aops.c 38 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530
  1. /* -*- mode: c; c-basic-offset: 8; -*-
  2. * vim: noexpandtab sw=8 ts=8 sts=0:
  3. *
  4. * Copyright (C) 2002, 2004 Oracle. All rights reserved.
  5. *
  6. * This program is free software; you can redistribute it and/or
  7. * modify it under the terms of the GNU General Public
  8. * License as published by the Free Software Foundation; either
  9. * version 2 of the License, or (at your option) any later version.
  10. *
  11. * This program is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  14. * General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU General Public
  17. * License along with this program; if not, write to the
  18. * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  19. * Boston, MA 021110-1307, USA.
  20. */
  21. #include <linux/fs.h>
  22. #include <linux/slab.h>
  23. #include <linux/highmem.h>
  24. #include <linux/pagemap.h>
  25. #include <asm/byteorder.h>
  26. #include <linux/swap.h>
  27. #include <linux/pipe_fs_i.h>
  28. #define MLOG_MASK_PREFIX ML_FILE_IO
  29. #include <cluster/masklog.h>
  30. #include "ocfs2.h"
  31. #include "alloc.h"
  32. #include "aops.h"
  33. #include "dlmglue.h"
  34. #include "extent_map.h"
  35. #include "file.h"
  36. #include "inode.h"
  37. #include "journal.h"
  38. #include "suballoc.h"
  39. #include "super.h"
  40. #include "symlink.h"
  41. #include "buffer_head_io.h"
  42. static int ocfs2_symlink_get_block(struct inode *inode, sector_t iblock,
  43. struct buffer_head *bh_result, int create)
  44. {
  45. int err = -EIO;
  46. int status;
  47. struct ocfs2_dinode *fe = NULL;
  48. struct buffer_head *bh = NULL;
  49. struct buffer_head *buffer_cache_bh = NULL;
  50. struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
  51. void *kaddr;
  52. mlog_entry("(0x%p, %llu, 0x%p, %d)\n", inode,
  53. (unsigned long long)iblock, bh_result, create);
  54. BUG_ON(ocfs2_inode_is_fast_symlink(inode));
  55. if ((iblock << inode->i_sb->s_blocksize_bits) > PATH_MAX + 1) {
  56. mlog(ML_ERROR, "block offset > PATH_MAX: %llu",
  57. (unsigned long long)iblock);
  58. goto bail;
  59. }
  60. status = ocfs2_read_block(OCFS2_SB(inode->i_sb),
  61. OCFS2_I(inode)->ip_blkno,
  62. &bh, OCFS2_BH_CACHED, inode);
  63. if (status < 0) {
  64. mlog_errno(status);
  65. goto bail;
  66. }
  67. fe = (struct ocfs2_dinode *) bh->b_data;
  68. if (!OCFS2_IS_VALID_DINODE(fe)) {
  69. mlog(ML_ERROR, "Invalid dinode #%llu: signature = %.*s\n",
  70. (unsigned long long)le64_to_cpu(fe->i_blkno), 7,
  71. fe->i_signature);
  72. goto bail;
  73. }
  74. if ((u64)iblock >= ocfs2_clusters_to_blocks(inode->i_sb,
  75. le32_to_cpu(fe->i_clusters))) {
  76. mlog(ML_ERROR, "block offset is outside the allocated size: "
  77. "%llu\n", (unsigned long long)iblock);
  78. goto bail;
  79. }
  80. /* We don't use the page cache to create symlink data, so if
  81. * need be, copy it over from the buffer cache. */
  82. if (!buffer_uptodate(bh_result) && ocfs2_inode_is_new(inode)) {
  83. u64 blkno = le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) +
  84. iblock;
  85. buffer_cache_bh = sb_getblk(osb->sb, blkno);
  86. if (!buffer_cache_bh) {
  87. mlog(ML_ERROR, "couldn't getblock for symlink!\n");
  88. goto bail;
  89. }
  90. /* we haven't locked out transactions, so a commit
  91. * could've happened. Since we've got a reference on
  92. * the bh, even if it commits while we're doing the
  93. * copy, the data is still good. */
  94. if (buffer_jbd(buffer_cache_bh)
  95. && ocfs2_inode_is_new(inode)) {
  96. kaddr = kmap_atomic(bh_result->b_page, KM_USER0);
  97. if (!kaddr) {
  98. mlog(ML_ERROR, "couldn't kmap!\n");
  99. goto bail;
  100. }
  101. memcpy(kaddr + (bh_result->b_size * iblock),
  102. buffer_cache_bh->b_data,
  103. bh_result->b_size);
  104. kunmap_atomic(kaddr, KM_USER0);
  105. set_buffer_uptodate(bh_result);
  106. }
  107. brelse(buffer_cache_bh);
  108. }
  109. map_bh(bh_result, inode->i_sb,
  110. le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) + iblock);
  111. err = 0;
  112. bail:
  113. if (bh)
  114. brelse(bh);
  115. mlog_exit(err);
  116. return err;
  117. }
  118. static int ocfs2_get_block(struct inode *inode, sector_t iblock,
  119. struct buffer_head *bh_result, int create)
  120. {
  121. int err = 0;
  122. unsigned int ext_flags;
  123. u64 p_blkno, past_eof;
  124. struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
  125. mlog_entry("(0x%p, %llu, 0x%p, %d)\n", inode,
  126. (unsigned long long)iblock, bh_result, create);
  127. if (OCFS2_I(inode)->ip_flags & OCFS2_INODE_SYSTEM_FILE)
  128. mlog(ML_NOTICE, "get_block on system inode 0x%p (%lu)\n",
  129. inode, inode->i_ino);
  130. if (S_ISLNK(inode->i_mode)) {
  131. /* this always does I/O for some reason. */
  132. err = ocfs2_symlink_get_block(inode, iblock, bh_result, create);
  133. goto bail;
  134. }
  135. err = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno, NULL,
  136. &ext_flags);
  137. if (err) {
  138. mlog(ML_ERROR, "Error %d from get_blocks(0x%p, %llu, 1, "
  139. "%llu, NULL)\n", err, inode, (unsigned long long)iblock,
  140. (unsigned long long)p_blkno);
  141. goto bail;
  142. }
  143. /*
  144. * ocfs2 never allocates in this function - the only time we
  145. * need to use BH_New is when we're extending i_size on a file
  146. * system which doesn't support holes, in which case BH_New
  147. * allows block_prepare_write() to zero.
  148. */
  149. mlog_bug_on_msg(create && p_blkno == 0 && ocfs2_sparse_alloc(osb),
  150. "ino %lu, iblock %llu\n", inode->i_ino,
  151. (unsigned long long)iblock);
  152. /* Treat the unwritten extent as a hole for zeroing purposes. */
  153. if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
  154. map_bh(bh_result, inode->i_sb, p_blkno);
  155. if (!ocfs2_sparse_alloc(osb)) {
  156. if (p_blkno == 0) {
  157. err = -EIO;
  158. mlog(ML_ERROR,
  159. "iblock = %llu p_blkno = %llu blkno=(%llu)\n",
  160. (unsigned long long)iblock,
  161. (unsigned long long)p_blkno,
  162. (unsigned long long)OCFS2_I(inode)->ip_blkno);
  163. mlog(ML_ERROR, "Size %llu, clusters %u\n", (unsigned long long)i_size_read(inode), OCFS2_I(inode)->ip_clusters);
  164. dump_stack();
  165. }
  166. past_eof = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
  167. mlog(0, "Inode %lu, past_eof = %llu\n", inode->i_ino,
  168. (unsigned long long)past_eof);
  169. if (create && (iblock >= past_eof))
  170. set_buffer_new(bh_result);
  171. }
  172. bail:
  173. if (err < 0)
  174. err = -EIO;
  175. mlog_exit(err);
  176. return err;
  177. }
  178. static int ocfs2_readpage(struct file *file, struct page *page)
  179. {
  180. struct inode *inode = page->mapping->host;
  181. loff_t start = (loff_t)page->index << PAGE_CACHE_SHIFT;
  182. int ret, unlock = 1;
  183. mlog_entry("(0x%p, %lu)\n", file, (page ? page->index : 0));
  184. ret = ocfs2_meta_lock_with_page(inode, NULL, 0, page);
  185. if (ret != 0) {
  186. if (ret == AOP_TRUNCATED_PAGE)
  187. unlock = 0;
  188. mlog_errno(ret);
  189. goto out;
  190. }
  191. if (down_read_trylock(&OCFS2_I(inode)->ip_alloc_sem) == 0) {
  192. ret = AOP_TRUNCATED_PAGE;
  193. goto out_meta_unlock;
  194. }
  195. /*
  196. * i_size might have just been updated as we grabed the meta lock. We
  197. * might now be discovering a truncate that hit on another node.
  198. * block_read_full_page->get_block freaks out if it is asked to read
  199. * beyond the end of a file, so we check here. Callers
  200. * (generic_file_read, fault->nopage) are clever enough to check i_size
  201. * and notice that the page they just read isn't needed.
  202. *
  203. * XXX sys_readahead() seems to get that wrong?
  204. */
  205. if (start >= i_size_read(inode)) {
  206. zero_user_page(page, 0, PAGE_SIZE, KM_USER0);
  207. SetPageUptodate(page);
  208. ret = 0;
  209. goto out_alloc;
  210. }
  211. ret = ocfs2_data_lock_with_page(inode, 0, page);
  212. if (ret != 0) {
  213. if (ret == AOP_TRUNCATED_PAGE)
  214. unlock = 0;
  215. mlog_errno(ret);
  216. goto out_alloc;
  217. }
  218. ret = block_read_full_page(page, ocfs2_get_block);
  219. unlock = 0;
  220. ocfs2_data_unlock(inode, 0);
  221. out_alloc:
  222. up_read(&OCFS2_I(inode)->ip_alloc_sem);
  223. out_meta_unlock:
  224. ocfs2_meta_unlock(inode, 0);
  225. out:
  226. if (unlock)
  227. unlock_page(page);
  228. mlog_exit(ret);
  229. return ret;
  230. }
  231. /* Note: Because we don't support holes, our allocation has
  232. * already happened (allocation writes zeros to the file data)
  233. * so we don't have to worry about ordered writes in
  234. * ocfs2_writepage.
  235. *
  236. * ->writepage is called during the process of invalidating the page cache
  237. * during blocked lock processing. It can't block on any cluster locks
  238. * to during block mapping. It's relying on the fact that the block
  239. * mapping can't have disappeared under the dirty pages that it is
  240. * being asked to write back.
  241. */
  242. static int ocfs2_writepage(struct page *page, struct writeback_control *wbc)
  243. {
  244. int ret;
  245. mlog_entry("(0x%p)\n", page);
  246. ret = block_write_full_page(page, ocfs2_get_block, wbc);
  247. mlog_exit(ret);
  248. return ret;
  249. }
  250. /*
  251. * This is called from ocfs2_write_zero_page() which has handled it's
  252. * own cluster locking and has ensured allocation exists for those
  253. * blocks to be written.
  254. */
  255. int ocfs2_prepare_write_nolock(struct inode *inode, struct page *page,
  256. unsigned from, unsigned to)
  257. {
  258. int ret;
  259. down_read(&OCFS2_I(inode)->ip_alloc_sem);
  260. ret = block_prepare_write(page, from, to, ocfs2_get_block);
  261. up_read(&OCFS2_I(inode)->ip_alloc_sem);
  262. return ret;
  263. }
  264. /* Taken from ext3. We don't necessarily need the full blown
  265. * functionality yet, but IMHO it's better to cut and paste the whole
  266. * thing so we can avoid introducing our own bugs (and easily pick up
  267. * their fixes when they happen) --Mark */
  268. int walk_page_buffers( handle_t *handle,
  269. struct buffer_head *head,
  270. unsigned from,
  271. unsigned to,
  272. int *partial,
  273. int (*fn)( handle_t *handle,
  274. struct buffer_head *bh))
  275. {
  276. struct buffer_head *bh;
  277. unsigned block_start, block_end;
  278. unsigned blocksize = head->b_size;
  279. int err, ret = 0;
  280. struct buffer_head *next;
  281. for ( bh = head, block_start = 0;
  282. ret == 0 && (bh != head || !block_start);
  283. block_start = block_end, bh = next)
  284. {
  285. next = bh->b_this_page;
  286. block_end = block_start + blocksize;
  287. if (block_end <= from || block_start >= to) {
  288. if (partial && !buffer_uptodate(bh))
  289. *partial = 1;
  290. continue;
  291. }
  292. err = (*fn)(handle, bh);
  293. if (!ret)
  294. ret = err;
  295. }
  296. return ret;
  297. }
  298. handle_t *ocfs2_start_walk_page_trans(struct inode *inode,
  299. struct page *page,
  300. unsigned from,
  301. unsigned to)
  302. {
  303. struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
  304. handle_t *handle = NULL;
  305. int ret = 0;
  306. handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
  307. if (!handle) {
  308. ret = -ENOMEM;
  309. mlog_errno(ret);
  310. goto out;
  311. }
  312. if (ocfs2_should_order_data(inode)) {
  313. ret = walk_page_buffers(handle,
  314. page_buffers(page),
  315. from, to, NULL,
  316. ocfs2_journal_dirty_data);
  317. if (ret < 0)
  318. mlog_errno(ret);
  319. }
  320. out:
  321. if (ret) {
  322. if (handle)
  323. ocfs2_commit_trans(osb, handle);
  324. handle = ERR_PTR(ret);
  325. }
  326. return handle;
  327. }
  328. static sector_t ocfs2_bmap(struct address_space *mapping, sector_t block)
  329. {
  330. sector_t status;
  331. u64 p_blkno = 0;
  332. int err = 0;
  333. struct inode *inode = mapping->host;
  334. mlog_entry("(block = %llu)\n", (unsigned long long)block);
  335. /* We don't need to lock journal system files, since they aren't
  336. * accessed concurrently from multiple nodes.
  337. */
  338. if (!INODE_JOURNAL(inode)) {
  339. err = ocfs2_meta_lock(inode, NULL, 0);
  340. if (err) {
  341. if (err != -ENOENT)
  342. mlog_errno(err);
  343. goto bail;
  344. }
  345. down_read(&OCFS2_I(inode)->ip_alloc_sem);
  346. }
  347. err = ocfs2_extent_map_get_blocks(inode, block, &p_blkno, NULL, NULL);
  348. if (!INODE_JOURNAL(inode)) {
  349. up_read(&OCFS2_I(inode)->ip_alloc_sem);
  350. ocfs2_meta_unlock(inode, 0);
  351. }
  352. if (err) {
  353. mlog(ML_ERROR, "get_blocks() failed, block = %llu\n",
  354. (unsigned long long)block);
  355. mlog_errno(err);
  356. goto bail;
  357. }
  358. bail:
  359. status = err ? 0 : p_blkno;
  360. mlog_exit((int)status);
  361. return status;
  362. }
  363. /*
  364. * TODO: Make this into a generic get_blocks function.
  365. *
  366. * From do_direct_io in direct-io.c:
  367. * "So what we do is to permit the ->get_blocks function to populate
  368. * bh.b_size with the size of IO which is permitted at this offset and
  369. * this i_blkbits."
  370. *
  371. * This function is called directly from get_more_blocks in direct-io.c.
  372. *
  373. * called like this: dio->get_blocks(dio->inode, fs_startblk,
  374. * fs_count, map_bh, dio->rw == WRITE);
  375. */
  376. static int ocfs2_direct_IO_get_blocks(struct inode *inode, sector_t iblock,
  377. struct buffer_head *bh_result, int create)
  378. {
  379. int ret;
  380. u64 p_blkno, inode_blocks, contig_blocks;
  381. unsigned int ext_flags;
  382. unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
  383. unsigned long max_blocks = bh_result->b_size >> inode->i_blkbits;
  384. /* This function won't even be called if the request isn't all
  385. * nicely aligned and of the right size, so there's no need
  386. * for us to check any of that. */
  387. inode_blocks = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
  388. /*
  389. * Any write past EOF is not allowed because we'd be extending.
  390. */
  391. if (create && (iblock + max_blocks) > inode_blocks) {
  392. ret = -EIO;
  393. goto bail;
  394. }
  395. /* This figures out the size of the next contiguous block, and
  396. * our logical offset */
  397. ret = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno,
  398. &contig_blocks, &ext_flags);
  399. if (ret) {
  400. mlog(ML_ERROR, "get_blocks() failed iblock=%llu\n",
  401. (unsigned long long)iblock);
  402. ret = -EIO;
  403. goto bail;
  404. }
  405. if (!ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)) && !p_blkno) {
  406. ocfs2_error(inode->i_sb,
  407. "Inode %llu has a hole at block %llu\n",
  408. (unsigned long long)OCFS2_I(inode)->ip_blkno,
  409. (unsigned long long)iblock);
  410. ret = -EROFS;
  411. goto bail;
  412. }
  413. /*
  414. * get_more_blocks() expects us to describe a hole by clearing
  415. * the mapped bit on bh_result().
  416. *
  417. * Consider an unwritten extent as a hole.
  418. */
  419. if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
  420. map_bh(bh_result, inode->i_sb, p_blkno);
  421. else {
  422. /*
  423. * ocfs2_prepare_inode_for_write() should have caught
  424. * the case where we'd be filling a hole and triggered
  425. * a buffered write instead.
  426. */
  427. if (create) {
  428. ret = -EIO;
  429. mlog_errno(ret);
  430. goto bail;
  431. }
  432. clear_buffer_mapped(bh_result);
  433. }
  434. /* make sure we don't map more than max_blocks blocks here as
  435. that's all the kernel will handle at this point. */
  436. if (max_blocks < contig_blocks)
  437. contig_blocks = max_blocks;
  438. bh_result->b_size = contig_blocks << blocksize_bits;
  439. bail:
  440. return ret;
  441. }
  442. /*
  443. * ocfs2_dio_end_io is called by the dio core when a dio is finished. We're
  444. * particularly interested in the aio/dio case. Like the core uses
  445. * i_alloc_sem, we use the rw_lock DLM lock to protect io on one node from
  446. * truncation on another.
  447. */
  448. static void ocfs2_dio_end_io(struct kiocb *iocb,
  449. loff_t offset,
  450. ssize_t bytes,
  451. void *private)
  452. {
  453. struct inode *inode = iocb->ki_filp->f_path.dentry->d_inode;
  454. int level;
  455. /* this io's submitter should not have unlocked this before we could */
  456. BUG_ON(!ocfs2_iocb_is_rw_locked(iocb));
  457. ocfs2_iocb_clear_rw_locked(iocb);
  458. level = ocfs2_iocb_rw_locked_level(iocb);
  459. if (!level)
  460. up_read(&inode->i_alloc_sem);
  461. ocfs2_rw_unlock(inode, level);
  462. }
  463. /*
  464. * ocfs2_invalidatepage() and ocfs2_releasepage() are shamelessly stolen
  465. * from ext3. PageChecked() bits have been removed as OCFS2 does not
  466. * do journalled data.
  467. */
  468. static void ocfs2_invalidatepage(struct page *page, unsigned long offset)
  469. {
  470. journal_t *journal = OCFS2_SB(page->mapping->host->i_sb)->journal->j_journal;
  471. journal_invalidatepage(journal, page, offset);
  472. }
  473. static int ocfs2_releasepage(struct page *page, gfp_t wait)
  474. {
  475. journal_t *journal = OCFS2_SB(page->mapping->host->i_sb)->journal->j_journal;
  476. if (!page_has_buffers(page))
  477. return 0;
  478. return journal_try_to_free_buffers(journal, page, wait);
  479. }
  480. static ssize_t ocfs2_direct_IO(int rw,
  481. struct kiocb *iocb,
  482. const struct iovec *iov,
  483. loff_t offset,
  484. unsigned long nr_segs)
  485. {
  486. struct file *file = iocb->ki_filp;
  487. struct inode *inode = file->f_path.dentry->d_inode->i_mapping->host;
  488. int ret;
  489. mlog_entry_void();
  490. if (!ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb))) {
  491. /*
  492. * We get PR data locks even for O_DIRECT. This
  493. * allows concurrent O_DIRECT I/O but doesn't let
  494. * O_DIRECT with extending and buffered zeroing writes
  495. * race. If they did race then the buffered zeroing
  496. * could be written back after the O_DIRECT I/O. It's
  497. * one thing to tell people not to mix buffered and
  498. * O_DIRECT writes, but expecting them to understand
  499. * that file extension is also an implicit buffered
  500. * write is too much. By getting the PR we force
  501. * writeback of the buffered zeroing before
  502. * proceeding.
  503. */
  504. ret = ocfs2_data_lock(inode, 0);
  505. if (ret < 0) {
  506. mlog_errno(ret);
  507. goto out;
  508. }
  509. ocfs2_data_unlock(inode, 0);
  510. }
  511. ret = blockdev_direct_IO_no_locking(rw, iocb, inode,
  512. inode->i_sb->s_bdev, iov, offset,
  513. nr_segs,
  514. ocfs2_direct_IO_get_blocks,
  515. ocfs2_dio_end_io);
  516. out:
  517. mlog_exit(ret);
  518. return ret;
  519. }
  520. static void ocfs2_figure_cluster_boundaries(struct ocfs2_super *osb,
  521. u32 cpos,
  522. unsigned int *start,
  523. unsigned int *end)
  524. {
  525. unsigned int cluster_start = 0, cluster_end = PAGE_CACHE_SIZE;
  526. if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits)) {
  527. unsigned int cpp;
  528. cpp = 1 << (PAGE_CACHE_SHIFT - osb->s_clustersize_bits);
  529. cluster_start = cpos % cpp;
  530. cluster_start = cluster_start << osb->s_clustersize_bits;
  531. cluster_end = cluster_start + osb->s_clustersize;
  532. }
  533. BUG_ON(cluster_start > PAGE_SIZE);
  534. BUG_ON(cluster_end > PAGE_SIZE);
  535. if (start)
  536. *start = cluster_start;
  537. if (end)
  538. *end = cluster_end;
  539. }
  540. /*
  541. * 'from' and 'to' are the region in the page to avoid zeroing.
  542. *
  543. * If pagesize > clustersize, this function will avoid zeroing outside
  544. * of the cluster boundary.
  545. *
  546. * from == to == 0 is code for "zero the entire cluster region"
  547. */
  548. static void ocfs2_clear_page_regions(struct page *page,
  549. struct ocfs2_super *osb, u32 cpos,
  550. unsigned from, unsigned to)
  551. {
  552. void *kaddr;
  553. unsigned int cluster_start, cluster_end;
  554. ocfs2_figure_cluster_boundaries(osb, cpos, &cluster_start, &cluster_end);
  555. kaddr = kmap_atomic(page, KM_USER0);
  556. if (from || to) {
  557. if (from > cluster_start)
  558. memset(kaddr + cluster_start, 0, from - cluster_start);
  559. if (to < cluster_end)
  560. memset(kaddr + to, 0, cluster_end - to);
  561. } else {
  562. memset(kaddr + cluster_start, 0, cluster_end - cluster_start);
  563. }
  564. kunmap_atomic(kaddr, KM_USER0);
  565. }
  566. /*
  567. * Some of this taken from block_prepare_write(). We already have our
  568. * mapping by now though, and the entire write will be allocating or
  569. * it won't, so not much need to use BH_New.
  570. *
  571. * This will also skip zeroing, which is handled externally.
  572. */
  573. int ocfs2_map_page_blocks(struct page *page, u64 *p_blkno,
  574. struct inode *inode, unsigned int from,
  575. unsigned int to, int new)
  576. {
  577. int ret = 0;
  578. struct buffer_head *head, *bh, *wait[2], **wait_bh = wait;
  579. unsigned int block_end, block_start;
  580. unsigned int bsize = 1 << inode->i_blkbits;
  581. if (!page_has_buffers(page))
  582. create_empty_buffers(page, bsize, 0);
  583. head = page_buffers(page);
  584. for (bh = head, block_start = 0; bh != head || !block_start;
  585. bh = bh->b_this_page, block_start += bsize) {
  586. block_end = block_start + bsize;
  587. clear_buffer_new(bh);
  588. /*
  589. * Ignore blocks outside of our i/o range -
  590. * they may belong to unallocated clusters.
  591. */
  592. if (block_start >= to || block_end <= from) {
  593. if (PageUptodate(page))
  594. set_buffer_uptodate(bh);
  595. continue;
  596. }
  597. /*
  598. * For an allocating write with cluster size >= page
  599. * size, we always write the entire page.
  600. */
  601. if (new)
  602. set_buffer_new(bh);
  603. if (!buffer_mapped(bh)) {
  604. map_bh(bh, inode->i_sb, *p_blkno);
  605. unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
  606. }
  607. if (PageUptodate(page)) {
  608. if (!buffer_uptodate(bh))
  609. set_buffer_uptodate(bh);
  610. } else if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
  611. (block_start < from || block_end > to)) {
  612. ll_rw_block(READ, 1, &bh);
  613. *wait_bh++=bh;
  614. }
  615. *p_blkno = *p_blkno + 1;
  616. }
  617. /*
  618. * If we issued read requests - let them complete.
  619. */
  620. while(wait_bh > wait) {
  621. wait_on_buffer(*--wait_bh);
  622. if (!buffer_uptodate(*wait_bh))
  623. ret = -EIO;
  624. }
  625. if (ret == 0 || !new)
  626. return ret;
  627. /*
  628. * If we get -EIO above, zero out any newly allocated blocks
  629. * to avoid exposing stale data.
  630. */
  631. bh = head;
  632. block_start = 0;
  633. do {
  634. void *kaddr;
  635. block_end = block_start + bsize;
  636. if (block_end <= from)
  637. goto next_bh;
  638. if (block_start >= to)
  639. break;
  640. kaddr = kmap_atomic(page, KM_USER0);
  641. memset(kaddr+block_start, 0, bh->b_size);
  642. flush_dcache_page(page);
  643. kunmap_atomic(kaddr, KM_USER0);
  644. set_buffer_uptodate(bh);
  645. mark_buffer_dirty(bh);
  646. next_bh:
  647. block_start = block_end;
  648. bh = bh->b_this_page;
  649. } while (bh != head);
  650. return ret;
  651. }
  652. #if (PAGE_CACHE_SIZE >= OCFS2_MAX_CLUSTERSIZE)
  653. #define OCFS2_MAX_CTXT_PAGES 1
  654. #else
  655. #define OCFS2_MAX_CTXT_PAGES (OCFS2_MAX_CLUSTERSIZE / PAGE_CACHE_SIZE)
  656. #endif
  657. #define OCFS2_MAX_CLUSTERS_PER_PAGE (PAGE_CACHE_SIZE / OCFS2_MIN_CLUSTERSIZE)
  658. /*
  659. * Describe the state of a single cluster to be written to.
  660. */
  661. struct ocfs2_write_cluster_desc {
  662. u32 c_cpos;
  663. u32 c_phys;
  664. /*
  665. * Give this a unique field because c_phys eventually gets
  666. * filled.
  667. */
  668. unsigned c_new;
  669. };
  670. struct ocfs2_write_ctxt {
  671. /* Logical cluster position / len of write */
  672. u32 w_cpos;
  673. u32 w_clen;
  674. struct ocfs2_write_cluster_desc w_desc[OCFS2_MAX_CLUSTERS_PER_PAGE];
  675. /*
  676. * This is true if page_size > cluster_size.
  677. *
  678. * It triggers a set of special cases during write which might
  679. * have to deal with allocating writes to partial pages.
  680. */
  681. unsigned int w_large_pages;
  682. /*
  683. * Pages involved in this write.
  684. *
  685. * w_target_page is the page being written to by the user.
  686. *
  687. * w_pages is an array of pages which always contains
  688. * w_target_page, and in the case of an allocating write with
  689. * page_size < cluster size, it will contain zero'd and mapped
  690. * pages adjacent to w_target_page which need to be written
  691. * out in so that future reads from that region will get
  692. * zero's.
  693. */
  694. struct page *w_pages[OCFS2_MAX_CTXT_PAGES];
  695. unsigned int w_num_pages;
  696. struct page *w_target_page;
  697. /*
  698. * ocfs2_write_end() uses this to know what the real range to
  699. * write in the target should be.
  700. */
  701. unsigned int w_target_from;
  702. unsigned int w_target_to;
  703. /*
  704. * We could use journal_current_handle() but this is cleaner,
  705. * IMHO -Mark
  706. */
  707. handle_t *w_handle;
  708. struct buffer_head *w_di_bh;
  709. };
  710. static void ocfs2_free_write_ctxt(struct ocfs2_write_ctxt *wc)
  711. {
  712. int i;
  713. for(i = 0; i < wc->w_num_pages; i++) {
  714. if (wc->w_pages[i] == NULL)
  715. continue;
  716. unlock_page(wc->w_pages[i]);
  717. mark_page_accessed(wc->w_pages[i]);
  718. page_cache_release(wc->w_pages[i]);
  719. }
  720. brelse(wc->w_di_bh);
  721. kfree(wc);
  722. }
  723. static int ocfs2_alloc_write_ctxt(struct ocfs2_write_ctxt **wcp,
  724. struct ocfs2_super *osb, loff_t pos,
  725. unsigned len, struct buffer_head *di_bh)
  726. {
  727. struct ocfs2_write_ctxt *wc;
  728. wc = kzalloc(sizeof(struct ocfs2_write_ctxt), GFP_NOFS);
  729. if (!wc)
  730. return -ENOMEM;
  731. wc->w_cpos = pos >> osb->s_clustersize_bits;
  732. wc->w_clen = ocfs2_clusters_for_bytes(osb->sb, len);
  733. get_bh(di_bh);
  734. wc->w_di_bh = di_bh;
  735. if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits))
  736. wc->w_large_pages = 1;
  737. else
  738. wc->w_large_pages = 0;
  739. *wcp = wc;
  740. return 0;
  741. }
  742. /*
  743. * If a page has any new buffers, zero them out here, and mark them uptodate
  744. * and dirty so they'll be written out (in order to prevent uninitialised
  745. * block data from leaking). And clear the new bit.
  746. */
  747. static void ocfs2_zero_new_buffers(struct page *page, unsigned from, unsigned to)
  748. {
  749. unsigned int block_start, block_end;
  750. struct buffer_head *head, *bh;
  751. BUG_ON(!PageLocked(page));
  752. if (!page_has_buffers(page))
  753. return;
  754. bh = head = page_buffers(page);
  755. block_start = 0;
  756. do {
  757. block_end = block_start + bh->b_size;
  758. if (buffer_new(bh)) {
  759. if (block_end > from && block_start < to) {
  760. if (!PageUptodate(page)) {
  761. unsigned start, end;
  762. void *kaddr;
  763. start = max(from, block_start);
  764. end = min(to, block_end);
  765. kaddr = kmap_atomic(page, KM_USER0);
  766. memset(kaddr+start, 0, end - start);
  767. flush_dcache_page(page);
  768. kunmap_atomic(kaddr, KM_USER0);
  769. set_buffer_uptodate(bh);
  770. }
  771. clear_buffer_new(bh);
  772. mark_buffer_dirty(bh);
  773. }
  774. }
  775. block_start = block_end;
  776. bh = bh->b_this_page;
  777. } while (bh != head);
  778. }
  779. /*
  780. * Only called when we have a failure during allocating write to write
  781. * zero's to the newly allocated region.
  782. */
  783. static void ocfs2_write_failure(struct inode *inode,
  784. struct ocfs2_write_ctxt *wc,
  785. loff_t user_pos, unsigned user_len)
  786. {
  787. int i;
  788. unsigned from, to;
  789. struct page *tmppage;
  790. ocfs2_zero_new_buffers(wc->w_target_page, user_pos, user_len);
  791. if (wc->w_large_pages) {
  792. from = wc->w_target_from;
  793. to = wc->w_target_to;
  794. } else {
  795. from = 0;
  796. to = PAGE_CACHE_SIZE;
  797. }
  798. for(i = 0; i < wc->w_num_pages; i++) {
  799. tmppage = wc->w_pages[i];
  800. if (ocfs2_should_order_data(inode))
  801. walk_page_buffers(wc->w_handle, page_buffers(tmppage),
  802. from, to, NULL,
  803. ocfs2_journal_dirty_data);
  804. block_commit_write(tmppage, from, to);
  805. }
  806. }
  807. static int ocfs2_prepare_page_for_write(struct inode *inode, u64 *p_blkno,
  808. struct ocfs2_write_ctxt *wc,
  809. struct page *page, u32 cpos,
  810. loff_t user_pos, unsigned user_len,
  811. int new)
  812. {
  813. int ret;
  814. unsigned int map_from = 0, map_to = 0;
  815. unsigned int cluster_start, cluster_end;
  816. unsigned int user_data_from = 0, user_data_to = 0;
  817. ocfs2_figure_cluster_boundaries(OCFS2_SB(inode->i_sb), cpos,
  818. &cluster_start, &cluster_end);
  819. if (page == wc->w_target_page) {
  820. map_from = user_pos & (PAGE_CACHE_SIZE - 1);
  821. map_to = map_from + user_len;
  822. if (new)
  823. ret = ocfs2_map_page_blocks(page, p_blkno, inode,
  824. cluster_start, cluster_end,
  825. new);
  826. else
  827. ret = ocfs2_map_page_blocks(page, p_blkno, inode,
  828. map_from, map_to, new);
  829. if (ret) {
  830. mlog_errno(ret);
  831. goto out;
  832. }
  833. user_data_from = map_from;
  834. user_data_to = map_to;
  835. if (new) {
  836. map_from = cluster_start;
  837. map_to = cluster_end;
  838. }
  839. wc->w_target_from = map_from;
  840. wc->w_target_to = map_to;
  841. } else {
  842. /*
  843. * If we haven't allocated the new page yet, we
  844. * shouldn't be writing it out without copying user
  845. * data. This is likely a math error from the caller.
  846. */
  847. BUG_ON(!new);
  848. map_from = cluster_start;
  849. map_to = cluster_end;
  850. ret = ocfs2_map_page_blocks(page, p_blkno, inode,
  851. cluster_start, cluster_end, new);
  852. if (ret) {
  853. mlog_errno(ret);
  854. goto out;
  855. }
  856. }
  857. /*
  858. * Parts of newly allocated pages need to be zero'd.
  859. *
  860. * Above, we have also rewritten 'to' and 'from' - as far as
  861. * the rest of the function is concerned, the entire cluster
  862. * range inside of a page needs to be written.
  863. *
  864. * We can skip this if the page is up to date - it's already
  865. * been zero'd from being read in as a hole.
  866. */
  867. if (new && !PageUptodate(page))
  868. ocfs2_clear_page_regions(page, OCFS2_SB(inode->i_sb),
  869. cpos, user_data_from, user_data_to);
  870. flush_dcache_page(page);
  871. out:
  872. return ret;
  873. }
  874. /*
  875. * This function will only grab one clusters worth of pages.
  876. */
  877. static int ocfs2_grab_pages_for_write(struct address_space *mapping,
  878. struct ocfs2_write_ctxt *wc,
  879. u32 cpos, loff_t user_pos, int new,
  880. struct page *mmap_page)
  881. {
  882. int ret = 0, i;
  883. unsigned long start, target_index, index;
  884. struct inode *inode = mapping->host;
  885. target_index = user_pos >> PAGE_CACHE_SHIFT;
  886. /*
  887. * Figure out how many pages we'll be manipulating here. For
  888. * non allocating write, we just change the one
  889. * page. Otherwise, we'll need a whole clusters worth.
  890. */
  891. if (new) {
  892. wc->w_num_pages = ocfs2_pages_per_cluster(inode->i_sb);
  893. start = ocfs2_align_clusters_to_page_index(inode->i_sb, cpos);
  894. } else {
  895. wc->w_num_pages = 1;
  896. start = target_index;
  897. }
  898. for(i = 0; i < wc->w_num_pages; i++) {
  899. index = start + i;
  900. if (index == target_index && mmap_page) {
  901. /*
  902. * ocfs2_pagemkwrite() is a little different
  903. * and wants us to directly use the page
  904. * passed in.
  905. */
  906. lock_page(mmap_page);
  907. if (mmap_page->mapping != mapping) {
  908. unlock_page(mmap_page);
  909. /*
  910. * Sanity check - the locking in
  911. * ocfs2_pagemkwrite() should ensure
  912. * that this code doesn't trigger.
  913. */
  914. ret = -EINVAL;
  915. mlog_errno(ret);
  916. goto out;
  917. }
  918. page_cache_get(mmap_page);
  919. wc->w_pages[i] = mmap_page;
  920. } else {
  921. wc->w_pages[i] = find_or_create_page(mapping, index,
  922. GFP_NOFS);
  923. if (!wc->w_pages[i]) {
  924. ret = -ENOMEM;
  925. mlog_errno(ret);
  926. goto out;
  927. }
  928. }
  929. if (index == target_index)
  930. wc->w_target_page = wc->w_pages[i];
  931. }
  932. out:
  933. return ret;
  934. }
  935. /*
  936. * Prepare a single cluster for write one cluster into the file.
  937. */
  938. static int ocfs2_write_cluster(struct address_space *mapping,
  939. u32 phys, struct ocfs2_alloc_context *data_ac,
  940. struct ocfs2_alloc_context *meta_ac,
  941. struct ocfs2_write_ctxt *wc, u32 cpos,
  942. loff_t user_pos, unsigned user_len)
  943. {
  944. int ret, i, new;
  945. u64 v_blkno, p_blkno;
  946. struct inode *inode = mapping->host;
  947. new = phys == 0 ? 1 : 0;
  948. if (new) {
  949. u32 tmp_pos;
  950. /*
  951. * This is safe to call with the page locks - it won't take
  952. * any additional semaphores or cluster locks.
  953. */
  954. tmp_pos = cpos;
  955. ret = ocfs2_do_extend_allocation(OCFS2_SB(inode->i_sb), inode,
  956. &tmp_pos, 1, wc->w_di_bh,
  957. wc->w_handle, data_ac,
  958. meta_ac, NULL);
  959. /*
  960. * This shouldn't happen because we must have already
  961. * calculated the correct meta data allocation required. The
  962. * internal tree allocation code should know how to increase
  963. * transaction credits itself.
  964. *
  965. * If need be, we could handle -EAGAIN for a
  966. * RESTART_TRANS here.
  967. */
  968. mlog_bug_on_msg(ret == -EAGAIN,
  969. "Inode %llu: EAGAIN return during allocation.\n",
  970. (unsigned long long)OCFS2_I(inode)->ip_blkno);
  971. if (ret < 0) {
  972. mlog_errno(ret);
  973. goto out;
  974. }
  975. v_blkno = ocfs2_clusters_to_blocks(inode->i_sb, cpos);
  976. } else {
  977. v_blkno = user_pos >> inode->i_sb->s_blocksize_bits;
  978. }
  979. /*
  980. * The only reason this should fail is due to an inability to
  981. * find the extent added.
  982. */
  983. ret = ocfs2_extent_map_get_blocks(inode, v_blkno, &p_blkno, NULL,
  984. NULL);
  985. if (ret < 0) {
  986. ocfs2_error(inode->i_sb, "Corrupting extend for inode %llu, "
  987. "at logical block %llu",
  988. (unsigned long long)OCFS2_I(inode)->ip_blkno,
  989. (unsigned long long)v_blkno);
  990. goto out;
  991. }
  992. BUG_ON(p_blkno == 0);
  993. for(i = 0; i < wc->w_num_pages; i++) {
  994. int tmpret;
  995. tmpret = ocfs2_prepare_page_for_write(inode, &p_blkno, wc,
  996. wc->w_pages[i], cpos,
  997. user_pos, user_len, new);
  998. if (tmpret) {
  999. mlog_errno(tmpret);
  1000. if (ret == 0)
  1001. tmpret = ret;
  1002. }
  1003. }
  1004. /*
  1005. * We only have cleanup to do in case of allocating write.
  1006. */
  1007. if (ret && new)
  1008. ocfs2_write_failure(inode, wc, user_pos, user_len);
  1009. out:
  1010. return ret;
  1011. }
  1012. /*
  1013. * ocfs2_write_end() wants to know which parts of the target page it
  1014. * should complete the write on. It's easiest to compute them ahead of
  1015. * time when a more complete view of the write is available.
  1016. */
  1017. static void ocfs2_set_target_boundaries(struct ocfs2_super *osb,
  1018. struct ocfs2_write_ctxt *wc,
  1019. loff_t pos, unsigned len, int alloc)
  1020. {
  1021. struct ocfs2_write_cluster_desc *desc;
  1022. wc->w_target_from = pos & (PAGE_CACHE_SIZE - 1);
  1023. wc->w_target_to = wc->w_target_from + len;
  1024. if (alloc == 0)
  1025. return;
  1026. /*
  1027. * Allocating write - we may have different boundaries based
  1028. * on page size and cluster size.
  1029. *
  1030. * NOTE: We can no longer compute one value from the other as
  1031. * the actual write length and user provided length may be
  1032. * different.
  1033. */
  1034. if (wc->w_large_pages) {
  1035. /*
  1036. * We only care about the 1st and last cluster within
  1037. * our range and whether they are holes or not. Either
  1038. * value may be extended out to the start/end of a
  1039. * newly allocated cluster.
  1040. */
  1041. desc = &wc->w_desc[0];
  1042. if (desc->c_new)
  1043. ocfs2_figure_cluster_boundaries(osb,
  1044. desc->c_cpos,
  1045. &wc->w_target_from,
  1046. NULL);
  1047. desc = &wc->w_desc[wc->w_clen - 1];
  1048. if (desc->c_new)
  1049. ocfs2_figure_cluster_boundaries(osb,
  1050. desc->c_cpos,
  1051. NULL,
  1052. &wc->w_target_to);
  1053. } else {
  1054. wc->w_target_from = 0;
  1055. wc->w_target_to = PAGE_CACHE_SIZE;
  1056. }
  1057. }
  1058. int ocfs2_write_begin_nolock(struct address_space *mapping,
  1059. loff_t pos, unsigned len, unsigned flags,
  1060. struct page **pagep, void **fsdata,
  1061. struct buffer_head *di_bh, struct page *mmap_page)
  1062. {
  1063. int ret, i, credits = OCFS2_INODE_UPDATE_CREDITS;
  1064. unsigned int num_clusters = 0, clusters_to_alloc = 0;
  1065. u32 phys = 0;
  1066. struct ocfs2_write_ctxt *wc;
  1067. struct inode *inode = mapping->host;
  1068. struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
  1069. struct ocfs2_dinode *di;
  1070. struct ocfs2_alloc_context *data_ac = NULL;
  1071. struct ocfs2_alloc_context *meta_ac = NULL;
  1072. handle_t *handle;
  1073. struct ocfs2_write_cluster_desc *desc;
  1074. ret = ocfs2_alloc_write_ctxt(&wc, osb, pos, len, di_bh);
  1075. if (ret) {
  1076. mlog_errno(ret);
  1077. return ret;
  1078. }
  1079. di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
  1080. for (i = 0; i < wc->w_clen; i++) {
  1081. desc = &wc->w_desc[i];
  1082. desc->c_cpos = wc->w_cpos + i;
  1083. if (num_clusters == 0) {
  1084. ret = ocfs2_get_clusters(inode, desc->c_cpos, &phys,
  1085. &num_clusters, NULL);
  1086. if (ret) {
  1087. mlog_errno(ret);
  1088. goto out;
  1089. }
  1090. } else if (phys) {
  1091. /*
  1092. * Only increment phys if it doesn't describe
  1093. * a hole.
  1094. */
  1095. phys++;
  1096. }
  1097. desc->c_phys = phys;
  1098. if (phys == 0) {
  1099. desc->c_new = 1;
  1100. clusters_to_alloc++;
  1101. }
  1102. num_clusters--;
  1103. }
  1104. /*
  1105. * We set w_target_from, w_target_to here so that
  1106. * ocfs2_write_end() knows which range in the target page to
  1107. * write out. An allocation requires that we write the entire
  1108. * cluster range.
  1109. */
  1110. if (clusters_to_alloc > 0) {
  1111. /*
  1112. * XXX: We are stretching the limits of
  1113. * ocfs2_lock_allocators(). It greately over-estimates
  1114. * the work to be done.
  1115. */
  1116. ret = ocfs2_lock_allocators(inode, di, clusters_to_alloc,
  1117. &data_ac, &meta_ac);
  1118. if (ret) {
  1119. mlog_errno(ret);
  1120. goto out;
  1121. }
  1122. credits = ocfs2_calc_extend_credits(inode->i_sb, di,
  1123. clusters_to_alloc);
  1124. }
  1125. ocfs2_set_target_boundaries(osb, wc, pos, len, clusters_to_alloc);
  1126. handle = ocfs2_start_trans(osb, credits);
  1127. if (IS_ERR(handle)) {
  1128. ret = PTR_ERR(handle);
  1129. mlog_errno(ret);
  1130. goto out;
  1131. }
  1132. wc->w_handle = handle;
  1133. /*
  1134. * We don't want this to fail in ocfs2_write_end(), so do it
  1135. * here.
  1136. */
  1137. ret = ocfs2_journal_access(handle, inode, wc->w_di_bh,
  1138. OCFS2_JOURNAL_ACCESS_WRITE);
  1139. if (ret) {
  1140. mlog_errno(ret);
  1141. goto out_commit;
  1142. }
  1143. /*
  1144. * Fill our page array first. That way we've grabbed enough so
  1145. * that we can zero and flush if we error after adding the
  1146. * extent.
  1147. */
  1148. ret = ocfs2_grab_pages_for_write(mapping, wc, wc->w_cpos, pos,
  1149. clusters_to_alloc, mmap_page);
  1150. if (ret) {
  1151. mlog_errno(ret);
  1152. goto out_commit;
  1153. }
  1154. for (i = 0; i < wc->w_clen; i++) {
  1155. desc = &wc->w_desc[i];
  1156. ret = ocfs2_write_cluster(mapping, desc->c_phys, data_ac,
  1157. meta_ac, wc, desc->c_cpos, pos, len);
  1158. if (ret) {
  1159. mlog_errno(ret);
  1160. goto out_commit;
  1161. }
  1162. }
  1163. if (data_ac)
  1164. ocfs2_free_alloc_context(data_ac);
  1165. if (meta_ac)
  1166. ocfs2_free_alloc_context(meta_ac);
  1167. *pagep = wc->w_target_page;
  1168. *fsdata = wc;
  1169. return 0;
  1170. out_commit:
  1171. ocfs2_commit_trans(osb, handle);
  1172. out:
  1173. ocfs2_free_write_ctxt(wc);
  1174. if (data_ac)
  1175. ocfs2_free_alloc_context(data_ac);
  1176. if (meta_ac)
  1177. ocfs2_free_alloc_context(meta_ac);
  1178. return ret;
  1179. }
  1180. int ocfs2_write_begin(struct file *file, struct address_space *mapping,
  1181. loff_t pos, unsigned len, unsigned flags,
  1182. struct page **pagep, void **fsdata)
  1183. {
  1184. int ret;
  1185. struct buffer_head *di_bh = NULL;
  1186. struct inode *inode = mapping->host;
  1187. ret = ocfs2_meta_lock(inode, &di_bh, 1);
  1188. if (ret) {
  1189. mlog_errno(ret);
  1190. return ret;
  1191. }
  1192. /*
  1193. * Take alloc sem here to prevent concurrent lookups. That way
  1194. * the mapping, zeroing and tree manipulation within
  1195. * ocfs2_write() will be safe against ->readpage(). This
  1196. * should also serve to lock out allocation from a shared
  1197. * writeable region.
  1198. */
  1199. down_write(&OCFS2_I(inode)->ip_alloc_sem);
  1200. ret = ocfs2_data_lock(inode, 1);
  1201. if (ret) {
  1202. mlog_errno(ret);
  1203. goto out_fail;
  1204. }
  1205. ret = ocfs2_write_begin_nolock(mapping, pos, len, flags, pagep,
  1206. fsdata, di_bh, NULL);
  1207. if (ret) {
  1208. mlog_errno(ret);
  1209. goto out_fail_data;
  1210. }
  1211. brelse(di_bh);
  1212. return 0;
  1213. out_fail_data:
  1214. ocfs2_data_unlock(inode, 1);
  1215. out_fail:
  1216. up_write(&OCFS2_I(inode)->ip_alloc_sem);
  1217. brelse(di_bh);
  1218. ocfs2_meta_unlock(inode, 1);
  1219. return ret;
  1220. }
  1221. int ocfs2_write_end_nolock(struct address_space *mapping,
  1222. loff_t pos, unsigned len, unsigned copied,
  1223. struct page *page, void *fsdata)
  1224. {
  1225. int i;
  1226. unsigned from, to, start = pos & (PAGE_CACHE_SIZE - 1);
  1227. struct inode *inode = mapping->host;
  1228. struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
  1229. struct ocfs2_write_ctxt *wc = fsdata;
  1230. struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
  1231. handle_t *handle = wc->w_handle;
  1232. struct page *tmppage;
  1233. if (unlikely(copied < len)) {
  1234. if (!PageUptodate(wc->w_target_page))
  1235. copied = 0;
  1236. ocfs2_zero_new_buffers(wc->w_target_page, start+copied,
  1237. start+len);
  1238. }
  1239. flush_dcache_page(wc->w_target_page);
  1240. for(i = 0; i < wc->w_num_pages; i++) {
  1241. tmppage = wc->w_pages[i];
  1242. if (tmppage == wc->w_target_page) {
  1243. from = wc->w_target_from;
  1244. to = wc->w_target_to;
  1245. BUG_ON(from > PAGE_CACHE_SIZE ||
  1246. to > PAGE_CACHE_SIZE ||
  1247. to < from);
  1248. } else {
  1249. /*
  1250. * Pages adjacent to the target (if any) imply
  1251. * a hole-filling write in which case we want
  1252. * to flush their entire range.
  1253. */
  1254. from = 0;
  1255. to = PAGE_CACHE_SIZE;
  1256. }
  1257. if (ocfs2_should_order_data(inode))
  1258. walk_page_buffers(wc->w_handle, page_buffers(tmppage),
  1259. from, to, NULL,
  1260. ocfs2_journal_dirty_data);
  1261. block_commit_write(tmppage, from, to);
  1262. }
  1263. pos += copied;
  1264. if (pos > inode->i_size) {
  1265. i_size_write(inode, pos);
  1266. mark_inode_dirty(inode);
  1267. }
  1268. inode->i_blocks = ocfs2_inode_sector_count(inode);
  1269. di->i_size = cpu_to_le64((u64)i_size_read(inode));
  1270. inode->i_mtime = inode->i_ctime = CURRENT_TIME;
  1271. di->i_mtime = di->i_ctime = cpu_to_le64(inode->i_mtime.tv_sec);
  1272. di->i_mtime_nsec = di->i_ctime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec);
  1273. ocfs2_journal_dirty(handle, wc->w_di_bh);
  1274. ocfs2_commit_trans(osb, handle);
  1275. ocfs2_free_write_ctxt(wc);
  1276. return copied;
  1277. }
  1278. int ocfs2_write_end(struct file *file, struct address_space *mapping,
  1279. loff_t pos, unsigned len, unsigned copied,
  1280. struct page *page, void *fsdata)
  1281. {
  1282. int ret;
  1283. struct inode *inode = mapping->host;
  1284. ret = ocfs2_write_end_nolock(mapping, pos, len, copied, page, fsdata);
  1285. ocfs2_data_unlock(inode, 1);
  1286. up_write(&OCFS2_I(inode)->ip_alloc_sem);
  1287. ocfs2_meta_unlock(inode, 1);
  1288. return ret;
  1289. }
  1290. const struct address_space_operations ocfs2_aops = {
  1291. .readpage = ocfs2_readpage,
  1292. .writepage = ocfs2_writepage,
  1293. .bmap = ocfs2_bmap,
  1294. .sync_page = block_sync_page,
  1295. .direct_IO = ocfs2_direct_IO,
  1296. .invalidatepage = ocfs2_invalidatepage,
  1297. .releasepage = ocfs2_releasepage,
  1298. .migratepage = buffer_migrate_page,
  1299. };