slub.c 110 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708
  1. /*
  2. * SLUB: A slab allocator that limits cache line use instead of queuing
  3. * objects in per cpu and per node lists.
  4. *
  5. * The allocator synchronizes using per slab locks and only
  6. * uses a centralized lock to manage a pool of partial slabs.
  7. *
  8. * (C) 2007 SGI, Christoph Lameter
  9. */
  10. #include <linux/mm.h>
  11. #include <linux/swap.h> /* struct reclaim_state */
  12. #include <linux/module.h>
  13. #include <linux/bit_spinlock.h>
  14. #include <linux/interrupt.h>
  15. #include <linux/bitops.h>
  16. #include <linux/slab.h>
  17. #include <linux/proc_fs.h>
  18. #include <linux/seq_file.h>
  19. #include <linux/kmemcheck.h>
  20. #include <linux/cpu.h>
  21. #include <linux/cpuset.h>
  22. #include <linux/mempolicy.h>
  23. #include <linux/ctype.h>
  24. #include <linux/debugobjects.h>
  25. #include <linux/kallsyms.h>
  26. #include <linux/memory.h>
  27. #include <linux/math64.h>
  28. #include <linux/fault-inject.h>
  29. /*
  30. * Lock order:
  31. * 1. slab_lock(page)
  32. * 2. slab->list_lock
  33. *
  34. * The slab_lock protects operations on the object of a particular
  35. * slab and its metadata in the page struct. If the slab lock
  36. * has been taken then no allocations nor frees can be performed
  37. * on the objects in the slab nor can the slab be added or removed
  38. * from the partial or full lists since this would mean modifying
  39. * the page_struct of the slab.
  40. *
  41. * The list_lock protects the partial and full list on each node and
  42. * the partial slab counter. If taken then no new slabs may be added or
  43. * removed from the lists nor make the number of partial slabs be modified.
  44. * (Note that the total number of slabs is an atomic value that may be
  45. * modified without taking the list lock).
  46. *
  47. * The list_lock is a centralized lock and thus we avoid taking it as
  48. * much as possible. As long as SLUB does not have to handle partial
  49. * slabs, operations can continue without any centralized lock. F.e.
  50. * allocating a long series of objects that fill up slabs does not require
  51. * the list lock.
  52. *
  53. * The lock order is sometimes inverted when we are trying to get a slab
  54. * off a list. We take the list_lock and then look for a page on the list
  55. * to use. While we do that objects in the slabs may be freed. We can
  56. * only operate on the slab if we have also taken the slab_lock. So we use
  57. * a slab_trylock() on the slab. If trylock was successful then no frees
  58. * can occur anymore and we can use the slab for allocations etc. If the
  59. * slab_trylock() does not succeed then frees are in progress in the slab and
  60. * we must stay away from it for a while since we may cause a bouncing
  61. * cacheline if we try to acquire the lock. So go onto the next slab.
  62. * If all pages are busy then we may allocate a new slab instead of reusing
  63. * a partial slab. A new slab has noone operating on it and thus there is
  64. * no danger of cacheline contention.
  65. *
  66. * Interrupts are disabled during allocation and deallocation in order to
  67. * make the slab allocator safe to use in the context of an irq. In addition
  68. * interrupts are disabled to ensure that the processor does not change
  69. * while handling per_cpu slabs, due to kernel preemption.
  70. *
  71. * SLUB assigns one slab for allocation to each processor.
  72. * Allocations only occur from these slabs called cpu slabs.
  73. *
  74. * Slabs with free elements are kept on a partial list and during regular
  75. * operations no list for full slabs is used. If an object in a full slab is
  76. * freed then the slab will show up again on the partial lists.
  77. * We track full slabs for debugging purposes though because otherwise we
  78. * cannot scan all objects.
  79. *
  80. * Slabs are freed when they become empty. Teardown and setup is
  81. * minimal so we rely on the page allocators per cpu caches for
  82. * fast frees and allocs.
  83. *
  84. * Overloading of page flags that are otherwise used for LRU management.
  85. *
  86. * PageActive The slab is frozen and exempt from list processing.
  87. * This means that the slab is dedicated to a purpose
  88. * such as satisfying allocations for a specific
  89. * processor. Objects may be freed in the slab while
  90. * it is frozen but slab_free will then skip the usual
  91. * list operations. It is up to the processor holding
  92. * the slab to integrate the slab into the slab lists
  93. * when the slab is no longer needed.
  94. *
  95. * One use of this flag is to mark slabs that are
  96. * used for allocations. Then such a slab becomes a cpu
  97. * slab. The cpu slab may be equipped with an additional
  98. * freelist that allows lockless access to
  99. * free objects in addition to the regular freelist
  100. * that requires the slab lock.
  101. *
  102. * PageError Slab requires special handling due to debug
  103. * options set. This moves slab handling out of
  104. * the fast path and disables lockless freelists.
  105. */
  106. #define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
  107. SLAB_TRACE | SLAB_DEBUG_FREE)
  108. static inline int kmem_cache_debug(struct kmem_cache *s)
  109. {
  110. #ifdef CONFIG_SLUB_DEBUG
  111. return unlikely(s->flags & SLAB_DEBUG_FLAGS);
  112. #else
  113. return 0;
  114. #endif
  115. }
  116. /*
  117. * Issues still to be resolved:
  118. *
  119. * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
  120. *
  121. * - Variable sizing of the per node arrays
  122. */
  123. /* Enable to test recovery from slab corruption on boot */
  124. #undef SLUB_RESILIENCY_TEST
  125. /*
  126. * Mininum number of partial slabs. These will be left on the partial
  127. * lists even if they are empty. kmem_cache_shrink may reclaim them.
  128. */
  129. #define MIN_PARTIAL 5
  130. /*
  131. * Maximum number of desirable partial slabs.
  132. * The existence of more partial slabs makes kmem_cache_shrink
  133. * sort the partial list by the number of objects in the.
  134. */
  135. #define MAX_PARTIAL 10
  136. #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
  137. SLAB_POISON | SLAB_STORE_USER)
  138. /*
  139. * Debugging flags that require metadata to be stored in the slab. These get
  140. * disabled when slub_debug=O is used and a cache's min order increases with
  141. * metadata.
  142. */
  143. #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
  144. /*
  145. * Set of flags that will prevent slab merging
  146. */
  147. #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
  148. SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \
  149. SLAB_FAILSLAB)
  150. #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
  151. SLAB_CACHE_DMA | SLAB_NOTRACK)
  152. #define OO_SHIFT 16
  153. #define OO_MASK ((1 << OO_SHIFT) - 1)
  154. #define MAX_OBJS_PER_PAGE 65535 /* since page.objects is u16 */
  155. /* Internal SLUB flags */
  156. #define __OBJECT_POISON 0x80000000UL /* Poison object */
  157. static int kmem_size = sizeof(struct kmem_cache);
  158. #ifdef CONFIG_SMP
  159. static struct notifier_block slab_notifier;
  160. #endif
  161. static enum {
  162. DOWN, /* No slab functionality available */
  163. PARTIAL, /* Kmem_cache_node works */
  164. UP, /* Everything works but does not show up in sysfs */
  165. SYSFS /* Sysfs up */
  166. } slab_state = DOWN;
  167. /* A list of all slab caches on the system */
  168. static DECLARE_RWSEM(slub_lock);
  169. static LIST_HEAD(slab_caches);
  170. /*
  171. * Tracking user of a slab.
  172. */
  173. struct track {
  174. unsigned long addr; /* Called from address */
  175. int cpu; /* Was running on cpu */
  176. int pid; /* Pid context */
  177. unsigned long when; /* When did the operation occur */
  178. };
  179. enum track_item { TRACK_ALLOC, TRACK_FREE };
  180. #ifdef CONFIG_SLUB_DEBUG
  181. static int sysfs_slab_add(struct kmem_cache *);
  182. static int sysfs_slab_alias(struct kmem_cache *, const char *);
  183. static void sysfs_slab_remove(struct kmem_cache *);
  184. #else
  185. static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
  186. static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
  187. { return 0; }
  188. static inline void sysfs_slab_remove(struct kmem_cache *s)
  189. {
  190. kfree(s->name);
  191. kfree(s);
  192. }
  193. #endif
  194. static inline void stat(struct kmem_cache *s, enum stat_item si)
  195. {
  196. #ifdef CONFIG_SLUB_STATS
  197. __this_cpu_inc(s->cpu_slab->stat[si]);
  198. #endif
  199. }
  200. /********************************************************************
  201. * Core slab cache functions
  202. *******************************************************************/
  203. int slab_is_available(void)
  204. {
  205. return slab_state >= UP;
  206. }
  207. static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
  208. {
  209. return s->node[node];
  210. }
  211. /* Verify that a pointer has an address that is valid within a slab page */
  212. static inline int check_valid_pointer(struct kmem_cache *s,
  213. struct page *page, const void *object)
  214. {
  215. void *base;
  216. if (!object)
  217. return 1;
  218. base = page_address(page);
  219. if (object < base || object >= base + page->objects * s->size ||
  220. (object - base) % s->size) {
  221. return 0;
  222. }
  223. return 1;
  224. }
  225. static inline void *get_freepointer(struct kmem_cache *s, void *object)
  226. {
  227. return *(void **)(object + s->offset);
  228. }
  229. static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
  230. {
  231. *(void **)(object + s->offset) = fp;
  232. }
  233. /* Loop over all objects in a slab */
  234. #define for_each_object(__p, __s, __addr, __objects) \
  235. for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
  236. __p += (__s)->size)
  237. /* Scan freelist */
  238. #define for_each_free_object(__p, __s, __free) \
  239. for (__p = (__free); __p; __p = get_freepointer((__s), __p))
  240. /* Determine object index from a given position */
  241. static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
  242. {
  243. return (p - addr) / s->size;
  244. }
  245. static inline struct kmem_cache_order_objects oo_make(int order,
  246. unsigned long size)
  247. {
  248. struct kmem_cache_order_objects x = {
  249. (order << OO_SHIFT) + (PAGE_SIZE << order) / size
  250. };
  251. return x;
  252. }
  253. static inline int oo_order(struct kmem_cache_order_objects x)
  254. {
  255. return x.x >> OO_SHIFT;
  256. }
  257. static inline int oo_objects(struct kmem_cache_order_objects x)
  258. {
  259. return x.x & OO_MASK;
  260. }
  261. #ifdef CONFIG_SLUB_DEBUG
  262. /*
  263. * Debug settings:
  264. */
  265. #ifdef CONFIG_SLUB_DEBUG_ON
  266. static int slub_debug = DEBUG_DEFAULT_FLAGS;
  267. #else
  268. static int slub_debug;
  269. #endif
  270. static char *slub_debug_slabs;
  271. static int disable_higher_order_debug;
  272. /*
  273. * Object debugging
  274. */
  275. static void print_section(char *text, u8 *addr, unsigned int length)
  276. {
  277. int i, offset;
  278. int newline = 1;
  279. char ascii[17];
  280. ascii[16] = 0;
  281. for (i = 0; i < length; i++) {
  282. if (newline) {
  283. printk(KERN_ERR "%8s 0x%p: ", text, addr + i);
  284. newline = 0;
  285. }
  286. printk(KERN_CONT " %02x", addr[i]);
  287. offset = i % 16;
  288. ascii[offset] = isgraph(addr[i]) ? addr[i] : '.';
  289. if (offset == 15) {
  290. printk(KERN_CONT " %s\n", ascii);
  291. newline = 1;
  292. }
  293. }
  294. if (!newline) {
  295. i %= 16;
  296. while (i < 16) {
  297. printk(KERN_CONT " ");
  298. ascii[i] = ' ';
  299. i++;
  300. }
  301. printk(KERN_CONT " %s\n", ascii);
  302. }
  303. }
  304. static struct track *get_track(struct kmem_cache *s, void *object,
  305. enum track_item alloc)
  306. {
  307. struct track *p;
  308. if (s->offset)
  309. p = object + s->offset + sizeof(void *);
  310. else
  311. p = object + s->inuse;
  312. return p + alloc;
  313. }
  314. static void set_track(struct kmem_cache *s, void *object,
  315. enum track_item alloc, unsigned long addr)
  316. {
  317. struct track *p = get_track(s, object, alloc);
  318. if (addr) {
  319. p->addr = addr;
  320. p->cpu = smp_processor_id();
  321. p->pid = current->pid;
  322. p->when = jiffies;
  323. } else
  324. memset(p, 0, sizeof(struct track));
  325. }
  326. static void init_tracking(struct kmem_cache *s, void *object)
  327. {
  328. if (!(s->flags & SLAB_STORE_USER))
  329. return;
  330. set_track(s, object, TRACK_FREE, 0UL);
  331. set_track(s, object, TRACK_ALLOC, 0UL);
  332. }
  333. static void print_track(const char *s, struct track *t)
  334. {
  335. if (!t->addr)
  336. return;
  337. printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
  338. s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
  339. }
  340. static void print_tracking(struct kmem_cache *s, void *object)
  341. {
  342. if (!(s->flags & SLAB_STORE_USER))
  343. return;
  344. print_track("Allocated", get_track(s, object, TRACK_ALLOC));
  345. print_track("Freed", get_track(s, object, TRACK_FREE));
  346. }
  347. static void print_page_info(struct page *page)
  348. {
  349. printk(KERN_ERR "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
  350. page, page->objects, page->inuse, page->freelist, page->flags);
  351. }
  352. static void slab_bug(struct kmem_cache *s, char *fmt, ...)
  353. {
  354. va_list args;
  355. char buf[100];
  356. va_start(args, fmt);
  357. vsnprintf(buf, sizeof(buf), fmt, args);
  358. va_end(args);
  359. printk(KERN_ERR "========================================"
  360. "=====================================\n");
  361. printk(KERN_ERR "BUG %s: %s\n", s->name, buf);
  362. printk(KERN_ERR "----------------------------------------"
  363. "-------------------------------------\n\n");
  364. }
  365. static void slab_fix(struct kmem_cache *s, char *fmt, ...)
  366. {
  367. va_list args;
  368. char buf[100];
  369. va_start(args, fmt);
  370. vsnprintf(buf, sizeof(buf), fmt, args);
  371. va_end(args);
  372. printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
  373. }
  374. static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
  375. {
  376. unsigned int off; /* Offset of last byte */
  377. u8 *addr = page_address(page);
  378. print_tracking(s, p);
  379. print_page_info(page);
  380. printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
  381. p, p - addr, get_freepointer(s, p));
  382. if (p > addr + 16)
  383. print_section("Bytes b4", p - 16, 16);
  384. print_section("Object", p, min_t(unsigned long, s->objsize, PAGE_SIZE));
  385. if (s->flags & SLAB_RED_ZONE)
  386. print_section("Redzone", p + s->objsize,
  387. s->inuse - s->objsize);
  388. if (s->offset)
  389. off = s->offset + sizeof(void *);
  390. else
  391. off = s->inuse;
  392. if (s->flags & SLAB_STORE_USER)
  393. off += 2 * sizeof(struct track);
  394. if (off != s->size)
  395. /* Beginning of the filler is the free pointer */
  396. print_section("Padding", p + off, s->size - off);
  397. dump_stack();
  398. }
  399. static void object_err(struct kmem_cache *s, struct page *page,
  400. u8 *object, char *reason)
  401. {
  402. slab_bug(s, "%s", reason);
  403. print_trailer(s, page, object);
  404. }
  405. static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...)
  406. {
  407. va_list args;
  408. char buf[100];
  409. va_start(args, fmt);
  410. vsnprintf(buf, sizeof(buf), fmt, args);
  411. va_end(args);
  412. slab_bug(s, "%s", buf);
  413. print_page_info(page);
  414. dump_stack();
  415. }
  416. static void init_object(struct kmem_cache *s, void *object, int active)
  417. {
  418. u8 *p = object;
  419. if (s->flags & __OBJECT_POISON) {
  420. memset(p, POISON_FREE, s->objsize - 1);
  421. p[s->objsize - 1] = POISON_END;
  422. }
  423. if (s->flags & SLAB_RED_ZONE)
  424. memset(p + s->objsize,
  425. active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE,
  426. s->inuse - s->objsize);
  427. }
  428. static u8 *check_bytes(u8 *start, unsigned int value, unsigned int bytes)
  429. {
  430. while (bytes) {
  431. if (*start != (u8)value)
  432. return start;
  433. start++;
  434. bytes--;
  435. }
  436. return NULL;
  437. }
  438. static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
  439. void *from, void *to)
  440. {
  441. slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
  442. memset(from, data, to - from);
  443. }
  444. static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
  445. u8 *object, char *what,
  446. u8 *start, unsigned int value, unsigned int bytes)
  447. {
  448. u8 *fault;
  449. u8 *end;
  450. fault = check_bytes(start, value, bytes);
  451. if (!fault)
  452. return 1;
  453. end = start + bytes;
  454. while (end > fault && end[-1] == value)
  455. end--;
  456. slab_bug(s, "%s overwritten", what);
  457. printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
  458. fault, end - 1, fault[0], value);
  459. print_trailer(s, page, object);
  460. restore_bytes(s, what, value, fault, end);
  461. return 0;
  462. }
  463. /*
  464. * Object layout:
  465. *
  466. * object address
  467. * Bytes of the object to be managed.
  468. * If the freepointer may overlay the object then the free
  469. * pointer is the first word of the object.
  470. *
  471. * Poisoning uses 0x6b (POISON_FREE) and the last byte is
  472. * 0xa5 (POISON_END)
  473. *
  474. * object + s->objsize
  475. * Padding to reach word boundary. This is also used for Redzoning.
  476. * Padding is extended by another word if Redzoning is enabled and
  477. * objsize == inuse.
  478. *
  479. * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
  480. * 0xcc (RED_ACTIVE) for objects in use.
  481. *
  482. * object + s->inuse
  483. * Meta data starts here.
  484. *
  485. * A. Free pointer (if we cannot overwrite object on free)
  486. * B. Tracking data for SLAB_STORE_USER
  487. * C. Padding to reach required alignment boundary or at mininum
  488. * one word if debugging is on to be able to detect writes
  489. * before the word boundary.
  490. *
  491. * Padding is done using 0x5a (POISON_INUSE)
  492. *
  493. * object + s->size
  494. * Nothing is used beyond s->size.
  495. *
  496. * If slabcaches are merged then the objsize and inuse boundaries are mostly
  497. * ignored. And therefore no slab options that rely on these boundaries
  498. * may be used with merged slabcaches.
  499. */
  500. static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
  501. {
  502. unsigned long off = s->inuse; /* The end of info */
  503. if (s->offset)
  504. /* Freepointer is placed after the object. */
  505. off += sizeof(void *);
  506. if (s->flags & SLAB_STORE_USER)
  507. /* We also have user information there */
  508. off += 2 * sizeof(struct track);
  509. if (s->size == off)
  510. return 1;
  511. return check_bytes_and_report(s, page, p, "Object padding",
  512. p + off, POISON_INUSE, s->size - off);
  513. }
  514. /* Check the pad bytes at the end of a slab page */
  515. static int slab_pad_check(struct kmem_cache *s, struct page *page)
  516. {
  517. u8 *start;
  518. u8 *fault;
  519. u8 *end;
  520. int length;
  521. int remainder;
  522. if (!(s->flags & SLAB_POISON))
  523. return 1;
  524. start = page_address(page);
  525. length = (PAGE_SIZE << compound_order(page));
  526. end = start + length;
  527. remainder = length % s->size;
  528. if (!remainder)
  529. return 1;
  530. fault = check_bytes(end - remainder, POISON_INUSE, remainder);
  531. if (!fault)
  532. return 1;
  533. while (end > fault && end[-1] == POISON_INUSE)
  534. end--;
  535. slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
  536. print_section("Padding", end - remainder, remainder);
  537. restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
  538. return 0;
  539. }
  540. static int check_object(struct kmem_cache *s, struct page *page,
  541. void *object, int active)
  542. {
  543. u8 *p = object;
  544. u8 *endobject = object + s->objsize;
  545. if (s->flags & SLAB_RED_ZONE) {
  546. unsigned int red =
  547. active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE;
  548. if (!check_bytes_and_report(s, page, object, "Redzone",
  549. endobject, red, s->inuse - s->objsize))
  550. return 0;
  551. } else {
  552. if ((s->flags & SLAB_POISON) && s->objsize < s->inuse) {
  553. check_bytes_and_report(s, page, p, "Alignment padding",
  554. endobject, POISON_INUSE, s->inuse - s->objsize);
  555. }
  556. }
  557. if (s->flags & SLAB_POISON) {
  558. if (!active && (s->flags & __OBJECT_POISON) &&
  559. (!check_bytes_and_report(s, page, p, "Poison", p,
  560. POISON_FREE, s->objsize - 1) ||
  561. !check_bytes_and_report(s, page, p, "Poison",
  562. p + s->objsize - 1, POISON_END, 1)))
  563. return 0;
  564. /*
  565. * check_pad_bytes cleans up on its own.
  566. */
  567. check_pad_bytes(s, page, p);
  568. }
  569. if (!s->offset && active)
  570. /*
  571. * Object and freepointer overlap. Cannot check
  572. * freepointer while object is allocated.
  573. */
  574. return 1;
  575. /* Check free pointer validity */
  576. if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
  577. object_err(s, page, p, "Freepointer corrupt");
  578. /*
  579. * No choice but to zap it and thus lose the remainder
  580. * of the free objects in this slab. May cause
  581. * another error because the object count is now wrong.
  582. */
  583. set_freepointer(s, p, NULL);
  584. return 0;
  585. }
  586. return 1;
  587. }
  588. static int check_slab(struct kmem_cache *s, struct page *page)
  589. {
  590. int maxobj;
  591. VM_BUG_ON(!irqs_disabled());
  592. if (!PageSlab(page)) {
  593. slab_err(s, page, "Not a valid slab page");
  594. return 0;
  595. }
  596. maxobj = (PAGE_SIZE << compound_order(page)) / s->size;
  597. if (page->objects > maxobj) {
  598. slab_err(s, page, "objects %u > max %u",
  599. s->name, page->objects, maxobj);
  600. return 0;
  601. }
  602. if (page->inuse > page->objects) {
  603. slab_err(s, page, "inuse %u > max %u",
  604. s->name, page->inuse, page->objects);
  605. return 0;
  606. }
  607. /* Slab_pad_check fixes things up after itself */
  608. slab_pad_check(s, page);
  609. return 1;
  610. }
  611. /*
  612. * Determine if a certain object on a page is on the freelist. Must hold the
  613. * slab lock to guarantee that the chains are in a consistent state.
  614. */
  615. static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
  616. {
  617. int nr = 0;
  618. void *fp = page->freelist;
  619. void *object = NULL;
  620. unsigned long max_objects;
  621. while (fp && nr <= page->objects) {
  622. if (fp == search)
  623. return 1;
  624. if (!check_valid_pointer(s, page, fp)) {
  625. if (object) {
  626. object_err(s, page, object,
  627. "Freechain corrupt");
  628. set_freepointer(s, object, NULL);
  629. break;
  630. } else {
  631. slab_err(s, page, "Freepointer corrupt");
  632. page->freelist = NULL;
  633. page->inuse = page->objects;
  634. slab_fix(s, "Freelist cleared");
  635. return 0;
  636. }
  637. break;
  638. }
  639. object = fp;
  640. fp = get_freepointer(s, object);
  641. nr++;
  642. }
  643. max_objects = (PAGE_SIZE << compound_order(page)) / s->size;
  644. if (max_objects > MAX_OBJS_PER_PAGE)
  645. max_objects = MAX_OBJS_PER_PAGE;
  646. if (page->objects != max_objects) {
  647. slab_err(s, page, "Wrong number of objects. Found %d but "
  648. "should be %d", page->objects, max_objects);
  649. page->objects = max_objects;
  650. slab_fix(s, "Number of objects adjusted.");
  651. }
  652. if (page->inuse != page->objects - nr) {
  653. slab_err(s, page, "Wrong object count. Counter is %d but "
  654. "counted were %d", page->inuse, page->objects - nr);
  655. page->inuse = page->objects - nr;
  656. slab_fix(s, "Object count adjusted.");
  657. }
  658. return search == NULL;
  659. }
  660. static void trace(struct kmem_cache *s, struct page *page, void *object,
  661. int alloc)
  662. {
  663. if (s->flags & SLAB_TRACE) {
  664. printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
  665. s->name,
  666. alloc ? "alloc" : "free",
  667. object, page->inuse,
  668. page->freelist);
  669. if (!alloc)
  670. print_section("Object", (void *)object, s->objsize);
  671. dump_stack();
  672. }
  673. }
  674. /*
  675. * Hooks for other subsystems that check memory allocations. In a typical
  676. * production configuration these hooks all should produce no code at all.
  677. */
  678. static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
  679. {
  680. flags &= gfp_allowed_mask;
  681. lockdep_trace_alloc(flags);
  682. might_sleep_if(flags & __GFP_WAIT);
  683. return should_failslab(s->objsize, flags, s->flags);
  684. }
  685. static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags, void *object)
  686. {
  687. flags &= gfp_allowed_mask;
  688. kmemcheck_slab_alloc(s, flags, object, s->objsize);
  689. kmemleak_alloc_recursive(object, s->objsize, 1, s->flags, flags);
  690. }
  691. static inline void slab_free_hook(struct kmem_cache *s, void *x)
  692. {
  693. kmemleak_free_recursive(x, s->flags);
  694. }
  695. static inline void slab_free_hook_irq(struct kmem_cache *s, void *object)
  696. {
  697. kmemcheck_slab_free(s, object, s->objsize);
  698. debug_check_no_locks_freed(object, s->objsize);
  699. if (!(s->flags & SLAB_DEBUG_OBJECTS))
  700. debug_check_no_obj_freed(object, s->objsize);
  701. }
  702. /*
  703. * Tracking of fully allocated slabs for debugging purposes.
  704. */
  705. static void add_full(struct kmem_cache_node *n, struct page *page)
  706. {
  707. spin_lock(&n->list_lock);
  708. list_add(&page->lru, &n->full);
  709. spin_unlock(&n->list_lock);
  710. }
  711. static void remove_full(struct kmem_cache *s, struct page *page)
  712. {
  713. struct kmem_cache_node *n;
  714. if (!(s->flags & SLAB_STORE_USER))
  715. return;
  716. n = get_node(s, page_to_nid(page));
  717. spin_lock(&n->list_lock);
  718. list_del(&page->lru);
  719. spin_unlock(&n->list_lock);
  720. }
  721. /* Tracking of the number of slabs for debugging purposes */
  722. static inline unsigned long slabs_node(struct kmem_cache *s, int node)
  723. {
  724. struct kmem_cache_node *n = get_node(s, node);
  725. return atomic_long_read(&n->nr_slabs);
  726. }
  727. static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
  728. {
  729. return atomic_long_read(&n->nr_slabs);
  730. }
  731. static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
  732. {
  733. struct kmem_cache_node *n = get_node(s, node);
  734. /*
  735. * May be called early in order to allocate a slab for the
  736. * kmem_cache_node structure. Solve the chicken-egg
  737. * dilemma by deferring the increment of the count during
  738. * bootstrap (see early_kmem_cache_node_alloc).
  739. */
  740. if (n) {
  741. atomic_long_inc(&n->nr_slabs);
  742. atomic_long_add(objects, &n->total_objects);
  743. }
  744. }
  745. static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
  746. {
  747. struct kmem_cache_node *n = get_node(s, node);
  748. atomic_long_dec(&n->nr_slabs);
  749. atomic_long_sub(objects, &n->total_objects);
  750. }
  751. /* Object debug checks for alloc/free paths */
  752. static void setup_object_debug(struct kmem_cache *s, struct page *page,
  753. void *object)
  754. {
  755. if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
  756. return;
  757. init_object(s, object, 0);
  758. init_tracking(s, object);
  759. }
  760. static noinline int alloc_debug_processing(struct kmem_cache *s, struct page *page,
  761. void *object, unsigned long addr)
  762. {
  763. if (!check_slab(s, page))
  764. goto bad;
  765. if (!on_freelist(s, page, object)) {
  766. object_err(s, page, object, "Object already allocated");
  767. goto bad;
  768. }
  769. if (!check_valid_pointer(s, page, object)) {
  770. object_err(s, page, object, "Freelist Pointer check fails");
  771. goto bad;
  772. }
  773. if (!check_object(s, page, object, 0))
  774. goto bad;
  775. /* Success perform special debug activities for allocs */
  776. if (s->flags & SLAB_STORE_USER)
  777. set_track(s, object, TRACK_ALLOC, addr);
  778. trace(s, page, object, 1);
  779. init_object(s, object, 1);
  780. return 1;
  781. bad:
  782. if (PageSlab(page)) {
  783. /*
  784. * If this is a slab page then lets do the best we can
  785. * to avoid issues in the future. Marking all objects
  786. * as used avoids touching the remaining objects.
  787. */
  788. slab_fix(s, "Marking all objects used");
  789. page->inuse = page->objects;
  790. page->freelist = NULL;
  791. }
  792. return 0;
  793. }
  794. static noinline int free_debug_processing(struct kmem_cache *s,
  795. struct page *page, void *object, unsigned long addr)
  796. {
  797. if (!check_slab(s, page))
  798. goto fail;
  799. if (!check_valid_pointer(s, page, object)) {
  800. slab_err(s, page, "Invalid object pointer 0x%p", object);
  801. goto fail;
  802. }
  803. if (on_freelist(s, page, object)) {
  804. object_err(s, page, object, "Object already free");
  805. goto fail;
  806. }
  807. if (!check_object(s, page, object, 1))
  808. return 0;
  809. if (unlikely(s != page->slab)) {
  810. if (!PageSlab(page)) {
  811. slab_err(s, page, "Attempt to free object(0x%p) "
  812. "outside of slab", object);
  813. } else if (!page->slab) {
  814. printk(KERN_ERR
  815. "SLUB <none>: no slab for object 0x%p.\n",
  816. object);
  817. dump_stack();
  818. } else
  819. object_err(s, page, object,
  820. "page slab pointer corrupt.");
  821. goto fail;
  822. }
  823. /* Special debug activities for freeing objects */
  824. if (!PageSlubFrozen(page) && !page->freelist)
  825. remove_full(s, page);
  826. if (s->flags & SLAB_STORE_USER)
  827. set_track(s, object, TRACK_FREE, addr);
  828. trace(s, page, object, 0);
  829. init_object(s, object, 0);
  830. return 1;
  831. fail:
  832. slab_fix(s, "Object at 0x%p not freed", object);
  833. return 0;
  834. }
  835. static int __init setup_slub_debug(char *str)
  836. {
  837. slub_debug = DEBUG_DEFAULT_FLAGS;
  838. if (*str++ != '=' || !*str)
  839. /*
  840. * No options specified. Switch on full debugging.
  841. */
  842. goto out;
  843. if (*str == ',')
  844. /*
  845. * No options but restriction on slabs. This means full
  846. * debugging for slabs matching a pattern.
  847. */
  848. goto check_slabs;
  849. if (tolower(*str) == 'o') {
  850. /*
  851. * Avoid enabling debugging on caches if its minimum order
  852. * would increase as a result.
  853. */
  854. disable_higher_order_debug = 1;
  855. goto out;
  856. }
  857. slub_debug = 0;
  858. if (*str == '-')
  859. /*
  860. * Switch off all debugging measures.
  861. */
  862. goto out;
  863. /*
  864. * Determine which debug features should be switched on
  865. */
  866. for (; *str && *str != ','; str++) {
  867. switch (tolower(*str)) {
  868. case 'f':
  869. slub_debug |= SLAB_DEBUG_FREE;
  870. break;
  871. case 'z':
  872. slub_debug |= SLAB_RED_ZONE;
  873. break;
  874. case 'p':
  875. slub_debug |= SLAB_POISON;
  876. break;
  877. case 'u':
  878. slub_debug |= SLAB_STORE_USER;
  879. break;
  880. case 't':
  881. slub_debug |= SLAB_TRACE;
  882. break;
  883. case 'a':
  884. slub_debug |= SLAB_FAILSLAB;
  885. break;
  886. default:
  887. printk(KERN_ERR "slub_debug option '%c' "
  888. "unknown. skipped\n", *str);
  889. }
  890. }
  891. check_slabs:
  892. if (*str == ',')
  893. slub_debug_slabs = str + 1;
  894. out:
  895. return 1;
  896. }
  897. __setup("slub_debug", setup_slub_debug);
  898. static unsigned long kmem_cache_flags(unsigned long objsize,
  899. unsigned long flags, const char *name,
  900. void (*ctor)(void *))
  901. {
  902. /*
  903. * Enable debugging if selected on the kernel commandline.
  904. */
  905. if (slub_debug && (!slub_debug_slabs ||
  906. !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs))))
  907. flags |= slub_debug;
  908. return flags;
  909. }
  910. #else
  911. static inline void setup_object_debug(struct kmem_cache *s,
  912. struct page *page, void *object) {}
  913. static inline int alloc_debug_processing(struct kmem_cache *s,
  914. struct page *page, void *object, unsigned long addr) { return 0; }
  915. static inline int free_debug_processing(struct kmem_cache *s,
  916. struct page *page, void *object, unsigned long addr) { return 0; }
  917. static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
  918. { return 1; }
  919. static inline int check_object(struct kmem_cache *s, struct page *page,
  920. void *object, int active) { return 1; }
  921. static inline void add_full(struct kmem_cache_node *n, struct page *page) {}
  922. static inline unsigned long kmem_cache_flags(unsigned long objsize,
  923. unsigned long flags, const char *name,
  924. void (*ctor)(void *))
  925. {
  926. return flags;
  927. }
  928. #define slub_debug 0
  929. #define disable_higher_order_debug 0
  930. static inline unsigned long slabs_node(struct kmem_cache *s, int node)
  931. { return 0; }
  932. static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
  933. { return 0; }
  934. static inline void inc_slabs_node(struct kmem_cache *s, int node,
  935. int objects) {}
  936. static inline void dec_slabs_node(struct kmem_cache *s, int node,
  937. int objects) {}
  938. static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
  939. { return 0; }
  940. static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags,
  941. void *object) {}
  942. static inline void slab_free_hook(struct kmem_cache *s, void *x) {}
  943. static inline void slab_free_hook_irq(struct kmem_cache *s,
  944. void *object) {}
  945. #endif
  946. /*
  947. * Slab allocation and freeing
  948. */
  949. static inline struct page *alloc_slab_page(gfp_t flags, int node,
  950. struct kmem_cache_order_objects oo)
  951. {
  952. int order = oo_order(oo);
  953. flags |= __GFP_NOTRACK;
  954. if (node == NUMA_NO_NODE)
  955. return alloc_pages(flags, order);
  956. else
  957. return alloc_pages_exact_node(node, flags, order);
  958. }
  959. static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
  960. {
  961. struct page *page;
  962. struct kmem_cache_order_objects oo = s->oo;
  963. gfp_t alloc_gfp;
  964. flags |= s->allocflags;
  965. /*
  966. * Let the initial higher-order allocation fail under memory pressure
  967. * so we fall-back to the minimum order allocation.
  968. */
  969. alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
  970. page = alloc_slab_page(alloc_gfp, node, oo);
  971. if (unlikely(!page)) {
  972. oo = s->min;
  973. /*
  974. * Allocation may have failed due to fragmentation.
  975. * Try a lower order alloc if possible
  976. */
  977. page = alloc_slab_page(flags, node, oo);
  978. if (!page)
  979. return NULL;
  980. stat(s, ORDER_FALLBACK);
  981. }
  982. if (kmemcheck_enabled
  983. && !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
  984. int pages = 1 << oo_order(oo);
  985. kmemcheck_alloc_shadow(page, oo_order(oo), flags, node);
  986. /*
  987. * Objects from caches that have a constructor don't get
  988. * cleared when they're allocated, so we need to do it here.
  989. */
  990. if (s->ctor)
  991. kmemcheck_mark_uninitialized_pages(page, pages);
  992. else
  993. kmemcheck_mark_unallocated_pages(page, pages);
  994. }
  995. page->objects = oo_objects(oo);
  996. mod_zone_page_state(page_zone(page),
  997. (s->flags & SLAB_RECLAIM_ACCOUNT) ?
  998. NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
  999. 1 << oo_order(oo));
  1000. return page;
  1001. }
  1002. static void setup_object(struct kmem_cache *s, struct page *page,
  1003. void *object)
  1004. {
  1005. setup_object_debug(s, page, object);
  1006. if (unlikely(s->ctor))
  1007. s->ctor(object);
  1008. }
  1009. static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
  1010. {
  1011. struct page *page;
  1012. void *start;
  1013. void *last;
  1014. void *p;
  1015. BUG_ON(flags & GFP_SLAB_BUG_MASK);
  1016. page = allocate_slab(s,
  1017. flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
  1018. if (!page)
  1019. goto out;
  1020. inc_slabs_node(s, page_to_nid(page), page->objects);
  1021. page->slab = s;
  1022. page->flags |= 1 << PG_slab;
  1023. start = page_address(page);
  1024. if (unlikely(s->flags & SLAB_POISON))
  1025. memset(start, POISON_INUSE, PAGE_SIZE << compound_order(page));
  1026. last = start;
  1027. for_each_object(p, s, start, page->objects) {
  1028. setup_object(s, page, last);
  1029. set_freepointer(s, last, p);
  1030. last = p;
  1031. }
  1032. setup_object(s, page, last);
  1033. set_freepointer(s, last, NULL);
  1034. page->freelist = start;
  1035. page->inuse = 0;
  1036. out:
  1037. return page;
  1038. }
  1039. static void __free_slab(struct kmem_cache *s, struct page *page)
  1040. {
  1041. int order = compound_order(page);
  1042. int pages = 1 << order;
  1043. if (kmem_cache_debug(s)) {
  1044. void *p;
  1045. slab_pad_check(s, page);
  1046. for_each_object(p, s, page_address(page),
  1047. page->objects)
  1048. check_object(s, page, p, 0);
  1049. }
  1050. kmemcheck_free_shadow(page, compound_order(page));
  1051. mod_zone_page_state(page_zone(page),
  1052. (s->flags & SLAB_RECLAIM_ACCOUNT) ?
  1053. NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
  1054. -pages);
  1055. __ClearPageSlab(page);
  1056. reset_page_mapcount(page);
  1057. if (current->reclaim_state)
  1058. current->reclaim_state->reclaimed_slab += pages;
  1059. __free_pages(page, order);
  1060. }
  1061. static void rcu_free_slab(struct rcu_head *h)
  1062. {
  1063. struct page *page;
  1064. page = container_of((struct list_head *)h, struct page, lru);
  1065. __free_slab(page->slab, page);
  1066. }
  1067. static void free_slab(struct kmem_cache *s, struct page *page)
  1068. {
  1069. if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
  1070. /*
  1071. * RCU free overloads the RCU head over the LRU
  1072. */
  1073. struct rcu_head *head = (void *)&page->lru;
  1074. call_rcu(head, rcu_free_slab);
  1075. } else
  1076. __free_slab(s, page);
  1077. }
  1078. static void discard_slab(struct kmem_cache *s, struct page *page)
  1079. {
  1080. dec_slabs_node(s, page_to_nid(page), page->objects);
  1081. free_slab(s, page);
  1082. }
  1083. /*
  1084. * Per slab locking using the pagelock
  1085. */
  1086. static __always_inline void slab_lock(struct page *page)
  1087. {
  1088. bit_spin_lock(PG_locked, &page->flags);
  1089. }
  1090. static __always_inline void slab_unlock(struct page *page)
  1091. {
  1092. __bit_spin_unlock(PG_locked, &page->flags);
  1093. }
  1094. static __always_inline int slab_trylock(struct page *page)
  1095. {
  1096. int rc = 1;
  1097. rc = bit_spin_trylock(PG_locked, &page->flags);
  1098. return rc;
  1099. }
  1100. /*
  1101. * Management of partially allocated slabs
  1102. */
  1103. static void add_partial(struct kmem_cache_node *n,
  1104. struct page *page, int tail)
  1105. {
  1106. spin_lock(&n->list_lock);
  1107. n->nr_partial++;
  1108. if (tail)
  1109. list_add_tail(&page->lru, &n->partial);
  1110. else
  1111. list_add(&page->lru, &n->partial);
  1112. spin_unlock(&n->list_lock);
  1113. }
  1114. static void remove_partial(struct kmem_cache *s, struct page *page)
  1115. {
  1116. struct kmem_cache_node *n = get_node(s, page_to_nid(page));
  1117. spin_lock(&n->list_lock);
  1118. list_del(&page->lru);
  1119. n->nr_partial--;
  1120. spin_unlock(&n->list_lock);
  1121. }
  1122. /*
  1123. * Lock slab and remove from the partial list.
  1124. *
  1125. * Must hold list_lock.
  1126. */
  1127. static inline int lock_and_freeze_slab(struct kmem_cache_node *n,
  1128. struct page *page)
  1129. {
  1130. if (slab_trylock(page)) {
  1131. list_del(&page->lru);
  1132. n->nr_partial--;
  1133. __SetPageSlubFrozen(page);
  1134. return 1;
  1135. }
  1136. return 0;
  1137. }
  1138. /*
  1139. * Try to allocate a partial slab from a specific node.
  1140. */
  1141. static struct page *get_partial_node(struct kmem_cache_node *n)
  1142. {
  1143. struct page *page;
  1144. /*
  1145. * Racy check. If we mistakenly see no partial slabs then we
  1146. * just allocate an empty slab. If we mistakenly try to get a
  1147. * partial slab and there is none available then get_partials()
  1148. * will return NULL.
  1149. */
  1150. if (!n || !n->nr_partial)
  1151. return NULL;
  1152. spin_lock(&n->list_lock);
  1153. list_for_each_entry(page, &n->partial, lru)
  1154. if (lock_and_freeze_slab(n, page))
  1155. goto out;
  1156. page = NULL;
  1157. out:
  1158. spin_unlock(&n->list_lock);
  1159. return page;
  1160. }
  1161. /*
  1162. * Get a page from somewhere. Search in increasing NUMA distances.
  1163. */
  1164. static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags)
  1165. {
  1166. #ifdef CONFIG_NUMA
  1167. struct zonelist *zonelist;
  1168. struct zoneref *z;
  1169. struct zone *zone;
  1170. enum zone_type high_zoneidx = gfp_zone(flags);
  1171. struct page *page;
  1172. /*
  1173. * The defrag ratio allows a configuration of the tradeoffs between
  1174. * inter node defragmentation and node local allocations. A lower
  1175. * defrag_ratio increases the tendency to do local allocations
  1176. * instead of attempting to obtain partial slabs from other nodes.
  1177. *
  1178. * If the defrag_ratio is set to 0 then kmalloc() always
  1179. * returns node local objects. If the ratio is higher then kmalloc()
  1180. * may return off node objects because partial slabs are obtained
  1181. * from other nodes and filled up.
  1182. *
  1183. * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
  1184. * defrag_ratio = 1000) then every (well almost) allocation will
  1185. * first attempt to defrag slab caches on other nodes. This means
  1186. * scanning over all nodes to look for partial slabs which may be
  1187. * expensive if we do it every time we are trying to find a slab
  1188. * with available objects.
  1189. */
  1190. if (!s->remote_node_defrag_ratio ||
  1191. get_cycles() % 1024 > s->remote_node_defrag_ratio)
  1192. return NULL;
  1193. get_mems_allowed();
  1194. zonelist = node_zonelist(slab_node(current->mempolicy), flags);
  1195. for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
  1196. struct kmem_cache_node *n;
  1197. n = get_node(s, zone_to_nid(zone));
  1198. if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
  1199. n->nr_partial > s->min_partial) {
  1200. page = get_partial_node(n);
  1201. if (page) {
  1202. put_mems_allowed();
  1203. return page;
  1204. }
  1205. }
  1206. }
  1207. put_mems_allowed();
  1208. #endif
  1209. return NULL;
  1210. }
  1211. /*
  1212. * Get a partial page, lock it and return it.
  1213. */
  1214. static struct page *get_partial(struct kmem_cache *s, gfp_t flags, int node)
  1215. {
  1216. struct page *page;
  1217. int searchnode = (node == NUMA_NO_NODE) ? numa_node_id() : node;
  1218. page = get_partial_node(get_node(s, searchnode));
  1219. if (page || node != -1)
  1220. return page;
  1221. return get_any_partial(s, flags);
  1222. }
  1223. /*
  1224. * Move a page back to the lists.
  1225. *
  1226. * Must be called with the slab lock held.
  1227. *
  1228. * On exit the slab lock will have been dropped.
  1229. */
  1230. static void unfreeze_slab(struct kmem_cache *s, struct page *page, int tail)
  1231. {
  1232. struct kmem_cache_node *n = get_node(s, page_to_nid(page));
  1233. __ClearPageSlubFrozen(page);
  1234. if (page->inuse) {
  1235. if (page->freelist) {
  1236. add_partial(n, page, tail);
  1237. stat(s, tail ? DEACTIVATE_TO_TAIL : DEACTIVATE_TO_HEAD);
  1238. } else {
  1239. stat(s, DEACTIVATE_FULL);
  1240. if (kmem_cache_debug(s) && (s->flags & SLAB_STORE_USER))
  1241. add_full(n, page);
  1242. }
  1243. slab_unlock(page);
  1244. } else {
  1245. stat(s, DEACTIVATE_EMPTY);
  1246. if (n->nr_partial < s->min_partial) {
  1247. /*
  1248. * Adding an empty slab to the partial slabs in order
  1249. * to avoid page allocator overhead. This slab needs
  1250. * to come after the other slabs with objects in
  1251. * so that the others get filled first. That way the
  1252. * size of the partial list stays small.
  1253. *
  1254. * kmem_cache_shrink can reclaim any empty slabs from
  1255. * the partial list.
  1256. */
  1257. add_partial(n, page, 1);
  1258. slab_unlock(page);
  1259. } else {
  1260. slab_unlock(page);
  1261. stat(s, FREE_SLAB);
  1262. discard_slab(s, page);
  1263. }
  1264. }
  1265. }
  1266. /*
  1267. * Remove the cpu slab
  1268. */
  1269. static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
  1270. {
  1271. struct page *page = c->page;
  1272. int tail = 1;
  1273. if (page->freelist)
  1274. stat(s, DEACTIVATE_REMOTE_FREES);
  1275. /*
  1276. * Merge cpu freelist into slab freelist. Typically we get here
  1277. * because both freelists are empty. So this is unlikely
  1278. * to occur.
  1279. */
  1280. while (unlikely(c->freelist)) {
  1281. void **object;
  1282. tail = 0; /* Hot objects. Put the slab first */
  1283. /* Retrieve object from cpu_freelist */
  1284. object = c->freelist;
  1285. c->freelist = get_freepointer(s, c->freelist);
  1286. /* And put onto the regular freelist */
  1287. set_freepointer(s, object, page->freelist);
  1288. page->freelist = object;
  1289. page->inuse--;
  1290. }
  1291. c->page = NULL;
  1292. unfreeze_slab(s, page, tail);
  1293. }
  1294. static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
  1295. {
  1296. stat(s, CPUSLAB_FLUSH);
  1297. slab_lock(c->page);
  1298. deactivate_slab(s, c);
  1299. }
  1300. /*
  1301. * Flush cpu slab.
  1302. *
  1303. * Called from IPI handler with interrupts disabled.
  1304. */
  1305. static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
  1306. {
  1307. struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
  1308. if (likely(c && c->page))
  1309. flush_slab(s, c);
  1310. }
  1311. static void flush_cpu_slab(void *d)
  1312. {
  1313. struct kmem_cache *s = d;
  1314. __flush_cpu_slab(s, smp_processor_id());
  1315. }
  1316. static void flush_all(struct kmem_cache *s)
  1317. {
  1318. on_each_cpu(flush_cpu_slab, s, 1);
  1319. }
  1320. /*
  1321. * Check if the objects in a per cpu structure fit numa
  1322. * locality expectations.
  1323. */
  1324. static inline int node_match(struct kmem_cache_cpu *c, int node)
  1325. {
  1326. #ifdef CONFIG_NUMA
  1327. if (node != NUMA_NO_NODE && c->node != node)
  1328. return 0;
  1329. #endif
  1330. return 1;
  1331. }
  1332. static int count_free(struct page *page)
  1333. {
  1334. return page->objects - page->inuse;
  1335. }
  1336. static unsigned long count_partial(struct kmem_cache_node *n,
  1337. int (*get_count)(struct page *))
  1338. {
  1339. unsigned long flags;
  1340. unsigned long x = 0;
  1341. struct page *page;
  1342. spin_lock_irqsave(&n->list_lock, flags);
  1343. list_for_each_entry(page, &n->partial, lru)
  1344. x += get_count(page);
  1345. spin_unlock_irqrestore(&n->list_lock, flags);
  1346. return x;
  1347. }
  1348. static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
  1349. {
  1350. #ifdef CONFIG_SLUB_DEBUG
  1351. return atomic_long_read(&n->total_objects);
  1352. #else
  1353. return 0;
  1354. #endif
  1355. }
  1356. static noinline void
  1357. slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
  1358. {
  1359. int node;
  1360. printk(KERN_WARNING
  1361. "SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
  1362. nid, gfpflags);
  1363. printk(KERN_WARNING " cache: %s, object size: %d, buffer size: %d, "
  1364. "default order: %d, min order: %d\n", s->name, s->objsize,
  1365. s->size, oo_order(s->oo), oo_order(s->min));
  1366. if (oo_order(s->min) > get_order(s->objsize))
  1367. printk(KERN_WARNING " %s debugging increased min order, use "
  1368. "slub_debug=O to disable.\n", s->name);
  1369. for_each_online_node(node) {
  1370. struct kmem_cache_node *n = get_node(s, node);
  1371. unsigned long nr_slabs;
  1372. unsigned long nr_objs;
  1373. unsigned long nr_free;
  1374. if (!n)
  1375. continue;
  1376. nr_free = count_partial(n, count_free);
  1377. nr_slabs = node_nr_slabs(n);
  1378. nr_objs = node_nr_objs(n);
  1379. printk(KERN_WARNING
  1380. " node %d: slabs: %ld, objs: %ld, free: %ld\n",
  1381. node, nr_slabs, nr_objs, nr_free);
  1382. }
  1383. }
  1384. /*
  1385. * Slow path. The lockless freelist is empty or we need to perform
  1386. * debugging duties.
  1387. *
  1388. * Interrupts are disabled.
  1389. *
  1390. * Processing is still very fast if new objects have been freed to the
  1391. * regular freelist. In that case we simply take over the regular freelist
  1392. * as the lockless freelist and zap the regular freelist.
  1393. *
  1394. * If that is not working then we fall back to the partial lists. We take the
  1395. * first element of the freelist as the object to allocate now and move the
  1396. * rest of the freelist to the lockless freelist.
  1397. *
  1398. * And if we were unable to get a new slab from the partial slab lists then
  1399. * we need to allocate a new slab. This is the slowest path since it involves
  1400. * a call to the page allocator and the setup of a new slab.
  1401. */
  1402. static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
  1403. unsigned long addr, struct kmem_cache_cpu *c)
  1404. {
  1405. void **object;
  1406. struct page *new;
  1407. /* We handle __GFP_ZERO in the caller */
  1408. gfpflags &= ~__GFP_ZERO;
  1409. if (!c->page)
  1410. goto new_slab;
  1411. slab_lock(c->page);
  1412. if (unlikely(!node_match(c, node)))
  1413. goto another_slab;
  1414. stat(s, ALLOC_REFILL);
  1415. load_freelist:
  1416. object = c->page->freelist;
  1417. if (unlikely(!object))
  1418. goto another_slab;
  1419. if (kmem_cache_debug(s))
  1420. goto debug;
  1421. c->freelist = get_freepointer(s, object);
  1422. c->page->inuse = c->page->objects;
  1423. c->page->freelist = NULL;
  1424. c->node = page_to_nid(c->page);
  1425. unlock_out:
  1426. slab_unlock(c->page);
  1427. stat(s, ALLOC_SLOWPATH);
  1428. return object;
  1429. another_slab:
  1430. deactivate_slab(s, c);
  1431. new_slab:
  1432. new = get_partial(s, gfpflags, node);
  1433. if (new) {
  1434. c->page = new;
  1435. stat(s, ALLOC_FROM_PARTIAL);
  1436. goto load_freelist;
  1437. }
  1438. gfpflags &= gfp_allowed_mask;
  1439. if (gfpflags & __GFP_WAIT)
  1440. local_irq_enable();
  1441. new = new_slab(s, gfpflags, node);
  1442. if (gfpflags & __GFP_WAIT)
  1443. local_irq_disable();
  1444. if (new) {
  1445. c = __this_cpu_ptr(s->cpu_slab);
  1446. stat(s, ALLOC_SLAB);
  1447. if (c->page)
  1448. flush_slab(s, c);
  1449. slab_lock(new);
  1450. __SetPageSlubFrozen(new);
  1451. c->page = new;
  1452. goto load_freelist;
  1453. }
  1454. if (!(gfpflags & __GFP_NOWARN) && printk_ratelimit())
  1455. slab_out_of_memory(s, gfpflags, node);
  1456. return NULL;
  1457. debug:
  1458. if (!alloc_debug_processing(s, c->page, object, addr))
  1459. goto another_slab;
  1460. c->page->inuse++;
  1461. c->page->freelist = get_freepointer(s, object);
  1462. c->node = -1;
  1463. goto unlock_out;
  1464. }
  1465. /*
  1466. * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
  1467. * have the fastpath folded into their functions. So no function call
  1468. * overhead for requests that can be satisfied on the fastpath.
  1469. *
  1470. * The fastpath works by first checking if the lockless freelist can be used.
  1471. * If not then __slab_alloc is called for slow processing.
  1472. *
  1473. * Otherwise we can simply pick the next object from the lockless free list.
  1474. */
  1475. static __always_inline void *slab_alloc(struct kmem_cache *s,
  1476. gfp_t gfpflags, int node, unsigned long addr)
  1477. {
  1478. void **object;
  1479. struct kmem_cache_cpu *c;
  1480. unsigned long flags;
  1481. if (slab_pre_alloc_hook(s, gfpflags))
  1482. return NULL;
  1483. local_irq_save(flags);
  1484. c = __this_cpu_ptr(s->cpu_slab);
  1485. object = c->freelist;
  1486. if (unlikely(!object || !node_match(c, node)))
  1487. object = __slab_alloc(s, gfpflags, node, addr, c);
  1488. else {
  1489. c->freelist = get_freepointer(s, object);
  1490. stat(s, ALLOC_FASTPATH);
  1491. }
  1492. local_irq_restore(flags);
  1493. if (unlikely(gfpflags & __GFP_ZERO) && object)
  1494. memset(object, 0, s->objsize);
  1495. slab_post_alloc_hook(s, gfpflags, object);
  1496. return object;
  1497. }
  1498. void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
  1499. {
  1500. void *ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, _RET_IP_);
  1501. trace_kmem_cache_alloc(_RET_IP_, ret, s->objsize, s->size, gfpflags);
  1502. return ret;
  1503. }
  1504. EXPORT_SYMBOL(kmem_cache_alloc);
  1505. #ifdef CONFIG_TRACING
  1506. void *kmem_cache_alloc_notrace(struct kmem_cache *s, gfp_t gfpflags)
  1507. {
  1508. return slab_alloc(s, gfpflags, NUMA_NO_NODE, _RET_IP_);
  1509. }
  1510. EXPORT_SYMBOL(kmem_cache_alloc_notrace);
  1511. #endif
  1512. #ifdef CONFIG_NUMA
  1513. void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
  1514. {
  1515. void *ret = slab_alloc(s, gfpflags, node, _RET_IP_);
  1516. trace_kmem_cache_alloc_node(_RET_IP_, ret,
  1517. s->objsize, s->size, gfpflags, node);
  1518. return ret;
  1519. }
  1520. EXPORT_SYMBOL(kmem_cache_alloc_node);
  1521. #endif
  1522. #ifdef CONFIG_TRACING
  1523. void *kmem_cache_alloc_node_notrace(struct kmem_cache *s,
  1524. gfp_t gfpflags,
  1525. int node)
  1526. {
  1527. return slab_alloc(s, gfpflags, node, _RET_IP_);
  1528. }
  1529. EXPORT_SYMBOL(kmem_cache_alloc_node_notrace);
  1530. #endif
  1531. /*
  1532. * Slow patch handling. This may still be called frequently since objects
  1533. * have a longer lifetime than the cpu slabs in most processing loads.
  1534. *
  1535. * So we still attempt to reduce cache line usage. Just take the slab
  1536. * lock and free the item. If there is no additional partial page
  1537. * handling required then we can return immediately.
  1538. */
  1539. static void __slab_free(struct kmem_cache *s, struct page *page,
  1540. void *x, unsigned long addr)
  1541. {
  1542. void *prior;
  1543. void **object = (void *)x;
  1544. stat(s, FREE_SLOWPATH);
  1545. slab_lock(page);
  1546. if (kmem_cache_debug(s))
  1547. goto debug;
  1548. checks_ok:
  1549. prior = page->freelist;
  1550. set_freepointer(s, object, prior);
  1551. page->freelist = object;
  1552. page->inuse--;
  1553. if (unlikely(PageSlubFrozen(page))) {
  1554. stat(s, FREE_FROZEN);
  1555. goto out_unlock;
  1556. }
  1557. if (unlikely(!page->inuse))
  1558. goto slab_empty;
  1559. /*
  1560. * Objects left in the slab. If it was not on the partial list before
  1561. * then add it.
  1562. */
  1563. if (unlikely(!prior)) {
  1564. add_partial(get_node(s, page_to_nid(page)), page, 1);
  1565. stat(s, FREE_ADD_PARTIAL);
  1566. }
  1567. out_unlock:
  1568. slab_unlock(page);
  1569. return;
  1570. slab_empty:
  1571. if (prior) {
  1572. /*
  1573. * Slab still on the partial list.
  1574. */
  1575. remove_partial(s, page);
  1576. stat(s, FREE_REMOVE_PARTIAL);
  1577. }
  1578. slab_unlock(page);
  1579. stat(s, FREE_SLAB);
  1580. discard_slab(s, page);
  1581. return;
  1582. debug:
  1583. if (!free_debug_processing(s, page, x, addr))
  1584. goto out_unlock;
  1585. goto checks_ok;
  1586. }
  1587. /*
  1588. * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
  1589. * can perform fastpath freeing without additional function calls.
  1590. *
  1591. * The fastpath is only possible if we are freeing to the current cpu slab
  1592. * of this processor. This typically the case if we have just allocated
  1593. * the item before.
  1594. *
  1595. * If fastpath is not possible then fall back to __slab_free where we deal
  1596. * with all sorts of special processing.
  1597. */
  1598. static __always_inline void slab_free(struct kmem_cache *s,
  1599. struct page *page, void *x, unsigned long addr)
  1600. {
  1601. void **object = (void *)x;
  1602. struct kmem_cache_cpu *c;
  1603. unsigned long flags;
  1604. slab_free_hook(s, x);
  1605. local_irq_save(flags);
  1606. c = __this_cpu_ptr(s->cpu_slab);
  1607. slab_free_hook_irq(s, x);
  1608. if (likely(page == c->page && c->node >= 0)) {
  1609. set_freepointer(s, object, c->freelist);
  1610. c->freelist = object;
  1611. stat(s, FREE_FASTPATH);
  1612. } else
  1613. __slab_free(s, page, x, addr);
  1614. local_irq_restore(flags);
  1615. }
  1616. void kmem_cache_free(struct kmem_cache *s, void *x)
  1617. {
  1618. struct page *page;
  1619. page = virt_to_head_page(x);
  1620. slab_free(s, page, x, _RET_IP_);
  1621. trace_kmem_cache_free(_RET_IP_, x);
  1622. }
  1623. EXPORT_SYMBOL(kmem_cache_free);
  1624. /* Figure out on which slab page the object resides */
  1625. static struct page *get_object_page(const void *x)
  1626. {
  1627. struct page *page = virt_to_head_page(x);
  1628. if (!PageSlab(page))
  1629. return NULL;
  1630. return page;
  1631. }
  1632. /*
  1633. * Object placement in a slab is made very easy because we always start at
  1634. * offset 0. If we tune the size of the object to the alignment then we can
  1635. * get the required alignment by putting one properly sized object after
  1636. * another.
  1637. *
  1638. * Notice that the allocation order determines the sizes of the per cpu
  1639. * caches. Each processor has always one slab available for allocations.
  1640. * Increasing the allocation order reduces the number of times that slabs
  1641. * must be moved on and off the partial lists and is therefore a factor in
  1642. * locking overhead.
  1643. */
  1644. /*
  1645. * Mininum / Maximum order of slab pages. This influences locking overhead
  1646. * and slab fragmentation. A higher order reduces the number of partial slabs
  1647. * and increases the number of allocations possible without having to
  1648. * take the list_lock.
  1649. */
  1650. static int slub_min_order;
  1651. static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
  1652. static int slub_min_objects;
  1653. /*
  1654. * Merge control. If this is set then no merging of slab caches will occur.
  1655. * (Could be removed. This was introduced to pacify the merge skeptics.)
  1656. */
  1657. static int slub_nomerge;
  1658. /*
  1659. * Calculate the order of allocation given an slab object size.
  1660. *
  1661. * The order of allocation has significant impact on performance and other
  1662. * system components. Generally order 0 allocations should be preferred since
  1663. * order 0 does not cause fragmentation in the page allocator. Larger objects
  1664. * be problematic to put into order 0 slabs because there may be too much
  1665. * unused space left. We go to a higher order if more than 1/16th of the slab
  1666. * would be wasted.
  1667. *
  1668. * In order to reach satisfactory performance we must ensure that a minimum
  1669. * number of objects is in one slab. Otherwise we may generate too much
  1670. * activity on the partial lists which requires taking the list_lock. This is
  1671. * less a concern for large slabs though which are rarely used.
  1672. *
  1673. * slub_max_order specifies the order where we begin to stop considering the
  1674. * number of objects in a slab as critical. If we reach slub_max_order then
  1675. * we try to keep the page order as low as possible. So we accept more waste
  1676. * of space in favor of a small page order.
  1677. *
  1678. * Higher order allocations also allow the placement of more objects in a
  1679. * slab and thereby reduce object handling overhead. If the user has
  1680. * requested a higher mininum order then we start with that one instead of
  1681. * the smallest order which will fit the object.
  1682. */
  1683. static inline int slab_order(int size, int min_objects,
  1684. int max_order, int fract_leftover)
  1685. {
  1686. int order;
  1687. int rem;
  1688. int min_order = slub_min_order;
  1689. if ((PAGE_SIZE << min_order) / size > MAX_OBJS_PER_PAGE)
  1690. return get_order(size * MAX_OBJS_PER_PAGE) - 1;
  1691. for (order = max(min_order,
  1692. fls(min_objects * size - 1) - PAGE_SHIFT);
  1693. order <= max_order; order++) {
  1694. unsigned long slab_size = PAGE_SIZE << order;
  1695. if (slab_size < min_objects * size)
  1696. continue;
  1697. rem = slab_size % size;
  1698. if (rem <= slab_size / fract_leftover)
  1699. break;
  1700. }
  1701. return order;
  1702. }
  1703. static inline int calculate_order(int size)
  1704. {
  1705. int order;
  1706. int min_objects;
  1707. int fraction;
  1708. int max_objects;
  1709. /*
  1710. * Attempt to find best configuration for a slab. This
  1711. * works by first attempting to generate a layout with
  1712. * the best configuration and backing off gradually.
  1713. *
  1714. * First we reduce the acceptable waste in a slab. Then
  1715. * we reduce the minimum objects required in a slab.
  1716. */
  1717. min_objects = slub_min_objects;
  1718. if (!min_objects)
  1719. min_objects = 4 * (fls(nr_cpu_ids) + 1);
  1720. max_objects = (PAGE_SIZE << slub_max_order)/size;
  1721. min_objects = min(min_objects, max_objects);
  1722. while (min_objects > 1) {
  1723. fraction = 16;
  1724. while (fraction >= 4) {
  1725. order = slab_order(size, min_objects,
  1726. slub_max_order, fraction);
  1727. if (order <= slub_max_order)
  1728. return order;
  1729. fraction /= 2;
  1730. }
  1731. min_objects--;
  1732. }
  1733. /*
  1734. * We were unable to place multiple objects in a slab. Now
  1735. * lets see if we can place a single object there.
  1736. */
  1737. order = slab_order(size, 1, slub_max_order, 1);
  1738. if (order <= slub_max_order)
  1739. return order;
  1740. /*
  1741. * Doh this slab cannot be placed using slub_max_order.
  1742. */
  1743. order = slab_order(size, 1, MAX_ORDER, 1);
  1744. if (order < MAX_ORDER)
  1745. return order;
  1746. return -ENOSYS;
  1747. }
  1748. /*
  1749. * Figure out what the alignment of the objects will be.
  1750. */
  1751. static unsigned long calculate_alignment(unsigned long flags,
  1752. unsigned long align, unsigned long size)
  1753. {
  1754. /*
  1755. * If the user wants hardware cache aligned objects then follow that
  1756. * suggestion if the object is sufficiently large.
  1757. *
  1758. * The hardware cache alignment cannot override the specified
  1759. * alignment though. If that is greater then use it.
  1760. */
  1761. if (flags & SLAB_HWCACHE_ALIGN) {
  1762. unsigned long ralign = cache_line_size();
  1763. while (size <= ralign / 2)
  1764. ralign /= 2;
  1765. align = max(align, ralign);
  1766. }
  1767. if (align < ARCH_SLAB_MINALIGN)
  1768. align = ARCH_SLAB_MINALIGN;
  1769. return ALIGN(align, sizeof(void *));
  1770. }
  1771. static void
  1772. init_kmem_cache_node(struct kmem_cache_node *n, struct kmem_cache *s)
  1773. {
  1774. n->nr_partial = 0;
  1775. spin_lock_init(&n->list_lock);
  1776. INIT_LIST_HEAD(&n->partial);
  1777. #ifdef CONFIG_SLUB_DEBUG
  1778. atomic_long_set(&n->nr_slabs, 0);
  1779. atomic_long_set(&n->total_objects, 0);
  1780. INIT_LIST_HEAD(&n->full);
  1781. #endif
  1782. }
  1783. static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
  1784. {
  1785. BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
  1786. SLUB_PAGE_SHIFT * sizeof(struct kmem_cache_cpu));
  1787. s->cpu_slab = alloc_percpu(struct kmem_cache_cpu);
  1788. return s->cpu_slab != NULL;
  1789. }
  1790. static struct kmem_cache *kmem_cache_node;
  1791. /*
  1792. * No kmalloc_node yet so do it by hand. We know that this is the first
  1793. * slab on the node for this slabcache. There are no concurrent accesses
  1794. * possible.
  1795. *
  1796. * Note that this function only works on the kmalloc_node_cache
  1797. * when allocating for the kmalloc_node_cache. This is used for bootstrapping
  1798. * memory on a fresh node that has no slab structures yet.
  1799. */
  1800. static void early_kmem_cache_node_alloc(int node)
  1801. {
  1802. struct page *page;
  1803. struct kmem_cache_node *n;
  1804. unsigned long flags;
  1805. BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
  1806. page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
  1807. BUG_ON(!page);
  1808. if (page_to_nid(page) != node) {
  1809. printk(KERN_ERR "SLUB: Unable to allocate memory from "
  1810. "node %d\n", node);
  1811. printk(KERN_ERR "SLUB: Allocating a useless per node structure "
  1812. "in order to be able to continue\n");
  1813. }
  1814. n = page->freelist;
  1815. BUG_ON(!n);
  1816. page->freelist = get_freepointer(kmem_cache_node, n);
  1817. page->inuse++;
  1818. kmem_cache_node->node[node] = n;
  1819. #ifdef CONFIG_SLUB_DEBUG
  1820. init_object(kmem_cache_node, n, 1);
  1821. init_tracking(kmem_cache_node, n);
  1822. #endif
  1823. init_kmem_cache_node(n, kmem_cache_node);
  1824. inc_slabs_node(kmem_cache_node, node, page->objects);
  1825. /*
  1826. * lockdep requires consistent irq usage for each lock
  1827. * so even though there cannot be a race this early in
  1828. * the boot sequence, we still disable irqs.
  1829. */
  1830. local_irq_save(flags);
  1831. add_partial(n, page, 0);
  1832. local_irq_restore(flags);
  1833. }
  1834. static void free_kmem_cache_nodes(struct kmem_cache *s)
  1835. {
  1836. int node;
  1837. for_each_node_state(node, N_NORMAL_MEMORY) {
  1838. struct kmem_cache_node *n = s->node[node];
  1839. if (n)
  1840. kmem_cache_free(kmem_cache_node, n);
  1841. s->node[node] = NULL;
  1842. }
  1843. }
  1844. static int init_kmem_cache_nodes(struct kmem_cache *s)
  1845. {
  1846. int node;
  1847. for_each_node_state(node, N_NORMAL_MEMORY) {
  1848. struct kmem_cache_node *n;
  1849. if (slab_state == DOWN) {
  1850. early_kmem_cache_node_alloc(node);
  1851. continue;
  1852. }
  1853. n = kmem_cache_alloc_node(kmem_cache_node,
  1854. GFP_KERNEL, node);
  1855. if (!n) {
  1856. free_kmem_cache_nodes(s);
  1857. return 0;
  1858. }
  1859. s->node[node] = n;
  1860. init_kmem_cache_node(n, s);
  1861. }
  1862. return 1;
  1863. }
  1864. static void set_min_partial(struct kmem_cache *s, unsigned long min)
  1865. {
  1866. if (min < MIN_PARTIAL)
  1867. min = MIN_PARTIAL;
  1868. else if (min > MAX_PARTIAL)
  1869. min = MAX_PARTIAL;
  1870. s->min_partial = min;
  1871. }
  1872. /*
  1873. * calculate_sizes() determines the order and the distribution of data within
  1874. * a slab object.
  1875. */
  1876. static int calculate_sizes(struct kmem_cache *s, int forced_order)
  1877. {
  1878. unsigned long flags = s->flags;
  1879. unsigned long size = s->objsize;
  1880. unsigned long align = s->align;
  1881. int order;
  1882. /*
  1883. * Round up object size to the next word boundary. We can only
  1884. * place the free pointer at word boundaries and this determines
  1885. * the possible location of the free pointer.
  1886. */
  1887. size = ALIGN(size, sizeof(void *));
  1888. #ifdef CONFIG_SLUB_DEBUG
  1889. /*
  1890. * Determine if we can poison the object itself. If the user of
  1891. * the slab may touch the object after free or before allocation
  1892. * then we should never poison the object itself.
  1893. */
  1894. if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
  1895. !s->ctor)
  1896. s->flags |= __OBJECT_POISON;
  1897. else
  1898. s->flags &= ~__OBJECT_POISON;
  1899. /*
  1900. * If we are Redzoning then check if there is some space between the
  1901. * end of the object and the free pointer. If not then add an
  1902. * additional word to have some bytes to store Redzone information.
  1903. */
  1904. if ((flags & SLAB_RED_ZONE) && size == s->objsize)
  1905. size += sizeof(void *);
  1906. #endif
  1907. /*
  1908. * With that we have determined the number of bytes in actual use
  1909. * by the object. This is the potential offset to the free pointer.
  1910. */
  1911. s->inuse = size;
  1912. if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
  1913. s->ctor)) {
  1914. /*
  1915. * Relocate free pointer after the object if it is not
  1916. * permitted to overwrite the first word of the object on
  1917. * kmem_cache_free.
  1918. *
  1919. * This is the case if we do RCU, have a constructor or
  1920. * destructor or are poisoning the objects.
  1921. */
  1922. s->offset = size;
  1923. size += sizeof(void *);
  1924. }
  1925. #ifdef CONFIG_SLUB_DEBUG
  1926. if (flags & SLAB_STORE_USER)
  1927. /*
  1928. * Need to store information about allocs and frees after
  1929. * the object.
  1930. */
  1931. size += 2 * sizeof(struct track);
  1932. if (flags & SLAB_RED_ZONE)
  1933. /*
  1934. * Add some empty padding so that we can catch
  1935. * overwrites from earlier objects rather than let
  1936. * tracking information or the free pointer be
  1937. * corrupted if a user writes before the start
  1938. * of the object.
  1939. */
  1940. size += sizeof(void *);
  1941. #endif
  1942. /*
  1943. * Determine the alignment based on various parameters that the
  1944. * user specified and the dynamic determination of cache line size
  1945. * on bootup.
  1946. */
  1947. align = calculate_alignment(flags, align, s->objsize);
  1948. s->align = align;
  1949. /*
  1950. * SLUB stores one object immediately after another beginning from
  1951. * offset 0. In order to align the objects we have to simply size
  1952. * each object to conform to the alignment.
  1953. */
  1954. size = ALIGN(size, align);
  1955. s->size = size;
  1956. if (forced_order >= 0)
  1957. order = forced_order;
  1958. else
  1959. order = calculate_order(size);
  1960. if (order < 0)
  1961. return 0;
  1962. s->allocflags = 0;
  1963. if (order)
  1964. s->allocflags |= __GFP_COMP;
  1965. if (s->flags & SLAB_CACHE_DMA)
  1966. s->allocflags |= SLUB_DMA;
  1967. if (s->flags & SLAB_RECLAIM_ACCOUNT)
  1968. s->allocflags |= __GFP_RECLAIMABLE;
  1969. /*
  1970. * Determine the number of objects per slab
  1971. */
  1972. s->oo = oo_make(order, size);
  1973. s->min = oo_make(get_order(size), size);
  1974. if (oo_objects(s->oo) > oo_objects(s->max))
  1975. s->max = s->oo;
  1976. return !!oo_objects(s->oo);
  1977. }
  1978. static int kmem_cache_open(struct kmem_cache *s,
  1979. const char *name, size_t size,
  1980. size_t align, unsigned long flags,
  1981. void (*ctor)(void *))
  1982. {
  1983. memset(s, 0, kmem_size);
  1984. s->name = name;
  1985. s->ctor = ctor;
  1986. s->objsize = size;
  1987. s->align = align;
  1988. s->flags = kmem_cache_flags(size, flags, name, ctor);
  1989. if (!calculate_sizes(s, -1))
  1990. goto error;
  1991. if (disable_higher_order_debug) {
  1992. /*
  1993. * Disable debugging flags that store metadata if the min slab
  1994. * order increased.
  1995. */
  1996. if (get_order(s->size) > get_order(s->objsize)) {
  1997. s->flags &= ~DEBUG_METADATA_FLAGS;
  1998. s->offset = 0;
  1999. if (!calculate_sizes(s, -1))
  2000. goto error;
  2001. }
  2002. }
  2003. /*
  2004. * The larger the object size is, the more pages we want on the partial
  2005. * list to avoid pounding the page allocator excessively.
  2006. */
  2007. set_min_partial(s, ilog2(s->size));
  2008. s->refcount = 1;
  2009. #ifdef CONFIG_NUMA
  2010. s->remote_node_defrag_ratio = 1000;
  2011. #endif
  2012. if (!init_kmem_cache_nodes(s))
  2013. goto error;
  2014. if (alloc_kmem_cache_cpus(s))
  2015. return 1;
  2016. free_kmem_cache_nodes(s);
  2017. error:
  2018. if (flags & SLAB_PANIC)
  2019. panic("Cannot create slab %s size=%lu realsize=%u "
  2020. "order=%u offset=%u flags=%lx\n",
  2021. s->name, (unsigned long)size, s->size, oo_order(s->oo),
  2022. s->offset, flags);
  2023. return 0;
  2024. }
  2025. /*
  2026. * Check if a given pointer is valid
  2027. */
  2028. int kmem_ptr_validate(struct kmem_cache *s, const void *object)
  2029. {
  2030. struct page *page;
  2031. if (!kern_ptr_validate(object, s->size))
  2032. return 0;
  2033. page = get_object_page(object);
  2034. if (!page || s != page->slab)
  2035. /* No slab or wrong slab */
  2036. return 0;
  2037. if (!check_valid_pointer(s, page, object))
  2038. return 0;
  2039. /*
  2040. * We could also check if the object is on the slabs freelist.
  2041. * But this would be too expensive and it seems that the main
  2042. * purpose of kmem_ptr_valid() is to check if the object belongs
  2043. * to a certain slab.
  2044. */
  2045. return 1;
  2046. }
  2047. EXPORT_SYMBOL(kmem_ptr_validate);
  2048. /*
  2049. * Determine the size of a slab object
  2050. */
  2051. unsigned int kmem_cache_size(struct kmem_cache *s)
  2052. {
  2053. return s->objsize;
  2054. }
  2055. EXPORT_SYMBOL(kmem_cache_size);
  2056. const char *kmem_cache_name(struct kmem_cache *s)
  2057. {
  2058. return s->name;
  2059. }
  2060. EXPORT_SYMBOL(kmem_cache_name);
  2061. static void list_slab_objects(struct kmem_cache *s, struct page *page,
  2062. const char *text)
  2063. {
  2064. #ifdef CONFIG_SLUB_DEBUG
  2065. void *addr = page_address(page);
  2066. void *p;
  2067. long *map = kzalloc(BITS_TO_LONGS(page->objects) * sizeof(long),
  2068. GFP_ATOMIC);
  2069. if (!map)
  2070. return;
  2071. slab_err(s, page, "%s", text);
  2072. slab_lock(page);
  2073. for_each_free_object(p, s, page->freelist)
  2074. set_bit(slab_index(p, s, addr), map);
  2075. for_each_object(p, s, addr, page->objects) {
  2076. if (!test_bit(slab_index(p, s, addr), map)) {
  2077. printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n",
  2078. p, p - addr);
  2079. print_tracking(s, p);
  2080. }
  2081. }
  2082. slab_unlock(page);
  2083. kfree(map);
  2084. #endif
  2085. }
  2086. /*
  2087. * Attempt to free all partial slabs on a node.
  2088. */
  2089. static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
  2090. {
  2091. unsigned long flags;
  2092. struct page *page, *h;
  2093. spin_lock_irqsave(&n->list_lock, flags);
  2094. list_for_each_entry_safe(page, h, &n->partial, lru) {
  2095. if (!page->inuse) {
  2096. list_del(&page->lru);
  2097. discard_slab(s, page);
  2098. n->nr_partial--;
  2099. } else {
  2100. list_slab_objects(s, page,
  2101. "Objects remaining on kmem_cache_close()");
  2102. }
  2103. }
  2104. spin_unlock_irqrestore(&n->list_lock, flags);
  2105. }
  2106. /*
  2107. * Release all resources used by a slab cache.
  2108. */
  2109. static inline int kmem_cache_close(struct kmem_cache *s)
  2110. {
  2111. int node;
  2112. flush_all(s);
  2113. free_percpu(s->cpu_slab);
  2114. /* Attempt to free all objects */
  2115. for_each_node_state(node, N_NORMAL_MEMORY) {
  2116. struct kmem_cache_node *n = get_node(s, node);
  2117. free_partial(s, n);
  2118. if (n->nr_partial || slabs_node(s, node))
  2119. return 1;
  2120. }
  2121. free_kmem_cache_nodes(s);
  2122. return 0;
  2123. }
  2124. /*
  2125. * Close a cache and release the kmem_cache structure
  2126. * (must be used for caches created using kmem_cache_create)
  2127. */
  2128. void kmem_cache_destroy(struct kmem_cache *s)
  2129. {
  2130. down_write(&slub_lock);
  2131. s->refcount--;
  2132. if (!s->refcount) {
  2133. list_del(&s->list);
  2134. if (kmem_cache_close(s)) {
  2135. printk(KERN_ERR "SLUB %s: %s called for cache that "
  2136. "still has objects.\n", s->name, __func__);
  2137. dump_stack();
  2138. }
  2139. if (s->flags & SLAB_DESTROY_BY_RCU)
  2140. rcu_barrier();
  2141. sysfs_slab_remove(s);
  2142. }
  2143. up_write(&slub_lock);
  2144. }
  2145. EXPORT_SYMBOL(kmem_cache_destroy);
  2146. /********************************************************************
  2147. * Kmalloc subsystem
  2148. *******************************************************************/
  2149. struct kmem_cache *kmalloc_caches[SLUB_PAGE_SHIFT];
  2150. EXPORT_SYMBOL(kmalloc_caches);
  2151. static struct kmem_cache *kmem_cache;
  2152. #ifdef CONFIG_ZONE_DMA
  2153. static struct kmem_cache *kmalloc_dma_caches[SLUB_PAGE_SHIFT];
  2154. #endif
  2155. static int __init setup_slub_min_order(char *str)
  2156. {
  2157. get_option(&str, &slub_min_order);
  2158. return 1;
  2159. }
  2160. __setup("slub_min_order=", setup_slub_min_order);
  2161. static int __init setup_slub_max_order(char *str)
  2162. {
  2163. get_option(&str, &slub_max_order);
  2164. slub_max_order = min(slub_max_order, MAX_ORDER - 1);
  2165. return 1;
  2166. }
  2167. __setup("slub_max_order=", setup_slub_max_order);
  2168. static int __init setup_slub_min_objects(char *str)
  2169. {
  2170. get_option(&str, &slub_min_objects);
  2171. return 1;
  2172. }
  2173. __setup("slub_min_objects=", setup_slub_min_objects);
  2174. static int __init setup_slub_nomerge(char *str)
  2175. {
  2176. slub_nomerge = 1;
  2177. return 1;
  2178. }
  2179. __setup("slub_nomerge", setup_slub_nomerge);
  2180. static struct kmem_cache *__init create_kmalloc_cache(const char *name,
  2181. int size, unsigned int flags)
  2182. {
  2183. struct kmem_cache *s;
  2184. s = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
  2185. /*
  2186. * This function is called with IRQs disabled during early-boot on
  2187. * single CPU so there's no need to take slub_lock here.
  2188. */
  2189. if (!kmem_cache_open(s, name, size, ARCH_KMALLOC_MINALIGN,
  2190. flags, NULL))
  2191. goto panic;
  2192. list_add(&s->list, &slab_caches);
  2193. return s;
  2194. panic:
  2195. panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
  2196. return NULL;
  2197. }
  2198. /*
  2199. * Conversion table for small slabs sizes / 8 to the index in the
  2200. * kmalloc array. This is necessary for slabs < 192 since we have non power
  2201. * of two cache sizes there. The size of larger slabs can be determined using
  2202. * fls.
  2203. */
  2204. static s8 size_index[24] = {
  2205. 3, /* 8 */
  2206. 4, /* 16 */
  2207. 5, /* 24 */
  2208. 5, /* 32 */
  2209. 6, /* 40 */
  2210. 6, /* 48 */
  2211. 6, /* 56 */
  2212. 6, /* 64 */
  2213. 1, /* 72 */
  2214. 1, /* 80 */
  2215. 1, /* 88 */
  2216. 1, /* 96 */
  2217. 7, /* 104 */
  2218. 7, /* 112 */
  2219. 7, /* 120 */
  2220. 7, /* 128 */
  2221. 2, /* 136 */
  2222. 2, /* 144 */
  2223. 2, /* 152 */
  2224. 2, /* 160 */
  2225. 2, /* 168 */
  2226. 2, /* 176 */
  2227. 2, /* 184 */
  2228. 2 /* 192 */
  2229. };
  2230. static inline int size_index_elem(size_t bytes)
  2231. {
  2232. return (bytes - 1) / 8;
  2233. }
  2234. static struct kmem_cache *get_slab(size_t size, gfp_t flags)
  2235. {
  2236. int index;
  2237. if (size <= 192) {
  2238. if (!size)
  2239. return ZERO_SIZE_PTR;
  2240. index = size_index[size_index_elem(size)];
  2241. } else
  2242. index = fls(size - 1);
  2243. #ifdef CONFIG_ZONE_DMA
  2244. if (unlikely((flags & SLUB_DMA)))
  2245. return kmalloc_dma_caches[index];
  2246. #endif
  2247. return kmalloc_caches[index];
  2248. }
  2249. void *__kmalloc(size_t size, gfp_t flags)
  2250. {
  2251. struct kmem_cache *s;
  2252. void *ret;
  2253. if (unlikely(size > SLUB_MAX_SIZE))
  2254. return kmalloc_large(size, flags);
  2255. s = get_slab(size, flags);
  2256. if (unlikely(ZERO_OR_NULL_PTR(s)))
  2257. return s;
  2258. ret = slab_alloc(s, flags, NUMA_NO_NODE, _RET_IP_);
  2259. trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
  2260. return ret;
  2261. }
  2262. EXPORT_SYMBOL(__kmalloc);
  2263. static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
  2264. {
  2265. struct page *page;
  2266. void *ptr = NULL;
  2267. flags |= __GFP_COMP | __GFP_NOTRACK;
  2268. page = alloc_pages_node(node, flags, get_order(size));
  2269. if (page)
  2270. ptr = page_address(page);
  2271. kmemleak_alloc(ptr, size, 1, flags);
  2272. return ptr;
  2273. }
  2274. #ifdef CONFIG_NUMA
  2275. void *__kmalloc_node(size_t size, gfp_t flags, int node)
  2276. {
  2277. struct kmem_cache *s;
  2278. void *ret;
  2279. if (unlikely(size > SLUB_MAX_SIZE)) {
  2280. ret = kmalloc_large_node(size, flags, node);
  2281. trace_kmalloc_node(_RET_IP_, ret,
  2282. size, PAGE_SIZE << get_order(size),
  2283. flags, node);
  2284. return ret;
  2285. }
  2286. s = get_slab(size, flags);
  2287. if (unlikely(ZERO_OR_NULL_PTR(s)))
  2288. return s;
  2289. ret = slab_alloc(s, flags, node, _RET_IP_);
  2290. trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
  2291. return ret;
  2292. }
  2293. EXPORT_SYMBOL(__kmalloc_node);
  2294. #endif
  2295. size_t ksize(const void *object)
  2296. {
  2297. struct page *page;
  2298. struct kmem_cache *s;
  2299. if (unlikely(object == ZERO_SIZE_PTR))
  2300. return 0;
  2301. page = virt_to_head_page(object);
  2302. if (unlikely(!PageSlab(page))) {
  2303. WARN_ON(!PageCompound(page));
  2304. return PAGE_SIZE << compound_order(page);
  2305. }
  2306. s = page->slab;
  2307. #ifdef CONFIG_SLUB_DEBUG
  2308. /*
  2309. * Debugging requires use of the padding between object
  2310. * and whatever may come after it.
  2311. */
  2312. if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
  2313. return s->objsize;
  2314. #endif
  2315. /*
  2316. * If we have the need to store the freelist pointer
  2317. * back there or track user information then we can
  2318. * only use the space before that information.
  2319. */
  2320. if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
  2321. return s->inuse;
  2322. /*
  2323. * Else we can use all the padding etc for the allocation
  2324. */
  2325. return s->size;
  2326. }
  2327. EXPORT_SYMBOL(ksize);
  2328. void kfree(const void *x)
  2329. {
  2330. struct page *page;
  2331. void *object = (void *)x;
  2332. trace_kfree(_RET_IP_, x);
  2333. if (unlikely(ZERO_OR_NULL_PTR(x)))
  2334. return;
  2335. page = virt_to_head_page(x);
  2336. if (unlikely(!PageSlab(page))) {
  2337. BUG_ON(!PageCompound(page));
  2338. kmemleak_free(x);
  2339. put_page(page);
  2340. return;
  2341. }
  2342. slab_free(page->slab, page, object, _RET_IP_);
  2343. }
  2344. EXPORT_SYMBOL(kfree);
  2345. /*
  2346. * kmem_cache_shrink removes empty slabs from the partial lists and sorts
  2347. * the remaining slabs by the number of items in use. The slabs with the
  2348. * most items in use come first. New allocations will then fill those up
  2349. * and thus they can be removed from the partial lists.
  2350. *
  2351. * The slabs with the least items are placed last. This results in them
  2352. * being allocated from last increasing the chance that the last objects
  2353. * are freed in them.
  2354. */
  2355. int kmem_cache_shrink(struct kmem_cache *s)
  2356. {
  2357. int node;
  2358. int i;
  2359. struct kmem_cache_node *n;
  2360. struct page *page;
  2361. struct page *t;
  2362. int objects = oo_objects(s->max);
  2363. struct list_head *slabs_by_inuse =
  2364. kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
  2365. unsigned long flags;
  2366. if (!slabs_by_inuse)
  2367. return -ENOMEM;
  2368. flush_all(s);
  2369. for_each_node_state(node, N_NORMAL_MEMORY) {
  2370. n = get_node(s, node);
  2371. if (!n->nr_partial)
  2372. continue;
  2373. for (i = 0; i < objects; i++)
  2374. INIT_LIST_HEAD(slabs_by_inuse + i);
  2375. spin_lock_irqsave(&n->list_lock, flags);
  2376. /*
  2377. * Build lists indexed by the items in use in each slab.
  2378. *
  2379. * Note that concurrent frees may occur while we hold the
  2380. * list_lock. page->inuse here is the upper limit.
  2381. */
  2382. list_for_each_entry_safe(page, t, &n->partial, lru) {
  2383. if (!page->inuse && slab_trylock(page)) {
  2384. /*
  2385. * Must hold slab lock here because slab_free
  2386. * may have freed the last object and be
  2387. * waiting to release the slab.
  2388. */
  2389. list_del(&page->lru);
  2390. n->nr_partial--;
  2391. slab_unlock(page);
  2392. discard_slab(s, page);
  2393. } else {
  2394. list_move(&page->lru,
  2395. slabs_by_inuse + page->inuse);
  2396. }
  2397. }
  2398. /*
  2399. * Rebuild the partial list with the slabs filled up most
  2400. * first and the least used slabs at the end.
  2401. */
  2402. for (i = objects - 1; i >= 0; i--)
  2403. list_splice(slabs_by_inuse + i, n->partial.prev);
  2404. spin_unlock_irqrestore(&n->list_lock, flags);
  2405. }
  2406. kfree(slabs_by_inuse);
  2407. return 0;
  2408. }
  2409. EXPORT_SYMBOL(kmem_cache_shrink);
  2410. #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
  2411. static int slab_mem_going_offline_callback(void *arg)
  2412. {
  2413. struct kmem_cache *s;
  2414. down_read(&slub_lock);
  2415. list_for_each_entry(s, &slab_caches, list)
  2416. kmem_cache_shrink(s);
  2417. up_read(&slub_lock);
  2418. return 0;
  2419. }
  2420. static void slab_mem_offline_callback(void *arg)
  2421. {
  2422. struct kmem_cache_node *n;
  2423. struct kmem_cache *s;
  2424. struct memory_notify *marg = arg;
  2425. int offline_node;
  2426. offline_node = marg->status_change_nid;
  2427. /*
  2428. * If the node still has available memory. we need kmem_cache_node
  2429. * for it yet.
  2430. */
  2431. if (offline_node < 0)
  2432. return;
  2433. down_read(&slub_lock);
  2434. list_for_each_entry(s, &slab_caches, list) {
  2435. n = get_node(s, offline_node);
  2436. if (n) {
  2437. /*
  2438. * if n->nr_slabs > 0, slabs still exist on the node
  2439. * that is going down. We were unable to free them,
  2440. * and offline_pages() function shouldn't call this
  2441. * callback. So, we must fail.
  2442. */
  2443. BUG_ON(slabs_node(s, offline_node));
  2444. s->node[offline_node] = NULL;
  2445. kmem_cache_free(kmem_cache_node, n);
  2446. }
  2447. }
  2448. up_read(&slub_lock);
  2449. }
  2450. static int slab_mem_going_online_callback(void *arg)
  2451. {
  2452. struct kmem_cache_node *n;
  2453. struct kmem_cache *s;
  2454. struct memory_notify *marg = arg;
  2455. int nid = marg->status_change_nid;
  2456. int ret = 0;
  2457. /*
  2458. * If the node's memory is already available, then kmem_cache_node is
  2459. * already created. Nothing to do.
  2460. */
  2461. if (nid < 0)
  2462. return 0;
  2463. /*
  2464. * We are bringing a node online. No memory is available yet. We must
  2465. * allocate a kmem_cache_node structure in order to bring the node
  2466. * online.
  2467. */
  2468. down_read(&slub_lock);
  2469. list_for_each_entry(s, &slab_caches, list) {
  2470. /*
  2471. * XXX: kmem_cache_alloc_node will fallback to other nodes
  2472. * since memory is not yet available from the node that
  2473. * is brought up.
  2474. */
  2475. n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
  2476. if (!n) {
  2477. ret = -ENOMEM;
  2478. goto out;
  2479. }
  2480. init_kmem_cache_node(n, s);
  2481. s->node[nid] = n;
  2482. }
  2483. out:
  2484. up_read(&slub_lock);
  2485. return ret;
  2486. }
  2487. static int slab_memory_callback(struct notifier_block *self,
  2488. unsigned long action, void *arg)
  2489. {
  2490. int ret = 0;
  2491. switch (action) {
  2492. case MEM_GOING_ONLINE:
  2493. ret = slab_mem_going_online_callback(arg);
  2494. break;
  2495. case MEM_GOING_OFFLINE:
  2496. ret = slab_mem_going_offline_callback(arg);
  2497. break;
  2498. case MEM_OFFLINE:
  2499. case MEM_CANCEL_ONLINE:
  2500. slab_mem_offline_callback(arg);
  2501. break;
  2502. case MEM_ONLINE:
  2503. case MEM_CANCEL_OFFLINE:
  2504. break;
  2505. }
  2506. if (ret)
  2507. ret = notifier_from_errno(ret);
  2508. else
  2509. ret = NOTIFY_OK;
  2510. return ret;
  2511. }
  2512. #endif /* CONFIG_MEMORY_HOTPLUG */
  2513. /********************************************************************
  2514. * Basic setup of slabs
  2515. *******************************************************************/
  2516. /*
  2517. * Used for early kmem_cache structures that were allocated using
  2518. * the page allocator
  2519. */
  2520. static void __init kmem_cache_bootstrap_fixup(struct kmem_cache *s)
  2521. {
  2522. int node;
  2523. list_add(&s->list, &slab_caches);
  2524. s->refcount = -1;
  2525. for_each_node_state(node, N_NORMAL_MEMORY) {
  2526. struct kmem_cache_node *n = get_node(s, node);
  2527. struct page *p;
  2528. if (n) {
  2529. list_for_each_entry(p, &n->partial, lru)
  2530. p->slab = s;
  2531. #ifdef CONFIG_SLAB_DEBUG
  2532. list_for_each_entry(p, &n->full, lru)
  2533. p->slab = s;
  2534. #endif
  2535. }
  2536. }
  2537. }
  2538. void __init kmem_cache_init(void)
  2539. {
  2540. int i;
  2541. int caches = 0;
  2542. struct kmem_cache *temp_kmem_cache;
  2543. int order;
  2544. struct kmem_cache *temp_kmem_cache_node;
  2545. unsigned long kmalloc_size;
  2546. kmem_size = offsetof(struct kmem_cache, node) +
  2547. nr_node_ids * sizeof(struct kmem_cache_node *);
  2548. /* Allocate two kmem_caches from the page allocator */
  2549. kmalloc_size = ALIGN(kmem_size, cache_line_size());
  2550. order = get_order(2 * kmalloc_size);
  2551. kmem_cache = (void *)__get_free_pages(GFP_NOWAIT, order);
  2552. /*
  2553. * Must first have the slab cache available for the allocations of the
  2554. * struct kmem_cache_node's. There is special bootstrap code in
  2555. * kmem_cache_open for slab_state == DOWN.
  2556. */
  2557. kmem_cache_node = (void *)kmem_cache + kmalloc_size;
  2558. kmem_cache_open(kmem_cache_node, "kmem_cache_node",
  2559. sizeof(struct kmem_cache_node),
  2560. 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
  2561. hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
  2562. /* Able to allocate the per node structures */
  2563. slab_state = PARTIAL;
  2564. temp_kmem_cache = kmem_cache;
  2565. kmem_cache_open(kmem_cache, "kmem_cache", kmem_size,
  2566. 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
  2567. kmem_cache = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
  2568. memcpy(kmem_cache, temp_kmem_cache, kmem_size);
  2569. /*
  2570. * Allocate kmem_cache_node properly from the kmem_cache slab.
  2571. * kmem_cache_node is separately allocated so no need to
  2572. * update any list pointers.
  2573. */
  2574. temp_kmem_cache_node = kmem_cache_node;
  2575. kmem_cache_node = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
  2576. memcpy(kmem_cache_node, temp_kmem_cache_node, kmem_size);
  2577. kmem_cache_bootstrap_fixup(kmem_cache_node);
  2578. caches++;
  2579. kmem_cache_bootstrap_fixup(kmem_cache);
  2580. caches++;
  2581. /* Free temporary boot structure */
  2582. free_pages((unsigned long)temp_kmem_cache, order);
  2583. /* Now we can use the kmem_cache to allocate kmalloc slabs */
  2584. /*
  2585. * Patch up the size_index table if we have strange large alignment
  2586. * requirements for the kmalloc array. This is only the case for
  2587. * MIPS it seems. The standard arches will not generate any code here.
  2588. *
  2589. * Largest permitted alignment is 256 bytes due to the way we
  2590. * handle the index determination for the smaller caches.
  2591. *
  2592. * Make sure that nothing crazy happens if someone starts tinkering
  2593. * around with ARCH_KMALLOC_MINALIGN
  2594. */
  2595. BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
  2596. (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
  2597. for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
  2598. int elem = size_index_elem(i);
  2599. if (elem >= ARRAY_SIZE(size_index))
  2600. break;
  2601. size_index[elem] = KMALLOC_SHIFT_LOW;
  2602. }
  2603. if (KMALLOC_MIN_SIZE == 64) {
  2604. /*
  2605. * The 96 byte size cache is not used if the alignment
  2606. * is 64 byte.
  2607. */
  2608. for (i = 64 + 8; i <= 96; i += 8)
  2609. size_index[size_index_elem(i)] = 7;
  2610. } else if (KMALLOC_MIN_SIZE == 128) {
  2611. /*
  2612. * The 192 byte sized cache is not used if the alignment
  2613. * is 128 byte. Redirect kmalloc to use the 256 byte cache
  2614. * instead.
  2615. */
  2616. for (i = 128 + 8; i <= 192; i += 8)
  2617. size_index[size_index_elem(i)] = 8;
  2618. }
  2619. /* Caches that are not of the two-to-the-power-of size */
  2620. if (KMALLOC_MIN_SIZE <= 32) {
  2621. kmalloc_caches[1] = create_kmalloc_cache("kmalloc-96", 96, 0);
  2622. caches++;
  2623. }
  2624. if (KMALLOC_MIN_SIZE <= 64) {
  2625. kmalloc_caches[2] = create_kmalloc_cache("kmalloc-192", 192, 0);
  2626. caches++;
  2627. }
  2628. for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
  2629. kmalloc_caches[i] = create_kmalloc_cache("kmalloc", 1 << i, 0);
  2630. caches++;
  2631. }
  2632. slab_state = UP;
  2633. /* Provide the correct kmalloc names now that the caches are up */
  2634. if (KMALLOC_MIN_SIZE <= 32) {
  2635. kmalloc_caches[1]->name = kstrdup(kmalloc_caches[1]->name, GFP_NOWAIT);
  2636. BUG_ON(!kmalloc_caches[1]->name);
  2637. }
  2638. if (KMALLOC_MIN_SIZE <= 64) {
  2639. kmalloc_caches[2]->name = kstrdup(kmalloc_caches[2]->name, GFP_NOWAIT);
  2640. BUG_ON(!kmalloc_caches[2]->name);
  2641. }
  2642. for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
  2643. char *s = kasprintf(GFP_NOWAIT, "kmalloc-%d", 1 << i);
  2644. BUG_ON(!s);
  2645. kmalloc_caches[i]->name = s;
  2646. }
  2647. #ifdef CONFIG_SMP
  2648. register_cpu_notifier(&slab_notifier);
  2649. #endif
  2650. #ifdef CONFIG_ZONE_DMA
  2651. for (i = 0; i < SLUB_PAGE_SHIFT; i++) {
  2652. struct kmem_cache *s = kmalloc_caches[i];
  2653. if (s && s->size) {
  2654. char *name = kasprintf(GFP_NOWAIT,
  2655. "dma-kmalloc-%d", s->objsize);
  2656. BUG_ON(!name);
  2657. kmalloc_dma_caches[i] = create_kmalloc_cache(name,
  2658. s->objsize, SLAB_CACHE_DMA);
  2659. }
  2660. }
  2661. #endif
  2662. printk(KERN_INFO
  2663. "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
  2664. " CPUs=%d, Nodes=%d\n",
  2665. caches, cache_line_size(),
  2666. slub_min_order, slub_max_order, slub_min_objects,
  2667. nr_cpu_ids, nr_node_ids);
  2668. }
  2669. void __init kmem_cache_init_late(void)
  2670. {
  2671. }
  2672. /*
  2673. * Find a mergeable slab cache
  2674. */
  2675. static int slab_unmergeable(struct kmem_cache *s)
  2676. {
  2677. if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
  2678. return 1;
  2679. if (s->ctor)
  2680. return 1;
  2681. /*
  2682. * We may have set a slab to be unmergeable during bootstrap.
  2683. */
  2684. if (s->refcount < 0)
  2685. return 1;
  2686. return 0;
  2687. }
  2688. static struct kmem_cache *find_mergeable(size_t size,
  2689. size_t align, unsigned long flags, const char *name,
  2690. void (*ctor)(void *))
  2691. {
  2692. struct kmem_cache *s;
  2693. if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
  2694. return NULL;
  2695. if (ctor)
  2696. return NULL;
  2697. size = ALIGN(size, sizeof(void *));
  2698. align = calculate_alignment(flags, align, size);
  2699. size = ALIGN(size, align);
  2700. flags = kmem_cache_flags(size, flags, name, NULL);
  2701. list_for_each_entry(s, &slab_caches, list) {
  2702. if (slab_unmergeable(s))
  2703. continue;
  2704. if (size > s->size)
  2705. continue;
  2706. if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
  2707. continue;
  2708. /*
  2709. * Check if alignment is compatible.
  2710. * Courtesy of Adrian Drzewiecki
  2711. */
  2712. if ((s->size & ~(align - 1)) != s->size)
  2713. continue;
  2714. if (s->size - size >= sizeof(void *))
  2715. continue;
  2716. return s;
  2717. }
  2718. return NULL;
  2719. }
  2720. struct kmem_cache *kmem_cache_create(const char *name, size_t size,
  2721. size_t align, unsigned long flags, void (*ctor)(void *))
  2722. {
  2723. struct kmem_cache *s;
  2724. char *n;
  2725. if (WARN_ON(!name))
  2726. return NULL;
  2727. down_write(&slub_lock);
  2728. s = find_mergeable(size, align, flags, name, ctor);
  2729. if (s) {
  2730. s->refcount++;
  2731. /*
  2732. * Adjust the object sizes so that we clear
  2733. * the complete object on kzalloc.
  2734. */
  2735. s->objsize = max(s->objsize, (int)size);
  2736. s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
  2737. if (sysfs_slab_alias(s, name)) {
  2738. s->refcount--;
  2739. goto err;
  2740. }
  2741. up_write(&slub_lock);
  2742. return s;
  2743. }
  2744. n = kstrdup(name, GFP_KERNEL);
  2745. if (!n)
  2746. goto err;
  2747. s = kmalloc(kmem_size, GFP_KERNEL);
  2748. if (s) {
  2749. if (kmem_cache_open(s, n,
  2750. size, align, flags, ctor)) {
  2751. list_add(&s->list, &slab_caches);
  2752. if (sysfs_slab_add(s)) {
  2753. list_del(&s->list);
  2754. kfree(n);
  2755. kfree(s);
  2756. goto err;
  2757. }
  2758. up_write(&slub_lock);
  2759. return s;
  2760. }
  2761. kfree(n);
  2762. kfree(s);
  2763. }
  2764. up_write(&slub_lock);
  2765. err:
  2766. if (flags & SLAB_PANIC)
  2767. panic("Cannot create slabcache %s\n", name);
  2768. else
  2769. s = NULL;
  2770. return s;
  2771. }
  2772. EXPORT_SYMBOL(kmem_cache_create);
  2773. #ifdef CONFIG_SMP
  2774. /*
  2775. * Use the cpu notifier to insure that the cpu slabs are flushed when
  2776. * necessary.
  2777. */
  2778. static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
  2779. unsigned long action, void *hcpu)
  2780. {
  2781. long cpu = (long)hcpu;
  2782. struct kmem_cache *s;
  2783. unsigned long flags;
  2784. switch (action) {
  2785. case CPU_UP_CANCELED:
  2786. case CPU_UP_CANCELED_FROZEN:
  2787. case CPU_DEAD:
  2788. case CPU_DEAD_FROZEN:
  2789. down_read(&slub_lock);
  2790. list_for_each_entry(s, &slab_caches, list) {
  2791. local_irq_save(flags);
  2792. __flush_cpu_slab(s, cpu);
  2793. local_irq_restore(flags);
  2794. }
  2795. up_read(&slub_lock);
  2796. break;
  2797. default:
  2798. break;
  2799. }
  2800. return NOTIFY_OK;
  2801. }
  2802. static struct notifier_block __cpuinitdata slab_notifier = {
  2803. .notifier_call = slab_cpuup_callback
  2804. };
  2805. #endif
  2806. void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
  2807. {
  2808. struct kmem_cache *s;
  2809. void *ret;
  2810. if (unlikely(size > SLUB_MAX_SIZE))
  2811. return kmalloc_large(size, gfpflags);
  2812. s = get_slab(size, gfpflags);
  2813. if (unlikely(ZERO_OR_NULL_PTR(s)))
  2814. return s;
  2815. ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, caller);
  2816. /* Honor the call site pointer we recieved. */
  2817. trace_kmalloc(caller, ret, size, s->size, gfpflags);
  2818. return ret;
  2819. }
  2820. void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
  2821. int node, unsigned long caller)
  2822. {
  2823. struct kmem_cache *s;
  2824. void *ret;
  2825. if (unlikely(size > SLUB_MAX_SIZE)) {
  2826. ret = kmalloc_large_node(size, gfpflags, node);
  2827. trace_kmalloc_node(caller, ret,
  2828. size, PAGE_SIZE << get_order(size),
  2829. gfpflags, node);
  2830. return ret;
  2831. }
  2832. s = get_slab(size, gfpflags);
  2833. if (unlikely(ZERO_OR_NULL_PTR(s)))
  2834. return s;
  2835. ret = slab_alloc(s, gfpflags, node, caller);
  2836. /* Honor the call site pointer we recieved. */
  2837. trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
  2838. return ret;
  2839. }
  2840. #ifdef CONFIG_SLUB_DEBUG
  2841. static int count_inuse(struct page *page)
  2842. {
  2843. return page->inuse;
  2844. }
  2845. static int count_total(struct page *page)
  2846. {
  2847. return page->objects;
  2848. }
  2849. static int validate_slab(struct kmem_cache *s, struct page *page,
  2850. unsigned long *map)
  2851. {
  2852. void *p;
  2853. void *addr = page_address(page);
  2854. if (!check_slab(s, page) ||
  2855. !on_freelist(s, page, NULL))
  2856. return 0;
  2857. /* Now we know that a valid freelist exists */
  2858. bitmap_zero(map, page->objects);
  2859. for_each_free_object(p, s, page->freelist) {
  2860. set_bit(slab_index(p, s, addr), map);
  2861. if (!check_object(s, page, p, 0))
  2862. return 0;
  2863. }
  2864. for_each_object(p, s, addr, page->objects)
  2865. if (!test_bit(slab_index(p, s, addr), map))
  2866. if (!check_object(s, page, p, 1))
  2867. return 0;
  2868. return 1;
  2869. }
  2870. static void validate_slab_slab(struct kmem_cache *s, struct page *page,
  2871. unsigned long *map)
  2872. {
  2873. if (slab_trylock(page)) {
  2874. validate_slab(s, page, map);
  2875. slab_unlock(page);
  2876. } else
  2877. printk(KERN_INFO "SLUB %s: Skipped busy slab 0x%p\n",
  2878. s->name, page);
  2879. }
  2880. static int validate_slab_node(struct kmem_cache *s,
  2881. struct kmem_cache_node *n, unsigned long *map)
  2882. {
  2883. unsigned long count = 0;
  2884. struct page *page;
  2885. unsigned long flags;
  2886. spin_lock_irqsave(&n->list_lock, flags);
  2887. list_for_each_entry(page, &n->partial, lru) {
  2888. validate_slab_slab(s, page, map);
  2889. count++;
  2890. }
  2891. if (count != n->nr_partial)
  2892. printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
  2893. "counter=%ld\n", s->name, count, n->nr_partial);
  2894. if (!(s->flags & SLAB_STORE_USER))
  2895. goto out;
  2896. list_for_each_entry(page, &n->full, lru) {
  2897. validate_slab_slab(s, page, map);
  2898. count++;
  2899. }
  2900. if (count != atomic_long_read(&n->nr_slabs))
  2901. printk(KERN_ERR "SLUB: %s %ld slabs counted but "
  2902. "counter=%ld\n", s->name, count,
  2903. atomic_long_read(&n->nr_slabs));
  2904. out:
  2905. spin_unlock_irqrestore(&n->list_lock, flags);
  2906. return count;
  2907. }
  2908. static long validate_slab_cache(struct kmem_cache *s)
  2909. {
  2910. int node;
  2911. unsigned long count = 0;
  2912. unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
  2913. sizeof(unsigned long), GFP_KERNEL);
  2914. if (!map)
  2915. return -ENOMEM;
  2916. flush_all(s);
  2917. for_each_node_state(node, N_NORMAL_MEMORY) {
  2918. struct kmem_cache_node *n = get_node(s, node);
  2919. count += validate_slab_node(s, n, map);
  2920. }
  2921. kfree(map);
  2922. return count;
  2923. }
  2924. #ifdef SLUB_RESILIENCY_TEST
  2925. static void resiliency_test(void)
  2926. {
  2927. u8 *p;
  2928. BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || SLUB_PAGE_SHIFT < 10);
  2929. printk(KERN_ERR "SLUB resiliency testing\n");
  2930. printk(KERN_ERR "-----------------------\n");
  2931. printk(KERN_ERR "A. Corruption after allocation\n");
  2932. p = kzalloc(16, GFP_KERNEL);
  2933. p[16] = 0x12;
  2934. printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
  2935. " 0x12->0x%p\n\n", p + 16);
  2936. validate_slab_cache(kmalloc_caches[4]);
  2937. /* Hmmm... The next two are dangerous */
  2938. p = kzalloc(32, GFP_KERNEL);
  2939. p[32 + sizeof(void *)] = 0x34;
  2940. printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
  2941. " 0x34 -> -0x%p\n", p);
  2942. printk(KERN_ERR
  2943. "If allocated object is overwritten then not detectable\n\n");
  2944. validate_slab_cache(kmalloc_caches[5]);
  2945. p = kzalloc(64, GFP_KERNEL);
  2946. p += 64 + (get_cycles() & 0xff) * sizeof(void *);
  2947. *p = 0x56;
  2948. printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
  2949. p);
  2950. printk(KERN_ERR
  2951. "If allocated object is overwritten then not detectable\n\n");
  2952. validate_slab_cache(kmalloc_caches[6]);
  2953. printk(KERN_ERR "\nB. Corruption after free\n");
  2954. p = kzalloc(128, GFP_KERNEL);
  2955. kfree(p);
  2956. *p = 0x78;
  2957. printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
  2958. validate_slab_cache(kmalloc_caches[7]);
  2959. p = kzalloc(256, GFP_KERNEL);
  2960. kfree(p);
  2961. p[50] = 0x9a;
  2962. printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
  2963. p);
  2964. validate_slab_cache(kmalloc_caches[8]);
  2965. p = kzalloc(512, GFP_KERNEL);
  2966. kfree(p);
  2967. p[512] = 0xab;
  2968. printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
  2969. validate_slab_cache(kmalloc_caches[9]);
  2970. }
  2971. #else
  2972. static void resiliency_test(void) {};
  2973. #endif
  2974. /*
  2975. * Generate lists of code addresses where slabcache objects are allocated
  2976. * and freed.
  2977. */
  2978. struct location {
  2979. unsigned long count;
  2980. unsigned long addr;
  2981. long long sum_time;
  2982. long min_time;
  2983. long max_time;
  2984. long min_pid;
  2985. long max_pid;
  2986. DECLARE_BITMAP(cpus, NR_CPUS);
  2987. nodemask_t nodes;
  2988. };
  2989. struct loc_track {
  2990. unsigned long max;
  2991. unsigned long count;
  2992. struct location *loc;
  2993. };
  2994. static void free_loc_track(struct loc_track *t)
  2995. {
  2996. if (t->max)
  2997. free_pages((unsigned long)t->loc,
  2998. get_order(sizeof(struct location) * t->max));
  2999. }
  3000. static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
  3001. {
  3002. struct location *l;
  3003. int order;
  3004. order = get_order(sizeof(struct location) * max);
  3005. l = (void *)__get_free_pages(flags, order);
  3006. if (!l)
  3007. return 0;
  3008. if (t->count) {
  3009. memcpy(l, t->loc, sizeof(struct location) * t->count);
  3010. free_loc_track(t);
  3011. }
  3012. t->max = max;
  3013. t->loc = l;
  3014. return 1;
  3015. }
  3016. static int add_location(struct loc_track *t, struct kmem_cache *s,
  3017. const struct track *track)
  3018. {
  3019. long start, end, pos;
  3020. struct location *l;
  3021. unsigned long caddr;
  3022. unsigned long age = jiffies - track->when;
  3023. start = -1;
  3024. end = t->count;
  3025. for ( ; ; ) {
  3026. pos = start + (end - start + 1) / 2;
  3027. /*
  3028. * There is nothing at "end". If we end up there
  3029. * we need to add something to before end.
  3030. */
  3031. if (pos == end)
  3032. break;
  3033. caddr = t->loc[pos].addr;
  3034. if (track->addr == caddr) {
  3035. l = &t->loc[pos];
  3036. l->count++;
  3037. if (track->when) {
  3038. l->sum_time += age;
  3039. if (age < l->min_time)
  3040. l->min_time = age;
  3041. if (age > l->max_time)
  3042. l->max_time = age;
  3043. if (track->pid < l->min_pid)
  3044. l->min_pid = track->pid;
  3045. if (track->pid > l->max_pid)
  3046. l->max_pid = track->pid;
  3047. cpumask_set_cpu(track->cpu,
  3048. to_cpumask(l->cpus));
  3049. }
  3050. node_set(page_to_nid(virt_to_page(track)), l->nodes);
  3051. return 1;
  3052. }
  3053. if (track->addr < caddr)
  3054. end = pos;
  3055. else
  3056. start = pos;
  3057. }
  3058. /*
  3059. * Not found. Insert new tracking element.
  3060. */
  3061. if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
  3062. return 0;
  3063. l = t->loc + pos;
  3064. if (pos < t->count)
  3065. memmove(l + 1, l,
  3066. (t->count - pos) * sizeof(struct location));
  3067. t->count++;
  3068. l->count = 1;
  3069. l->addr = track->addr;
  3070. l->sum_time = age;
  3071. l->min_time = age;
  3072. l->max_time = age;
  3073. l->min_pid = track->pid;
  3074. l->max_pid = track->pid;
  3075. cpumask_clear(to_cpumask(l->cpus));
  3076. cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
  3077. nodes_clear(l->nodes);
  3078. node_set(page_to_nid(virt_to_page(track)), l->nodes);
  3079. return 1;
  3080. }
  3081. static void process_slab(struct loc_track *t, struct kmem_cache *s,
  3082. struct page *page, enum track_item alloc,
  3083. long *map)
  3084. {
  3085. void *addr = page_address(page);
  3086. void *p;
  3087. bitmap_zero(map, page->objects);
  3088. for_each_free_object(p, s, page->freelist)
  3089. set_bit(slab_index(p, s, addr), map);
  3090. for_each_object(p, s, addr, page->objects)
  3091. if (!test_bit(slab_index(p, s, addr), map))
  3092. add_location(t, s, get_track(s, p, alloc));
  3093. }
  3094. static int list_locations(struct kmem_cache *s, char *buf,
  3095. enum track_item alloc)
  3096. {
  3097. int len = 0;
  3098. unsigned long i;
  3099. struct loc_track t = { 0, 0, NULL };
  3100. int node;
  3101. unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
  3102. sizeof(unsigned long), GFP_KERNEL);
  3103. if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
  3104. GFP_TEMPORARY)) {
  3105. kfree(map);
  3106. return sprintf(buf, "Out of memory\n");
  3107. }
  3108. /* Push back cpu slabs */
  3109. flush_all(s);
  3110. for_each_node_state(node, N_NORMAL_MEMORY) {
  3111. struct kmem_cache_node *n = get_node(s, node);
  3112. unsigned long flags;
  3113. struct page *page;
  3114. if (!atomic_long_read(&n->nr_slabs))
  3115. continue;
  3116. spin_lock_irqsave(&n->list_lock, flags);
  3117. list_for_each_entry(page, &n->partial, lru)
  3118. process_slab(&t, s, page, alloc, map);
  3119. list_for_each_entry(page, &n->full, lru)
  3120. process_slab(&t, s, page, alloc, map);
  3121. spin_unlock_irqrestore(&n->list_lock, flags);
  3122. }
  3123. for (i = 0; i < t.count; i++) {
  3124. struct location *l = &t.loc[i];
  3125. if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
  3126. break;
  3127. len += sprintf(buf + len, "%7ld ", l->count);
  3128. if (l->addr)
  3129. len += sprint_symbol(buf + len, (unsigned long)l->addr);
  3130. else
  3131. len += sprintf(buf + len, "<not-available>");
  3132. if (l->sum_time != l->min_time) {
  3133. len += sprintf(buf + len, " age=%ld/%ld/%ld",
  3134. l->min_time,
  3135. (long)div_u64(l->sum_time, l->count),
  3136. l->max_time);
  3137. } else
  3138. len += sprintf(buf + len, " age=%ld",
  3139. l->min_time);
  3140. if (l->min_pid != l->max_pid)
  3141. len += sprintf(buf + len, " pid=%ld-%ld",
  3142. l->min_pid, l->max_pid);
  3143. else
  3144. len += sprintf(buf + len, " pid=%ld",
  3145. l->min_pid);
  3146. if (num_online_cpus() > 1 &&
  3147. !cpumask_empty(to_cpumask(l->cpus)) &&
  3148. len < PAGE_SIZE - 60) {
  3149. len += sprintf(buf + len, " cpus=");
  3150. len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50,
  3151. to_cpumask(l->cpus));
  3152. }
  3153. if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
  3154. len < PAGE_SIZE - 60) {
  3155. len += sprintf(buf + len, " nodes=");
  3156. len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50,
  3157. l->nodes);
  3158. }
  3159. len += sprintf(buf + len, "\n");
  3160. }
  3161. free_loc_track(&t);
  3162. kfree(map);
  3163. if (!t.count)
  3164. len += sprintf(buf, "No data\n");
  3165. return len;
  3166. }
  3167. enum slab_stat_type {
  3168. SL_ALL, /* All slabs */
  3169. SL_PARTIAL, /* Only partially allocated slabs */
  3170. SL_CPU, /* Only slabs used for cpu caches */
  3171. SL_OBJECTS, /* Determine allocated objects not slabs */
  3172. SL_TOTAL /* Determine object capacity not slabs */
  3173. };
  3174. #define SO_ALL (1 << SL_ALL)
  3175. #define SO_PARTIAL (1 << SL_PARTIAL)
  3176. #define SO_CPU (1 << SL_CPU)
  3177. #define SO_OBJECTS (1 << SL_OBJECTS)
  3178. #define SO_TOTAL (1 << SL_TOTAL)
  3179. static ssize_t show_slab_objects(struct kmem_cache *s,
  3180. char *buf, unsigned long flags)
  3181. {
  3182. unsigned long total = 0;
  3183. int node;
  3184. int x;
  3185. unsigned long *nodes;
  3186. unsigned long *per_cpu;
  3187. nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
  3188. if (!nodes)
  3189. return -ENOMEM;
  3190. per_cpu = nodes + nr_node_ids;
  3191. if (flags & SO_CPU) {
  3192. int cpu;
  3193. for_each_possible_cpu(cpu) {
  3194. struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
  3195. if (!c || c->node < 0)
  3196. continue;
  3197. if (c->page) {
  3198. if (flags & SO_TOTAL)
  3199. x = c->page->objects;
  3200. else if (flags & SO_OBJECTS)
  3201. x = c->page->inuse;
  3202. else
  3203. x = 1;
  3204. total += x;
  3205. nodes[c->node] += x;
  3206. }
  3207. per_cpu[c->node]++;
  3208. }
  3209. }
  3210. if (flags & SO_ALL) {
  3211. for_each_node_state(node, N_NORMAL_MEMORY) {
  3212. struct kmem_cache_node *n = get_node(s, node);
  3213. if (flags & SO_TOTAL)
  3214. x = atomic_long_read(&n->total_objects);
  3215. else if (flags & SO_OBJECTS)
  3216. x = atomic_long_read(&n->total_objects) -
  3217. count_partial(n, count_free);
  3218. else
  3219. x = atomic_long_read(&n->nr_slabs);
  3220. total += x;
  3221. nodes[node] += x;
  3222. }
  3223. } else if (flags & SO_PARTIAL) {
  3224. for_each_node_state(node, N_NORMAL_MEMORY) {
  3225. struct kmem_cache_node *n = get_node(s, node);
  3226. if (flags & SO_TOTAL)
  3227. x = count_partial(n, count_total);
  3228. else if (flags & SO_OBJECTS)
  3229. x = count_partial(n, count_inuse);
  3230. else
  3231. x = n->nr_partial;
  3232. total += x;
  3233. nodes[node] += x;
  3234. }
  3235. }
  3236. x = sprintf(buf, "%lu", total);
  3237. #ifdef CONFIG_NUMA
  3238. for_each_node_state(node, N_NORMAL_MEMORY)
  3239. if (nodes[node])
  3240. x += sprintf(buf + x, " N%d=%lu",
  3241. node, nodes[node]);
  3242. #endif
  3243. kfree(nodes);
  3244. return x + sprintf(buf + x, "\n");
  3245. }
  3246. static int any_slab_objects(struct kmem_cache *s)
  3247. {
  3248. int node;
  3249. for_each_online_node(node) {
  3250. struct kmem_cache_node *n = get_node(s, node);
  3251. if (!n)
  3252. continue;
  3253. if (atomic_long_read(&n->total_objects))
  3254. return 1;
  3255. }
  3256. return 0;
  3257. }
  3258. #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
  3259. #define to_slab(n) container_of(n, struct kmem_cache, kobj);
  3260. struct slab_attribute {
  3261. struct attribute attr;
  3262. ssize_t (*show)(struct kmem_cache *s, char *buf);
  3263. ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
  3264. };
  3265. #define SLAB_ATTR_RO(_name) \
  3266. static struct slab_attribute _name##_attr = __ATTR_RO(_name)
  3267. #define SLAB_ATTR(_name) \
  3268. static struct slab_attribute _name##_attr = \
  3269. __ATTR(_name, 0644, _name##_show, _name##_store)
  3270. static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
  3271. {
  3272. return sprintf(buf, "%d\n", s->size);
  3273. }
  3274. SLAB_ATTR_RO(slab_size);
  3275. static ssize_t align_show(struct kmem_cache *s, char *buf)
  3276. {
  3277. return sprintf(buf, "%d\n", s->align);
  3278. }
  3279. SLAB_ATTR_RO(align);
  3280. static ssize_t object_size_show(struct kmem_cache *s, char *buf)
  3281. {
  3282. return sprintf(buf, "%d\n", s->objsize);
  3283. }
  3284. SLAB_ATTR_RO(object_size);
  3285. static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
  3286. {
  3287. return sprintf(buf, "%d\n", oo_objects(s->oo));
  3288. }
  3289. SLAB_ATTR_RO(objs_per_slab);
  3290. static ssize_t order_store(struct kmem_cache *s,
  3291. const char *buf, size_t length)
  3292. {
  3293. unsigned long order;
  3294. int err;
  3295. err = strict_strtoul(buf, 10, &order);
  3296. if (err)
  3297. return err;
  3298. if (order > slub_max_order || order < slub_min_order)
  3299. return -EINVAL;
  3300. calculate_sizes(s, order);
  3301. return length;
  3302. }
  3303. static ssize_t order_show(struct kmem_cache *s, char *buf)
  3304. {
  3305. return sprintf(buf, "%d\n", oo_order(s->oo));
  3306. }
  3307. SLAB_ATTR(order);
  3308. static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
  3309. {
  3310. return sprintf(buf, "%lu\n", s->min_partial);
  3311. }
  3312. static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
  3313. size_t length)
  3314. {
  3315. unsigned long min;
  3316. int err;
  3317. err = strict_strtoul(buf, 10, &min);
  3318. if (err)
  3319. return err;
  3320. set_min_partial(s, min);
  3321. return length;
  3322. }
  3323. SLAB_ATTR(min_partial);
  3324. static ssize_t ctor_show(struct kmem_cache *s, char *buf)
  3325. {
  3326. if (s->ctor) {
  3327. int n = sprint_symbol(buf, (unsigned long)s->ctor);
  3328. return n + sprintf(buf + n, "\n");
  3329. }
  3330. return 0;
  3331. }
  3332. SLAB_ATTR_RO(ctor);
  3333. static ssize_t aliases_show(struct kmem_cache *s, char *buf)
  3334. {
  3335. return sprintf(buf, "%d\n", s->refcount - 1);
  3336. }
  3337. SLAB_ATTR_RO(aliases);
  3338. static ssize_t slabs_show(struct kmem_cache *s, char *buf)
  3339. {
  3340. return show_slab_objects(s, buf, SO_ALL);
  3341. }
  3342. SLAB_ATTR_RO(slabs);
  3343. static ssize_t partial_show(struct kmem_cache *s, char *buf)
  3344. {
  3345. return show_slab_objects(s, buf, SO_PARTIAL);
  3346. }
  3347. SLAB_ATTR_RO(partial);
  3348. static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
  3349. {
  3350. return show_slab_objects(s, buf, SO_CPU);
  3351. }
  3352. SLAB_ATTR_RO(cpu_slabs);
  3353. static ssize_t objects_show(struct kmem_cache *s, char *buf)
  3354. {
  3355. return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
  3356. }
  3357. SLAB_ATTR_RO(objects);
  3358. static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
  3359. {
  3360. return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
  3361. }
  3362. SLAB_ATTR_RO(objects_partial);
  3363. static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
  3364. {
  3365. return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
  3366. }
  3367. SLAB_ATTR_RO(total_objects);
  3368. static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
  3369. {
  3370. return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
  3371. }
  3372. static ssize_t sanity_checks_store(struct kmem_cache *s,
  3373. const char *buf, size_t length)
  3374. {
  3375. s->flags &= ~SLAB_DEBUG_FREE;
  3376. if (buf[0] == '1')
  3377. s->flags |= SLAB_DEBUG_FREE;
  3378. return length;
  3379. }
  3380. SLAB_ATTR(sanity_checks);
  3381. static ssize_t trace_show(struct kmem_cache *s, char *buf)
  3382. {
  3383. return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
  3384. }
  3385. static ssize_t trace_store(struct kmem_cache *s, const char *buf,
  3386. size_t length)
  3387. {
  3388. s->flags &= ~SLAB_TRACE;
  3389. if (buf[0] == '1')
  3390. s->flags |= SLAB_TRACE;
  3391. return length;
  3392. }
  3393. SLAB_ATTR(trace);
  3394. #ifdef CONFIG_FAILSLAB
  3395. static ssize_t failslab_show(struct kmem_cache *s, char *buf)
  3396. {
  3397. return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
  3398. }
  3399. static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
  3400. size_t length)
  3401. {
  3402. s->flags &= ~SLAB_FAILSLAB;
  3403. if (buf[0] == '1')
  3404. s->flags |= SLAB_FAILSLAB;
  3405. return length;
  3406. }
  3407. SLAB_ATTR(failslab);
  3408. #endif
  3409. static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
  3410. {
  3411. return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
  3412. }
  3413. static ssize_t reclaim_account_store(struct kmem_cache *s,
  3414. const char *buf, size_t length)
  3415. {
  3416. s->flags &= ~SLAB_RECLAIM_ACCOUNT;
  3417. if (buf[0] == '1')
  3418. s->flags |= SLAB_RECLAIM_ACCOUNT;
  3419. return length;
  3420. }
  3421. SLAB_ATTR(reclaim_account);
  3422. static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
  3423. {
  3424. return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
  3425. }
  3426. SLAB_ATTR_RO(hwcache_align);
  3427. #ifdef CONFIG_ZONE_DMA
  3428. static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
  3429. {
  3430. return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
  3431. }
  3432. SLAB_ATTR_RO(cache_dma);
  3433. #endif
  3434. static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
  3435. {
  3436. return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
  3437. }
  3438. SLAB_ATTR_RO(destroy_by_rcu);
  3439. static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
  3440. {
  3441. return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
  3442. }
  3443. static ssize_t red_zone_store(struct kmem_cache *s,
  3444. const char *buf, size_t length)
  3445. {
  3446. if (any_slab_objects(s))
  3447. return -EBUSY;
  3448. s->flags &= ~SLAB_RED_ZONE;
  3449. if (buf[0] == '1')
  3450. s->flags |= SLAB_RED_ZONE;
  3451. calculate_sizes(s, -1);
  3452. return length;
  3453. }
  3454. SLAB_ATTR(red_zone);
  3455. static ssize_t poison_show(struct kmem_cache *s, char *buf)
  3456. {
  3457. return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
  3458. }
  3459. static ssize_t poison_store(struct kmem_cache *s,
  3460. const char *buf, size_t length)
  3461. {
  3462. if (any_slab_objects(s))
  3463. return -EBUSY;
  3464. s->flags &= ~SLAB_POISON;
  3465. if (buf[0] == '1')
  3466. s->flags |= SLAB_POISON;
  3467. calculate_sizes(s, -1);
  3468. return length;
  3469. }
  3470. SLAB_ATTR(poison);
  3471. static ssize_t store_user_show(struct kmem_cache *s, char *buf)
  3472. {
  3473. return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
  3474. }
  3475. static ssize_t store_user_store(struct kmem_cache *s,
  3476. const char *buf, size_t length)
  3477. {
  3478. if (any_slab_objects(s))
  3479. return -EBUSY;
  3480. s->flags &= ~SLAB_STORE_USER;
  3481. if (buf[0] == '1')
  3482. s->flags |= SLAB_STORE_USER;
  3483. calculate_sizes(s, -1);
  3484. return length;
  3485. }
  3486. SLAB_ATTR(store_user);
  3487. static ssize_t validate_show(struct kmem_cache *s, char *buf)
  3488. {
  3489. return 0;
  3490. }
  3491. static ssize_t validate_store(struct kmem_cache *s,
  3492. const char *buf, size_t length)
  3493. {
  3494. int ret = -EINVAL;
  3495. if (buf[0] == '1') {
  3496. ret = validate_slab_cache(s);
  3497. if (ret >= 0)
  3498. ret = length;
  3499. }
  3500. return ret;
  3501. }
  3502. SLAB_ATTR(validate);
  3503. static ssize_t shrink_show(struct kmem_cache *s, char *buf)
  3504. {
  3505. return 0;
  3506. }
  3507. static ssize_t shrink_store(struct kmem_cache *s,
  3508. const char *buf, size_t length)
  3509. {
  3510. if (buf[0] == '1') {
  3511. int rc = kmem_cache_shrink(s);
  3512. if (rc)
  3513. return rc;
  3514. } else
  3515. return -EINVAL;
  3516. return length;
  3517. }
  3518. SLAB_ATTR(shrink);
  3519. static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
  3520. {
  3521. if (!(s->flags & SLAB_STORE_USER))
  3522. return -ENOSYS;
  3523. return list_locations(s, buf, TRACK_ALLOC);
  3524. }
  3525. SLAB_ATTR_RO(alloc_calls);
  3526. static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
  3527. {
  3528. if (!(s->flags & SLAB_STORE_USER))
  3529. return -ENOSYS;
  3530. return list_locations(s, buf, TRACK_FREE);
  3531. }
  3532. SLAB_ATTR_RO(free_calls);
  3533. #ifdef CONFIG_NUMA
  3534. static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
  3535. {
  3536. return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
  3537. }
  3538. static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
  3539. const char *buf, size_t length)
  3540. {
  3541. unsigned long ratio;
  3542. int err;
  3543. err = strict_strtoul(buf, 10, &ratio);
  3544. if (err)
  3545. return err;
  3546. if (ratio <= 100)
  3547. s->remote_node_defrag_ratio = ratio * 10;
  3548. return length;
  3549. }
  3550. SLAB_ATTR(remote_node_defrag_ratio);
  3551. #endif
  3552. #ifdef CONFIG_SLUB_STATS
  3553. static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
  3554. {
  3555. unsigned long sum = 0;
  3556. int cpu;
  3557. int len;
  3558. int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
  3559. if (!data)
  3560. return -ENOMEM;
  3561. for_each_online_cpu(cpu) {
  3562. unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
  3563. data[cpu] = x;
  3564. sum += x;
  3565. }
  3566. len = sprintf(buf, "%lu", sum);
  3567. #ifdef CONFIG_SMP
  3568. for_each_online_cpu(cpu) {
  3569. if (data[cpu] && len < PAGE_SIZE - 20)
  3570. len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
  3571. }
  3572. #endif
  3573. kfree(data);
  3574. return len + sprintf(buf + len, "\n");
  3575. }
  3576. static void clear_stat(struct kmem_cache *s, enum stat_item si)
  3577. {
  3578. int cpu;
  3579. for_each_online_cpu(cpu)
  3580. per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
  3581. }
  3582. #define STAT_ATTR(si, text) \
  3583. static ssize_t text##_show(struct kmem_cache *s, char *buf) \
  3584. { \
  3585. return show_stat(s, buf, si); \
  3586. } \
  3587. static ssize_t text##_store(struct kmem_cache *s, \
  3588. const char *buf, size_t length) \
  3589. { \
  3590. if (buf[0] != '0') \
  3591. return -EINVAL; \
  3592. clear_stat(s, si); \
  3593. return length; \
  3594. } \
  3595. SLAB_ATTR(text); \
  3596. STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
  3597. STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
  3598. STAT_ATTR(FREE_FASTPATH, free_fastpath);
  3599. STAT_ATTR(FREE_SLOWPATH, free_slowpath);
  3600. STAT_ATTR(FREE_FROZEN, free_frozen);
  3601. STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
  3602. STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
  3603. STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
  3604. STAT_ATTR(ALLOC_SLAB, alloc_slab);
  3605. STAT_ATTR(ALLOC_REFILL, alloc_refill);
  3606. STAT_ATTR(FREE_SLAB, free_slab);
  3607. STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
  3608. STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
  3609. STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
  3610. STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
  3611. STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
  3612. STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
  3613. STAT_ATTR(ORDER_FALLBACK, order_fallback);
  3614. #endif
  3615. static struct attribute *slab_attrs[] = {
  3616. &slab_size_attr.attr,
  3617. &object_size_attr.attr,
  3618. &objs_per_slab_attr.attr,
  3619. &order_attr.attr,
  3620. &min_partial_attr.attr,
  3621. &objects_attr.attr,
  3622. &objects_partial_attr.attr,
  3623. &total_objects_attr.attr,
  3624. &slabs_attr.attr,
  3625. &partial_attr.attr,
  3626. &cpu_slabs_attr.attr,
  3627. &ctor_attr.attr,
  3628. &aliases_attr.attr,
  3629. &align_attr.attr,
  3630. &sanity_checks_attr.attr,
  3631. &trace_attr.attr,
  3632. &hwcache_align_attr.attr,
  3633. &reclaim_account_attr.attr,
  3634. &destroy_by_rcu_attr.attr,
  3635. &red_zone_attr.attr,
  3636. &poison_attr.attr,
  3637. &store_user_attr.attr,
  3638. &validate_attr.attr,
  3639. &shrink_attr.attr,
  3640. &alloc_calls_attr.attr,
  3641. &free_calls_attr.attr,
  3642. #ifdef CONFIG_ZONE_DMA
  3643. &cache_dma_attr.attr,
  3644. #endif
  3645. #ifdef CONFIG_NUMA
  3646. &remote_node_defrag_ratio_attr.attr,
  3647. #endif
  3648. #ifdef CONFIG_SLUB_STATS
  3649. &alloc_fastpath_attr.attr,
  3650. &alloc_slowpath_attr.attr,
  3651. &free_fastpath_attr.attr,
  3652. &free_slowpath_attr.attr,
  3653. &free_frozen_attr.attr,
  3654. &free_add_partial_attr.attr,
  3655. &free_remove_partial_attr.attr,
  3656. &alloc_from_partial_attr.attr,
  3657. &alloc_slab_attr.attr,
  3658. &alloc_refill_attr.attr,
  3659. &free_slab_attr.attr,
  3660. &cpuslab_flush_attr.attr,
  3661. &deactivate_full_attr.attr,
  3662. &deactivate_empty_attr.attr,
  3663. &deactivate_to_head_attr.attr,
  3664. &deactivate_to_tail_attr.attr,
  3665. &deactivate_remote_frees_attr.attr,
  3666. &order_fallback_attr.attr,
  3667. #endif
  3668. #ifdef CONFIG_FAILSLAB
  3669. &failslab_attr.attr,
  3670. #endif
  3671. NULL
  3672. };
  3673. static struct attribute_group slab_attr_group = {
  3674. .attrs = slab_attrs,
  3675. };
  3676. static ssize_t slab_attr_show(struct kobject *kobj,
  3677. struct attribute *attr,
  3678. char *buf)
  3679. {
  3680. struct slab_attribute *attribute;
  3681. struct kmem_cache *s;
  3682. int err;
  3683. attribute = to_slab_attr(attr);
  3684. s = to_slab(kobj);
  3685. if (!attribute->show)
  3686. return -EIO;
  3687. err = attribute->show(s, buf);
  3688. return err;
  3689. }
  3690. static ssize_t slab_attr_store(struct kobject *kobj,
  3691. struct attribute *attr,
  3692. const char *buf, size_t len)
  3693. {
  3694. struct slab_attribute *attribute;
  3695. struct kmem_cache *s;
  3696. int err;
  3697. attribute = to_slab_attr(attr);
  3698. s = to_slab(kobj);
  3699. if (!attribute->store)
  3700. return -EIO;
  3701. err = attribute->store(s, buf, len);
  3702. return err;
  3703. }
  3704. static void kmem_cache_release(struct kobject *kobj)
  3705. {
  3706. struct kmem_cache *s = to_slab(kobj);
  3707. kfree(s->name);
  3708. kfree(s);
  3709. }
  3710. static const struct sysfs_ops slab_sysfs_ops = {
  3711. .show = slab_attr_show,
  3712. .store = slab_attr_store,
  3713. };
  3714. static struct kobj_type slab_ktype = {
  3715. .sysfs_ops = &slab_sysfs_ops,
  3716. .release = kmem_cache_release
  3717. };
  3718. static int uevent_filter(struct kset *kset, struct kobject *kobj)
  3719. {
  3720. struct kobj_type *ktype = get_ktype(kobj);
  3721. if (ktype == &slab_ktype)
  3722. return 1;
  3723. return 0;
  3724. }
  3725. static const struct kset_uevent_ops slab_uevent_ops = {
  3726. .filter = uevent_filter,
  3727. };
  3728. static struct kset *slab_kset;
  3729. #define ID_STR_LENGTH 64
  3730. /* Create a unique string id for a slab cache:
  3731. *
  3732. * Format :[flags-]size
  3733. */
  3734. static char *create_unique_id(struct kmem_cache *s)
  3735. {
  3736. char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
  3737. char *p = name;
  3738. BUG_ON(!name);
  3739. *p++ = ':';
  3740. /*
  3741. * First flags affecting slabcache operations. We will only
  3742. * get here for aliasable slabs so we do not need to support
  3743. * too many flags. The flags here must cover all flags that
  3744. * are matched during merging to guarantee that the id is
  3745. * unique.
  3746. */
  3747. if (s->flags & SLAB_CACHE_DMA)
  3748. *p++ = 'd';
  3749. if (s->flags & SLAB_RECLAIM_ACCOUNT)
  3750. *p++ = 'a';
  3751. if (s->flags & SLAB_DEBUG_FREE)
  3752. *p++ = 'F';
  3753. if (!(s->flags & SLAB_NOTRACK))
  3754. *p++ = 't';
  3755. if (p != name + 1)
  3756. *p++ = '-';
  3757. p += sprintf(p, "%07d", s->size);
  3758. BUG_ON(p > name + ID_STR_LENGTH - 1);
  3759. return name;
  3760. }
  3761. static int sysfs_slab_add(struct kmem_cache *s)
  3762. {
  3763. int err;
  3764. const char *name;
  3765. int unmergeable;
  3766. if (slab_state < SYSFS)
  3767. /* Defer until later */
  3768. return 0;
  3769. unmergeable = slab_unmergeable(s);
  3770. if (unmergeable) {
  3771. /*
  3772. * Slabcache can never be merged so we can use the name proper.
  3773. * This is typically the case for debug situations. In that
  3774. * case we can catch duplicate names easily.
  3775. */
  3776. sysfs_remove_link(&slab_kset->kobj, s->name);
  3777. name = s->name;
  3778. } else {
  3779. /*
  3780. * Create a unique name for the slab as a target
  3781. * for the symlinks.
  3782. */
  3783. name = create_unique_id(s);
  3784. }
  3785. s->kobj.kset = slab_kset;
  3786. err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
  3787. if (err) {
  3788. kobject_put(&s->kobj);
  3789. return err;
  3790. }
  3791. err = sysfs_create_group(&s->kobj, &slab_attr_group);
  3792. if (err) {
  3793. kobject_del(&s->kobj);
  3794. kobject_put(&s->kobj);
  3795. return err;
  3796. }
  3797. kobject_uevent(&s->kobj, KOBJ_ADD);
  3798. if (!unmergeable) {
  3799. /* Setup first alias */
  3800. sysfs_slab_alias(s, s->name);
  3801. kfree(name);
  3802. }
  3803. return 0;
  3804. }
  3805. static void sysfs_slab_remove(struct kmem_cache *s)
  3806. {
  3807. if (slab_state < SYSFS)
  3808. /*
  3809. * Sysfs has not been setup yet so no need to remove the
  3810. * cache from sysfs.
  3811. */
  3812. return;
  3813. kobject_uevent(&s->kobj, KOBJ_REMOVE);
  3814. kobject_del(&s->kobj);
  3815. kobject_put(&s->kobj);
  3816. }
  3817. /*
  3818. * Need to buffer aliases during bootup until sysfs becomes
  3819. * available lest we lose that information.
  3820. */
  3821. struct saved_alias {
  3822. struct kmem_cache *s;
  3823. const char *name;
  3824. struct saved_alias *next;
  3825. };
  3826. static struct saved_alias *alias_list;
  3827. static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
  3828. {
  3829. struct saved_alias *al;
  3830. if (slab_state == SYSFS) {
  3831. /*
  3832. * If we have a leftover link then remove it.
  3833. */
  3834. sysfs_remove_link(&slab_kset->kobj, name);
  3835. return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
  3836. }
  3837. al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
  3838. if (!al)
  3839. return -ENOMEM;
  3840. al->s = s;
  3841. al->name = name;
  3842. al->next = alias_list;
  3843. alias_list = al;
  3844. return 0;
  3845. }
  3846. static int __init slab_sysfs_init(void)
  3847. {
  3848. struct kmem_cache *s;
  3849. int err;
  3850. down_write(&slub_lock);
  3851. slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
  3852. if (!slab_kset) {
  3853. up_write(&slub_lock);
  3854. printk(KERN_ERR "Cannot register slab subsystem.\n");
  3855. return -ENOSYS;
  3856. }
  3857. slab_state = SYSFS;
  3858. list_for_each_entry(s, &slab_caches, list) {
  3859. err = sysfs_slab_add(s);
  3860. if (err)
  3861. printk(KERN_ERR "SLUB: Unable to add boot slab %s"
  3862. " to sysfs\n", s->name);
  3863. }
  3864. while (alias_list) {
  3865. struct saved_alias *al = alias_list;
  3866. alias_list = alias_list->next;
  3867. err = sysfs_slab_alias(al->s, al->name);
  3868. if (err)
  3869. printk(KERN_ERR "SLUB: Unable to add boot slab alias"
  3870. " %s to sysfs\n", s->name);
  3871. kfree(al);
  3872. }
  3873. up_write(&slub_lock);
  3874. resiliency_test();
  3875. return 0;
  3876. }
  3877. __initcall(slab_sysfs_init);
  3878. #endif
  3879. /*
  3880. * The /proc/slabinfo ABI
  3881. */
  3882. #ifdef CONFIG_SLABINFO
  3883. static void print_slabinfo_header(struct seq_file *m)
  3884. {
  3885. seq_puts(m, "slabinfo - version: 2.1\n");
  3886. seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
  3887. "<objperslab> <pagesperslab>");
  3888. seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
  3889. seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
  3890. seq_putc(m, '\n');
  3891. }
  3892. static void *s_start(struct seq_file *m, loff_t *pos)
  3893. {
  3894. loff_t n = *pos;
  3895. down_read(&slub_lock);
  3896. if (!n)
  3897. print_slabinfo_header(m);
  3898. return seq_list_start(&slab_caches, *pos);
  3899. }
  3900. static void *s_next(struct seq_file *m, void *p, loff_t *pos)
  3901. {
  3902. return seq_list_next(p, &slab_caches, pos);
  3903. }
  3904. static void s_stop(struct seq_file *m, void *p)
  3905. {
  3906. up_read(&slub_lock);
  3907. }
  3908. static int s_show(struct seq_file *m, void *p)
  3909. {
  3910. unsigned long nr_partials = 0;
  3911. unsigned long nr_slabs = 0;
  3912. unsigned long nr_inuse = 0;
  3913. unsigned long nr_objs = 0;
  3914. unsigned long nr_free = 0;
  3915. struct kmem_cache *s;
  3916. int node;
  3917. s = list_entry(p, struct kmem_cache, list);
  3918. for_each_online_node(node) {
  3919. struct kmem_cache_node *n = get_node(s, node);
  3920. if (!n)
  3921. continue;
  3922. nr_partials += n->nr_partial;
  3923. nr_slabs += atomic_long_read(&n->nr_slabs);
  3924. nr_objs += atomic_long_read(&n->total_objects);
  3925. nr_free += count_partial(n, count_free);
  3926. }
  3927. nr_inuse = nr_objs - nr_free;
  3928. seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", s->name, nr_inuse,
  3929. nr_objs, s->size, oo_objects(s->oo),
  3930. (1 << oo_order(s->oo)));
  3931. seq_printf(m, " : tunables %4u %4u %4u", 0, 0, 0);
  3932. seq_printf(m, " : slabdata %6lu %6lu %6lu", nr_slabs, nr_slabs,
  3933. 0UL);
  3934. seq_putc(m, '\n');
  3935. return 0;
  3936. }
  3937. static const struct seq_operations slabinfo_op = {
  3938. .start = s_start,
  3939. .next = s_next,
  3940. .stop = s_stop,
  3941. .show = s_show,
  3942. };
  3943. static int slabinfo_open(struct inode *inode, struct file *file)
  3944. {
  3945. return seq_open(file, &slabinfo_op);
  3946. }
  3947. static const struct file_operations proc_slabinfo_operations = {
  3948. .open = slabinfo_open,
  3949. .read = seq_read,
  3950. .llseek = seq_lseek,
  3951. .release = seq_release,
  3952. };
  3953. static int __init slab_proc_init(void)
  3954. {
  3955. proc_create("slabinfo", S_IRUGO, NULL, &proc_slabinfo_operations);
  3956. return 0;
  3957. }
  3958. module_init(slab_proc_init);
  3959. #endif /* CONFIG_SLABINFO */