jiffies +
  3844. msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
  3845. }
  3846. static void intel_decrease_pllclock(struct drm_crtc *crtc)
  3847. {
  3848. struct drm_device *dev = crtc->dev;
  3849. drm_i915_private_t *dev_priv = dev->dev_private;
  3850. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3851. int pipe = intel_crtc->pipe;
  3852. int dpll_reg = (pipe == 0) ? DPLL_A : DPLL_B;
  3853. int dpll = I915_READ(dpll_reg);
  3854. if (HAS_PCH_SPLIT(dev))
  3855. return;
  3856. if (!dev_priv->lvds_downclock_avail)
  3857. return;
  3858. /*
  3859. * Since this is called by a timer, we should never get here in
  3860. * the manual case.
  3861. */
  3862. if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
  3863. DRM_DEBUG_DRIVER("downclocking LVDS\n");
  3864. /* Unlock panel regs */
  3865. I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) | (0xabcd << 16));
  3866. dpll |= DISPLAY_RATE_SELECT_FPA1;
  3867. I915_WRITE(dpll_reg, dpll);
  3868. dpll = I915_READ(dpll_reg);
  3869. intel_wait_for_vblank(dev);
  3870. dpll = I915_READ(dpll_reg);
  3871. if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
  3872. DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
  3873. /* ...and lock them again */
  3874. I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) & 0x3);
  3875. }
  3876. }
  3877. /**
  3878. * intel_idle_update - adjust clocks for idleness
  3879. * @work: work struct
  3880. *
  3881. * Either the GPU or display (or both) went idle. Check the busy status
  3882. * here and adjust the CRTC and GPU clocks as necessary.
  3883. */
  3884. static void intel_idle_update(struct work_struct *work)
  3885. {
  3886. drm_i915_private_t *dev_priv = container_of(work, drm_i915_private_t,
  3887. idle_work);
  3888. struct drm_device *dev = dev_priv->dev;
  3889. struct drm_crtc *crtc;
  3890. struct intel_crtc *intel_crtc;
  3891. if (!i915_powersave)
  3892. return;
  3893. mutex_lock(&dev->struct_mutex);
  3894. if (IS_I945G(dev) || IS_I945GM(dev)) {
  3895. DRM_DEBUG_DRIVER("enable memory self refresh on 945\n");
  3896. I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN_MASK | FW_BLC_SELF_EN);
  3897. }
  3898. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  3899. /* Skip inactive CRTCs */
  3900. if (!crtc->fb)
  3901. continue;
  3902. intel_crtc = to_intel_crtc(crtc);
  3903. if (!intel_crtc->busy)
  3904. intel_decrease_pllclock(crtc);
  3905. }
  3906. mutex_unlock(&dev->struct_mutex);
  3907. }
  3908. /**
  3909. * intel_mark_busy - mark the GPU and possibly the display busy
  3910. * @dev: drm device
  3911. * @obj: object we're operating on
  3912. *
  3913. * Callers can use this function to indicate that the GPU is busy processing
  3914. * commands. If @obj matches one of the CRTC objects (i.e. it's a scanout
  3915. * buffer), we'll also mark the display as busy, so we know to increase its
  3916. * clock frequency.
  3917. */
  3918. void intel_mark_busy(struct drm_device *dev, struct drm_gem_object *obj)
  3919. {
  3920. drm_i915_private_t *dev_priv = dev->dev_private;
  3921. struct drm_crtc *crtc = NULL;
  3922. struct intel_framebuffer *intel_fb;
  3923. struct intel_crtc *intel_crtc;
  3924. if (!drm_core_check_feature(dev, DRIVER_MODESET))
  3925. return;
  3926. if (!dev_priv->busy) {
  3927. if (IS_I945G(dev) || IS_I945GM(dev)) {
  3928. u32 fw_blc_self;
  3929. DRM_DEBUG_DRIVER("disable memory self refresh on 945\n");
  3930. fw_blc_self = I915_READ(FW_BLC_SELF);
  3931. fw_blc_self &= ~FW_BLC_SELF_EN;
  3932. I915_WRITE(FW_BLC_SELF, fw_blc_self | FW_BLC_SELF_EN_MASK);
  3933. }
  3934. dev_priv->busy = true;
  3935. } else
  3936. mod_timer(&dev_priv->idle_timer, jiffies +
  3937. msecs_to_jiffies(GPU_IDLE_TIMEOUT));
  3938. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  3939. if (!crtc->fb)
  3940. continue;
  3941. intel_crtc = to_intel_crtc(crtc);
  3942. intel_fb = to_intel_framebuffer(crtc->fb);
  3943. if (intel_fb->obj == obj) {
  3944. if (!intel_crtc->busy) {
  3945. if (IS_I945G(dev) || IS_I945GM(dev)) {
  3946. u32 fw_blc_self;
  3947. DRM_DEBUG_DRIVER("disable memory self refresh on 945\n");
  3948. fw_blc_self = I915_READ(FW_BLC_SELF);
  3949. fw_blc_self &= ~FW_BLC_SELF_EN;
  3950. I915_WRITE(FW_BLC_SELF, fw_blc_self | FW_BLC_SELF_EN_MASK);
  3951. }
  3952. /* Non-busy -> busy, upclock */
  3953. intel_increase_pllclock(crtc, true);
  3954. intel_crtc->busy = true;
  3955. } else {
  3956. /* Busy -> busy, put off timer */
  3957. mod_timer(&intel_crtc->idle_timer, jiffies +
  3958. msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
  3959. }
  3960. }
  3961. }
  3962. }
  3963. static void intel_crtc_destroy(struct drm_crtc *crtc)
  3964. {
  3965. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3966. drm_crtc_cleanup(crtc);
  3967. kfree(intel_crtc);
  3968. }
  3969. struct intel_unpin_work {
  3970. struct work_struct work;
  3971. struct drm_device *dev;
  3972. struct drm_gem_object *old_fb_obj;
  3973. struct drm_gem_object *pending_flip_obj;
  3974. struct drm_pending_vblank_event *event;
  3975. int pending;
  3976. };
  3977. static void intel_unpin_work_fn(struct work_struct *__work)
  3978. {
  3979. struct intel_unpin_work *work =
  3980. container_of(__work, struct intel_unpin_work, work);
  3981. mutex_lock(&work->dev->struct_mutex);
  3982. i915_gem_object_unpin(work->old_fb_obj);
  3983. drm_gem_object_unreference(work->pending_flip_obj);
  3984. drm_gem_object_unreference(work->old_fb_obj);
  3985. mutex_unlock(&work->dev->struct_mutex);
  3986. kfree(work);
  3987. }
  3988. void intel_finish_page_flip(struct drm_device *dev, int pipe)
  3989. {
  3990. drm_i915_private_t *dev_priv = dev->dev_private;
  3991. struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
  3992. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3993. struct intel_unpin_work *work;
  3994. struct drm_i915_gem_object *obj_priv;
  3995. struct drm_pending_vblank_event *e;
  3996. struct timeval now;
  3997. unsigned long flags;
  3998. /* Ignore early vblank irqs */
  3999. if (intel_crtc == NULL)
  4000. return;
  4001. spin_lock_irqsave(&dev->event_lock, flags);
  4002. work = intel_crtc->unpin_work;
  4003. if (work == NULL || !work->pending) {
  4004. if (work && !work->pending) {
  4005. obj_priv = to_intel_bo(work->pending_flip_obj);
  4006. DRM_DEBUG_DRIVER("flip finish: %p (%d) not pending?\n",
  4007. obj_priv,
  4008. atomic_read(&obj_priv->pending_flip));
  4009. }
  4010. spin_unlock_irqrestore(&dev->event_lock, flags);
  4011. return;
  4012. }
  4013. intel_crtc->unpin_work = NULL;
  4014. drm_vblank_put(dev, intel_crtc->pipe);
  4015. if (work->event) {
  4016. e = work->event;
  4017. do_gettimeofday(&now);
  4018. e->event.sequence = drm_vblank_count(dev, intel_crtc->pipe);
  4019. e->event.tv_sec = now.tv_sec;
  4020. e->event.tv_usec = now.tv_usec;
  4021. list_add_tail(&e->base.link,
  4022. &e->base.file_priv->event_list);
  4023. wake_up_interruptible(&e->base.file_priv->event_wait);
  4024. }
  4025. spin_unlock_irqrestore(&dev->event_lock, flags);
  4026. obj_priv = to_intel_bo(work->pending_flip_obj);
  4027. /* Initial scanout buffer will have a 0 pending flip count */
  4028. if ((atomic_read(&obj_priv->pending_flip) == 0) ||
  4029. atomic_dec_and_test(&obj_priv->pending_flip))
  4030. DRM_WAKEUP(&dev_priv->pending_flip_queue);
  4031. schedule_work(&work->work);
  4032. }
  4033. void intel_prepare_page_flip(struct drm_device *dev, int plane)
  4034. {
  4035. drm_i915_private_t *dev_priv = dev->dev_private;
  4036. struct intel_crtc *intel_crtc =
  4037. to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
  4038. unsigned long flags;
  4039. spin_lock_irqsave(&dev->event_lock, flags);
  4040. if (intel_crtc->unpin_work) {
  4041. intel_crtc->unpin_work->pending = 1;
  4042. } else {
  4043. DRM_DEBUG_DRIVER("preparing flip with no unpin work?\n");
  4044. }
  4045. spin_unlock_irqrestore(&dev->event_lock, flags);
  4046. }
  4047. static int intel_crtc_page_flip(struct drm_crtc *crtc,
  4048. struct drm_framebuffer *fb,
  4049. struct drm_pending_vblank_event *event)
  4050. {
  4051. struct drm_device *dev = crtc->dev;
  4052. struct drm_i915_private *dev_priv = dev->dev_private;
  4053. struct intel_framebuffer *intel_fb;
  4054. struct drm_i915_gem_object *obj_priv;
  4055. struct drm_gem_object *obj;
  4056. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4057. struct intel_unpin_work *work;
  4058. unsigned long flags;
  4059. int pipesrc_reg = (intel_crtc->pipe == 0) ? PIPEASRC : PIPEBSRC;
  4060. int ret, pipesrc;
  4061. work = kzalloc(sizeof *work, GFP_KERNEL);
  4062. if (work == NULL)
  4063. return -ENOMEM;
  4064. mutex_lock(&dev->struct_mutex);
  4065. work->event = event;
  4066. work->dev = crtc->dev;
  4067. intel_fb = to_intel_framebuffer(crtc->fb);
  4068. work->old_fb_obj = intel_fb->obj;
  4069. INIT_WORK(&work->work, intel_unpin_work_fn);
  4070. /* We borrow the event spin lock for protecting unpin_work */
  4071. spin_lock_irqsave(&dev->event_lock, flags);
  4072. if (intel_crtc->unpin_work) {
  4073. DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
  4074. spin_unlock_irqrestore(&dev->event_lock, flags);
  4075. kfree(work);
  4076. mutex_unlock(&dev->struct_mutex);
  4077. return -EBUSY;
  4078. }
  4079. intel_crtc->unpin_work = work;
  4080. spin_unlock_irqrestore(&dev->event_lock, flags);
  4081. intel_fb = to_intel_framebuffer(fb);
  4082. obj = intel_fb->obj;
  4083. ret = intel_pin_and_fence_fb_obj(dev, obj);
  4084. if (ret != 0) {
  4085. DRM_DEBUG_DRIVER("flip queue: %p pin & fence failed\n",
  4086. to_intel_bo(obj));
  4087. kfree(work);
  4088. intel_crtc->unpin_work = NULL;
  4089. mutex_unlock(&dev->struct_mutex);
  4090. return ret;
  4091. }
  4092. /* Reference the objects for the scheduled work. */
  4093. drm_gem_object_reference(work->old_fb_obj);
  4094. drm_gem_object_reference(obj);
  4095. crtc->fb = fb;
  4096. i915_gem_object_flush_write_domain(obj);
  4097. drm_vblank_get(dev, intel_crtc->pipe);
  4098. obj_priv = to_intel_bo(obj);
  4099. atomic_inc(&obj_priv->pending_flip);
  4100. work->pending_flip_obj = obj;
  4101. BEGIN_LP_RING(4);
  4102. OUT_RING(MI_DISPLAY_FLIP |
  4103. MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
  4104. OUT_RING(fb->pitch);
  4105. if (IS_I965G(dev)) {
  4106. OUT_RING(obj_priv->gtt_offset | obj_priv->tiling_mode);
  4107. pipesrc = I915_READ(pipesrc_reg);
  4108. OUT_RING(pipesrc & 0x0fff0fff);
  4109. } else {
  4110. OUT_RING(obj_priv->gtt_offset);
  4111. OUT_RING(MI_NOOP);
  4112. }
  4113. ADVANCE_LP_RING();
  4114. mutex_unlock(&dev->struct_mutex);
  4115. return 0;
  4116. }
  4117. static const struct drm_crtc_helper_funcs intel_helper_funcs = {
  4118. .dpms = intel_crtc_dpms,
  4119. .mode_fixup = intel_crtc_mode_fixup,
  4120. .mode_set = intel_crtc_mode_set,
  4121. .mode_set_base = intel_pipe_set_base,
  4122. .prepare = intel_crtc_prepare,
  4123. .commit = intel_crtc_commit,
  4124. .load_lut = intel_crtc_load_lut,
  4125. };
  4126. static const struct drm_crtc_funcs intel_crtc_funcs = {
  4127. .cursor_set = intel_crtc_cursor_set,
  4128. .cursor_move = intel_crtc_cursor_move,
  4129. .gamma_set = intel_crtc_gamma_set,
  4130. .set_config = drm_crtc_helper_set_config,
  4131. .destroy = intel_crtc_destroy,
  4132. .page_flip = intel_crtc_page_flip,
  4133. };
  4134. static void intel_crtc_init(struct drm_device *dev, int pipe)
  4135. {
  4136. drm_i915_private_t *dev_priv = dev->dev_private;
  4137. struct intel_crtc *intel_crtc;
  4138. int i;
  4139. intel_crtc = kzalloc(sizeof(struct intel_crtc) + (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)), GFP_KERNEL);
  4140. if (intel_crtc == NULL)
  4141. return;
  4142. drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
  4143. drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
  4144. intel_crtc->pipe = pipe;
  4145. intel_crtc->plane = pipe;
  4146. for (i = 0; i < 256; i++) {
  4147. intel_crtc->lut_r[i] = i;
  4148. intel_crtc->lut_g[i] = i;
  4149. intel_crtc->lut_b[i] = i;
  4150. }
  4151. /* Swap pipes & planes for FBC on pre-965 */
  4152. intel_crtc->pipe = pipe;
  4153. intel_crtc->plane = pipe;
  4154. if (IS_MOBILE(dev) && (IS_I9XX(dev) && !IS_I965G(dev))) {
  4155. DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
  4156. intel_crtc->plane = ((pipe == 0) ? 1 : 0);
  4157. }
  4158. BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
  4159. dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
  4160. dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
  4161. dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
  4162. intel_crtc->cursor_addr = 0;
  4163. intel_crtc->dpms_mode = DRM_MODE_DPMS_OFF;
  4164. drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
  4165. intel_crtc->busy = false;
  4166. setup_timer(&intel_crtc->idle_timer, intel_crtc_idle_timer,
  4167. (unsigned long)intel_crtc);
  4168. }
  4169. int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
  4170. struct drm_file *file_priv)
  4171. {
  4172. drm_i915_private_t *dev_priv = dev->dev_private;
  4173. struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
  4174. struct drm_mode_object *drmmode_obj;
  4175. struct intel_crtc *crtc;
  4176. if (!dev_priv) {
  4177. DRM_ERROR("called with no initialization\n");
  4178. return -EINVAL;
  4179. }
  4180. drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
  4181. DRM_MODE_OBJECT_CRTC);
  4182. if (!drmmode_obj) {
  4183. DRM_ERROR("no such CRTC id\n");
  4184. return -EINVAL;
  4185. }
  4186. crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
  4187. pipe_from_crtc_id->pipe = crtc->pipe;
  4188. return 0;
  4189. }
  4190. struct drm_crtc *intel_get_crtc_from_pipe(struct drm_device *dev, int pipe)
  4191. {
  4192. struct drm_crtc *crtc = NULL;
  4193. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  4194. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4195. if (intel_crtc->pipe == pipe)
  4196. break;
  4197. }
  4198. return crtc;
  4199. }
  4200. static int intel_encoder_clones(struct drm_device *dev, int type_mask)
  4201. {
  4202. int index_mask = 0;
  4203. struct drm_encoder *encoder;
  4204. int entry = 0;
  4205. list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
  4206. struct intel_encoder *intel_encoder = enc_to_intel_encoder(encoder);
  4207. if (type_mask & intel_encoder->clone_mask)
  4208. index_mask |= (1 << entry);
  4209. entry++;
  4210. }
  4211. return index_mask;
  4212. }
  4213. static void intel_setup_outputs(struct drm_device *dev)
  4214. {
  4215. struct drm_i915_private *dev_priv = dev->dev_private;
  4216. struct drm_encoder *encoder;
  4217. intel_crt_init(dev);
  4218. /* Set up integrated LVDS */
  4219. if (IS_MOBILE(dev) && !IS_I830(dev))
  4220. intel_lvds_init(dev);
  4221. if (HAS_PCH_SPLIT(dev)) {
  4222. int found;
  4223. if (IS_MOBILE(dev) && (I915_READ(DP_A) & DP_DETECTED))
  4224. intel_dp_init(dev, DP_A);
  4225. if (I915_READ(HDMIB) & PORT_DETECTED) {
  4226. /* PCH SDVOB multiplex with HDMIB */
  4227. found = intel_sdvo_init(dev, PCH_SDVOB);
  4228. if (!found)
  4229. intel_hdmi_init(dev, HDMIB);
  4230. if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
  4231. intel_dp_init(dev, PCH_DP_B);
  4232. }
  4233. if (I915_READ(HDMIC) & PORT_DETECTED)
  4234. intel_hdmi_init(dev, HDMIC);
  4235. if (I915_READ(HDMID) & PORT_DETECTED)
  4236. intel_hdmi_init(dev, HDMID);
  4237. if (I915_READ(PCH_DP_C) & DP_DETECTED)
  4238. intel_dp_init(dev, PCH_DP_C);
  4239. if (I915_READ(PCH_DP_D) & DP_DETECTED)
  4240. intel_dp_init(dev, PCH_DP_D);
  4241. } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
  4242. bool found = false;
  4243. if (I915_READ(SDVOB) & SDVO_DETECTED) {
  4244. DRM_DEBUG_KMS("probing SDVOB\n");
  4245. found = intel_sdvo_init(dev, SDVOB);
  4246. if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
  4247. DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
  4248. intel_hdmi_init(dev, SDVOB);
  4249. }
  4250. if (!found && SUPPORTS_INTEGRATED_DP(dev)) {
  4251. DRM_DEBUG_KMS("probing DP_B\n");
  4252. intel_dp_init(dev, DP_B);
  4253. }
  4254. }
  4255. /* Before G4X SDVOC doesn't have its own detect register */
  4256. if (I915_READ(SDVOB) & SDVO_DETECTED) {
  4257. DRM_DEBUG_KMS("probing SDVOC\n");
  4258. found = intel_sdvo_init(dev, SDVOC);
  4259. }
  4260. if (!found && (I915_READ(SDVOC) & SDVO_DETECTED)) {
  4261. if (SUPPORTS_INTEGRATED_HDMI(dev)) {
  4262. DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
  4263. intel_hdmi_init(dev, SDVOC);
  4264. }
  4265. if (SUPPORTS_INTEGRATED_DP(dev)) {
  4266. DRM_DEBUG_KMS("probing DP_C\n");
  4267. intel_dp_init(dev, DP_C);
  4268. }
  4269. }
  4270. if (SUPPORTS_INTEGRATED_DP(dev) &&
  4271. (I915_READ(DP_D) & DP_DETECTED)) {
  4272. DRM_DEBUG_KMS("probing DP_D\n");
  4273. intel_dp_init(dev, DP_D);
  4274. }
  4275. } else if (IS_GEN2(dev))
  4276. intel_dvo_init(dev);
  4277. if (SUPPORTS_TV(dev))
  4278. intel_tv_init(dev);
  4279. list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
  4280. struct intel_encoder *intel_encoder = enc_to_intel_encoder(encoder);
  4281. encoder->possible_crtcs = intel_encoder->crtc_mask;
  4282. encoder->possible_clones = intel_encoder_clones(dev,
  4283. intel_encoder->clone_mask);
  4284. }
  4285. }
  4286. static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
  4287. {
  4288. struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
  4289. drm_framebuffer_cleanup(fb);
  4290. drm_gem_object_unreference_unlocked(intel_fb->obj);
  4291. kfree(intel_fb);
  4292. }
  4293. static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
  4294. struct drm_file *file_priv,
  4295. unsigned int *handle)
  4296. {
  4297. struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
  4298. struct drm_gem_object *object = intel_fb->obj;
  4299. return drm_gem_handle_create(file_priv, object, handle);
  4300. }
  4301. static const struct drm_framebuffer_funcs intel_fb_funcs = {
  4302. .destroy = intel_user_framebuffer_destroy,
  4303. .create_handle = intel_user_framebuffer_create_handle,
  4304. };
  4305. int intel_framebuffer_init(struct drm_device *dev,
  4306. struct intel_framebuffer *intel_fb,
  4307. struct drm_mode_fb_cmd *mode_cmd,
  4308. struct drm_gem_object *obj)
  4309. {
  4310. int ret;
  4311. ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
  4312. if (ret) {
  4313. DRM_ERROR("framebuffer init failed %d\n", ret);
  4314. return ret;
  4315. }
  4316. drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
  4317. intel_fb->obj = obj;
  4318. return 0;
  4319. }
  4320. static struct drm_framebuffer *
  4321. intel_user_framebuffer_create(struct drm_device *dev,
  4322. struct drm_file *filp,
  4323. struct drm_mode_fb_cmd *mode_cmd)
  4324. {
  4325. struct drm_gem_object *obj;
  4326. struct intel_framebuffer *intel_fb;
  4327. int ret;
  4328. obj = drm_gem_object_lookup(dev, filp, mode_cmd->handle);
  4329. if (!obj)
  4330. return NULL;
  4331. intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
  4332. if (!intel_fb)
  4333. return NULL;
  4334. ret = intel_framebuffer_init(dev, intel_fb,
  4335. mode_cmd, obj);
  4336. if (ret) {
  4337. drm_gem_object_unreference_unlocked(obj);
  4338. kfree(intel_fb);
  4339. return NULL;
  4340. }
  4341. return &intel_fb->base;
  4342. }
  4343. static const struct drm_mode_config_funcs intel_mode_funcs = {
  4344. .fb_create = intel_user_framebuffer_create,
  4345. .output_poll_changed = intel_fb_output_poll_changed,
  4346. };
  4347. static struct drm_gem_object *
  4348. intel_alloc_power_context(struct drm_device *dev)
  4349. {
  4350. struct drm_gem_object *pwrctx;
  4351. int ret;
  4352. pwrctx = i915_gem_alloc_object(dev, 4096);
  4353. if (!pwrctx) {
  4354. DRM_DEBUG("failed to alloc power context, RC6 disabled\n");
  4355. return NULL;
  4356. }
  4357. mutex_lock(&dev->struct_mutex);
  4358. ret = i915_gem_object_pin(pwrctx, 4096);
  4359. if (ret) {
  4360. DRM_ERROR("failed to pin power context: %d\n", ret);
  4361. goto err_unref;
  4362. }
  4363. ret = i915_gem_object_set_to_gtt_domain(pwrctx, 1);
  4364. if (ret) {
  4365. DRM_ERROR("failed to set-domain on power context: %d\n", ret);
  4366. goto err_unpin;
  4367. }
  4368. mutex_unlock(&dev->struct_mutex);
  4369. return pwrctx;
  4370. err_unpin:
  4371. i915_gem_object_unpin(pwrctx);
  4372. err_unref:
  4373. drm_gem_object_unreference(pwrctx);
  4374. mutex_unlock(&dev->struct_mutex);
  4375. return NULL;
  4376. }
  4377. void ironlake_enable_drps(struct drm_device *dev)
  4378. {
  4379. struct drm_i915_private *dev_priv = dev->dev_private;
  4380. u32 rgvmodectl = I915_READ(MEMMODECTL), rgvswctl;
  4381. u8 fmax, fmin, fstart, vstart;
  4382. int i = 0;
  4383. /* 100ms RC evaluation intervals */
  4384. I915_WRITE(RCUPEI, 100000);
  4385. I915_WRITE(RCDNEI, 100000);
  4386. /* Set max/min thresholds to 90ms and 80ms respectively */
  4387. I915_WRITE(RCBMAXAVG, 90000);
  4388. I915_WRITE(RCBMINAVG, 80000);
  4389. I915_WRITE(MEMIHYST, 1);
  4390. /* Set up min, max, and cur for interrupt handling */
  4391. fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
  4392. fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
  4393. fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
  4394. MEMMODE_FSTART_SHIFT;
  4395. vstart = (I915_READ(PXVFREQ_BASE + (fstart * 4)) & PXVFREQ_PX_MASK) >>
  4396. PXVFREQ_PX_SHIFT;
  4397. dev_priv->max_delay = fstart; /* can't go to fmax w/o IPS */
  4398. dev_priv->min_delay = fmin;
  4399. dev_priv->cur_delay = fstart;
  4400. I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
  4401. /*
  4402. * Interrupts will be enabled in ironlake_irq_postinstall
  4403. */
  4404. I915_WRITE(VIDSTART, vstart);
  4405. POSTING_READ(VIDSTART);
  4406. rgvmodectl |= MEMMODE_SWMODE_EN;
  4407. I915_WRITE(MEMMODECTL, rgvmodectl);
  4408. while (I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) {
  4409. if (i++ > 100) {
  4410. DRM_ERROR("stuck trying to change perf mode\n");
  4411. break;
  4412. }
  4413. msleep(1);
  4414. }
  4415. msleep(1);
  4416. rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
  4417. (fstart << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
  4418. I915_WRITE(MEMSWCTL, rgvswctl);
  4419. POSTING_READ(MEMSWCTL);
  4420. rgvswctl |= MEMCTL_CMD_STS;
  4421. I915_WRITE(MEMSWCTL, rgvswctl);
  4422. }
  4423. void ironlake_disable_drps(struct drm_device *dev)
  4424. {
  4425. struct drm_i915_private *dev_priv = dev->dev_private;
  4426. u32 rgvswctl;
  4427. u8 fstart;
  4428. /* Ack interrupts, disable EFC interrupt */
  4429. I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
  4430. I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
  4431. I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
  4432. I915_WRITE(DEIIR, DE_PCU_EVENT);
  4433. I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
  4434. /* Go back to the starting frequency */
  4435. fstart = (I915_READ(MEMMODECTL) & MEMMODE_FSTART_MASK) >>
  4436. MEMMODE_FSTART_SHIFT;
  4437. rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
  4438. (fstart << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
  4439. I915_WRITE(MEMSWCTL, rgvswctl);
  4440. msleep(1);
  4441. rgvswctl |= MEMCTL_CMD_STS;
  4442. I915_WRITE(MEMSWCTL, rgvswctl);
  4443. msleep(1);
  4444. }
  4445. void intel_init_clock_gating(struct drm_device *dev)
  4446. {
  4447. struct drm_i915_private *dev_priv = dev->dev_private;
  4448. /*
  4449. * Disable clock gating reported to work incorrectly according to the
  4450. * specs, but enable as much else as we can.
  4451. */
  4452. if (HAS_PCH_SPLIT(dev)) {
  4453. uint32_t dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE;
  4454. if (IS_IRONLAKE(dev)) {
  4455. /* Required for FBC */
  4456. dspclk_gate |= DPFDUNIT_CLOCK_GATE_DISABLE;
  4457. /* Required for CxSR */
  4458. dspclk_gate |= DPARBUNIT_CLOCK_GATE_DISABLE;
  4459. I915_WRITE(PCH_3DCGDIS0,
  4460. MARIUNIT_CLOCK_GATE_DISABLE |
  4461. SVSMUNIT_CLOCK_GATE_DISABLE);
  4462. }
  4463. I915_WRITE(PCH_DSPCLK_GATE_D, dspclk_gate);
  4464. /*
  4465. * According to the spec the following bits should be set in
  4466. * order to enable memory self-refresh
  4467. * The bit 22/21 of 0x42004
  4468. * The bit 5 of 0x42020
  4469. * The bit 15 of 0x45000
  4470. */
  4471. if (IS_IRONLAKE(dev)) {
  4472. I915_WRITE(ILK_DISPLAY_CHICKEN2,
  4473. (I915_READ(ILK_DISPLAY_CHICKEN2) |
  4474. ILK_DPARB_GATE | ILK_VSDPFD_FULL));
  4475. I915_WRITE(ILK_DSPCLK_GATE,
  4476. (I915_READ(ILK_DSPCLK_GATE) |
  4477. ILK_DPARB_CLK_GATE));
  4478. I915_WRITE(DISP_ARB_CTL,
  4479. (I915_READ(DISP_ARB_CTL) |
  4480. DISP_FBC_WM_DIS));
  4481. }
  4482. return;
  4483. } else if (IS_G4X(dev)) {
  4484. uint32_t dspclk_gate;
  4485. I915_WRITE(RENCLK_GATE_D1, 0);
  4486. I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
  4487. GS_UNIT_CLOCK_GATE_DISABLE |
  4488. CL_UNIT_CLOCK_GATE_DISABLE);
  4489. I915_WRITE(RAMCLK_GATE_D, 0);
  4490. dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
  4491. OVRUNIT_CLOCK_GATE_DISABLE |
  4492. OVCUNIT_CLOCK_GATE_DISABLE;
  4493. if (IS_GM45(dev))
  4494. dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
  4495. I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
  4496. } else if (IS_I965GM(dev)) {
  4497. I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
  4498. I915_WRITE(RENCLK_GATE_D2, 0);
  4499. I915_WRITE(DSPCLK_GATE_D, 0);
  4500. I915_WRITE(RAMCLK_GATE_D, 0);
  4501. I915_WRITE16(DEUC, 0);
  4502. } else if (IS_I965G(dev)) {
  4503. I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
  4504. I965_RCC_CLOCK_GATE_DISABLE |
  4505. I965_RCPB_CLOCK_GATE_DISABLE |
  4506. I965_ISC_CLOCK_GATE_DISABLE |
  4507. I965_FBC_CLOCK_GATE_DISABLE);
  4508. I915_WRITE(RENCLK_GATE_D2, 0);
  4509. } else if (IS_I9XX(dev)) {
  4510. u32 dstate = I915_READ(D_STATE);
  4511. dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
  4512. DSTATE_DOT_CLOCK_GATING;
  4513. I915_WRITE(D_STATE, dstate);
  4514. } else if (IS_I85X(dev) || IS_I865G(dev)) {
  4515. I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
  4516. } else if (IS_I830(dev)) {
  4517. I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
  4518. }
  4519. /*
  4520. * GPU can automatically power down the render unit if given a page
  4521. * to save state.
  4522. */
  4523. if (I915_HAS_RC6(dev) && drm_core_check_feature(dev, DRIVER_MODESET)) {
  4524. struct drm_i915_gem_object *obj_priv = NULL;
  4525. if (dev_priv->pwrctx) {
  4526. obj_priv = to_intel_bo(dev_priv->pwrctx);
  4527. } else {
  4528. struct drm_gem_object *pwrctx;
  4529. pwrctx = intel_alloc_power_context(dev);
  4530. if (pwrctx) {
  4531. dev_priv->pwrctx = pwrctx;
  4532. obj_priv = to_intel_bo(pwrctx);
  4533. }
  4534. }
  4535. if (obj_priv) {
  4536. I915_WRITE(PWRCTXA, obj_priv->gtt_offset | PWRCTX_EN);
  4537. I915_WRITE(MCHBAR_RENDER_STANDBY,
  4538. I915_READ(MCHBAR_RENDER_STANDBY) & ~RCX_SW_EXIT);
  4539. }
  4540. }
  4541. }
  4542. /* Set up chip specific display functions */
  4543. static void intel_init_display(struct drm_device *dev)
  4544. {
  4545. struct drm_i915_private *dev_priv = dev->dev_private;
  4546. /* We always want a DPMS function */
  4547. if (HAS_PCH_SPLIT(dev))
  4548. dev_priv->display.dpms = ironlake_crtc_dpms;
  4549. else
  4550. dev_priv->display.dpms = i9xx_crtc_dpms;
  4551. if (I915_HAS_FBC(dev)) {
  4552. if (IS_GM45(dev)) {
  4553. dev_priv->display.fbc_enabled = g4x_fbc_enabled;
  4554. dev_priv->display.enable_fbc = g4x_enable_fbc;
  4555. dev_priv->display.disable_fbc = g4x_disable_fbc;
  4556. } else if (IS_I965GM(dev)) {
  4557. dev_priv->display.fbc_enabled = i8xx_fbc_enabled;
  4558. dev_priv->display.enable_fbc = i8xx_enable_fbc;
  4559. dev_priv->display.disable_fbc = i8xx_disable_fbc;
  4560. }
  4561. /* 855GM needs testing */
  4562. }
  4563. /* Returns the core display clock speed */
  4564. if (IS_I945G(dev) || (IS_G33(dev) && ! IS_PINEVIEW_M(dev)))
  4565. dev_priv->display.get_display_clock_speed =
  4566. i945_get_display_clock_speed;
  4567. else if (IS_I915G(dev))
  4568. dev_priv->display.get_display_clock_speed =
  4569. i915_get_display_clock_speed;
  4570. else if (IS_I945GM(dev) || IS_845G(dev) || IS_PINEVIEW_M(dev))
  4571. dev_priv->display.get_display_clock_speed =
  4572. i9xx_misc_get_display_clock_speed;
  4573. else if (IS_I915GM(dev))
  4574. dev_priv->display.get_display_clock_speed =
  4575. i915gm_get_display_clock_speed;
  4576. else if (IS_I865G(dev))
  4577. dev_priv->display.get_display_clock_speed =
  4578. i865_get_display_clock_speed;
  4579. else if (IS_I85X(dev))
  4580. dev_priv->display.get_display_clock_speed =
  4581. i855_get_display_clock_speed;
  4582. else /* 852, 830 */
  4583. dev_priv->display.get_display_clock_speed =
  4584. i830_get_display_clock_speed;
  4585. /* For FIFO watermark updates */
  4586. if (HAS_PCH_SPLIT(dev)) {
  4587. if (IS_IRONLAKE(dev)) {
  4588. if (I915_READ(MLTR_ILK) & ILK_SRLT_MASK)
  4589. dev_priv->display.update_wm = ironlake_update_wm;
  4590. else {
  4591. DRM_DEBUG_KMS("Failed to get proper latency. "
  4592. "Disable CxSR\n");
  4593. dev_priv->display.update_wm = NULL;
  4594. }
  4595. } else
  4596. dev_priv->display.update_wm = NULL;
  4597. } else if (IS_PINEVIEW(dev)) {
  4598. if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
  4599. dev_priv->fsb_freq,
  4600. dev_priv->mem_freq)) {
  4601. DRM_INFO("failed to find known CxSR latency "
  4602. "(found fsb freq %d, mem freq %d), "
  4603. "disabling CxSR\n",
  4604. dev_priv->fsb_freq, dev_priv->mem_freq);
  4605. /* Disable CxSR and never update its watermark again */
  4606. pineview_disable_cxsr(dev);
  4607. dev_priv->display.update_wm = NULL;
  4608. } else
  4609. dev_priv->display.update_wm = pineview_update_wm;
  4610. } else if (IS_G4X(dev))
  4611. dev_priv->display.update_wm = g4x_update_wm;
  4612. else if (IS_I965G(dev))
  4613. dev_priv->display.update_wm = i965_update_wm;
  4614. else if (IS_I9XX(dev)) {
  4615. dev_priv->display.update_wm = i9xx_update_wm;
  4616. dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
  4617. } else if (IS_I85X(dev)) {
  4618. dev_priv->display.update_wm = i9xx_update_wm;
  4619. dev_priv->display.get_fifo_size = i85x_get_fifo_size;
  4620. } else {
  4621. dev_priv->display.update_wm = i830_update_wm;
  4622. if (IS_845G(dev))
  4623. dev_priv->display.get_fifo_size = i845_get_fifo_size;
  4624. else
  4625. dev_priv->display.get_fifo_size = i830_get_fifo_size;
  4626. }
  4627. }
  4628. void intel_modeset_init(struct drm_device *dev)
  4629. {
  4630. struct drm_i915_private *dev_priv = dev->dev_private;
  4631. int num_pipe;
  4632. int i;
  4633. drm_mode_config_init(dev);
  4634. dev->mode_config.min_width = 0;
  4635. dev->mode_config.min_height = 0;
  4636. dev->mode_config.funcs = (void *)&intel_mode_funcs;
  4637. intel_init_display(dev);
  4638. if (IS_I965G(dev)) {
  4639. dev->mode_config.max_width = 8192;
  4640. dev->mode_config.max_height = 8192;
  4641. } else if (IS_I9XX(dev)) {
  4642. dev->mode_config.max_width = 4096;
  4643. dev->mode_config.max_height = 4096;
  4644. } else {
  4645. dev->mode_config.max_width = 2048;
  4646. dev->mode_config.max_height = 2048;
  4647. }
  4648. /* set memory base */
  4649. if (IS_I9XX(dev))
  4650. dev->mode_config.fb_base = pci_resource_start(dev->pdev, 2);
  4651. else
  4652. dev->mode_config.fb_base = pci_resource_start(dev->pdev, 0);
  4653. if (IS_MOBILE(dev) || IS_I9XX(dev))
  4654. num_pipe = 2;
  4655. else
  4656. num_pipe = 1;
  4657. DRM_DEBUG_KMS("%d display pipe%s available.\n",
  4658. num_pipe, num_pipe > 1 ? "s" : "");
  4659. for (i = 0; i < num_pipe; i++) {
  4660. intel_crtc_init(dev, i);
  4661. }
  4662. intel_setup_outputs(dev);
  4663. intel_init_clock_gating(dev);
  4664. if (IS_IRONLAKE_M(dev))
  4665. ironlake_enable_drps(dev);
  4666. INIT_WORK(&dev_priv->idle_work, intel_idle_update);
  4667. setup_timer(&dev_priv->idle_timer, intel_gpu_idle_timer,
  4668. (unsigned long)dev);
  4669. intel_setup_overlay(dev);
  4670. }
  4671. void intel_modeset_cleanup(struct drm_device *dev)
  4672. {
  4673. struct drm_i915_private *dev_priv = dev->dev_private;
  4674. struct drm_crtc *crtc;
  4675. struct intel_crtc *intel_crtc;
  4676. mutex_lock(&dev->struct_mutex);
  4677. drm_kms_helper_poll_fini(dev);
  4678. intel_fbdev_fini(dev);
  4679. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  4680. /* Skip inactive CRTCs */
  4681. if (!crtc->fb)
  4682. continue;
  4683. intel_crtc = to_intel_crtc(crtc);
  4684. intel_increase_pllclock(crtc, false);
  4685. del_timer_sync(&intel_crtc->idle_timer);
  4686. }
  4687. del_timer_sync(&dev_priv->idle_timer);
  4688. if (dev_priv->display.disable_fbc)
  4689. dev_priv->display.disable_fbc(dev);
  4690. if (dev_priv->pwrctx) {
  4691. struct drm_i915_gem_object *obj_priv;
  4692. obj_priv = to_intel_bo(dev_priv->pwrctx);
  4693. I915_WRITE(PWRCTXA, obj_priv->gtt_offset &~ PWRCTX_EN);
  4694. I915_READ(PWRCTXA);
  4695. i915_gem_object_unpin(dev_priv->pwrctx);
  4696. drm_gem_object_unreference(dev_priv->pwrctx);
  4697. }
  4698. if (IS_IRONLAKE_M(dev))
  4699. ironlake_disable_drps(dev);
  4700. mutex_unlock(&dev->struct_mutex);
  4701. drm_mode_config_cleanup(dev);
  4702. }
  4703. /*
  4704. * Return which encoder is currently attached for connector.
  4705. */
  4706. struct drm_encoder *intel_attached_encoder (struct drm_connector *connector)
  4707. {
  4708. struct drm_mode_object *obj;
  4709. struct drm_encoder *encoder;
  4710. int i;
  4711. for (i = 0; i < DRM_CONNECTOR_MAX_ENCODER; i++) {
  4712. if (connector->encoder_ids[i] == 0)
  4713. break;
  4714. obj = drm_mode_object_find(connector->dev,
  4715. connector->encoder_ids[i],
  4716. DRM_MODE_OBJECT_ENCODER);
  4717. if (!obj)
  4718. continue;
  4719. encoder = obj_to_encoder(obj);
  4720. return encoder;
  4721. }
  4722. return NULL;
  4723. }
  4724. /*
  4725. * set vga decode state - true == enable VGA decode
  4726. */
  4727. int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
  4728. {
  4729. struct drm_i915_private *dev_priv = dev->dev_private;
  4730. u16 gmch_ctrl;
  4731. pci_read_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, &gmch_ctrl);
  4732. if (state)
  4733. gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
  4734. else
  4735. gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
  4736. pci_write_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, gmch_ctrl);
  4737. return 0;
  4738. }