tegra20-apb-dma.c 39 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427
  1. /*
  2. * DMA driver for Nvidia's Tegra20 APB DMA controller.
  3. *
  4. * Copyright (c) 2012, NVIDIA CORPORATION. All rights reserved.
  5. *
  6. * This program is free software; you can redistribute it and/or modify it
  7. * under the terms and conditions of the GNU General Public License,
  8. * version 2, as published by the Free Software Foundation.
  9. *
  10. * This program is distributed in the hope it will be useful, but WITHOUT
  11. * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12. * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
  13. * more details.
  14. *
  15. * You should have received a copy of the GNU General Public License
  16. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  17. */
  18. #include <linux/bitops.h>
  19. #include <linux/clk.h>
  20. #include <linux/delay.h>
  21. #include <linux/dmaengine.h>
  22. #include <linux/dma-mapping.h>
  23. #include <linux/err.h>
  24. #include <linux/init.h>
  25. #include <linux/interrupt.h>
  26. #include <linux/io.h>
  27. #include <linux/mm.h>
  28. #include <linux/module.h>
  29. #include <linux/of.h>
  30. #include <linux/of_device.h>
  31. #include <linux/platform_device.h>
  32. #include <linux/pm_runtime.h>
  33. #include <linux/slab.h>
  34. #include <mach/clk.h>
  35. #include "dmaengine.h"
  36. #define TEGRA_APBDMA_GENERAL 0x0
  37. #define TEGRA_APBDMA_GENERAL_ENABLE BIT(31)
  38. #define TEGRA_APBDMA_CONTROL 0x010
  39. #define TEGRA_APBDMA_IRQ_MASK 0x01c
  40. #define TEGRA_APBDMA_IRQ_MASK_SET 0x020
  41. /* CSR register */
  42. #define TEGRA_APBDMA_CHAN_CSR 0x00
  43. #define TEGRA_APBDMA_CSR_ENB BIT(31)
  44. #define TEGRA_APBDMA_CSR_IE_EOC BIT(30)
  45. #define TEGRA_APBDMA_CSR_HOLD BIT(29)
  46. #define TEGRA_APBDMA_CSR_DIR BIT(28)
  47. #define TEGRA_APBDMA_CSR_ONCE BIT(27)
  48. #define TEGRA_APBDMA_CSR_FLOW BIT(21)
  49. #define TEGRA_APBDMA_CSR_REQ_SEL_SHIFT 16
  50. #define TEGRA_APBDMA_CSR_WCOUNT_MASK 0xFFFC
  51. /* STATUS register */
  52. #define TEGRA_APBDMA_CHAN_STATUS 0x004
  53. #define TEGRA_APBDMA_STATUS_BUSY BIT(31)
  54. #define TEGRA_APBDMA_STATUS_ISE_EOC BIT(30)
  55. #define TEGRA_APBDMA_STATUS_HALT BIT(29)
  56. #define TEGRA_APBDMA_STATUS_PING_PONG BIT(28)
  57. #define TEGRA_APBDMA_STATUS_COUNT_SHIFT 2
  58. #define TEGRA_APBDMA_STATUS_COUNT_MASK 0xFFFC
  59. /* AHB memory address */
  60. #define TEGRA_APBDMA_CHAN_AHBPTR 0x010
  61. /* AHB sequence register */
  62. #define TEGRA_APBDMA_CHAN_AHBSEQ 0x14
  63. #define TEGRA_APBDMA_AHBSEQ_INTR_ENB BIT(31)
  64. #define TEGRA_APBDMA_AHBSEQ_BUS_WIDTH_8 (0 << 28)
  65. #define TEGRA_APBDMA_AHBSEQ_BUS_WIDTH_16 (1 << 28)
  66. #define TEGRA_APBDMA_AHBSEQ_BUS_WIDTH_32 (2 << 28)
  67. #define TEGRA_APBDMA_AHBSEQ_BUS_WIDTH_64 (3 << 28)
  68. #define TEGRA_APBDMA_AHBSEQ_BUS_WIDTH_128 (4 << 28)
  69. #define TEGRA_APBDMA_AHBSEQ_DATA_SWAP BIT(27)
  70. #define TEGRA_APBDMA_AHBSEQ_BURST_1 (4 << 24)
  71. #define TEGRA_APBDMA_AHBSEQ_BURST_4 (5 << 24)
  72. #define TEGRA_APBDMA_AHBSEQ_BURST_8 (6 << 24)
  73. #define TEGRA_APBDMA_AHBSEQ_DBL_BUF BIT(19)
  74. #define TEGRA_APBDMA_AHBSEQ_WRAP_SHIFT 16
  75. #define TEGRA_APBDMA_AHBSEQ_WRAP_NONE 0
  76. /* APB address */
  77. #define TEGRA_APBDMA_CHAN_APBPTR 0x018
  78. /* APB sequence register */
  79. #define TEGRA_APBDMA_CHAN_APBSEQ 0x01c
  80. #define TEGRA_APBDMA_APBSEQ_BUS_WIDTH_8 (0 << 28)
  81. #define TEGRA_APBDMA_APBSEQ_BUS_WIDTH_16 (1 << 28)
  82. #define TEGRA_APBDMA_APBSEQ_BUS_WIDTH_32 (2 << 28)
  83. #define TEGRA_APBDMA_APBSEQ_BUS_WIDTH_64 (3 << 28)
  84. #define TEGRA_APBDMA_APBSEQ_BUS_WIDTH_128 (4 << 28)
  85. #define TEGRA_APBDMA_APBSEQ_DATA_SWAP BIT(27)
  86. #define TEGRA_APBDMA_APBSEQ_WRAP_WORD_1 (1 << 16)
  87. /*
  88. * If any burst is in flight and DMA paused then this is the time to complete
  89. * on-flight burst and update DMA status register.
  90. */
  91. #define TEGRA_APBDMA_BURST_COMPLETE_TIME 20
  92. /* Channel base address offset from APBDMA base address */
  93. #define TEGRA_APBDMA_CHANNEL_BASE_ADD_OFFSET 0x1000
  94. /* DMA channel register space size */
  95. #define TEGRA_APBDMA_CHANNEL_REGISTER_SIZE 0x20
  96. struct tegra_dma;
  97. /*
  98. * tegra_dma_chip_data Tegra chip specific DMA data
  99. * @nr_channels: Number of channels available in the controller.
  100. * @max_dma_count: Maximum DMA transfer count supported by DMA controller.
  101. */
  102. struct tegra_dma_chip_data {
  103. int nr_channels;
  104. int max_dma_count;
  105. };
  106. /* DMA channel registers */
  107. struct tegra_dma_channel_regs {
  108. unsigned long csr;
  109. unsigned long ahb_ptr;
  110. unsigned long apb_ptr;
  111. unsigned long ahb_seq;
  112. unsigned long apb_seq;
  113. };
  114. /*
  115. * tegra_dma_sg_req: Dma request details to configure hardware. This
  116. * contains the details for one transfer to configure DMA hw.
  117. * The client's request for data transfer can be broken into multiple
  118. * sub-transfer as per requester details and hw support.
  119. * This sub transfer get added in the list of transfer and point to Tegra
  120. * DMA descriptor which manages the transfer details.
  121. */
  122. struct tegra_dma_sg_req {
  123. struct tegra_dma_channel_regs ch_regs;
  124. int req_len;
  125. bool configured;
  126. bool last_sg;
  127. bool half_done;
  128. struct list_head node;
  129. struct tegra_dma_desc *dma_desc;
  130. };
  131. /*
  132. * tegra_dma_desc: Tegra DMA descriptors which manages the client requests.
  133. * This descriptor keep track of transfer status, callbacks and request
  134. * counts etc.
  135. */
  136. struct tegra_dma_desc {
  137. struct dma_async_tx_descriptor txd;
  138. int bytes_requested;
  139. int bytes_transferred;
  140. enum dma_status dma_status;
  141. struct list_head node;
  142. struct list_head tx_list;
  143. struct list_head cb_node;
  144. int cb_count;
  145. };
  146. struct tegra_dma_channel;
  147. typedef void (*dma_isr_handler)(struct tegra_dma_channel *tdc,
  148. bool to_terminate);
  149. /* tegra_dma_channel: Channel specific information */
  150. struct tegra_dma_channel {
  151. struct dma_chan dma_chan;
  152. char name[30];
  153. bool config_init;
  154. int id;
  155. int irq;
  156. unsigned long chan_base_offset;
  157. spinlock_t lock;
  158. bool busy;
  159. struct tegra_dma *tdma;
  160. bool cyclic;
  161. /* Different lists for managing the requests */
  162. struct list_head free_sg_req;
  163. struct list_head pending_sg_req;
  164. struct list_head free_dma_desc;
  165. struct list_head cb_desc;
  166. /* ISR handler and tasklet for bottom half of isr handling */
  167. dma_isr_handler isr_handler;
  168. struct tasklet_struct tasklet;
  169. dma_async_tx_callback callback;
  170. void *callback_param;
  171. /* Channel-slave specific configuration */
  172. struct dma_slave_config dma_sconfig;
  173. };
  174. /* tegra_dma: Tegra DMA specific information */
  175. struct tegra_dma {
  176. struct dma_device dma_dev;
  177. struct device *dev;
  178. struct clk *dma_clk;
  179. spinlock_t global_lock;
  180. void __iomem *base_addr;
  181. const struct tegra_dma_chip_data *chip_data;
  182. /* Some register need to be cache before suspend */
  183. u32 reg_gen;
  184. /* Last member of the structure */
  185. struct tegra_dma_channel channels[0];
  186. };
  187. static inline void tdma_write(struct tegra_dma *tdma, u32 reg, u32 val)
  188. {
  189. writel(val, tdma->base_addr + reg);
  190. }
  191. static inline u32 tdma_read(struct tegra_dma *tdma, u32 reg)
  192. {
  193. return readl(tdma->base_addr + reg);
  194. }
  195. static inline void tdc_write(struct tegra_dma_channel *tdc,
  196. u32 reg, u32 val)
  197. {
  198. writel(val, tdc->tdma->base_addr + tdc->chan_base_offset + reg);
  199. }
  200. static inline u32 tdc_read(struct tegra_dma_channel *tdc, u32 reg)
  201. {
  202. return readl(tdc->tdma->base_addr + tdc->chan_base_offset + reg);
  203. }
  204. static inline struct tegra_dma_channel *to_tegra_dma_chan(struct dma_chan *dc)
  205. {
  206. return container_of(dc, struct tegra_dma_channel, dma_chan);
  207. }
  208. static inline struct tegra_dma_desc *txd_to_tegra_dma_desc(
  209. struct dma_async_tx_descriptor *td)
  210. {
  211. return container_of(td, struct tegra_dma_desc, txd);
  212. }
  213. static inline struct device *tdc2dev(struct tegra_dma_channel *tdc)
  214. {
  215. return &tdc->dma_chan.dev->device;
  216. }
  217. static dma_cookie_t tegra_dma_tx_submit(struct dma_async_tx_descriptor *tx);
  218. static int tegra_dma_runtime_suspend(struct device *dev);
  219. static int tegra_dma_runtime_resume(struct device *dev);
  220. /* Get DMA desc from free list, if not there then allocate it. */
  221. static struct tegra_dma_desc *tegra_dma_desc_get(
  222. struct tegra_dma_channel *tdc)
  223. {
  224. struct tegra_dma_desc *dma_desc;
  225. unsigned long flags;
  226. spin_lock_irqsave(&tdc->lock, flags);
  227. /* Do not allocate if desc are waiting for ack */
  228. list_for_each_entry(dma_desc, &tdc->free_dma_desc, node) {
  229. if (async_tx_test_ack(&dma_desc->txd)) {
  230. list_del(&dma_desc->node);
  231. spin_unlock_irqrestore(&tdc->lock, flags);
  232. return dma_desc;
  233. }
  234. }
  235. spin_unlock_irqrestore(&tdc->lock, flags);
  236. /* Allocate DMA desc */
  237. dma_desc = kzalloc(sizeof(*dma_desc), GFP_ATOMIC);
  238. if (!dma_desc) {
  239. dev_err(tdc2dev(tdc), "dma_desc alloc failed\n");
  240. return NULL;
  241. }
  242. dma_async_tx_descriptor_init(&dma_desc->txd, &tdc->dma_chan);
  243. dma_desc->txd.tx_submit = tegra_dma_tx_submit;
  244. dma_desc->txd.flags = 0;
  245. return dma_desc;
  246. }
  247. static void tegra_dma_desc_put(struct tegra_dma_channel *tdc,
  248. struct tegra_dma_desc *dma_desc)
  249. {
  250. unsigned long flags;
  251. spin_lock_irqsave(&tdc->lock, flags);
  252. if (!list_empty(&dma_desc->tx_list))
  253. list_splice_init(&dma_desc->tx_list, &tdc->free_sg_req);
  254. list_add_tail(&dma_desc->node, &tdc->free_dma_desc);
  255. spin_unlock_irqrestore(&tdc->lock, flags);
  256. }
  257. static struct tegra_dma_sg_req *tegra_dma_sg_req_get(
  258. struct tegra_dma_channel *tdc)
  259. {
  260. struct tegra_dma_sg_req *sg_req = NULL;
  261. unsigned long flags;
  262. spin_lock_irqsave(&tdc->lock, flags);
  263. if (!list_empty(&tdc->free_sg_req)) {
  264. sg_req = list_first_entry(&tdc->free_sg_req,
  265. typeof(*sg_req), node);
  266. list_del(&sg_req->node);
  267. spin_unlock_irqrestore(&tdc->lock, flags);
  268. return sg_req;
  269. }
  270. spin_unlock_irqrestore(&tdc->lock, flags);
  271. sg_req = kzalloc(sizeof(struct tegra_dma_sg_req), GFP_ATOMIC);
  272. if (!sg_req)
  273. dev_err(tdc2dev(tdc), "sg_req alloc failed\n");
  274. return sg_req;
  275. }
  276. static int tegra_dma_slave_config(struct dma_chan *dc,
  277. struct dma_slave_config *sconfig)
  278. {
  279. struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
  280. if (!list_empty(&tdc->pending_sg_req)) {
  281. dev_err(tdc2dev(tdc), "Configuration not allowed\n");
  282. return -EBUSY;
  283. }
  284. memcpy(&tdc->dma_sconfig, sconfig, sizeof(*sconfig));
  285. tdc->config_init = true;
  286. return 0;
  287. }
  288. static void tegra_dma_global_pause(struct tegra_dma_channel *tdc,
  289. bool wait_for_burst_complete)
  290. {
  291. struct tegra_dma *tdma = tdc->tdma;
  292. spin_lock(&tdma->global_lock);
  293. tdma_write(tdma, TEGRA_APBDMA_GENERAL, 0);
  294. if (wait_for_burst_complete)
  295. udelay(TEGRA_APBDMA_BURST_COMPLETE_TIME);
  296. }
  297. static void tegra_dma_global_resume(struct tegra_dma_channel *tdc)
  298. {
  299. struct tegra_dma *tdma = tdc->tdma;
  300. tdma_write(tdma, TEGRA_APBDMA_GENERAL, TEGRA_APBDMA_GENERAL_ENABLE);
  301. spin_unlock(&tdma->global_lock);
  302. }
  303. static void tegra_dma_stop(struct tegra_dma_channel *tdc)
  304. {
  305. u32 csr;
  306. u32 status;
  307. /* Disable interrupts */
  308. csr = tdc_read(tdc, TEGRA_APBDMA_CHAN_CSR);
  309. csr &= ~TEGRA_APBDMA_CSR_IE_EOC;
  310. tdc_write(tdc, TEGRA_APBDMA_CHAN_CSR, csr);
  311. /* Disable DMA */
  312. csr &= ~TEGRA_APBDMA_CSR_ENB;
  313. tdc_write(tdc, TEGRA_APBDMA_CHAN_CSR, csr);
  314. /* Clear interrupt status if it is there */
  315. status = tdc_read(tdc, TEGRA_APBDMA_CHAN_STATUS);
  316. if (status & TEGRA_APBDMA_STATUS_ISE_EOC) {
  317. dev_dbg(tdc2dev(tdc), "%s():clearing interrupt\n", __func__);
  318. tdc_write(tdc, TEGRA_APBDMA_CHAN_STATUS, status);
  319. }
  320. tdc->busy = false;
  321. }
  322. static void tegra_dma_start(struct tegra_dma_channel *tdc,
  323. struct tegra_dma_sg_req *sg_req)
  324. {
  325. struct tegra_dma_channel_regs *ch_regs = &sg_req->ch_regs;
  326. tdc_write(tdc, TEGRA_APBDMA_CHAN_CSR, ch_regs->csr);
  327. tdc_write(tdc, TEGRA_APBDMA_CHAN_APBSEQ, ch_regs->apb_seq);
  328. tdc_write(tdc, TEGRA_APBDMA_CHAN_APBPTR, ch_regs->apb_ptr);
  329. tdc_write(tdc, TEGRA_APBDMA_CHAN_AHBSEQ, ch_regs->ahb_seq);
  330. tdc_write(tdc, TEGRA_APBDMA_CHAN_AHBPTR, ch_regs->ahb_ptr);
  331. /* Start DMA */
  332. tdc_write(tdc, TEGRA_APBDMA_CHAN_CSR,
  333. ch_regs->csr | TEGRA_APBDMA_CSR_ENB);
  334. }
  335. static void tegra_dma_configure_for_next(struct tegra_dma_channel *tdc,
  336. struct tegra_dma_sg_req *nsg_req)
  337. {
  338. unsigned long status;
  339. /*
  340. * The DMA controller reloads the new configuration for next transfer
  341. * after last burst of current transfer completes.
  342. * If there is no IEC status then this makes sure that last burst
  343. * has not be completed. There may be case that last burst is on
  344. * flight and so it can complete but because DMA is paused, it
  345. * will not generates interrupt as well as not reload the new
  346. * configuration.
  347. * If there is already IEC status then interrupt handler need to
  348. * load new configuration.
  349. */
  350. tegra_dma_global_pause(tdc, false);
  351. status = tdc_read(tdc, TEGRA_APBDMA_CHAN_STATUS);
  352. /*
  353. * If interrupt is pending then do nothing as the ISR will handle
  354. * the programing for new request.
  355. */
  356. if (status & TEGRA_APBDMA_STATUS_ISE_EOC) {
  357. dev_err(tdc2dev(tdc),
  358. "Skipping new configuration as interrupt is pending\n");
  359. tegra_dma_global_resume(tdc);
  360. return;
  361. }
  362. /* Safe to program new configuration */
  363. tdc_write(tdc, TEGRA_APBDMA_CHAN_APBPTR, nsg_req->ch_regs.apb_ptr);
  364. tdc_write(tdc, TEGRA_APBDMA_CHAN_AHBPTR, nsg_req->ch_regs.ahb_ptr);
  365. tdc_write(tdc, TEGRA_APBDMA_CHAN_CSR,
  366. nsg_req->ch_regs.csr | TEGRA_APBDMA_CSR_ENB);
  367. nsg_req->configured = true;
  368. tegra_dma_global_resume(tdc);
  369. }
  370. static void tdc_start_head_req(struct tegra_dma_channel *tdc)
  371. {
  372. struct tegra_dma_sg_req *sg_req;
  373. if (list_empty(&tdc->pending_sg_req))
  374. return;
  375. sg_req = list_first_entry(&tdc->pending_sg_req,
  376. typeof(*sg_req), node);
  377. tegra_dma_start(tdc, sg_req);
  378. sg_req->configured = true;
  379. tdc->busy = true;
  380. }
  381. static void tdc_configure_next_head_desc(struct tegra_dma_channel *tdc)
  382. {
  383. struct tegra_dma_sg_req *hsgreq;
  384. struct tegra_dma_sg_req *hnsgreq;
  385. if (list_empty(&tdc->pending_sg_req))
  386. return;
  387. hsgreq = list_first_entry(&tdc->pending_sg_req, typeof(*hsgreq), node);
  388. if (!list_is_last(&hsgreq->node, &tdc->pending_sg_req)) {
  389. hnsgreq = list_first_entry(&hsgreq->node,
  390. typeof(*hnsgreq), node);
  391. tegra_dma_configure_for_next(tdc, hnsgreq);
  392. }
  393. }
  394. static inline int get_current_xferred_count(struct tegra_dma_channel *tdc,
  395. struct tegra_dma_sg_req *sg_req, unsigned long status)
  396. {
  397. return sg_req->req_len - (status & TEGRA_APBDMA_STATUS_COUNT_MASK) - 4;
  398. }
  399. static void tegra_dma_abort_all(struct tegra_dma_channel *tdc)
  400. {
  401. struct tegra_dma_sg_req *sgreq;
  402. struct tegra_dma_desc *dma_desc;
  403. while (!list_empty(&tdc->pending_sg_req)) {
  404. sgreq = list_first_entry(&tdc->pending_sg_req,
  405. typeof(*sgreq), node);
  406. list_move_tail(&sgreq->node, &tdc->free_sg_req);
  407. if (sgreq->last_sg) {
  408. dma_desc = sgreq->dma_desc;
  409. dma_desc->dma_status = DMA_ERROR;
  410. list_add_tail(&dma_desc->node, &tdc->free_dma_desc);
  411. /* Add in cb list if it is not there. */
  412. if (!dma_desc->cb_count)
  413. list_add_tail(&dma_desc->cb_node,
  414. &tdc->cb_desc);
  415. dma_desc->cb_count++;
  416. }
  417. }
  418. tdc->isr_handler = NULL;
  419. }
  420. static bool handle_continuous_head_request(struct tegra_dma_channel *tdc,
  421. struct tegra_dma_sg_req *last_sg_req, bool to_terminate)
  422. {
  423. struct tegra_dma_sg_req *hsgreq = NULL;
  424. if (list_empty(&tdc->pending_sg_req)) {
  425. dev_err(tdc2dev(tdc), "Dma is running without req\n");
  426. tegra_dma_stop(tdc);
  427. return false;
  428. }
  429. /*
  430. * Check that head req on list should be in flight.
  431. * If it is not in flight then abort transfer as
  432. * looping of transfer can not continue.
  433. */
  434. hsgreq = list_first_entry(&tdc->pending_sg_req, typeof(*hsgreq), node);
  435. if (!hsgreq->configured) {
  436. tegra_dma_stop(tdc);
  437. dev_err(tdc2dev(tdc), "Error in dma transfer, aborting dma\n");
  438. tegra_dma_abort_all(tdc);
  439. return false;
  440. }
  441. /* Configure next request */
  442. if (!to_terminate)
  443. tdc_configure_next_head_desc(tdc);
  444. return true;
  445. }
  446. static void handle_once_dma_done(struct tegra_dma_channel *tdc,
  447. bool to_terminate)
  448. {
  449. struct tegra_dma_sg_req *sgreq;
  450. struct tegra_dma_desc *dma_desc;
  451. tdc->busy = false;
  452. sgreq = list_first_entry(&tdc->pending_sg_req, typeof(*sgreq), node);
  453. dma_desc = sgreq->dma_desc;
  454. dma_desc->bytes_transferred += sgreq->req_len;
  455. list_del(&sgreq->node);
  456. if (sgreq->last_sg) {
  457. dma_desc->dma_status = DMA_SUCCESS;
  458. dma_cookie_complete(&dma_desc->txd);
  459. if (!dma_desc->cb_count)
  460. list_add_tail(&dma_desc->cb_node, &tdc->cb_desc);
  461. dma_desc->cb_count++;
  462. list_add_tail(&dma_desc->node, &tdc->free_dma_desc);
  463. }
  464. list_add_tail(&sgreq->node, &tdc->free_sg_req);
  465. /* Do not start DMA if it is going to be terminate */
  466. if (to_terminate || list_empty(&tdc->pending_sg_req))
  467. return;
  468. tdc_start_head_req(tdc);
  469. return;
  470. }
  471. static void handle_cont_sngl_cycle_dma_done(struct tegra_dma_channel *tdc,
  472. bool to_terminate)
  473. {
  474. struct tegra_dma_sg_req *sgreq;
  475. struct tegra_dma_desc *dma_desc;
  476. bool st;
  477. sgreq = list_first_entry(&tdc->pending_sg_req, typeof(*sgreq), node);
  478. dma_desc = sgreq->dma_desc;
  479. dma_desc->bytes_transferred += sgreq->req_len;
  480. /* Callback need to be call */
  481. if (!dma_desc->cb_count)
  482. list_add_tail(&dma_desc->cb_node, &tdc->cb_desc);
  483. dma_desc->cb_count++;
  484. /* If not last req then put at end of pending list */
  485. if (!list_is_last(&sgreq->node, &tdc->pending_sg_req)) {
  486. list_move_tail(&sgreq->node, &tdc->pending_sg_req);
  487. sgreq->configured = false;
  488. st = handle_continuous_head_request(tdc, sgreq, to_terminate);
  489. if (!st)
  490. dma_desc->dma_status = DMA_ERROR;
  491. }
  492. return;
  493. }
  494. static void tegra_dma_tasklet(unsigned long data)
  495. {
  496. struct tegra_dma_channel *tdc = (struct tegra_dma_channel *)data;
  497. dma_async_tx_callback callback = NULL;
  498. void *callback_param = NULL;
  499. struct tegra_dma_desc *dma_desc;
  500. unsigned long flags;
  501. int cb_count;
  502. spin_lock_irqsave(&tdc->lock, flags);
  503. while (!list_empty(&tdc->cb_desc)) {
  504. dma_desc = list_first_entry(&tdc->cb_desc,
  505. typeof(*dma_desc), cb_node);
  506. list_del(&dma_desc->cb_node);
  507. callback = dma_desc->txd.callback;
  508. callback_param = dma_desc->txd.callback_param;
  509. cb_count = dma_desc->cb_count;
  510. dma_desc->cb_count = 0;
  511. spin_unlock_irqrestore(&tdc->lock, flags);
  512. while (cb_count-- && callback)
  513. callback(callback_param);
  514. spin_lock_irqsave(&tdc->lock, flags);
  515. }
  516. spin_unlock_irqrestore(&tdc->lock, flags);
  517. }
  518. static irqreturn_t tegra_dma_isr(int irq, void *dev_id)
  519. {
  520. struct tegra_dma_channel *tdc = dev_id;
  521. unsigned long status;
  522. unsigned long flags;
  523. spin_lock_irqsave(&tdc->lock, flags);
  524. status = tdc_read(tdc, TEGRA_APBDMA_CHAN_STATUS);
  525. if (status & TEGRA_APBDMA_STATUS_ISE_EOC) {
  526. tdc_write(tdc, TEGRA_APBDMA_CHAN_STATUS, status);
  527. tdc->isr_handler(tdc, false);
  528. tasklet_schedule(&tdc->tasklet);
  529. spin_unlock_irqrestore(&tdc->lock, flags);
  530. return IRQ_HANDLED;
  531. }
  532. spin_unlock_irqrestore(&tdc->lock, flags);
  533. dev_info(tdc2dev(tdc),
  534. "Interrupt already served status 0x%08lx\n", status);
  535. return IRQ_NONE;
  536. }
  537. static dma_cookie_t tegra_dma_tx_submit(struct dma_async_tx_descriptor *txd)
  538. {
  539. struct tegra_dma_desc *dma_desc = txd_to_tegra_dma_desc(txd);
  540. struct tegra_dma_channel *tdc = to_tegra_dma_chan(txd->chan);
  541. unsigned long flags;
  542. dma_cookie_t cookie;
  543. spin_lock_irqsave(&tdc->lock, flags);
  544. dma_desc->dma_status = DMA_IN_PROGRESS;
  545. cookie = dma_cookie_assign(&dma_desc->txd);
  546. list_splice_tail_init(&dma_desc->tx_list, &tdc->pending_sg_req);
  547. spin_unlock_irqrestore(&tdc->lock, flags);
  548. return cookie;
  549. }
  550. static void tegra_dma_issue_pending(struct dma_chan *dc)
  551. {
  552. struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
  553. unsigned long flags;
  554. spin_lock_irqsave(&tdc->lock, flags);
  555. if (list_empty(&tdc->pending_sg_req)) {
  556. dev_err(tdc2dev(tdc), "No DMA request\n");
  557. goto end;
  558. }
  559. if (!tdc->busy) {
  560. tdc_start_head_req(tdc);
  561. /* Continuous single mode: Configure next req */
  562. if (tdc->cyclic) {
  563. /*
  564. * Wait for 1 burst time for configure DMA for
  565. * next transfer.
  566. */
  567. udelay(TEGRA_APBDMA_BURST_COMPLETE_TIME);
  568. tdc_configure_next_head_desc(tdc);
  569. }
  570. }
  571. end:
  572. spin_unlock_irqrestore(&tdc->lock, flags);
  573. return;
  574. }
  575. static void tegra_dma_terminate_all(struct dma_chan *dc)
  576. {
  577. struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
  578. struct tegra_dma_sg_req *sgreq;
  579. struct tegra_dma_desc *dma_desc;
  580. unsigned long flags;
  581. unsigned long status;
  582. bool was_busy;
  583. spin_lock_irqsave(&tdc->lock, flags);
  584. if (list_empty(&tdc->pending_sg_req)) {
  585. spin_unlock_irqrestore(&tdc->lock, flags);
  586. return;
  587. }
  588. if (!tdc->busy)
  589. goto skip_dma_stop;
  590. /* Pause DMA before checking the queue status */
  591. tegra_dma_global_pause(tdc, true);
  592. status = tdc_read(tdc, TEGRA_APBDMA_CHAN_STATUS);
  593. if (status & TEGRA_APBDMA_STATUS_ISE_EOC) {
  594. dev_dbg(tdc2dev(tdc), "%s():handling isr\n", __func__);
  595. tdc->isr_handler(tdc, true);
  596. status = tdc_read(tdc, TEGRA_APBDMA_CHAN_STATUS);
  597. }
  598. was_busy = tdc->busy;
  599. tegra_dma_stop(tdc);
  600. if (!list_empty(&tdc->pending_sg_req) && was_busy) {
  601. sgreq = list_first_entry(&tdc->pending_sg_req,
  602. typeof(*sgreq), node);
  603. sgreq->dma_desc->bytes_transferred +=
  604. get_current_xferred_count(tdc, sgreq, status);
  605. }
  606. tegra_dma_global_resume(tdc);
  607. skip_dma_stop:
  608. tegra_dma_abort_all(tdc);
  609. while (!list_empty(&tdc->cb_desc)) {
  610. dma_desc = list_first_entry(&tdc->cb_desc,
  611. typeof(*dma_desc), cb_node);
  612. list_del(&dma_desc->cb_node);
  613. dma_desc->cb_count = 0;
  614. }
  615. spin_unlock_irqrestore(&tdc->lock, flags);
  616. }
  617. static enum dma_status tegra_dma_tx_status(struct dma_chan *dc,
  618. dma_cookie_t cookie, struct dma_tx_state *txstate)
  619. {
  620. struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
  621. struct tegra_dma_desc *dma_desc;
  622. struct tegra_dma_sg_req *sg_req;
  623. enum dma_status ret;
  624. unsigned long flags;
  625. unsigned int residual;
  626. spin_lock_irqsave(&tdc->lock, flags);
  627. ret = dma_cookie_status(dc, cookie, txstate);
  628. if (ret == DMA_SUCCESS) {
  629. dma_set_residue(txstate, 0);
  630. spin_unlock_irqrestore(&tdc->lock, flags);
  631. return ret;
  632. }
  633. /* Check on wait_ack desc status */
  634. list_for_each_entry(dma_desc, &tdc->free_dma_desc, node) {
  635. if (dma_desc->txd.cookie == cookie) {
  636. residual = dma_desc->bytes_requested -
  637. (dma_desc->bytes_transferred %
  638. dma_desc->bytes_requested);
  639. dma_set_residue(txstate, residual);
  640. ret = dma_desc->dma_status;
  641. spin_unlock_irqrestore(&tdc->lock, flags);
  642. return ret;
  643. }
  644. }
  645. /* Check in pending list */
  646. list_for_each_entry(sg_req, &tdc->pending_sg_req, node) {
  647. dma_desc = sg_req->dma_desc;
  648. if (dma_desc->txd.cookie == cookie) {
  649. residual = dma_desc->bytes_requested -
  650. (dma_desc->bytes_transferred %
  651. dma_desc->bytes_requested);
  652. dma_set_residue(txstate, residual);
  653. ret = dma_desc->dma_status;
  654. spin_unlock_irqrestore(&tdc->lock, flags);
  655. return ret;
  656. }
  657. }
  658. dev_dbg(tdc2dev(tdc), "cookie %d does not found\n", cookie);
  659. spin_unlock_irqrestore(&tdc->lock, flags);
  660. return ret;
  661. }
  662. static int tegra_dma_device_control(struct dma_chan *dc, enum dma_ctrl_cmd cmd,
  663. unsigned long arg)
  664. {
  665. switch (cmd) {
  666. case DMA_SLAVE_CONFIG:
  667. return tegra_dma_slave_config(dc,
  668. (struct dma_slave_config *)arg);
  669. case DMA_TERMINATE_ALL:
  670. tegra_dma_terminate_all(dc);
  671. return 0;
  672. default:
  673. break;
  674. }
  675. return -ENXIO;
  676. }
  677. static inline int get_bus_width(struct tegra_dma_channel *tdc,
  678. enum dma_slave_buswidth slave_bw)
  679. {
  680. switch (slave_bw) {
  681. case DMA_SLAVE_BUSWIDTH_1_BYTE:
  682. return TEGRA_APBDMA_APBSEQ_BUS_WIDTH_8;
  683. case DMA_SLAVE_BUSWIDTH_2_BYTES:
  684. return TEGRA_APBDMA_APBSEQ_BUS_WIDTH_16;
  685. case DMA_SLAVE_BUSWIDTH_4_BYTES:
  686. return TEGRA_APBDMA_APBSEQ_BUS_WIDTH_32;
  687. case DMA_SLAVE_BUSWIDTH_8_BYTES:
  688. return TEGRA_APBDMA_APBSEQ_BUS_WIDTH_64;
  689. default:
  690. dev_warn(tdc2dev(tdc),
  691. "slave bw is not supported, using 32bits\n");
  692. return TEGRA_APBDMA_APBSEQ_BUS_WIDTH_32;
  693. }
  694. }
  695. static inline int get_burst_size(struct tegra_dma_channel *tdc,
  696. u32 burst_size, enum dma_slave_buswidth slave_bw, int len)
  697. {
  698. int burst_byte;
  699. int burst_ahb_width;
  700. /*
  701. * burst_size from client is in terms of the bus_width.
  702. * convert them into AHB memory width which is 4 byte.
  703. */
  704. burst_byte = burst_size * slave_bw;
  705. burst_ahb_width = burst_byte / 4;
  706. /* If burst size is 0 then calculate the burst size based on length */
  707. if (!burst_ahb_width) {
  708. if (len & 0xF)
  709. return TEGRA_APBDMA_AHBSEQ_BURST_1;
  710. else if ((len >> 4) & 0x1)
  711. return TEGRA_APBDMA_AHBSEQ_BURST_4;
  712. else
  713. return TEGRA_APBDMA_AHBSEQ_BURST_8;
  714. }
  715. if (burst_ahb_width < 4)
  716. return TEGRA_APBDMA_AHBSEQ_BURST_1;
  717. else if (burst_ahb_width < 8)
  718. return TEGRA_APBDMA_AHBSEQ_BURST_4;
  719. else
  720. return TEGRA_APBDMA_AHBSEQ_BURST_8;
  721. }
  722. static int get_transfer_param(struct tegra_dma_channel *tdc,
  723. enum dma_transfer_direction direction, unsigned long *apb_addr,
  724. unsigned long *apb_seq, unsigned long *csr, unsigned int *burst_size,
  725. enum dma_slave_buswidth *slave_bw)
  726. {
  727. switch (direction) {
  728. case DMA_MEM_TO_DEV:
  729. *apb_addr = tdc->dma_sconfig.dst_addr;
  730. *apb_seq = get_bus_width(tdc, tdc->dma_sconfig.dst_addr_width);
  731. *burst_size = tdc->dma_sconfig.dst_maxburst;
  732. *slave_bw = tdc->dma_sconfig.dst_addr_width;
  733. *csr = TEGRA_APBDMA_CSR_DIR;
  734. return 0;
  735. case DMA_DEV_TO_MEM:
  736. *apb_addr = tdc->dma_sconfig.src_addr;
  737. *apb_seq = get_bus_width(tdc, tdc->dma_sconfig.src_addr_width);
  738. *burst_size = tdc->dma_sconfig.src_maxburst;
  739. *slave_bw = tdc->dma_sconfig.src_addr_width;
  740. *csr = 0;
  741. return 0;
  742. default:
  743. dev_err(tdc2dev(tdc), "Dma direction is not supported\n");
  744. return -EINVAL;
  745. }
  746. return -EINVAL;
  747. }
  748. static struct dma_async_tx_descriptor *tegra_dma_prep_slave_sg(
  749. struct dma_chan *dc, struct scatterlist *sgl, unsigned int sg_len,
  750. enum dma_transfer_direction direction, unsigned long flags,
  751. void *context)
  752. {
  753. struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
  754. struct tegra_dma_desc *dma_desc;
  755. unsigned int i;
  756. struct scatterlist *sg;
  757. unsigned long csr, ahb_seq, apb_ptr, apb_seq;
  758. struct list_head req_list;
  759. struct tegra_dma_sg_req *sg_req = NULL;
  760. u32 burst_size;
  761. enum dma_slave_buswidth slave_bw;
  762. int ret;
  763. if (!tdc->config_init) {
  764. dev_err(tdc2dev(tdc), "dma channel is not configured\n");
  765. return NULL;
  766. }
  767. if (sg_len < 1) {
  768. dev_err(tdc2dev(tdc), "Invalid segment length %d\n", sg_len);
  769. return NULL;
  770. }
  771. ret = get_transfer_param(tdc, direction, &apb_ptr, &apb_seq, &csr,
  772. &burst_size, &slave_bw);
  773. if (ret < 0)
  774. return NULL;
  775. INIT_LIST_HEAD(&req_list);
  776. ahb_seq = TEGRA_APBDMA_AHBSEQ_INTR_ENB;
  777. ahb_seq |= TEGRA_APBDMA_AHBSEQ_WRAP_NONE <<
  778. TEGRA_APBDMA_AHBSEQ_WRAP_SHIFT;
  779. ahb_seq |= TEGRA_APBDMA_AHBSEQ_BUS_WIDTH_32;
  780. csr |= TEGRA_APBDMA_CSR_ONCE | TEGRA_APBDMA_CSR_FLOW;
  781. csr |= tdc->dma_sconfig.slave_id << TEGRA_APBDMA_CSR_REQ_SEL_SHIFT;
  782. if (flags & DMA_PREP_INTERRUPT)
  783. csr |= TEGRA_APBDMA_CSR_IE_EOC;
  784. apb_seq |= TEGRA_APBDMA_APBSEQ_WRAP_WORD_1;
  785. dma_desc = tegra_dma_desc_get(tdc);
  786. if (!dma_desc) {
  787. dev_err(tdc2dev(tdc), "Dma descriptors not available\n");
  788. return NULL;
  789. }
  790. INIT_LIST_HEAD(&dma_desc->tx_list);
  791. INIT_LIST_HEAD(&dma_desc->cb_node);
  792. dma_desc->cb_count = 0;
  793. dma_desc->bytes_requested = 0;
  794. dma_desc->bytes_transferred = 0;
  795. dma_desc->dma_status = DMA_IN_PROGRESS;
  796. /* Make transfer requests */
  797. for_each_sg(sgl, sg, sg_len, i) {
  798. u32 len, mem;
  799. mem = sg_dma_address(sg);
  800. len = sg_dma_len(sg);
  801. if ((len & 3) || (mem & 3) ||
  802. (len > tdc->tdma->chip_data->max_dma_count)) {
  803. dev_err(tdc2dev(tdc),
  804. "Dma length/memory address is not supported\n");
  805. tegra_dma_desc_put(tdc, dma_desc);
  806. return NULL;
  807. }
  808. sg_req = tegra_dma_sg_req_get(tdc);
  809. if (!sg_req) {
  810. dev_err(tdc2dev(tdc), "Dma sg-req not available\n");
  811. tegra_dma_desc_put(tdc, dma_desc);
  812. return NULL;
  813. }
  814. ahb_seq |= get_burst_size(tdc, burst_size, slave_bw, len);
  815. dma_desc->bytes_requested += len;
  816. sg_req->ch_regs.apb_ptr = apb_ptr;
  817. sg_req->ch_regs.ahb_ptr = mem;
  818. sg_req->ch_regs.csr = csr | ((len - 4) & 0xFFFC);
  819. sg_req->ch_regs.apb_seq = apb_seq;
  820. sg_req->ch_regs.ahb_seq = ahb_seq;
  821. sg_req->configured = false;
  822. sg_req->last_sg = false;
  823. sg_req->dma_desc = dma_desc;
  824. sg_req->req_len = len;
  825. list_add_tail(&sg_req->node, &dma_desc->tx_list);
  826. }
  827. sg_req->last_sg = true;
  828. if (flags & DMA_CTRL_ACK)
  829. dma_desc->txd.flags = DMA_CTRL_ACK;
  830. /*
  831. * Make sure that mode should not be conflicting with currently
  832. * configured mode.
  833. */
  834. if (!tdc->isr_handler) {
  835. tdc->isr_handler = handle_once_dma_done;
  836. tdc->cyclic = false;
  837. } else {
  838. if (tdc->cyclic) {
  839. dev_err(tdc2dev(tdc), "DMA configured in cyclic mode\n");
  840. tegra_dma_desc_put(tdc, dma_desc);
  841. return NULL;
  842. }
  843. }
  844. return &dma_desc->txd;
  845. }
  846. struct dma_async_tx_descriptor *tegra_dma_prep_dma_cyclic(
  847. struct dma_chan *dc, dma_addr_t buf_addr, size_t buf_len,
  848. size_t period_len, enum dma_transfer_direction direction,
  849. unsigned long flags, void *context)
  850. {
  851. struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
  852. struct tegra_dma_desc *dma_desc = NULL;
  853. struct tegra_dma_sg_req *sg_req = NULL;
  854. unsigned long csr, ahb_seq, apb_ptr, apb_seq;
  855. int len;
  856. size_t remain_len;
  857. dma_addr_t mem = buf_addr;
  858. u32 burst_size;
  859. enum dma_slave_buswidth slave_bw;
  860. int ret;
  861. if (!buf_len || !period_len) {
  862. dev_err(tdc2dev(tdc), "Invalid buffer/period len\n");
  863. return NULL;
  864. }
  865. if (!tdc->config_init) {
  866. dev_err(tdc2dev(tdc), "DMA slave is not configured\n");
  867. return NULL;
  868. }
  869. /*
  870. * We allow to take more number of requests till DMA is
  871. * not started. The driver will loop over all requests.
  872. * Once DMA is started then new requests can be queued only after
  873. * terminating the DMA.
  874. */
  875. if (tdc->busy) {
  876. dev_err(tdc2dev(tdc), "Request not allowed when dma running\n");
  877. return NULL;
  878. }
  879. /*
  880. * We only support cycle transfer when buf_len is multiple of
  881. * period_len.
  882. */
  883. if (buf_len % period_len) {
  884. dev_err(tdc2dev(tdc), "buf_len is not multiple of period_len\n");
  885. return NULL;
  886. }
  887. len = period_len;
  888. if ((len & 3) || (buf_addr & 3) ||
  889. (len > tdc->tdma->chip_data->max_dma_count)) {
  890. dev_err(tdc2dev(tdc), "Req len/mem address is not correct\n");
  891. return NULL;
  892. }
  893. ret = get_transfer_param(tdc, direction, &apb_ptr, &apb_seq, &csr,
  894. &burst_size, &slave_bw);
  895. if (ret < 0)
  896. return NULL;
  897. ahb_seq = TEGRA_APBDMA_AHBSEQ_INTR_ENB;
  898. ahb_seq |= TEGRA_APBDMA_AHBSEQ_WRAP_NONE <<
  899. TEGRA_APBDMA_AHBSEQ_WRAP_SHIFT;
  900. ahb_seq |= TEGRA_APBDMA_AHBSEQ_BUS_WIDTH_32;
  901. csr |= TEGRA_APBDMA_CSR_FLOW | TEGRA_APBDMA_CSR_IE_EOC;
  902. csr |= tdc->dma_sconfig.slave_id << TEGRA_APBDMA_CSR_REQ_SEL_SHIFT;
  903. apb_seq |= TEGRA_APBDMA_APBSEQ_WRAP_WORD_1;
  904. dma_desc = tegra_dma_desc_get(tdc);
  905. if (!dma_desc) {
  906. dev_err(tdc2dev(tdc), "not enough descriptors available\n");
  907. return NULL;
  908. }
  909. INIT_LIST_HEAD(&dma_desc->tx_list);
  910. INIT_LIST_HEAD(&dma_desc->cb_node);
  911. dma_desc->cb_count = 0;
  912. dma_desc->bytes_transferred = 0;
  913. dma_desc->bytes_requested = buf_len;
  914. remain_len = buf_len;
  915. /* Split transfer equal to period size */
  916. while (remain_len) {
  917. sg_req = tegra_dma_sg_req_get(tdc);
  918. if (!sg_req) {
  919. dev_err(tdc2dev(tdc), "Dma sg-req not available\n");
  920. tegra_dma_desc_put(tdc, dma_desc);
  921. return NULL;
  922. }
  923. ahb_seq |= get_burst_size(tdc, burst_size, slave_bw, len);
  924. sg_req->ch_regs.apb_ptr = apb_ptr;
  925. sg_req->ch_regs.ahb_ptr = mem;
  926. sg_req->ch_regs.csr = csr | ((len - 4) & 0xFFFC);
  927. sg_req->ch_regs.apb_seq = apb_seq;
  928. sg_req->ch_regs.ahb_seq = ahb_seq;
  929. sg_req->configured = false;
  930. sg_req->half_done = false;
  931. sg_req->last_sg = false;
  932. sg_req->dma_desc = dma_desc;
  933. sg_req->req_len = len;
  934. list_add_tail(&sg_req->node, &dma_desc->tx_list);
  935. remain_len -= len;
  936. mem += len;
  937. }
  938. sg_req->last_sg = true;
  939. dma_desc->txd.flags = 0;
  940. /*
  941. * Make sure that mode should not be conflicting with currently
  942. * configured mode.
  943. */
  944. if (!tdc->isr_handler) {
  945. tdc->isr_handler = handle_cont_sngl_cycle_dma_done;
  946. tdc->cyclic = true;
  947. } else {
  948. if (!tdc->cyclic) {
  949. dev_err(tdc2dev(tdc), "DMA configuration conflict\n");
  950. tegra_dma_desc_put(tdc, dma_desc);
  951. return NULL;
  952. }
  953. }
  954. return &dma_desc->txd;
  955. }
  956. static int tegra_dma_alloc_chan_resources(struct dma_chan *dc)
  957. {
  958. struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
  959. struct tegra_dma *tdma = tdc->tdma;
  960. int ret;
  961. dma_cookie_init(&tdc->dma_chan);
  962. tdc->config_init = false;
  963. ret = clk_prepare_enable(tdma->dma_clk);
  964. if (ret < 0)
  965. dev_err(tdc2dev(tdc), "clk_prepare_enable failed: %d\n", ret);
  966. return ret;
  967. }
  968. static void tegra_dma_free_chan_resources(struct dma_chan *dc)
  969. {
  970. struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
  971. struct tegra_dma *tdma = tdc->tdma;
  972. struct tegra_dma_desc *dma_desc;
  973. struct tegra_dma_sg_req *sg_req;
  974. struct list_head dma_desc_list;
  975. struct list_head sg_req_list;
  976. unsigned long flags;
  977. INIT_LIST_HEAD(&dma_desc_list);
  978. INIT_LIST_HEAD(&sg_req_list);
  979. dev_dbg(tdc2dev(tdc), "Freeing channel %d\n", tdc->id);
  980. if (tdc->busy)
  981. tegra_dma_terminate_all(dc);
  982. spin_lock_irqsave(&tdc->lock, flags);
  983. list_splice_init(&tdc->pending_sg_req, &sg_req_list);
  984. list_splice_init(&tdc->free_sg_req, &sg_req_list);
  985. list_splice_init(&tdc->free_dma_desc, &dma_desc_list);
  986. INIT_LIST_HEAD(&tdc->cb_desc);
  987. tdc->config_init = false;
  988. spin_unlock_irqrestore(&tdc->lock, flags);
  989. while (!list_empty(&dma_desc_list)) {
  990. dma_desc = list_first_entry(&dma_desc_list,
  991. typeof(*dma_desc), node);
  992. list_del(&dma_desc->node);
  993. kfree(dma_desc);
  994. }
  995. while (!list_empty(&sg_req_list)) {
  996. sg_req = list_first_entry(&sg_req_list, typeof(*sg_req), node);
  997. list_del(&sg_req->node);
  998. kfree(sg_req);
  999. }
  1000. clk_disable_unprepare(tdma->dma_clk);
  1001. }
  1002. /* Tegra20 specific DMA controller information */
  1003. static const struct tegra_dma_chip_data tegra20_dma_chip_data = {
  1004. .nr_channels = 16,
  1005. .max_dma_count = 1024UL * 64,
  1006. };
  1007. #if defined(CONFIG_OF)
  1008. /* Tegra30 specific DMA controller information */
  1009. static const struct tegra_dma_chip_data tegra30_dma_chip_data = {
  1010. .nr_channels = 32,
  1011. .max_dma_count = 1024UL * 64,
  1012. };
  1013. static const struct of_device_id tegra_dma_of_match[] = {
  1014. {
  1015. .compatible = "nvidia,tegra30-apbdma",
  1016. .data = &tegra30_dma_chip_data,
  1017. }, {
  1018. .compatible = "nvidia,tegra20-apbdma",
  1019. .data = &tegra20_dma_chip_data,
  1020. }, {
  1021. },
  1022. };
  1023. MODULE_DEVICE_TABLE(of, tegra_dma_of_match);
  1024. #endif
  1025. static int tegra_dma_probe(struct platform_device *pdev)
  1026. {
  1027. struct resource *res;
  1028. struct tegra_dma *tdma;
  1029. int ret;
  1030. int i;
  1031. const struct tegra_dma_chip_data *cdata = NULL;
  1032. if (pdev->dev.of_node) {
  1033. const struct of_device_id *match;
  1034. match = of_match_device(of_match_ptr(tegra_dma_of_match),
  1035. &pdev->dev);
  1036. if (!match) {
  1037. dev_err(&pdev->dev, "Error: No device match found\n");
  1038. return -ENODEV;
  1039. }
  1040. cdata = match->data;
  1041. } else {
  1042. /* If no device tree then fallback to tegra20 */
  1043. cdata = &tegra20_dma_chip_data;
  1044. }
  1045. tdma = devm_kzalloc(&pdev->dev, sizeof(*tdma) + cdata->nr_channels *
  1046. sizeof(struct tegra_dma_channel), GFP_KERNEL);
  1047. if (!tdma) {
  1048. dev_err(&pdev->dev, "Error: memory allocation failed\n");
  1049. return -ENOMEM;
  1050. }
  1051. tdma->dev = &pdev->dev;
  1052. tdma->chip_data = cdata;
  1053. platform_set_drvdata(pdev, tdma);
  1054. res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  1055. if (!res) {
  1056. dev_err(&pdev->dev, "No mem resource for DMA\n");
  1057. return -EINVAL;
  1058. }
  1059. tdma->base_addr = devm_ioremap_resource(&pdev->dev, res);
  1060. if (IS_ERR(tdma->base_addr))
  1061. return PTR_ERR(tdma->base_addr);
  1062. tdma->dma_clk = devm_clk_get(&pdev->dev, NULL);
  1063. if (IS_ERR(tdma->dma_clk)) {
  1064. dev_err(&pdev->dev, "Error: Missing controller clock\n");
  1065. return PTR_ERR(tdma->dma_clk);
  1066. }
  1067. spin_lock_init(&tdma->global_lock);
  1068. pm_runtime_enable(&pdev->dev);
  1069. if (!pm_runtime_enabled(&pdev->dev)) {
  1070. ret = tegra_dma_runtime_resume(&pdev->dev);
  1071. if (ret) {
  1072. dev_err(&pdev->dev, "dma_runtime_resume failed %d\n",
  1073. ret);
  1074. goto err_pm_disable;
  1075. }
  1076. }
  1077. /* Enable clock before accessing registers */
  1078. ret = clk_prepare_enable(tdma->dma_clk);
  1079. if (ret < 0) {
  1080. dev_err(&pdev->dev, "clk_prepare_enable failed: %d\n", ret);
  1081. goto err_pm_disable;
  1082. }
  1083. /* Reset DMA controller */
  1084. tegra_periph_reset_assert(tdma->dma_clk);
  1085. udelay(2);
  1086. tegra_periph_reset_deassert(tdma->dma_clk);
  1087. /* Enable global DMA registers */
  1088. tdma_write(tdma, TEGRA_APBDMA_GENERAL, TEGRA_APBDMA_GENERAL_ENABLE);
  1089. tdma_write(tdma, TEGRA_APBDMA_CONTROL, 0);
  1090. tdma_write(tdma, TEGRA_APBDMA_IRQ_MASK_SET, 0xFFFFFFFFul);
  1091. clk_disable_unprepare(tdma->dma_clk);
  1092. INIT_LIST_HEAD(&tdma->dma_dev.channels);
  1093. for (i = 0; i < cdata->nr_channels; i++) {
  1094. struct tegra_dma_channel *tdc = &tdma->channels[i];
  1095. tdc->chan_base_offset = TEGRA_APBDMA_CHANNEL_BASE_ADD_OFFSET +
  1096. i * TEGRA_APBDMA_CHANNEL_REGISTER_SIZE;
  1097. res = platform_get_resource(pdev, IORESOURCE_IRQ, i);
  1098. if (!res) {
  1099. ret = -EINVAL;
  1100. dev_err(&pdev->dev, "No irq resource for chan %d\n", i);
  1101. goto err_irq;
  1102. }
  1103. tdc->irq = res->start;
  1104. snprintf(tdc->name, sizeof(tdc->name), "apbdma.%d", i);
  1105. ret = devm_request_irq(&pdev->dev, tdc->irq,
  1106. tegra_dma_isr, 0, tdc->name, tdc);
  1107. if (ret) {
  1108. dev_err(&pdev->dev,
  1109. "request_irq failed with err %d channel %d\n",
  1110. i, ret);
  1111. goto err_irq;
  1112. }
  1113. tdc->dma_chan.device = &tdma->dma_dev;
  1114. dma_cookie_init(&tdc->dma_chan);
  1115. list_add_tail(&tdc->dma_chan.device_node,
  1116. &tdma->dma_dev.channels);
  1117. tdc->tdma = tdma;
  1118. tdc->id = i;
  1119. tasklet_init(&tdc->tasklet, tegra_dma_tasklet,
  1120. (unsigned long)tdc);
  1121. spin_lock_init(&tdc->lock);
  1122. INIT_LIST_HEAD(&tdc->pending_sg_req);
  1123. INIT_LIST_HEAD(&tdc->free_sg_req);
  1124. INIT_LIST_HEAD(&tdc->free_dma_desc);
  1125. INIT_LIST_HEAD(&tdc->cb_desc);
  1126. }
  1127. dma_cap_set(DMA_SLAVE, tdma->dma_dev.cap_mask);
  1128. dma_cap_set(DMA_PRIVATE, tdma->dma_dev.cap_mask);
  1129. dma_cap_set(DMA_CYCLIC, tdma->dma_dev.cap_mask);
  1130. tdma->dma_dev.dev = &pdev->dev;
  1131. tdma->dma_dev.device_alloc_chan_resources =
  1132. tegra_dma_alloc_chan_resources;
  1133. tdma->dma_dev.device_free_chan_resources =
  1134. tegra_dma_free_chan_resources;
  1135. tdma->dma_dev.device_prep_slave_sg = tegra_dma_prep_slave_sg;
  1136. tdma->dma_dev.device_prep_dma_cyclic = tegra_dma_prep_dma_cyclic;
  1137. tdma->dma_dev.device_control = tegra_dma_device_control;
  1138. tdma->dma_dev.device_tx_status = tegra_dma_tx_status;
  1139. tdma->dma_dev.device_issue_pending = tegra_dma_issue_pending;
  1140. ret = dma_async_device_register(&tdma->dma_dev);
  1141. if (ret < 0) {
  1142. dev_err(&pdev->dev,
  1143. "Tegra20 APB DMA driver registration failed %d\n", ret);
  1144. goto err_irq;
  1145. }
  1146. dev_info(&pdev->dev, "Tegra20 APB DMA driver register %d channels\n",
  1147. cdata->nr_channels);
  1148. return 0;
  1149. err_irq:
  1150. while (--i >= 0) {
  1151. struct tegra_dma_channel *tdc = &tdma->channels[i];
  1152. tasklet_kill(&tdc->tasklet);
  1153. }
  1154. err_pm_disable:
  1155. pm_runtime_disable(&pdev->dev);
  1156. if (!pm_runtime_status_suspended(&pdev->dev))
  1157. tegra_dma_runtime_suspend(&pdev->dev);
  1158. return ret;
  1159. }
  1160. static int tegra_dma_remove(struct platform_device *pdev)
  1161. {
  1162. struct tegra_dma *tdma = platform_get_drvdata(pdev);
  1163. int i;
  1164. struct tegra_dma_channel *tdc;
  1165. dma_async_device_unregister(&tdma->dma_dev);
  1166. for (i = 0; i < tdma->chip_data->nr_channels; ++i) {
  1167. tdc = &tdma->channels[i];
  1168. tasklet_kill(&tdc->tasklet);
  1169. }
  1170. pm_runtime_disable(&pdev->dev);
  1171. if (!pm_runtime_status_suspended(&pdev->dev))
  1172. tegra_dma_runtime_suspend(&pdev->dev);
  1173. return 0;
  1174. }
  1175. static int tegra_dma_runtime_suspend(struct device *dev)
  1176. {
  1177. struct platform_device *pdev = to_platform_device(dev);
  1178. struct tegra_dma *tdma = platform_get_drvdata(pdev);
  1179. clk_disable_unprepare(tdma->dma_clk);
  1180. return 0;
  1181. }
  1182. static int tegra_dma_runtime_resume(struct device *dev)
  1183. {
  1184. struct platform_device *pdev = to_platform_device(dev);
  1185. struct tegra_dma *tdma = platform_get_drvdata(pdev);
  1186. int ret;
  1187. ret = clk_prepare_enable(tdma->dma_clk);
  1188. if (ret < 0) {
  1189. dev_err(dev, "clk_enable failed: %d\n", ret);
  1190. return ret;
  1191. }
  1192. return 0;
  1193. }
  1194. static const struct dev_pm_ops tegra_dma_dev_pm_ops = {
  1195. #ifdef CONFIG_PM_RUNTIME
  1196. .runtime_suspend = tegra_dma_runtime_suspend,
  1197. .runtime_resume = tegra_dma_runtime_resume,
  1198. #endif
  1199. };
  1200. static struct platform_driver tegra_dmac_driver = {
  1201. .driver = {
  1202. .name = "tegra-apbdma",
  1203. .owner = THIS_MODULE,
  1204. .pm = &tegra_dma_dev_pm_ops,
  1205. .of_match_table = of_match_ptr(tegra_dma_of_match),
  1206. },
  1207. .probe = tegra_dma_probe,
  1208. .remove = tegra_dma_remove,
  1209. };
  1210. module_platform_driver(tegra_dmac_driver);
  1211. MODULE_ALIAS("platform:tegra20-apbdma");
  1212. MODULE_DESCRIPTION("NVIDIA Tegra APB DMA Controller driver");
  1213. MODULE_AUTHOR("Laxman Dewangan <ldewangan@nvidia.com>");
  1214. MODULE_LICENSE("GPL v2");