cpuset.c 77 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740
  1. /*
  2. * kernel/cpuset.c
  3. *
  4. * Processor and Memory placement constraints for sets of tasks.
  5. *
  6. * Copyright (C) 2003 BULL SA.
  7. * Copyright (C) 2004-2007 Silicon Graphics, Inc.
  8. * Copyright (C) 2006 Google, Inc
  9. *
  10. * Portions derived from Patrick Mochel's sysfs code.
  11. * sysfs is Copyright (c) 2001-3 Patrick Mochel
  12. *
  13. * 2003-10-10 Written by Simon Derr.
  14. * 2003-10-22 Updates by Stephen Hemminger.
  15. * 2004 May-July Rework by Paul Jackson.
  16. * 2006 Rework by Paul Menage to use generic cgroups
  17. * 2008 Rework of the scheduler domains and CPU hotplug handling
  18. * by Max Krasnyansky
  19. *
  20. * This file is subject to the terms and conditions of the GNU General Public
  21. * License. See the file COPYING in the main directory of the Linux
  22. * distribution for more details.
  23. */
  24. #include <linux/cpu.h>
  25. #include <linux/cpumask.h>
  26. #include <linux/cpuset.h>
  27. #include <linux/err.h>
  28. #include <linux/errno.h>
  29. #include <linux/file.h>
  30. #include <linux/fs.h>
  31. #include <linux/init.h>
  32. #include <linux/interrupt.h>
  33. #include <linux/kernel.h>
  34. #include <linux/kmod.h>
  35. #include <linux/list.h>
  36. #include <linux/mempolicy.h>
  37. #include <linux/mm.h>
  38. #include <linux/memory.h>
  39. #include <linux/export.h>
  40. #include <linux/mount.h>
  41. #include <linux/namei.h>
  42. #include <linux/pagemap.h>
  43. #include <linux/proc_fs.h>
  44. #include <linux/rcupdate.h>
  45. #include <linux/sched.h>
  46. #include <linux/seq_file.h>
  47. #include <linux/security.h>
  48. #include <linux/slab.h>
  49. #include <linux/spinlock.h>
  50. #include <linux/stat.h>
  51. #include <linux/string.h>
  52. #include <linux/time.h>
  53. #include <linux/backing-dev.h>
  54. #include <linux/sort.h>
  55. #include <asm/uaccess.h>
  56. #include <linux/atomic.h>
  57. #include <linux/mutex.h>
  58. #include <linux/workqueue.h>
  59. #include <linux/cgroup.h>
  60. #include <linux/wait.h>
  61. /*
  62. * Tracks how many cpusets are currently defined in system.
  63. * When there is only one cpuset (the root cpuset) we can
  64. * short circuit some hooks.
  65. */
  66. int number_of_cpusets __read_mostly;
  67. /* Forward declare cgroup structures */
  68. struct cgroup_subsys cpuset_subsys;
  69. /* See "Frequency meter" comments, below. */
  70. struct fmeter {
  71. int cnt; /* unprocessed events count */
  72. int val; /* most recent output value */
  73. time_t time; /* clock (secs) when val computed */
  74. spinlock_t lock; /* guards read or write of above */
  75. };
  76. struct cpuset {
  77. struct cgroup_subsys_state css;
  78. unsigned long flags; /* "unsigned long" so bitops work */
  79. cpumask_var_t cpus_allowed; /* CPUs allowed to tasks in cpuset */
  80. nodemask_t mems_allowed; /* Memory Nodes allowed to tasks */
  81. /*
  82. * This is old Memory Nodes tasks took on.
  83. *
  84. * - top_cpuset.old_mems_allowed is initialized to mems_allowed.
  85. * - A new cpuset's old_mems_allowed is initialized when some
  86. * task is moved into it.
  87. * - old_mems_allowed is used in cpuset_migrate_mm() when we change
  88. * cpuset.mems_allowed and have tasks' nodemask updated, and
  89. * then old_mems_allowed is updated to mems_allowed.
  90. */
  91. nodemask_t old_mems_allowed;
  92. struct fmeter fmeter; /* memory_pressure filter */
  93. /*
  94. * Tasks are being attached to this cpuset. Used to prevent
  95. * zeroing cpus/mems_allowed between ->can_attach() and ->attach().
  96. */
  97. int attach_in_progress;
  98. /* partition number for rebuild_sched_domains() */
  99. int pn;
  100. /* for custom sched domain */
  101. int relax_domain_level;
  102. };
  103. static inline struct cpuset *css_cs(struct cgroup_subsys_state *css)
  104. {
  105. return css ? container_of(css, struct cpuset, css) : NULL;
  106. }
  107. /* Retrieve the cpuset for a cgroup */
  108. static inline struct cpuset *cgroup_cs(struct cgroup *cgrp)
  109. {
  110. return css_cs(cgroup_css(cgrp, cpuset_subsys_id));
  111. }
  112. /* Retrieve the cpuset for a task */
  113. static inline struct cpuset *task_cs(struct task_struct *task)
  114. {
  115. return css_cs(task_css(task, cpuset_subsys_id));
  116. }
  117. static inline struct cpuset *parent_cs(struct cpuset *cs)
  118. {
  119. return css_cs(css_parent(&cs->css));
  120. }
  121. #ifdef CONFIG_NUMA
  122. static inline bool task_has_mempolicy(struct task_struct *task)
  123. {
  124. return task->mempolicy;
  125. }
  126. #else
  127. static inline bool task_has_mempolicy(struct task_struct *task)
  128. {
  129. return false;
  130. }
  131. #endif
  132. /* bits in struct cpuset flags field */
  133. typedef enum {
  134. CS_ONLINE,
  135. CS_CPU_EXCLUSIVE,
  136. CS_MEM_EXCLUSIVE,
  137. CS_MEM_HARDWALL,
  138. CS_MEMORY_MIGRATE,
  139. CS_SCHED_LOAD_BALANCE,
  140. CS_SPREAD_PAGE,
  141. CS_SPREAD_SLAB,
  142. } cpuset_flagbits_t;
  143. /* convenient tests for these bits */
  144. static inline bool is_cpuset_online(const struct cpuset *cs)
  145. {
  146. return test_bit(CS_ONLINE, &cs->flags);
  147. }
  148. static inline int is_cpu_exclusive(const struct cpuset *cs)
  149. {
  150. return test_bit(CS_CPU_EXCLUSIVE, &cs->flags);
  151. }
  152. static inline int is_mem_exclusive(const struct cpuset *cs)
  153. {
  154. return test_bit(CS_MEM_EXCLUSIVE, &cs->flags);
  155. }
  156. static inline int is_mem_hardwall(const struct cpuset *cs)
  157. {
  158. return test_bit(CS_MEM_HARDWALL, &cs->flags);
  159. }
  160. static inline int is_sched_load_balance(const struct cpuset *cs)
  161. {
  162. return test_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
  163. }
  164. static inline int is_memory_migrate(const struct cpuset *cs)
  165. {
  166. return test_bit(CS_MEMORY_MIGRATE, &cs->flags);
  167. }
  168. static inline int is_spread_page(const struct cpuset *cs)
  169. {
  170. return test_bit(CS_SPREAD_PAGE, &cs->flags);
  171. }
  172. static inline int is_spread_slab(const struct cpuset *cs)
  173. {
  174. return test_bit(CS_SPREAD_SLAB, &cs->flags);
  175. }
  176. static struct cpuset top_cpuset = {
  177. .flags = ((1 << CS_ONLINE) | (1 << CS_CPU_EXCLUSIVE) |
  178. (1 << CS_MEM_EXCLUSIVE)),
  179. };
  180. /**
  181. * cpuset_for_each_child - traverse online children of a cpuset
  182. * @child_cs: loop cursor pointing to the current child
  183. * @pos_css: used for iteration
  184. * @parent_cs: target cpuset to walk children of
  185. *
  186. * Walk @child_cs through the online children of @parent_cs. Must be used
  187. * with RCU read locked.
  188. */
  189. #define cpuset_for_each_child(child_cs, pos_css, parent_cs) \
  190. css_for_each_child((pos_css), &(parent_cs)->css) \
  191. if (is_cpuset_online(((child_cs) = css_cs((pos_css)))))
  192. /**
  193. * cpuset_for_each_descendant_pre - pre-order walk of a cpuset's descendants
  194. * @des_cs: loop cursor pointing to the current descendant
  195. * @pos_css: used for iteration
  196. * @root_cs: target cpuset to walk ancestor of
  197. *
  198. * Walk @des_cs through the online descendants of @root_cs. Must be used
  199. * with RCU read locked. The caller may modify @pos_css by calling
  200. * css_rightmost_descendant() to skip subtree.
  201. */
  202. #define cpuset_for_each_descendant_pre(des_cs, pos_css, root_cs) \
  203. css_for_each_descendant_pre((pos_css), &(root_cs)->css) \
  204. if (is_cpuset_online(((des_cs) = css_cs((pos_css)))))
  205. /*
  206. * There are two global mutexes guarding cpuset structures - cpuset_mutex
  207. * and callback_mutex. The latter may nest inside the former. We also
  208. * require taking task_lock() when dereferencing a task's cpuset pointer.
  209. * See "The task_lock() exception", at the end of this comment.
  210. *
  211. * A task must hold both mutexes to modify cpusets. If a task holds
  212. * cpuset_mutex, then it blocks others wanting that mutex, ensuring that it
  213. * is the only task able to also acquire callback_mutex and be able to
  214. * modify cpusets. It can perform various checks on the cpuset structure
  215. * first, knowing nothing will change. It can also allocate memory while
  216. * just holding cpuset_mutex. While it is performing these checks, various
  217. * callback routines can briefly acquire callback_mutex to query cpusets.
  218. * Once it is ready to make the changes, it takes callback_mutex, blocking
  219. * everyone else.
  220. *
  221. * Calls to the kernel memory allocator can not be made while holding
  222. * callback_mutex, as that would risk double tripping on callback_mutex
  223. * from one of the callbacks into the cpuset code from within
  224. * __alloc_pages().
  225. *
  226. * If a task is only holding callback_mutex, then it has read-only
  227. * access to cpusets.
  228. *
  229. * Now, the task_struct fields mems_allowed and mempolicy may be changed
  230. * by other task, we use alloc_lock in the task_struct fields to protect
  231. * them.
  232. *
  233. * The cpuset_common_file_read() handlers only hold callback_mutex across
  234. * small pieces of code, such as when reading out possibly multi-word
  235. * cpumasks and nodemasks.
  236. *
  237. * Accessing a task's cpuset should be done in accordance with the
  238. * guidelines for accessing subsystem state in kernel/cgroup.c
  239. */
  240. static DEFINE_MUTEX(cpuset_mutex);
  241. static DEFINE_MUTEX(callback_mutex);
  242. /*
  243. * CPU / memory hotplug is handled asynchronously.
  244. */
  245. static void cpuset_hotplug_workfn(struct work_struct *work);
  246. static DECLARE_WORK(cpuset_hotplug_work, cpuset_hotplug_workfn);
  247. static DECLARE_WAIT_QUEUE_HEAD(cpuset_attach_wq);
  248. /*
  249. * This is ugly, but preserves the userspace API for existing cpuset
  250. * users. If someone tries to mount the "cpuset" filesystem, we
  251. * silently switch it to mount "cgroup" instead
  252. */
  253. static struct dentry *cpuset_mount(struct file_system_type *fs_type,
  254. int flags, const char *unused_dev_name, void *data)
  255. {
  256. struct file_system_type *cgroup_fs = get_fs_type("cgroup");
  257. struct dentry *ret = ERR_PTR(-ENODEV);
  258. if (cgroup_fs) {
  259. char mountopts[] =
  260. "cpuset,noprefix,"
  261. "release_agent=/sbin/cpuset_release_agent";
  262. ret = cgroup_fs->mount(cgroup_fs, flags,
  263. unused_dev_name, mountopts);
  264. put_filesystem(cgroup_fs);
  265. }
  266. return ret;
  267. }
  268. static struct file_system_type cpuset_fs_type = {
  269. .name = "cpuset",
  270. .mount = cpuset_mount,
  271. };
  272. /*
  273. * Return in pmask the portion of a cpusets's cpus_allowed that
  274. * are online. If none are online, walk up the cpuset hierarchy
  275. * until we find one that does have some online cpus. The top
  276. * cpuset always has some cpus online.
  277. *
  278. * One way or another, we guarantee to return some non-empty subset
  279. * of cpu_online_mask.
  280. *
  281. * Call with callback_mutex held.
  282. */
  283. static void guarantee_online_cpus(struct cpuset *cs, struct cpumask *pmask)
  284. {
  285. while (!cpumask_intersects(cs->cpus_allowed, cpu_online_mask))
  286. cs = parent_cs(cs);
  287. cpumask_and(pmask, cs->cpus_allowed, cpu_online_mask);
  288. }
  289. /*
  290. * Return in *pmask the portion of a cpusets's mems_allowed that
  291. * are online, with memory. If none are online with memory, walk
  292. * up the cpuset hierarchy until we find one that does have some
  293. * online mems. The top cpuset always has some mems online.
  294. *
  295. * One way or another, we guarantee to return some non-empty subset
  296. * of node_states[N_MEMORY].
  297. *
  298. * Call with callback_mutex held.
  299. */
  300. static void guarantee_online_mems(struct cpuset *cs, nodemask_t *pmask)
  301. {
  302. while (!nodes_intersects(cs->mems_allowed, node_states[N_MEMORY]))
  303. cs = parent_cs(cs);
  304. nodes_and(*pmask, cs->mems_allowed, node_states[N_MEMORY]);
  305. }
  306. /*
  307. * update task's spread flag if cpuset's page/slab spread flag is set
  308. *
  309. * Called with callback_mutex/cpuset_mutex held
  310. */
  311. static void cpuset_update_task_spread_flag(struct cpuset *cs,
  312. struct task_struct *tsk)
  313. {
  314. if (is_spread_page(cs))
  315. tsk->flags |= PF_SPREAD_PAGE;
  316. else
  317. tsk->flags &= ~PF_SPREAD_PAGE;
  318. if (is_spread_slab(cs))
  319. tsk->flags |= PF_SPREAD_SLAB;
  320. else
  321. tsk->flags &= ~PF_SPREAD_SLAB;
  322. }
  323. /*
  324. * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q?
  325. *
  326. * One cpuset is a subset of another if all its allowed CPUs and
  327. * Memory Nodes are a subset of the other, and its exclusive flags
  328. * are only set if the other's are set. Call holding cpuset_mutex.
  329. */
  330. static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q)
  331. {
  332. return cpumask_subset(p->cpus_allowed, q->cpus_allowed) &&
  333. nodes_subset(p->mems_allowed, q->mems_allowed) &&
  334. is_cpu_exclusive(p) <= is_cpu_exclusive(q) &&
  335. is_mem_exclusive(p) <= is_mem_exclusive(q);
  336. }
  337. /**
  338. * alloc_trial_cpuset - allocate a trial cpuset
  339. * @cs: the cpuset that the trial cpuset duplicates
  340. */
  341. static struct cpuset *alloc_trial_cpuset(struct cpuset *cs)
  342. {
  343. struct cpuset *trial;
  344. trial = kmemdup(cs, sizeof(*cs), GFP_KERNEL);
  345. if (!trial)
  346. return NULL;
  347. if (!alloc_cpumask_var(&trial->cpus_allowed, GFP_KERNEL)) {
  348. kfree(trial);
  349. return NULL;
  350. }
  351. cpumask_copy(trial->cpus_allowed, cs->cpus_allowed);
  352. return trial;
  353. }
  354. /**
  355. * free_trial_cpuset - free the trial cpuset
  356. * @trial: the trial cpuset to be freed
  357. */
  358. static void free_trial_cpuset(struct cpuset *trial)
  359. {
  360. free_cpumask_var(trial->cpus_allowed);
  361. kfree(trial);
  362. }
  363. /*
  364. * validate_change() - Used to validate that any proposed cpuset change
  365. * follows the structural rules for cpusets.
  366. *
  367. * If we replaced the flag and mask values of the current cpuset
  368. * (cur) with those values in the trial cpuset (trial), would
  369. * our various subset and exclusive rules still be valid? Presumes
  370. * cpuset_mutex held.
  371. *
  372. * 'cur' is the address of an actual, in-use cpuset. Operations
  373. * such as list traversal that depend on the actual address of the
  374. * cpuset in the list must use cur below, not trial.
  375. *
  376. * 'trial' is the address of bulk structure copy of cur, with
  377. * perhaps one or more of the fields cpus_allowed, mems_allowed,
  378. * or flags changed to new, trial values.
  379. *
  380. * Return 0 if valid, -errno if not.
  381. */
  382. static int validate_change(struct cpuset *cur, struct cpuset *trial)
  383. {
  384. struct cgroup_subsys_state *css;
  385. struct cpuset *c, *par;
  386. int ret;
  387. rcu_read_lock();
  388. /* Each of our child cpusets must be a subset of us */
  389. ret = -EBUSY;
  390. cpuset_for_each_child(c, css, cur)
  391. if (!is_cpuset_subset(c, trial))
  392. goto out;
  393. /* Remaining checks don't apply to root cpuset */
  394. ret = 0;
  395. if (cur == &top_cpuset)
  396. goto out;
  397. par = parent_cs(cur);
  398. /* We must be a subset of our parent cpuset */
  399. ret = -EACCES;
  400. if (!is_cpuset_subset(trial, par))
  401. goto out;
  402. /*
  403. * If either I or some sibling (!= me) is exclusive, we can't
  404. * overlap
  405. */
  406. ret = -EINVAL;
  407. cpuset_for_each_child(c, css, par) {
  408. if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) &&
  409. c != cur &&
  410. cpumask_intersects(trial->cpus_allowed, c->cpus_allowed))
  411. goto out;
  412. if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) &&
  413. c != cur &&
  414. nodes_intersects(trial->mems_allowed, c->mems_allowed))
  415. goto out;
  416. }
  417. /*
  418. * Cpusets with tasks - existing or newly being attached - can't
  419. * have empty cpus_allowed or mems_allowed.
  420. */
  421. ret = -ENOSPC;
  422. if ((cgroup_task_count(cur->css.cgroup) || cur->attach_in_progress) &&
  423. (cpumask_empty(trial->cpus_allowed) &&
  424. nodes_empty(trial->mems_allowed)))
  425. goto out;
  426. ret = 0;
  427. out:
  428. rcu_read_unlock();
  429. return ret;
  430. }
  431. #ifdef CONFIG_SMP
  432. /*
  433. * Helper routine for generate_sched_domains().
  434. * Do cpusets a, b have overlapping cpus_allowed masks?
  435. */
  436. static int cpusets_overlap(struct cpuset *a, struct cpuset *b)
  437. {
  438. return cpumask_intersects(a->cpus_allowed, b->cpus_allowed);
  439. }
  440. static void
  441. update_domain_attr(struct sched_domain_attr *dattr, struct cpuset *c)
  442. {
  443. if (dattr->relax_domain_level < c->relax_domain_level)
  444. dattr->relax_domain_level = c->relax_domain_level;
  445. return;
  446. }
  447. static void update_domain_attr_tree(struct sched_domain_attr *dattr,
  448. struct cpuset *root_cs)
  449. {
  450. struct cpuset *cp;
  451. struct cgroup_subsys_state *pos_css;
  452. rcu_read_lock();
  453. cpuset_for_each_descendant_pre(cp, pos_css, root_cs) {
  454. /* skip the whole subtree if @cp doesn't have any CPU */
  455. if (cpumask_empty(cp->cpus_allowed)) {
  456. pos_css = css_rightmost_descendant(pos_css);
  457. continue;
  458. }
  459. if (is_sched_load_balance(cp))
  460. update_domain_attr(dattr, cp);
  461. }
  462. rcu_read_unlock();
  463. }
  464. /*
  465. * generate_sched_domains()
  466. *
  467. * This function builds a partial partition of the systems CPUs
  468. * A 'partial partition' is a set of non-overlapping subsets whose
  469. * union is a subset of that set.
  470. * The output of this function needs to be passed to kernel/sched/core.c
  471. * partition_sched_domains() routine, which will rebuild the scheduler's
  472. * load balancing domains (sched domains) as specified by that partial
  473. * partition.
  474. *
  475. * See "What is sched_load_balance" in Documentation/cgroups/cpusets.txt
  476. * for a background explanation of this.
  477. *
  478. * Does not return errors, on the theory that the callers of this
  479. * routine would rather not worry about failures to rebuild sched
  480. * domains when operating in the severe memory shortage situations
  481. * that could cause allocation failures below.
  482. *
  483. * Must be called with cpuset_mutex held.
  484. *
  485. * The three key local variables below are:
  486. * q - a linked-list queue of cpuset pointers, used to implement a
  487. * top-down scan of all cpusets. This scan loads a pointer
  488. * to each cpuset marked is_sched_load_balance into the
  489. * array 'csa'. For our purposes, rebuilding the schedulers
  490. * sched domains, we can ignore !is_sched_load_balance cpusets.
  491. * csa - (for CpuSet Array) Array of pointers to all the cpusets
  492. * that need to be load balanced, for convenient iterative
  493. * access by the subsequent code that finds the best partition,
  494. * i.e the set of domains (subsets) of CPUs such that the
  495. * cpus_allowed of every cpuset marked is_sched_load_balance
  496. * is a subset of one of these domains, while there are as
  497. * many such domains as possible, each as small as possible.
  498. * doms - Conversion of 'csa' to an array of cpumasks, for passing to
  499. * the kernel/sched/core.c routine partition_sched_domains() in a
  500. * convenient format, that can be easily compared to the prior
  501. * value to determine what partition elements (sched domains)
  502. * were changed (added or removed.)
  503. *
  504. * Finding the best partition (set of domains):
  505. * The triple nested loops below over i, j, k scan over the
  506. * load balanced cpusets (using the array of cpuset pointers in
  507. * csa[]) looking for pairs of cpusets that have overlapping
  508. * cpus_allowed, but which don't have the same 'pn' partition
  509. * number and gives them in the same partition number. It keeps
  510. * looping on the 'restart' label until it can no longer find
  511. * any such pairs.
  512. *
  513. * The union of the cpus_allowed masks from the set of
  514. * all cpusets having the same 'pn' value then form the one
  515. * element of the partition (one sched domain) to be passed to
  516. * partition_sched_domains().
  517. */
  518. static int generate_sched_domains(cpumask_var_t **domains,
  519. struct sched_domain_attr **attributes)
  520. {
  521. struct cpuset *cp; /* scans q */
  522. struct cpuset **csa; /* array of all cpuset ptrs */
  523. int csn; /* how many cpuset ptrs in csa so far */
  524. int i, j, k; /* indices for partition finding loops */
  525. cpumask_var_t *doms; /* resulting partition; i.e. sched domains */
  526. struct sched_domain_attr *dattr; /* attributes for custom domains */
  527. int ndoms = 0; /* number of sched domains in result */
  528. int nslot; /* next empty doms[] struct cpumask slot */
  529. struct cgroup_subsys_state *pos_css;
  530. doms = NULL;
  531. dattr = NULL;
  532. csa = NULL;
  533. /* Special case for the 99% of systems with one, full, sched domain */
  534. if (is_sched_load_balance(&top_cpuset)) {
  535. ndoms = 1;
  536. doms = alloc_sched_domains(ndoms);
  537. if (!doms)
  538. goto done;
  539. dattr = kmalloc(sizeof(struct sched_domain_attr), GFP_KERNEL);
  540. if (dattr) {
  541. *dattr = SD_ATTR_INIT;
  542. update_domain_attr_tree(dattr, &top_cpuset);
  543. }
  544. cpumask_copy(doms[0], top_cpuset.cpus_allowed);
  545. goto done;
  546. }
  547. csa = kmalloc(number_of_cpusets * sizeof(cp), GFP_KERNEL);
  548. if (!csa)
  549. goto done;
  550. csn = 0;
  551. rcu_read_lock();
  552. cpuset_for_each_descendant_pre(cp, pos_css, &top_cpuset) {
  553. /*
  554. * Continue traversing beyond @cp iff @cp has some CPUs and
  555. * isn't load balancing. The former is obvious. The
  556. * latter: All child cpusets contain a subset of the
  557. * parent's cpus, so just skip them, and then we call
  558. * update_domain_attr_tree() to calc relax_domain_level of
  559. * the corresponding sched domain.
  560. */
  561. if (!cpumask_empty(cp->cpus_allowed) &&
  562. !is_sched_load_balance(cp))
  563. continue;
  564. if (is_sched_load_balance(cp))
  565. csa[csn++] = cp;
  566. /* skip @cp's subtree */
  567. pos_css = css_rightmost_descendant(pos_css);
  568. }
  569. rcu_read_unlock();
  570. for (i = 0; i < csn; i++)
  571. csa[i]->pn = i;
  572. ndoms = csn;
  573. restart:
  574. /* Find the best partition (set of sched domains) */
  575. for (i = 0; i < csn; i++) {
  576. struct cpuset *a = csa[i];
  577. int apn = a->pn;
  578. for (j = 0; j < csn; j++) {
  579. struct cpuset *b = csa[j];
  580. int bpn = b->pn;
  581. if (apn != bpn && cpusets_overlap(a, b)) {
  582. for (k = 0; k < csn; k++) {
  583. struct cpuset *c = csa[k];
  584. if (c->pn == bpn)
  585. c->pn = apn;
  586. }
  587. ndoms--; /* one less element */
  588. goto restart;
  589. }
  590. }
  591. }
  592. /*
  593. * Now we know how many domains to create.
  594. * Convert <csn, csa> to <ndoms, doms> and populate cpu masks.
  595. */
  596. doms = alloc_sched_domains(ndoms);
  597. if (!doms)
  598. goto done;
  599. /*
  600. * The rest of the code, including the scheduler, can deal with
  601. * dattr==NULL case. No need to abort if alloc fails.
  602. */
  603. dattr = kmalloc(ndoms * sizeof(struct sched_domain_attr), GFP_KERNEL);
  604. for (nslot = 0, i = 0; i < csn; i++) {
  605. struct cpuset *a = csa[i];
  606. struct cpumask *dp;
  607. int apn = a->pn;
  608. if (apn < 0) {
  609. /* Skip completed partitions */
  610. continue;
  611. }
  612. dp = doms[nslot];
  613. if (nslot == ndoms) {
  614. static int warnings = 10;
  615. if (warnings) {
  616. printk(KERN_WARNING
  617. "rebuild_sched_domains confused:"
  618. " nslot %d, ndoms %d, csn %d, i %d,"
  619. " apn %d\n",
  620. nslot, ndoms, csn, i, apn);
  621. warnings--;
  622. }
  623. continue;
  624. }
  625. cpumask_clear(dp);
  626. if (dattr)
  627. *(dattr + nslot) = SD_ATTR_INIT;
  628. for (j = i; j < csn; j++) {
  629. struct cpuset *b = csa[j];
  630. if (apn == b->pn) {
  631. cpumask_or(dp, dp, b->cpus_allowed);
  632. if (dattr)
  633. update_domain_attr_tree(dattr + nslot, b);
  634. /* Done with this partition */
  635. b->pn = -1;
  636. }
  637. }
  638. nslot++;
  639. }
  640. BUG_ON(nslot != ndoms);
  641. done:
  642. kfree(csa);
  643. /*
  644. * Fallback to the default domain if kmalloc() failed.
  645. * See comments in partition_sched_domains().
  646. */
  647. if (doms == NULL)
  648. ndoms = 1;
  649. *domains = doms;
  650. *attributes = dattr;
  651. return ndoms;
  652. }
  653. /*
  654. * Rebuild scheduler domains.
  655. *
  656. * If the flag 'sched_load_balance' of any cpuset with non-empty
  657. * 'cpus' changes, or if the 'cpus' allowed changes in any cpuset
  658. * which has that flag enabled, or if any cpuset with a non-empty
  659. * 'cpus' is removed, then call this routine to rebuild the
  660. * scheduler's dynamic sched domains.
  661. *
  662. * Call with cpuset_mutex held. Takes get_online_cpus().
  663. */
  664. static void rebuild_sched_domains_locked(void)
  665. {
  666. struct sched_domain_attr *attr;
  667. cpumask_var_t *doms;
  668. int ndoms;
  669. lockdep_assert_held(&cpuset_mutex);
  670. get_online_cpus();
  671. /*
  672. * We have raced with CPU hotplug. Don't do anything to avoid
  673. * passing doms with offlined cpu to partition_sched_domains().
  674. * Anyways, hotplug work item will rebuild sched domains.
  675. */
  676. if (!cpumask_equal(top_cpuset.cpus_allowed, cpu_active_mask))
  677. goto out;
  678. /* Generate domain masks and attrs */
  679. ndoms = generate_sched_domains(&doms, &attr);
  680. /* Have scheduler rebuild the domains */
  681. partition_sched_domains(ndoms, doms, attr);
  682. out:
  683. put_online_cpus();
  684. }
  685. #else /* !CONFIG_SMP */
  686. static void rebuild_sched_domains_locked(void)
  687. {
  688. }
  689. #endif /* CONFIG_SMP */
  690. void rebuild_sched_domains(void)
  691. {
  692. mutex_lock(&cpuset_mutex);
  693. rebuild_sched_domains_locked();
  694. mutex_unlock(&cpuset_mutex);
  695. }
  696. /*
  697. * effective_cpumask_cpuset - return nearest ancestor with non-empty cpus
  698. * @cs: the cpuset in interest
  699. *
  700. * A cpuset's effective cpumask is the cpumask of the nearest ancestor
  701. * with non-empty cpus. We use effective cpumask whenever:
  702. * - we update tasks' cpus_allowed. (they take on the ancestor's cpumask
  703. * if the cpuset they reside in has no cpus)
  704. * - we want to retrieve task_cs(tsk)'s cpus_allowed.
  705. *
  706. * Called with cpuset_mutex held. cpuset_cpus_allowed_fallback() is an
  707. * exception. See comments there.
  708. */
  709. static struct cpuset *effective_cpumask_cpuset(struct cpuset *cs)
  710. {
  711. while (cpumask_empty(cs->cpus_allowed))
  712. cs = parent_cs(cs);
  713. return cs;
  714. }
  715. /*
  716. * effective_nodemask_cpuset - return nearest ancestor with non-empty mems
  717. * @cs: the cpuset in interest
  718. *
  719. * A cpuset's effective nodemask is the nodemask of the nearest ancestor
  720. * with non-empty memss. We use effective nodemask whenever:
  721. * - we update tasks' mems_allowed. (they take on the ancestor's nodemask
  722. * if the cpuset they reside in has no mems)
  723. * - we want to retrieve task_cs(tsk)'s mems_allowed.
  724. *
  725. * Called with cpuset_mutex held.
  726. */
  727. static struct cpuset *effective_nodemask_cpuset(struct cpuset *cs)
  728. {
  729. while (nodes_empty(cs->mems_allowed))
  730. cs = parent_cs(cs);
  731. return cs;
  732. }
  733. /**
  734. * cpuset_change_cpumask - make a task's cpus_allowed the same as its cpuset's
  735. * @tsk: task to test
  736. * @data: cpuset to @tsk belongs to
  737. *
  738. * Called by css_scan_tasks() for each task in a cgroup whose cpus_allowed
  739. * mask needs to be changed.
  740. *
  741. * We don't need to re-check for the cgroup/cpuset membership, since we're
  742. * holding cpuset_mutex at this point.
  743. */
  744. static void cpuset_change_cpumask(struct task_struct *tsk, void *data)
  745. {
  746. struct cpuset *cs = data;
  747. struct cpuset *cpus_cs = effective_cpumask_cpuset(cs);
  748. set_cpus_allowed_ptr(tsk, cpus_cs->cpus_allowed);
  749. }
  750. /**
  751. * update_tasks_cpumask - Update the cpumasks of tasks in the cpuset.
  752. * @cs: the cpuset in which each task's cpus_allowed mask needs to be changed
  753. * @heap: if NULL, defer allocating heap memory to css_scan_tasks()
  754. *
  755. * Called with cpuset_mutex held
  756. *
  757. * The css_scan_tasks() function will scan all the tasks in a cgroup,
  758. * calling callback functions for each.
  759. *
  760. * No return value. It's guaranteed that css_scan_tasks() always returns 0
  761. * if @heap != NULL.
  762. */
  763. static void update_tasks_cpumask(struct cpuset *cs, struct ptr_heap *heap)
  764. {
  765. css_scan_tasks(&cs->css, NULL, cpuset_change_cpumask, cs, heap);
  766. }
  767. /*
  768. * update_tasks_cpumask_hier - Update the cpumasks of tasks in the hierarchy.
  769. * @root_cs: the root cpuset of the hierarchy
  770. * @update_root: update root cpuset or not?
  771. * @heap: the heap used by css_scan_tasks()
  772. *
  773. * This will update cpumasks of tasks in @root_cs and all other empty cpusets
  774. * which take on cpumask of @root_cs.
  775. *
  776. * Called with cpuset_mutex held
  777. */
  778. static void update_tasks_cpumask_hier(struct cpuset *root_cs,
  779. bool update_root, struct ptr_heap *heap)
  780. {
  781. struct cpuset *cp;
  782. struct cgroup_subsys_state *pos_css;
  783. if (update_root)
  784. update_tasks_cpumask(root_cs, heap);
  785. rcu_read_lock();
  786. cpuset_for_each_descendant_pre(cp, pos_css, root_cs) {
  787. /* skip the whole subtree if @cp have some CPU */
  788. if (!cpumask_empty(cp->cpus_allowed)) {
  789. pos_css = css_rightmost_descendant(pos_css);
  790. continue;
  791. }
  792. if (!css_tryget(&cp->css))
  793. continue;
  794. rcu_read_unlock();
  795. update_tasks_cpumask(cp, heap);
  796. rcu_read_lock();
  797. css_put(&cp->css);
  798. }
  799. rcu_read_unlock();
  800. }
  801. /**
  802. * update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it
  803. * @cs: the cpuset to consider
  804. * @buf: buffer of cpu numbers written to this cpuset
  805. */
  806. static int update_cpumask(struct cpuset *cs, struct cpuset *trialcs,
  807. const char *buf)
  808. {
  809. struct ptr_heap heap;
  810. int retval;
  811. int is_load_balanced;
  812. /* top_cpuset.cpus_allowed tracks cpu_online_mask; it's read-only */
  813. if (cs == &top_cpuset)
  814. return -EACCES;
  815. /*
  816. * An empty cpus_allowed is ok only if the cpuset has no tasks.
  817. * Since cpulist_parse() fails on an empty mask, we special case
  818. * that parsing. The validate_change() call ensures that cpusets
  819. * with tasks have cpus.
  820. */
  821. if (!*buf) {
  822. cpumask_clear(trialcs->cpus_allowed);
  823. } else {
  824. retval = cpulist_parse(buf, trialcs->cpus_allowed);
  825. if (retval < 0)
  826. return retval;
  827. if (!cpumask_subset(trialcs->cpus_allowed, cpu_active_mask))
  828. return -EINVAL;
  829. }
  830. /* Nothing to do if the cpus didn't change */
  831. if (cpumask_equal(cs->cpus_allowed, trialcs->cpus_allowed))
  832. return 0;
  833. retval = validate_change(cs, trialcs);
  834. if (retval < 0)
  835. return retval;
  836. retval = heap_init(&heap, PAGE_SIZE, GFP_KERNEL, NULL);
  837. if (retval)
  838. return retval;
  839. is_load_balanced = is_sched_load_balance(trialcs);
  840. mutex_lock(&callback_mutex);
  841. cpumask_copy(cs->cpus_allowed, trialcs->cpus_allowed);
  842. mutex_unlock(&callback_mutex);
  843. update_tasks_cpumask_hier(cs, true, &heap);
  844. heap_free(&heap);
  845. if (is_load_balanced)
  846. rebuild_sched_domains_locked();
  847. return 0;
  848. }
  849. /*
  850. * cpuset_migrate_mm
  851. *
  852. * Migrate memory region from one set of nodes to another.
  853. *
  854. * Temporarilly set tasks mems_allowed to target nodes of migration,
  855. * so that the migration code can allocate pages on these nodes.
  856. *
  857. * Call holding cpuset_mutex, so current's cpuset won't change
  858. * during this call, as manage_mutex holds off any cpuset_attach()
  859. * calls. Therefore we don't need to take task_lock around the
  860. * call to guarantee_online_mems(), as we know no one is changing
  861. * our task's cpuset.
  862. *
  863. * While the mm_struct we are migrating is typically from some
  864. * other task, the task_struct mems_allowed that we are hacking
  865. * is for our current task, which must allocate new pages for that
  866. * migrating memory region.
  867. */
  868. static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from,
  869. const nodemask_t *to)
  870. {
  871. struct task_struct *tsk = current;
  872. struct cpuset *mems_cs;
  873. tsk->mems_allowed = *to;
  874. do_migrate_pages(mm, from, to, MPOL_MF_MOVE_ALL);
  875. mems_cs = effective_nodemask_cpuset(task_cs(tsk));
  876. guarantee_online_mems(mems_cs, &tsk->mems_allowed);
  877. }
  878. /*
  879. * cpuset_change_task_nodemask - change task's mems_allowed and mempolicy
  880. * @tsk: the task to change
  881. * @newmems: new nodes that the task will be set
  882. *
  883. * In order to avoid seeing no nodes if the old and new nodes are disjoint,
  884. * we structure updates as setting all new allowed nodes, then clearing newly
  885. * disallowed ones.
  886. */
  887. static void cpuset_change_task_nodemask(struct task_struct *tsk,
  888. nodemask_t *newmems)
  889. {
  890. bool need_loop;
  891. /*
  892. * Allow tasks that have access to memory reserves because they have
  893. * been OOM killed to get memory anywhere.
  894. */
  895. if (unlikely(test_thread_flag(TIF_MEMDIE)))
  896. return;
  897. if (current->flags & PF_EXITING) /* Let dying task have memory */
  898. return;
  899. task_lock(tsk);
  900. /*
  901. * Determine if a loop is necessary if another thread is doing
  902. * get_mems_allowed(). If at least one node remains unchanged and
  903. * tsk does not have a mempolicy, then an empty nodemask will not be
  904. * possible when mems_allowed is larger than a word.
  905. */
  906. need_loop = task_has_mempolicy(tsk) ||
  907. !nodes_intersects(*newmems, tsk->mems_allowed);
  908. if (need_loop)
  909. write_seqcount_begin(&tsk->mems_allowed_seq);
  910. nodes_or(tsk->mems_allowed, tsk->mems_allowed, *newmems);
  911. mpol_rebind_task(tsk, newmems, MPOL_REBIND_STEP1);
  912. mpol_rebind_task(tsk, newmems, MPOL_REBIND_STEP2);
  913. tsk->mems_allowed = *newmems;
  914. if (need_loop)
  915. write_seqcount_end(&tsk->mems_allowed_seq);
  916. task_unlock(tsk);
  917. }
  918. struct cpuset_change_nodemask_arg {
  919. struct cpuset *cs;
  920. nodemask_t *newmems;
  921. };
  922. /*
  923. * Update task's mems_allowed and rebind its mempolicy and vmas' mempolicy
  924. * of it to cpuset's new mems_allowed, and migrate pages to new nodes if
  925. * memory_migrate flag is set. Called with cpuset_mutex held.
  926. */
  927. static void cpuset_change_nodemask(struct task_struct *p, void *data)
  928. {
  929. struct cpuset_change_nodemask_arg *arg = data;
  930. struct cpuset *cs = arg->cs;
  931. struct mm_struct *mm;
  932. int migrate;
  933. cpuset_change_task_nodemask(p, arg->newmems);
  934. mm = get_task_mm(p);
  935. if (!mm)
  936. return;
  937. migrate = is_memory_migrate(cs);
  938. mpol_rebind_mm(mm, &cs->mems_allowed);
  939. if (migrate)
  940. cpuset_migrate_mm(mm, &cs->old_mems_allowed, arg->newmems);
  941. mmput(mm);
  942. }
  943. static void *cpuset_being_rebound;
  944. /**
  945. * update_tasks_nodemask - Update the nodemasks of tasks in the cpuset.
  946. * @cs: the cpuset in which each task's mems_allowed mask needs to be changed
  947. * @heap: if NULL, defer allocating heap memory to css_scan_tasks()
  948. *
  949. * Called with cpuset_mutex held. No return value. It's guaranteed that
  950. * css_scan_tasks() always returns 0 if @heap != NULL.
  951. */
  952. static void update_tasks_nodemask(struct cpuset *cs, struct ptr_heap *heap)
  953. {
  954. static nodemask_t newmems; /* protected by cpuset_mutex */
  955. struct cpuset *mems_cs = effective_nodemask_cpuset(cs);
  956. struct cpuset_change_nodemask_arg arg = { .cs = cs,
  957. .newmems = &newmems };
  958. cpuset_being_rebound = cs; /* causes mpol_dup() rebind */
  959. guarantee_online_mems(mems_cs, &newmems);
  960. /*
  961. * The mpol_rebind_mm() call takes mmap_sem, which we couldn't
  962. * take while holding tasklist_lock. Forks can happen - the
  963. * mpol_dup() cpuset_being_rebound check will catch such forks,
  964. * and rebind their vma mempolicies too. Because we still hold
  965. * the global cpuset_mutex, we know that no other rebind effort
  966. * will be contending for the global variable cpuset_being_rebound.
  967. * It's ok if we rebind the same mm twice; mpol_rebind_mm()
  968. * is idempotent. Also migrate pages in each mm to new nodes.
  969. */
  970. css_scan_tasks(&cs->css, NULL, cpuset_change_nodemask, &arg, heap);
  971. /*
  972. * All the tasks' nodemasks have been updated, update
  973. * cs->old_mems_allowed.
  974. */
  975. cs->old_mems_allowed = newmems;
  976. /* We're done rebinding vmas to this cpuset's new mems_allowed. */
  977. cpuset_being_rebound = NULL;
  978. }
  979. /*
  980. * update_tasks_nodemask_hier - Update the nodemasks of tasks in the hierarchy.
  981. * @cs: the root cpuset of the hierarchy
  982. * @update_root: update the root cpuset or not?
  983. * @heap: the heap used by css_scan_tasks()
  984. *
  985. * This will update nodemasks of tasks in @root_cs and all other empty cpusets
  986. * which take on nodemask of @root_cs.
  987. *
  988. * Called with cpuset_mutex held
  989. */
  990. static void update_tasks_nodemask_hier(struct cpuset *root_cs,
  991. bool update_root, struct ptr_heap *heap)
  992. {
  993. struct cpuset *cp;
  994. struct cgroup_subsys_state *pos_css;
  995. if (update_root)
  996. update_tasks_nodemask(root_cs, heap);
  997. rcu_read_lock();
  998. cpuset_for_each_descendant_pre(cp, pos_css, root_cs) {
  999. /* skip the whole subtree if @cp have some CPU */
  1000. if (!nodes_empty(cp->mems_allowed)) {
  1001. pos_css = css_rightmost_descendant(pos_css);
  1002. continue;
  1003. }
  1004. if (!css_tryget(&cp->css))
  1005. continue;
  1006. rcu_read_unlock();
  1007. update_tasks_nodemask(cp, heap);
  1008. rcu_read_lock();
  1009. css_put(&cp->css);
  1010. }
  1011. rcu_read_unlock();
  1012. }
  1013. /*
  1014. * Handle user request to change the 'mems' memory placement
  1015. * of a cpuset. Needs to validate the request, update the
  1016. * cpusets mems_allowed, and for each task in the cpuset,
  1017. * update mems_allowed and rebind task's mempolicy and any vma
  1018. * mempolicies and if the cpuset is marked 'memory_migrate',
  1019. * migrate the tasks pages to the new memory.
  1020. *
  1021. * Call with cpuset_mutex held. May take callback_mutex during call.
  1022. * Will take tasklist_lock, scan tasklist for tasks in cpuset cs,
  1023. * lock each such tasks mm->mmap_sem, scan its vma's and rebind
  1024. * their mempolicies to the cpusets new mems_allowed.
  1025. */
  1026. static int update_nodemask(struct cpuset *cs, struct cpuset *trialcs,
  1027. const char *buf)
  1028. {
  1029. int retval;
  1030. struct ptr_heap heap;
  1031. /*
  1032. * top_cpuset.mems_allowed tracks node_stats[N_MEMORY];
  1033. * it's read-only
  1034. */
  1035. if (cs == &top_cpuset) {
  1036. retval = -EACCES;
  1037. goto done;
  1038. }
  1039. /*
  1040. * An empty mems_allowed is ok iff there are no tasks in the cpuset.
  1041. * Since nodelist_parse() fails on an empty mask, we special case
  1042. * that parsing. The validate_change() call ensures that cpusets
  1043. * with tasks have memory.
  1044. */
  1045. if (!*buf) {
  1046. nodes_clear(trialcs->mems_allowed);
  1047. } else {
  1048. retval = nodelist_parse(buf, trialcs->mems_allowed);
  1049. if (retval < 0)
  1050. goto done;
  1051. if (!nodes_subset(trialcs->mems_allowed,
  1052. node_states[N_MEMORY])) {
  1053. retval = -EINVAL;
  1054. goto done;
  1055. }
  1056. }
  1057. if (nodes_equal(cs->mems_allowed, trialcs->mems_allowed)) {
  1058. retval = 0; /* Too easy - nothing to do */
  1059. goto done;
  1060. }
  1061. retval = validate_change(cs, trialcs);
  1062. if (retval < 0)
  1063. goto done;
  1064. retval = heap_init(&heap, PAGE_SIZE, GFP_KERNEL, NULL);
  1065. if (retval < 0)
  1066. goto done;
  1067. mutex_lock(&callback_mutex);
  1068. cs->mems_allowed = trialcs->mems_allowed;
  1069. mutex_unlock(&callback_mutex);
  1070. update_tasks_nodemask_hier(cs, true, &heap);
  1071. heap_free(&heap);
  1072. done:
  1073. return retval;
  1074. }
  1075. int current_cpuset_is_being_rebound(void)
  1076. {
  1077. return task_cs(current) == cpuset_being_rebound;
  1078. }
  1079. static int update_relax_domain_level(struct cpuset *cs, s64 val)
  1080. {
  1081. #ifdef CONFIG_SMP
  1082. if (val < -1 || val >= sched_domain_level_max)
  1083. return -EINVAL;
  1084. #endif
  1085. if (val != cs->relax_domain_level) {
  1086. cs->relax_domain_level = val;
  1087. if (!cpumask_empty(cs->cpus_allowed) &&
  1088. is_sched_load_balance(cs))
  1089. rebuild_sched_domains_locked();
  1090. }
  1091. return 0;
  1092. }
  1093. /**
  1094. * cpuset_change_flag - make a task's spread flags the same as its cpuset's
  1095. * @tsk: task to be updated
  1096. * @data: cpuset to @tsk belongs to
  1097. *
  1098. * Called by css_scan_tasks() for each task in a cgroup.
  1099. *
  1100. * We don't need to re-check for the cgroup/cpuset membership, since we're
  1101. * holding cpuset_mutex at this point.
  1102. */
  1103. static void cpuset_change_flag(struct task_struct *tsk, void *data)
  1104. {
  1105. struct cpuset *cs = data;
  1106. cpuset_update_task_spread_flag(cs, tsk);
  1107. }
  1108. /**
  1109. * update_tasks_flags - update the spread flags of tasks in the cpuset.
  1110. * @cs: the cpuset in which each task's spread flags needs to be changed
  1111. * @heap: if NULL, defer allocating heap memory to css_scan_tasks()
  1112. *
  1113. * Called with cpuset_mutex held
  1114. *
  1115. * The css_scan_tasks() function will scan all the tasks in a cgroup,
  1116. * calling callback functions for each.
  1117. *
  1118. * No return value. It's guaranteed that css_scan_tasks() always returns 0
  1119. * if @heap != NULL.
  1120. */
  1121. static void update_tasks_flags(struct cpuset *cs, struct ptr_heap *heap)
  1122. {
  1123. css_scan_tasks(&cs->css, NULL, cpuset_change_flag, cs, heap);
  1124. }
  1125. /*
  1126. * update_flag - read a 0 or a 1 in a file and update associated flag
  1127. * bit: the bit to update (see cpuset_flagbits_t)
  1128. * cs: the cpuset to update
  1129. * turning_on: whether the flag is being set or cleared
  1130. *
  1131. * Call with cpuset_mutex held.
  1132. */
  1133. static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs,
  1134. int turning_on)
  1135. {
  1136. struct cpuset *trialcs;
  1137. int balance_flag_changed;
  1138. int spread_flag_changed;
  1139. struct ptr_heap heap;
  1140. int err;
  1141. trialcs = alloc_trial_cpuset(cs);
  1142. if (!trialcs)
  1143. return -ENOMEM;
  1144. if (turning_on)
  1145. set_bit(bit, &trialcs->flags);
  1146. else
  1147. clear_bit(bit, &trialcs->flags);
  1148. err = validate_change(cs, trialcs);
  1149. if (err < 0)
  1150. goto out;
  1151. err = heap_init(&heap, PAGE_SIZE, GFP_KERNEL, NULL);
  1152. if (err < 0)
  1153. goto out;
  1154. balance_flag_changed = (is_sched_load_balance(cs) !=
  1155. is_sched_load_balance(trialcs));
  1156. spread_flag_changed = ((is_spread_slab(cs) != is_spread_slab(trialcs))
  1157. || (is_spread_page(cs) != is_spread_page(trialcs)));
  1158. mutex_lock(&callback_mutex);
  1159. cs->flags = trialcs->flags;
  1160. mutex_unlock(&callback_mutex);
  1161. if (!cpumask_empty(trialcs->cpus_allowed) && balance_flag_changed)
  1162. rebuild_sched_domains_locked();
  1163. if (spread_flag_changed)
  1164. update_tasks_flags(cs, &heap);
  1165. heap_free(&heap);
  1166. out:
  1167. free_trial_cpuset(trialcs);
  1168. return err;
  1169. }
  1170. /*
  1171. * Frequency meter - How fast is some event occurring?
  1172. *
  1173. * These routines manage a digitally filtered, constant time based,
  1174. * event frequency meter. There are four routines:
  1175. * fmeter_init() - initialize a frequency meter.
  1176. * fmeter_markevent() - called each time the event happens.
  1177. * fmeter_getrate() - returns the recent rate of such events.
  1178. * fmeter_update() - internal routine used to update fmeter.
  1179. *
  1180. * A common data structure is passed to each of these routines,
  1181. * which is used to keep track of the state required to manage the
  1182. * frequency meter and its digital filter.
  1183. *
  1184. * The filter works on the number of events marked per unit time.
  1185. * The filter is single-pole low-pass recursive (IIR). The time unit
  1186. * is 1 second. Arithmetic is done using 32-bit integers scaled to
  1187. * simulate 3 decimal digits of precision (multiplied by 1000).
  1188. *
  1189. * With an FM_COEF of 933, and a time base of 1 second, the filter
  1190. * has a half-life of 10 seconds, meaning that if the events quit
  1191. * happening, then the rate returned from the fmeter_getrate()
  1192. * will be cut in half each 10 seconds, until it converges to zero.
  1193. *
  1194. * It is not worth doing a real infinitely recursive filter. If more
  1195. * than FM_MAXTICKS ticks have elapsed since the last filter event,
  1196. * just compute FM_MAXTICKS ticks worth, by which point the level
  1197. * will be stable.
  1198. *
  1199. * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid
  1200. * arithmetic overflow in the fmeter_update() routine.
  1201. *
  1202. * Given the simple 32 bit integer arithmetic used, this meter works
  1203. * best for reporting rates between one per millisecond (msec) and
  1204. * one per 32 (approx) seconds. At constant rates faster than one
  1205. * per msec it maxes out at values just under 1,000,000. At constant
  1206. * rates between one per msec, and one per second it will stabilize
  1207. * to a value N*1000, where N is the rate of events per second.
  1208. * At constant rates between one per second and one per 32 seconds,
  1209. * it will be choppy, moving up on the seconds that have an event,
  1210. * and then decaying until the next event. At rates slower than
  1211. * about one in 32 seconds, it decays all the way back to zero between
  1212. * each event.
  1213. */
  1214. #define FM_COEF 933 /* coefficient for half-life of 10 secs */
  1215. #define FM_MAXTICKS ((time_t)99) /* useless computing more ticks than this */
  1216. #define FM_MAXCNT 1000000 /* limit cnt to avoid overflow */
  1217. #define FM_SCALE 1000 /* faux fixed point scale */
  1218. /* Initialize a frequency meter */
  1219. static void fmeter_init(struct fmeter *fmp)
  1220. {
  1221. fmp->cnt = 0;
  1222. fmp->val = 0;
  1223. fmp->time = 0;
  1224. spin_lock_init(&fmp->lock);
  1225. }
  1226. /* Internal meter update - process cnt events and update value */
  1227. static void fmeter_update(struct fmeter *fmp)
  1228. {
  1229. time_t now = get_seconds();
  1230. time_t ticks = now - fmp->time;
  1231. if (ticks == 0)
  1232. return;
  1233. ticks = min(FM_MAXTICKS, ticks);
  1234. while (ticks-- > 0)
  1235. fmp->val = (FM_COEF * fmp->val) / FM_SCALE;
  1236. fmp->time = now;
  1237. fmp->val += ((FM_SCALE - FM_COEF) * fmp->cnt) / FM_SCALE;
  1238. fmp->cnt = 0;
  1239. }
  1240. /* Process any previous ticks, then bump cnt by one (times scale). */
  1241. static void fmeter_markevent(struct fmeter *fmp)
  1242. {
  1243. spin_lock(&fmp->lock);
  1244. fmeter_update(fmp);
  1245. fmp->cnt = min(FM_MAXCNT, fmp->cnt + FM_SCALE);
  1246. spin_unlock(&fmp->lock);
  1247. }
  1248. /* Process any previous ticks, then return current value. */
  1249. static int fmeter_getrate(struct fmeter *fmp)
  1250. {
  1251. int val;
  1252. spin_lock(&fmp->lock);
  1253. fmeter_update(fmp);
  1254. val = fmp->val;
  1255. spin_unlock(&fmp->lock);
  1256. return val;
  1257. }
  1258. /* Called by cgroups to determine if a cpuset is usable; cpuset_mutex held */
  1259. static int cpuset_can_attach(struct cgroup_subsys_state *css,
  1260. struct cgroup_taskset *tset)
  1261. {
  1262. struct cpuset *cs = css_cs(css);
  1263. struct task_struct *task;
  1264. int ret;
  1265. mutex_lock(&cpuset_mutex);
  1266. /*
  1267. * We allow to move tasks into an empty cpuset if sane_behavior
  1268. * flag is set.
  1269. */
  1270. ret = -ENOSPC;
  1271. if (!cgroup_sane_behavior(css->cgroup) &&
  1272. (cpumask_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed)))
  1273. goto out_unlock;
  1274. cgroup_taskset_for_each(task, css->cgroup, tset) {
  1275. /*
  1276. * Kthreads which disallow setaffinity shouldn't be moved
  1277. * to a new cpuset; we don't want to change their cpu
  1278. * affinity and isolating such threads by their set of
  1279. * allowed nodes is unnecessary. Thus, cpusets are not
  1280. * applicable for such threads. This prevents checking for
  1281. * success of set_cpus_allowed_ptr() on all attached tasks
  1282. * before cpus_allowed may be changed.
  1283. */
  1284. ret = -EINVAL;
  1285. if (task->flags & PF_NO_SETAFFINITY)
  1286. goto out_unlock;
  1287. ret = security_task_setscheduler(task);
  1288. if (ret)
  1289. goto out_unlock;
  1290. }
  1291. /*
  1292. * Mark attach is in progress. This makes validate_change() fail
  1293. * changes which zero cpus/mems_allowed.
  1294. */
  1295. cs->attach_in_progress++;
  1296. ret = 0;
  1297. out_unlock:
  1298. mutex_unlock(&cpuset_mutex);
  1299. return ret;
  1300. }
  1301. static void cpuset_cancel_attach(struct cgroup_subsys_state *css,
  1302. struct cgroup_taskset *tset)
  1303. {
  1304. mutex_lock(&cpuset_mutex);
  1305. css_cs(css)->attach_in_progress--;
  1306. mutex_unlock(&cpuset_mutex);
  1307. }
  1308. /*
  1309. * Protected by cpuset_mutex. cpus_attach is used only by cpuset_attach()
  1310. * but we can't allocate it dynamically there. Define it global and
  1311. * allocate from cpuset_init().
  1312. */
  1313. static cpumask_var_t cpus_attach;
  1314. static void cpuset_attach(struct cgroup_subsys_state *css,
  1315. struct cgroup_taskset *tset)
  1316. {
  1317. /* static buf protected by cpuset_mutex */
  1318. static nodemask_t cpuset_attach_nodemask_to;
  1319. struct mm_struct *mm;
  1320. struct task_struct *task;
  1321. struct task_struct *leader = cgroup_taskset_first(tset);
  1322. struct cgroup *oldcgrp = cgroup_taskset_cur_cgroup(tset);
  1323. struct cpuset *cs = css_cs(css);
  1324. struct cpuset *oldcs = cgroup_cs(oldcgrp);
  1325. struct cpuset *cpus_cs = effective_cpumask_cpuset(cs);
  1326. struct cpuset *mems_cs = effective_nodemask_cpuset(cs);
  1327. mutex_lock(&cpuset_mutex);
  1328. /* prepare for attach */
  1329. if (cs == &top_cpuset)
  1330. cpumask_copy(cpus_attach, cpu_possible_mask);
  1331. else
  1332. guarantee_online_cpus(cpus_cs, cpus_attach);
  1333. guarantee_online_mems(mems_cs, &cpuset_attach_nodemask_to);
  1334. cgroup_taskset_for_each(task, css->cgroup, tset) {
  1335. /*
  1336. * can_attach beforehand should guarantee that this doesn't
  1337. * fail. TODO: have a better way to handle failure here
  1338. */
  1339. WARN_ON_ONCE(set_cpus_allowed_ptr(task, cpus_attach));
  1340. cpuset_change_task_nodemask(task, &cpuset_attach_nodemask_to);
  1341. cpuset_update_task_spread_flag(cs, task);
  1342. }
  1343. /*
  1344. * Change mm, possibly for multiple threads in a threadgroup. This is
  1345. * expensive and may sleep.
  1346. */
  1347. cpuset_attach_nodemask_to = cs->mems_allowed;
  1348. mm = get_task_mm(leader);
  1349. if (mm) {
  1350. struct cpuset *mems_oldcs = effective_nodemask_cpuset(oldcs);
  1351. mpol_rebind_mm(mm, &cpuset_attach_nodemask_to);
  1352. /*
  1353. * old_mems_allowed is the same with mems_allowed here, except
  1354. * if this task is being moved automatically due to hotplug.
  1355. * In that case @mems_allowed has been updated and is empty,
  1356. * so @old_mems_allowed is the right nodesets that we migrate
  1357. * mm from.
  1358. */
  1359. if (is_memory_migrate(cs)) {
  1360. cpuset_migrate_mm(mm, &mems_oldcs->old_mems_allowed,
  1361. &cpuset_attach_nodemask_to);
  1362. }
  1363. mmput(mm);
  1364. }
  1365. cs->old_mems_allowed = cpuset_attach_nodemask_to;
  1366. cs->attach_in_progress--;
  1367. if (!cs->attach_in_progress)
  1368. wake_up(&cpuset_attach_wq);
  1369. mutex_unlock(&cpuset_mutex);
  1370. }
  1371. /* The various types of files and directories in a cpuset file system */
  1372. typedef enum {
  1373. FILE_MEMORY_MIGRATE,
  1374. FILE_CPULIST,
  1375. FILE_MEMLIST,
  1376. FILE_CPU_EXCLUSIVE,
  1377. FILE_MEM_EXCLUSIVE,
  1378. FILE_MEM_HARDWALL,
  1379. FILE_SCHED_LOAD_BALANCE,
  1380. FILE_SCHED_RELAX_DOMAIN_LEVEL,
  1381. FILE_MEMORY_PRESSURE_ENABLED,
  1382. FILE_MEMORY_PRESSURE,
  1383. FILE_SPREAD_PAGE,
  1384. FILE_SPREAD_SLAB,
  1385. } cpuset_filetype_t;
  1386. static int cpuset_write_u64(struct cgroup_subsys_state *css, struct cftype *cft,
  1387. u64 val)
  1388. {
  1389. struct cpuset *cs = css_cs(css);
  1390. cpuset_filetype_t type = cft->private;
  1391. int retval = -ENODEV;
  1392. mutex_lock(&cpuset_mutex);
  1393. if (!is_cpuset_online(cs))
  1394. goto out_unlock;
  1395. switch (type) {
  1396. case FILE_CPU_EXCLUSIVE:
  1397. retval = update_flag(CS_CPU_EXCLUSIVE, cs, val);
  1398. break;
  1399. case FILE_MEM_EXCLUSIVE:
  1400. retval = update_flag(CS_MEM_EXCLUSIVE, cs, val);
  1401. break;
  1402. case FILE_MEM_HARDWALL:
  1403. retval = update_flag(CS_MEM_HARDWALL, cs, val);
  1404. break;
  1405. case FILE_SCHED_LOAD_BALANCE:
  1406. retval = update_flag(CS_SCHED_LOAD_BALANCE, cs, val);
  1407. break;
  1408. case FILE_MEMORY_MIGRATE:
  1409. retval = update_flag(CS_MEMORY_MIGRATE, cs, val);
  1410. break;
  1411. case FILE_MEMORY_PRESSURE_ENABLED:
  1412. cpuset_memory_pressure_enabled = !!val;
  1413. break;
  1414. case FILE_MEMORY_PRESSURE:
  1415. retval = -EACCES;
  1416. break;
  1417. case FILE_SPREAD_PAGE:
  1418. retval = update_flag(CS_SPREAD_PAGE, cs, val);
  1419. break;
  1420. case FILE_SPREAD_SLAB:
  1421. retval = update_flag(CS_SPREAD_SLAB, cs, val);
  1422. break;
  1423. default:
  1424. retval = -EINVAL;
  1425. break;
  1426. }
  1427. out_unlock:
  1428. mutex_unlock(&cpuset_mutex);
  1429. return retval;
  1430. }
  1431. static int cpuset_write_s64(struct cgroup_subsys_state *css, struct cftype *cft,
  1432. s64 val)
  1433. {
  1434. struct cpuset *cs = css_cs(css);
  1435. cpuset_filetype_t type = cft->private;
  1436. int retval = -ENODEV;
  1437. mutex_lock(&cpuset_mutex);
  1438. if (!is_cpuset_online(cs))
  1439. goto out_unlock;
  1440. switch (type) {
  1441. case FILE_SCHED_RELAX_DOMAIN_LEVEL:
  1442. retval = update_relax_domain_level(cs, val);
  1443. break;
  1444. default:
  1445. retval = -EINVAL;
  1446. break;
  1447. }
  1448. out_unlock:
  1449. mutex_unlock(&cpuset_mutex);
  1450. return retval;
  1451. }
  1452. /*
  1453. * Common handling for a write to a "cpus" or "mems" file.
  1454. */
  1455. static int cpuset_write_resmask(struct cgroup_subsys_state *css,
  1456. struct cftype *cft, const char *buf)
  1457. {
  1458. struct cpuset *cs = css_cs(css);
  1459. struct cpuset *trialcs;
  1460. int retval = -ENODEV;
  1461. /*
  1462. * CPU or memory hotunplug may leave @cs w/o any execution
  1463. * resources, in which case the hotplug code asynchronously updates
  1464. * configuration and transfers all tasks to the nearest ancestor
  1465. * which can execute.
  1466. *
  1467. * As writes to "cpus" or "mems" may restore @cs's execution
  1468. * resources, wait for the previously scheduled operations before
  1469. * proceeding, so that we don't end up keep removing tasks added
  1470. * after execution capability is restored.
  1471. */
  1472. flush_work(&cpuset_hotplug_work);
  1473. mutex_lock(&cpuset_mutex);
  1474. if (!is_cpuset_online(cs))
  1475. goto out_unlock;
  1476. trialcs = alloc_trial_cpuset(cs);
  1477. if (!trialcs) {
  1478. retval = -ENOMEM;
  1479. goto out_unlock;
  1480. }
  1481. switch (cft->private) {
  1482. case FILE_CPULIST:
  1483. retval = update_cpumask(cs, trialcs, buf);
  1484. break;
  1485. case FILE_MEMLIST:
  1486. retval = update_nodemask(cs, trialcs, buf);
  1487. break;
  1488. default:
  1489. retval = -EINVAL;
  1490. break;
  1491. }
  1492. free_trial_cpuset(trialcs);
  1493. out_unlock:
  1494. mutex_unlock(&cpuset_mutex);
  1495. return retval;
  1496. }
  1497. /*
  1498. * These ascii lists should be read in a single call, by using a user
  1499. * buffer large enough to hold the entire map. If read in smaller
  1500. * chunks, there is no guarantee of atomicity. Since the display format
  1501. * used, list of ranges of sequential numbers, is variable length,
  1502. * and since these maps can change value dynamically, one could read
  1503. * gibberish by doing partial reads while a list was changing.
  1504. * A single large read to a buffer that crosses a page boundary is
  1505. * ok, because the result being copied to user land is not recomputed
  1506. * across a page fault.
  1507. */
  1508. static size_t cpuset_sprintf_cpulist(char *page, struct cpuset *cs)
  1509. {
  1510. size_t count;
  1511. mutex_lock(&callback_mutex);
  1512. count = cpulist_scnprintf(page, PAGE_SIZE, cs->cpus_allowed);
  1513. mutex_unlock(&callback_mutex);
  1514. return count;
  1515. }
  1516. static size_t cpuset_sprintf_memlist(char *page, struct cpuset *cs)
  1517. {
  1518. size_t count;
  1519. mutex_lock(&callback_mutex);
  1520. count = nodelist_scnprintf(page, PAGE_SIZE, cs->mems_allowed);
  1521. mutex_unlock(&callback_mutex);
  1522. return count;
  1523. }
  1524. static ssize_t cpuset_common_file_read(struct cgroup_subsys_state *css,
  1525. struct cftype *cft, struct file *file,
  1526. char __user *buf, size_t nbytes,
  1527. loff_t *ppos)
  1528. {
  1529. struct cpuset *cs = css_cs(css);
  1530. cpuset_filetype_t type = cft->private;
  1531. char *page;
  1532. ssize_t retval = 0;
  1533. char *s;
  1534. if (!(page = (char *)__get_free_page(GFP_TEMPORARY)))
  1535. return -ENOMEM;
  1536. s = page;
  1537. switch (type) {
  1538. case FILE_CPULIST:
  1539. s += cpuset_sprintf_cpulist(s, cs);
  1540. break;
  1541. case FILE_MEMLIST:
  1542. s += cpuset_sprintf_memlist(s, cs);
  1543. break;
  1544. default:
  1545. retval = -EINVAL;
  1546. goto out;
  1547. }
  1548. *s++ = '\n';
  1549. retval = simple_read_from_buffer(buf, nbytes, ppos, page, s - page);
  1550. out:
  1551. free_page((unsigned long)page);
  1552. return retval;
  1553. }
  1554. static u64 cpuset_read_u64(struct cgroup_subsys_state *css, struct cftype *cft)
  1555. {
  1556. struct cpuset *cs = css_cs(css);
  1557. cpuset_filetype_t type = cft->private;
  1558. switch (type) {
  1559. case FILE_CPU_EXCLUSIVE:
  1560. return is_cpu_exclusive(cs);
  1561. case FILE_MEM_EXCLUSIVE:
  1562. return is_mem_exclusive(cs);
  1563. case FILE_MEM_HARDWALL:
  1564. return is_mem_hardwall(cs);
  1565. case FILE_SCHED_LOAD_BALANCE:
  1566. return is_sched_load_balance(cs);
  1567. case FILE_MEMORY_MIGRATE:
  1568. return is_memory_migrate(cs);
  1569. case FILE_MEMORY_PRESSURE_ENABLED:
  1570. return cpuset_memory_pressure_enabled;
  1571. case FILE_MEMORY_PRESSURE:
  1572. return fmeter_getrate(&cs->fmeter);
  1573. case FILE_SPREAD_PAGE:
  1574. return is_spread_page(cs);
  1575. case FILE_SPREAD_SLAB:
  1576. return is_spread_slab(cs);
  1577. default:
  1578. BUG();
  1579. }
  1580. /* Unreachable but makes gcc happy */
  1581. return 0;
  1582. }
  1583. static s64 cpuset_read_s64(struct cgroup_subsys_state *css, struct cftype *cft)
  1584. {
  1585. struct cpuset *cs = css_cs(css);
  1586. cpuset_filetype_t type = cft->private;
  1587. switch (type) {
  1588. case FILE_SCHED_RELAX_DOMAIN_LEVEL:
  1589. return cs->relax_domain_level;
  1590. default:
  1591. BUG();
  1592. }
  1593. /* Unrechable but makes gcc happy */
  1594. return 0;
  1595. }
  1596. /*
  1597. * for the common functions, 'private' gives the type of file
  1598. */
  1599. static struct cftype files[] = {
  1600. {
  1601. .name = "cpus",
  1602. .read = cpuset_common_file_read,
  1603. .write_string = cpuset_write_resmask,
  1604. .max_write_len = (100U + 6 * NR_CPUS),
  1605. .private = FILE_CPULIST,
  1606. },
  1607. {
  1608. .name = "mems",
  1609. .read = cpuset_common_file_read,
  1610. .write_string = cpuset_write_resmask,
  1611. .max_write_len = (100U + 6 * MAX_NUMNODES),
  1612. .private = FILE_MEMLIST,
  1613. },
  1614. {
  1615. .name = "cpu_exclusive",
  1616. .read_u64 = cpuset_read_u64,
  1617. .write_u64 = cpuset_write_u64,
  1618. .private = FILE_CPU_EXCLUSIVE,
  1619. },
  1620. {
  1621. .name = "mem_exclusive",
  1622. .read_u64 = cpuset_read_u64,
  1623. .write_u64 = cpuset_write_u64,
  1624. .private = FILE_MEM_EXCLUSIVE,
  1625. },
  1626. {
  1627. .name = "mem_hardwall",
  1628. .read_u64 = cpuset_read_u64,
  1629. .write_u64 = cpuset_write_u64,
  1630. .private = FILE_MEM_HARDWALL,
  1631. },
  1632. {
  1633. .name = "sched_load_balance",
  1634. .read_u64 = cpuset_read_u64,
  1635. .write_u64 = cpuset_write_u64,
  1636. .private = FILE_SCHED_LOAD_BALANCE,
  1637. },
  1638. {
  1639. .name = "sched_relax_domain_level",
  1640. .read_s64 = cpuset_read_s64,
  1641. .write_s64 = cpuset_write_s64,
  1642. .private = FILE_SCHED_RELAX_DOMAIN_LEVEL,
  1643. },
  1644. {
  1645. .name = "memory_migrate",
  1646. .read_u64 = cpuset_read_u64,
  1647. .write_u64 = cpuset_write_u64,
  1648. .private = FILE_MEMORY_MIGRATE,
  1649. },
  1650. {
  1651. .name = "memory_pressure",
  1652. .read_u64 = cpuset_read_u64,
  1653. .write_u64 = cpuset_write_u64,
  1654. .private = FILE_MEMORY_PRESSURE,
  1655. .mode = S_IRUGO,
  1656. },
  1657. {
  1658. .name = "memory_spread_page",
  1659. .read_u64 = cpuset_read_u64,
  1660. .write_u64 = cpuset_write_u64,
  1661. .private = FILE_SPREAD_PAGE,
  1662. },
  1663. {
  1664. .name = "memory_spread_slab",
  1665. .read_u64 = cpuset_read_u64,
  1666. .write_u64 = cpuset_write_u64,
  1667. .private = FILE_SPREAD_SLAB,
  1668. },
  1669. {
  1670. .name = "memory_pressure_enabled",
  1671. .flags = CFTYPE_ONLY_ON_ROOT,
  1672. .read_u64 = cpuset_read_u64,
  1673. .write_u64 = cpuset_write_u64,
  1674. .private = FILE_MEMORY_PRESSURE_ENABLED,
  1675. },
  1676. { } /* terminate */
  1677. };
  1678. /*
  1679. * cpuset_css_alloc - allocate a cpuset css
  1680. * cgrp: control group that the new cpuset will be part of
  1681. */
  1682. static struct cgroup_subsys_state *
  1683. cpuset_css_alloc(struct cgroup_subsys_state *parent_css)
  1684. {
  1685. struct cpuset *cs;
  1686. if (!parent_css)
  1687. return &top_cpuset.css;
  1688. cs = kzalloc(sizeof(*cs), GFP_KERNEL);
  1689. if (!cs)
  1690. return ERR_PTR(-ENOMEM);
  1691. if (!alloc_cpumask_var(&cs->cpus_allowed, GFP_KERNEL)) {
  1692. kfree(cs);
  1693. return ERR_PTR(-ENOMEM);
  1694. }
  1695. set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
  1696. cpumask_clear(cs->cpus_allowed);
  1697. nodes_clear(cs->mems_allowed);
  1698. fmeter_init(&cs->fmeter);
  1699. cs->relax_domain_level = -1;
  1700. return &cs->css;
  1701. }
  1702. static int cpuset_css_online(struct cgroup_subsys_state *css)
  1703. {
  1704. struct cpuset *cs = css_cs(css);
  1705. struct cpuset *parent = parent_cs(cs);
  1706. struct cpuset *tmp_cs;
  1707. struct cgroup_subsys_state *pos_css;
  1708. if (!parent)
  1709. return 0;
  1710. mutex_lock(&cpuset_mutex);
  1711. set_bit(CS_ONLINE, &cs->flags);
  1712. if (is_spread_page(parent))
  1713. set_bit(CS_SPREAD_PAGE, &cs->flags);
  1714. if (is_spread_slab(parent))
  1715. set_bit(CS_SPREAD_SLAB, &cs->flags);
  1716. number_of_cpusets++;
  1717. if (!test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags))
  1718. goto out_unlock;
  1719. /*
  1720. * Clone @parent's configuration if CGRP_CPUSET_CLONE_CHILDREN is
  1721. * set. This flag handling is implemented in cgroup core for
  1722. * histrical reasons - the flag may be specified during mount.
  1723. *
  1724. * Currently, if any sibling cpusets have exclusive cpus or mem, we
  1725. * refuse to clone the configuration - thereby refusing the task to
  1726. * be entered, and as a result refusing the sys_unshare() or
  1727. * clone() which initiated it. If this becomes a problem for some
  1728. * users who wish to allow that scenario, then this could be
  1729. * changed to grant parent->cpus_allowed-sibling_cpus_exclusive
  1730. * (and likewise for mems) to the new cgroup.
  1731. */
  1732. rcu_read_lock();
  1733. cpuset_for_each_child(tmp_cs, pos_css, parent) {
  1734. if (is_mem_exclusive(tmp_cs) || is_cpu_exclusive(tmp_cs)) {
  1735. rcu_read_unlock();
  1736. goto out_unlock;
  1737. }
  1738. }
  1739. rcu_read_unlock();
  1740. mutex_lock(&callback_mutex);
  1741. cs->mems_allowed = parent->mems_allowed;
  1742. cpumask_copy(cs->cpus_allowed, parent->cpus_allowed);
  1743. mutex_unlock(&callback_mutex);
  1744. out_unlock:
  1745. mutex_unlock(&cpuset_mutex);
  1746. return 0;
  1747. }
  1748. /*
  1749. * If the cpuset being removed has its flag 'sched_load_balance'
  1750. * enabled, then simulate turning sched_load_balance off, which
  1751. * will call rebuild_sched_domains_locked().
  1752. */
  1753. static void cpuset_css_offline(struct cgroup_subsys_state *css)
  1754. {
  1755. struct cpuset *cs = css_cs(css);
  1756. mutex_lock(&cpuset_mutex);
  1757. if (is_sched_load_balance(cs))
  1758. update_flag(CS_SCHED_LOAD_BALANCE, cs, 0);
  1759. number_of_cpusets--;
  1760. clear_bit(CS_ONLINE, &cs->flags);
  1761. mutex_unlock(&cpuset_mutex);
  1762. }
  1763. static void cpuset_css_free(struct cgroup_subsys_state *css)
  1764. {
  1765. struct cpuset *cs = css_cs(css);
  1766. free_cpumask_var(cs->cpus_allowed);
  1767. kfree(cs);
  1768. }
  1769. struct cgroup_subsys cpuset_subsys = {
  1770. .name = "cpuset",
  1771. .css_alloc = cpuset_css_alloc,
  1772. .css_online = cpuset_css_online,
  1773. .css_offline = cpuset_css_offline,
  1774. .css_free = cpuset_css_free,
  1775. .can_attach = cpuset_can_attach,
  1776. .cancel_attach = cpuset_cancel_attach,
  1777. .attach = cpuset_attach,
  1778. .subsys_id = cpuset_subsys_id,
  1779. .base_cftypes = files,
  1780. .early_init = 1,
  1781. };
  1782. /**
  1783. * cpuset_init - initialize cpusets at system boot
  1784. *
  1785. * Description: Initialize top_cpuset and the cpuset internal file system,
  1786. **/
  1787. int __init cpuset_init(void)
  1788. {
  1789. int err = 0;
  1790. if (!alloc_cpumask_var(&top_cpuset.cpus_allowed, GFP_KERNEL))
  1791. BUG();
  1792. cpumask_setall(top_cpuset.cpus_allowed);
  1793. nodes_setall(top_cpuset.mems_allowed);
  1794. fmeter_init(&top_cpuset.fmeter);
  1795. set_bit(CS_SCHED_LOAD_BALANCE, &top_cpuset.flags);
  1796. top_cpuset.relax_domain_level = -1;
  1797. err = register_filesystem(&cpuset_fs_type);
  1798. if (err < 0)
  1799. return err;
  1800. if (!alloc_cpumask_var(&cpus_attach, GFP_KERNEL))
  1801. BUG();
  1802. number_of_cpusets = 1;
  1803. return 0;
  1804. }
  1805. /*
  1806. * If CPU and/or memory hotplug handlers, below, unplug any CPUs
  1807. * or memory nodes, we need to walk over the cpuset hierarchy,
  1808. * removing that CPU or node from all cpusets. If this removes the
  1809. * last CPU or node from a cpuset, then move the tasks in the empty
  1810. * cpuset to its next-highest non-empty parent.
  1811. */
  1812. static void remove_tasks_in_empty_cpuset(struct cpuset *cs)
  1813. {
  1814. struct cpuset *parent;
  1815. /*
  1816. * Find its next-highest non-empty parent, (top cpuset
  1817. * has online cpus, so can't be empty).
  1818. */
  1819. parent = parent_cs(cs);
  1820. while (cpumask_empty(parent->cpus_allowed) ||
  1821. nodes_empty(parent->mems_allowed))
  1822. parent = parent_cs(parent);
  1823. if (cgroup_transfer_tasks(parent->css.cgroup, cs->css.cgroup)) {
  1824. rcu_read_lock();
  1825. printk(KERN_ERR "cpuset: failed to transfer tasks out of empty cpuset %s\n",
  1826. cgroup_name(cs->css.cgroup));
  1827. rcu_read_unlock();
  1828. }
  1829. }
  1830. /**
  1831. * cpuset_hotplug_update_tasks - update tasks in a cpuset for hotunplug
  1832. * @cs: cpuset in interest
  1833. *
  1834. * Compare @cs's cpu and mem masks against top_cpuset and if some have gone
  1835. * offline, update @cs accordingly. If @cs ends up with no CPU or memory,
  1836. * all its tasks are moved to the nearest ancestor with both resources.
  1837. */
  1838. static void cpuset_hotplug_update_tasks(struct cpuset *cs)
  1839. {
  1840. static cpumask_t off_cpus;
  1841. static nodemask_t off_mems;
  1842. bool is_empty;
  1843. bool sane = cgroup_sane_behavior(cs->css.cgroup);
  1844. retry:
  1845. wait_event(cpuset_attach_wq, cs->attach_in_progress == 0);
  1846. mutex_lock(&cpuset_mutex);
  1847. /*
  1848. * We have raced with task attaching. We wait until attaching
  1849. * is finished, so we won't attach a task to an empty cpuset.
  1850. */
  1851. if (cs->attach_in_progress) {
  1852. mutex_unlock(&cpuset_mutex);
  1853. goto retry;
  1854. }
  1855. cpumask_andnot(&off_cpus, cs->cpus_allowed, top_cpuset.cpus_allowed);
  1856. nodes_andnot(off_mems, cs->mems_allowed, top_cpuset.mems_allowed);
  1857. mutex_lock(&callback_mutex);
  1858. cpumask_andnot(cs->cpus_allowed, cs->cpus_allowed, &off_cpus);
  1859. mutex_unlock(&callback_mutex);
  1860. /*
  1861. * If sane_behavior flag is set, we need to update tasks' cpumask
  1862. * for empty cpuset to take on ancestor's cpumask. Otherwise, don't
  1863. * call update_tasks_cpumask() if the cpuset becomes empty, as
  1864. * the tasks in it will be migrated to an ancestor.
  1865. */
  1866. if ((sane && cpumask_empty(cs->cpus_allowed)) ||
  1867. (!cpumask_empty(&off_cpus) && !cpumask_empty(cs->cpus_allowed)))
  1868. update_tasks_cpumask(cs, NULL);
  1869. mutex_lock(&callback_mutex);
  1870. nodes_andnot(cs->mems_allowed, cs->mems_allowed, off_mems);
  1871. mutex_unlock(&callback_mutex);
  1872. /*
  1873. * If sane_behavior flag is set, we need to update tasks' nodemask
  1874. * for empty cpuset to take on ancestor's nodemask. Otherwise, don't
  1875. * call update_tasks_nodemask() if the cpuset becomes empty, as
  1876. * the tasks in it will be migratd to an ancestor.
  1877. */
  1878. if ((sane && nodes_empty(cs->mems_allowed)) ||
  1879. (!nodes_empty(off_mems) && !nodes_empty(cs->mems_allowed)))
  1880. update_tasks_nodemask(cs, NULL);
  1881. is_empty = cpumask_empty(cs->cpus_allowed) ||
  1882. nodes_empty(cs->mems_allowed);
  1883. mutex_unlock(&cpuset_mutex);
  1884. /*
  1885. * If sane_behavior flag is set, we'll keep tasks in empty cpusets.
  1886. *
  1887. * Otherwise move tasks to the nearest ancestor with execution
  1888. * resources. This is full cgroup operation which will
  1889. * also call back into cpuset. Should be done outside any lock.
  1890. */
  1891. if (!sane && is_empty)
  1892. remove_tasks_in_empty_cpuset(cs);
  1893. }
  1894. /**
  1895. * cpuset_hotplug_workfn - handle CPU/memory hotunplug for a cpuset
  1896. *
  1897. * This function is called after either CPU or memory configuration has
  1898. * changed and updates cpuset accordingly. The top_cpuset is always
  1899. * synchronized to cpu_active_mask and N_MEMORY, which is necessary in
  1900. * order to make cpusets transparent (of no affect) on systems that are
  1901. * actively using CPU hotplug but making no active use of cpusets.
  1902. *
  1903. * Non-root cpusets are only affected by offlining. If any CPUs or memory
  1904. * nodes have been taken down, cpuset_hotplug_update_tasks() is invoked on
  1905. * all descendants.
  1906. *
  1907. * Note that CPU offlining during suspend is ignored. We don't modify
  1908. * cpusets across suspend/resume cycles at all.
  1909. */
  1910. static void cpuset_hotplug_workfn(struct work_struct *work)
  1911. {
  1912. static cpumask_t new_cpus;
  1913. static nodemask_t new_mems;
  1914. bool cpus_updated, mems_updated;
  1915. mutex_lock(&cpuset_mutex);
  1916. /* fetch the available cpus/mems and find out which changed how */
  1917. cpumask_copy(&new_cpus, cpu_active_mask);
  1918. new_mems = node_states[N_MEMORY];
  1919. cpus_updated = !cpumask_equal(top_cpuset.cpus_allowed, &new_cpus);
  1920. mems_updated = !nodes_equal(top_cpuset.mems_allowed, new_mems);
  1921. /* synchronize cpus_allowed to cpu_active_mask */
  1922. if (cpus_updated) {
  1923. mutex_lock(&callback_mutex);
  1924. cpumask_copy(top_cpuset.cpus_allowed, &new_cpus);
  1925. mutex_unlock(&callback_mutex);
  1926. /* we don't mess with cpumasks of tasks in top_cpuset */
  1927. }
  1928. /* synchronize mems_allowed to N_MEMORY */
  1929. if (mems_updated) {
  1930. mutex_lock(&callback_mutex);
  1931. top_cpuset.mems_allowed = new_mems;
  1932. mutex_unlock(&callback_mutex);
  1933. update_tasks_nodemask(&top_cpuset, NULL);
  1934. }
  1935. mutex_unlock(&cpuset_mutex);
  1936. /* if cpus or mems changed, we need to propagate to descendants */
  1937. if (cpus_updated || mems_updated) {
  1938. struct cpuset *cs;
  1939. struct cgroup_subsys_state *pos_css;
  1940. rcu_read_lock();
  1941. cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) {
  1942. if (!css_tryget(&cs->css))
  1943. continue;
  1944. rcu_read_unlock();
  1945. cpuset_hotplug_update_tasks(cs);
  1946. rcu_read_lock();
  1947. css_put(&cs->css);
  1948. }
  1949. rcu_read_unlock();
  1950. }
  1951. /* rebuild sched domains if cpus_allowed has changed */
  1952. if (cpus_updated)
  1953. rebuild_sched_domains();
  1954. }
  1955. void cpuset_update_active_cpus(bool cpu_online)
  1956. {
  1957. /*
  1958. * We're inside cpu hotplug critical region which usually nests
  1959. * inside cgroup synchronization. Bounce actual hotplug processing
  1960. * to a work item to avoid reverse locking order.
  1961. *
  1962. * We still need to do partition_sched_domains() synchronously;
  1963. * otherwise, the scheduler will get confused and put tasks to the
  1964. * dead CPU. Fall back to the default single domain.
  1965. * cpuset_hotplug_workfn() will rebuild it as necessary.
  1966. */
  1967. partition_sched_domains(1, NULL, NULL);
  1968. schedule_work(&cpuset_hotplug_work);
  1969. }
  1970. /*
  1971. * Keep top_cpuset.mems_allowed tracking node_states[N_MEMORY].
  1972. * Call this routine anytime after node_states[N_MEMORY] changes.
  1973. * See cpuset_update_active_cpus() for CPU hotplug handling.
  1974. */
  1975. static int cpuset_track_online_nodes(struct notifier_block *self,
  1976. unsigned long action, void *arg)
  1977. {
  1978. schedule_work(&cpuset_hotplug_work);
  1979. return NOTIFY_OK;
  1980. }
  1981. static struct notifier_block cpuset_track_online_nodes_nb = {
  1982. .notifier_call = cpuset_track_online_nodes,
  1983. .priority = 10, /* ??! */
  1984. };
  1985. /**
  1986. * cpuset_init_smp - initialize cpus_allowed
  1987. *
  1988. * Description: Finish top cpuset after cpu, node maps are initialized
  1989. */
  1990. void __init cpuset_init_smp(void)
  1991. {
  1992. cpumask_copy(top_cpuset.cpus_allowed, cpu_active_mask);
  1993. top_cpuset.mems_allowed = node_states[N_MEMORY];
  1994. top_cpuset.old_mems_allowed = top_cpuset.mems_allowed;
  1995. register_hotmemory_notifier(&cpuset_track_online_nodes_nb);
  1996. }
  1997. /**
  1998. * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset.
  1999. * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed.
  2000. * @pmask: pointer to struct cpumask variable to receive cpus_allowed set.
  2001. *
  2002. * Description: Returns the cpumask_var_t cpus_allowed of the cpuset
  2003. * attached to the specified @tsk. Guaranteed to return some non-empty
  2004. * subset of cpu_online_mask, even if this means going outside the
  2005. * tasks cpuset.
  2006. **/
  2007. void cpuset_cpus_allowed(struct task_struct *tsk, struct cpumask *pmask)
  2008. {
  2009. struct cpuset *cpus_cs;
  2010. mutex_lock(&callback_mutex);
  2011. task_lock(tsk);
  2012. cpus_cs = effective_cpumask_cpuset(task_cs(tsk));
  2013. guarantee_online_cpus(cpus_cs, pmask);
  2014. task_unlock(tsk);
  2015. mutex_unlock(&callback_mutex);
  2016. }
  2017. void cpuset_cpus_allowed_fallback(struct task_struct *tsk)
  2018. {
  2019. struct cpuset *cpus_cs;
  2020. rcu_read_lock();
  2021. cpus_cs = effective_cpumask_cpuset(task_cs(tsk));
  2022. do_set_cpus_allowed(tsk, cpus_cs->cpus_allowed);
  2023. rcu_read_unlock();
  2024. /*
  2025. * We own tsk->cpus_allowed, nobody can change it under us.
  2026. *
  2027. * But we used cs && cs->cpus_allowed lockless and thus can
  2028. * race with cgroup_attach_task() or update_cpumask() and get
  2029. * the wrong tsk->cpus_allowed. However, both cases imply the
  2030. * subsequent cpuset_change_cpumask()->set_cpus_allowed_ptr()
  2031. * which takes task_rq_lock().
  2032. *
  2033. * If we are called after it dropped the lock we must see all
  2034. * changes in tsk_cs()->cpus_allowed. Otherwise we can temporary
  2035. * set any mask even if it is not right from task_cs() pov,
  2036. * the pending set_cpus_allowed_ptr() will fix things.
  2037. *
  2038. * select_fallback_rq() will fix things ups and set cpu_possible_mask
  2039. * if required.
  2040. */
  2041. }
  2042. void cpuset_init_current_mems_allowed(void)
  2043. {
  2044. nodes_setall(current->mems_allowed);
  2045. }
  2046. /**
  2047. * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset.
  2048. * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed.
  2049. *
  2050. * Description: Returns the nodemask_t mems_allowed of the cpuset
  2051. * attached to the specified @tsk. Guaranteed to return some non-empty
  2052. * subset of node_states[N_MEMORY], even if this means going outside the
  2053. * tasks cpuset.
  2054. **/
  2055. nodemask_t cpuset_mems_allowed(struct task_struct *tsk)
  2056. {
  2057. struct cpuset *mems_cs;
  2058. nodemask_t mask;
  2059. mutex_lock(&callback_mutex);
  2060. task_lock(tsk);
  2061. mems_cs = effective_nodemask_cpuset(task_cs(tsk));
  2062. guarantee_online_mems(mems_cs, &mask);
  2063. task_unlock(tsk);
  2064. mutex_unlock(&callback_mutex);
  2065. return mask;
  2066. }
  2067. /**
  2068. * cpuset_nodemask_valid_mems_allowed - check nodemask vs. curremt mems_allowed
  2069. * @nodemask: the nodemask to be checked
  2070. *
  2071. * Are any of the nodes in the nodemask allowed in current->mems_allowed?
  2072. */
  2073. int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask)
  2074. {
  2075. return nodes_intersects(*nodemask, current->mems_allowed);
  2076. }
  2077. /*
  2078. * nearest_hardwall_ancestor() - Returns the nearest mem_exclusive or
  2079. * mem_hardwall ancestor to the specified cpuset. Call holding
  2080. * callback_mutex. If no ancestor is mem_exclusive or mem_hardwall
  2081. * (an unusual configuration), then returns the root cpuset.
  2082. */
  2083. static struct cpuset *nearest_hardwall_ancestor(struct cpuset *cs)
  2084. {
  2085. while (!(is_mem_exclusive(cs) || is_mem_hardwall(cs)) && parent_cs(cs))
  2086. cs = parent_cs(cs);
  2087. return cs;
  2088. }
  2089. /**
  2090. * cpuset_node_allowed_softwall - Can we allocate on a memory node?
  2091. * @node: is this an allowed node?
  2092. * @gfp_mask: memory allocation flags
  2093. *
  2094. * If we're in interrupt, yes, we can always allocate. If __GFP_THISNODE is
  2095. * set, yes, we can always allocate. If node is in our task's mems_allowed,
  2096. * yes. If it's not a __GFP_HARDWALL request and this node is in the nearest
  2097. * hardwalled cpuset ancestor to this task's cpuset, yes. If the task has been
  2098. * OOM killed and has access to memory reserves as specified by the TIF_MEMDIE
  2099. * flag, yes.
  2100. * Otherwise, no.
  2101. *
  2102. * If __GFP_HARDWALL is set, cpuset_node_allowed_softwall() reduces to
  2103. * cpuset_node_allowed_hardwall(). Otherwise, cpuset_node_allowed_softwall()
  2104. * might sleep, and might allow a node from an enclosing cpuset.
  2105. *
  2106. * cpuset_node_allowed_hardwall() only handles the simpler case of hardwall
  2107. * cpusets, and never sleeps.
  2108. *
  2109. * The __GFP_THISNODE placement logic is really handled elsewhere,
  2110. * by forcibly using a zonelist starting at a specified node, and by
  2111. * (in get_page_from_freelist()) refusing to consider the zones for
  2112. * any node on the zonelist except the first. By the time any such
  2113. * calls get to this routine, we should just shut up and say 'yes'.
  2114. *
  2115. * GFP_USER allocations are marked with the __GFP_HARDWALL bit,
  2116. * and do not allow allocations outside the current tasks cpuset
  2117. * unless the task has been OOM killed as is marked TIF_MEMDIE.
  2118. * GFP_KERNEL allocations are not so marked, so can escape to the
  2119. * nearest enclosing hardwalled ancestor cpuset.
  2120. *
  2121. * Scanning up parent cpusets requires callback_mutex. The
  2122. * __alloc_pages() routine only calls here with __GFP_HARDWALL bit
  2123. * _not_ set if it's a GFP_KERNEL allocation, and all nodes in the
  2124. * current tasks mems_allowed came up empty on the first pass over
  2125. * the zonelist. So only GFP_KERNEL allocations, if all nodes in the
  2126. * cpuset are short of memory, might require taking the callback_mutex
  2127. * mutex.
  2128. *
  2129. * The first call here from mm/page_alloc:get_page_from_freelist()
  2130. * has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets,
  2131. * so no allocation on a node outside the cpuset is allowed (unless
  2132. * in interrupt, of course).
  2133. *
  2134. * The second pass through get_page_from_freelist() doesn't even call
  2135. * here for GFP_ATOMIC calls. For those calls, the __alloc_pages()
  2136. * variable 'wait' is not set, and the bit ALLOC_CPUSET is not set
  2137. * in alloc_flags. That logic and the checks below have the combined
  2138. * affect that:
  2139. * in_interrupt - any node ok (current task context irrelevant)
  2140. * GFP_ATOMIC - any node ok
  2141. * TIF_MEMDIE - any node ok
  2142. * GFP_KERNEL - any node in enclosing hardwalled cpuset ok
  2143. * GFP_USER - only nodes in current tasks mems allowed ok.
  2144. *
  2145. * Rule:
  2146. * Don't call cpuset_node_allowed_softwall if you can't sleep, unless you
  2147. * pass in the __GFP_HARDWALL flag set in gfp_flag, which disables
  2148. * the code that might scan up ancestor cpusets and sleep.
  2149. */
  2150. int __cpuset_node_allowed_softwall(int node, gfp_t gfp_mask)
  2151. {
  2152. struct cpuset *cs; /* current cpuset ancestors */
  2153. int allowed; /* is allocation in zone z allowed? */
  2154. if (in_interrupt() || (gfp_mask & __GFP_THISNODE))
  2155. return 1;
  2156. might_sleep_if(!(gfp_mask & __GFP_HARDWALL));
  2157. if (node_isset(node, current->mems_allowed))
  2158. return 1;
  2159. /*
  2160. * Allow tasks that have access to memory reserves because they have
  2161. * been OOM killed to get memory anywhere.
  2162. */
  2163. if (unlikely(test_thread_flag(TIF_MEMDIE)))
  2164. return 1;
  2165. if (gfp_mask & __GFP_HARDWALL) /* If hardwall request, stop here */
  2166. return 0;
  2167. if (current->flags & PF_EXITING) /* Let dying task have memory */
  2168. return 1;
  2169. /* Not hardwall and node outside mems_allowed: scan up cpusets */
  2170. mutex_lock(&callback_mutex);
  2171. task_lock(current);
  2172. cs = nearest_hardwall_ancestor(task_cs(current));
  2173. task_unlock(current);
  2174. allowed = node_isset(node, cs->mems_allowed);
  2175. mutex_unlock(&callback_mutex);
  2176. return allowed;
  2177. }
  2178. /*
  2179. * cpuset_node_allowed_hardwall - Can we allocate on a memory node?
  2180. * @node: is this an allowed node?
  2181. * @gfp_mask: memory allocation flags
  2182. *
  2183. * If we're in interrupt, yes, we can always allocate. If __GFP_THISNODE is
  2184. * set, yes, we can always allocate. If node is in our task's mems_allowed,
  2185. * yes. If the task has been OOM killed and has access to memory reserves as
  2186. * specified by the TIF_MEMDIE flag, yes.
  2187. * Otherwise, no.
  2188. *
  2189. * The __GFP_THISNODE placement logic is really handled elsewhere,
  2190. * by forcibly using a zonelist starting at a specified node, and by
  2191. * (in get_page_from_freelist()) refusing to consider the zones for
  2192. * any node on the zonelist except the first. By the time any such
  2193. * calls get to this routine, we should just shut up and say 'yes'.
  2194. *
  2195. * Unlike the cpuset_node_allowed_softwall() variant, above,
  2196. * this variant requires that the node be in the current task's
  2197. * mems_allowed or that we're in interrupt. It does not scan up the
  2198. * cpuset hierarchy for the nearest enclosing mem_exclusive cpuset.
  2199. * It never sleeps.
  2200. */
  2201. int __cpuset_node_allowed_hardwall(int node, gfp_t gfp_mask)
  2202. {
  2203. if (in_interrupt() || (gfp_mask & __GFP_THISNODE))
  2204. return 1;
  2205. if (node_isset(node, current->mems_allowed))
  2206. return 1;
  2207. /*
  2208. * Allow tasks that have access to memory reserves because they have
  2209. * been OOM killed to get memory anywhere.
  2210. */
  2211. if (unlikely(test_thread_flag(TIF_MEMDIE)))
  2212. return 1;
  2213. return 0;
  2214. }
  2215. /**
  2216. * cpuset_mem_spread_node() - On which node to begin search for a file page
  2217. * cpuset_slab_spread_node() - On which node to begin search for a slab page
  2218. *
  2219. * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for
  2220. * tasks in a cpuset with is_spread_page or is_spread_slab set),
  2221. * and if the memory allocation used cpuset_mem_spread_node()
  2222. * to determine on which node to start looking, as it will for
  2223. * certain page cache or slab cache pages such as used for file
  2224. * system buffers and inode caches, then instead of starting on the
  2225. * local node to look for a free page, rather spread the starting
  2226. * node around the tasks mems_allowed nodes.
  2227. *
  2228. * We don't have to worry about the returned node being offline
  2229. * because "it can't happen", and even if it did, it would be ok.
  2230. *
  2231. * The routines calling guarantee_online_mems() are careful to
  2232. * only set nodes in task->mems_allowed that are online. So it
  2233. * should not be possible for the following code to return an
  2234. * offline node. But if it did, that would be ok, as this routine
  2235. * is not returning the node where the allocation must be, only
  2236. * the node where the search should start. The zonelist passed to
  2237. * __alloc_pages() will include all nodes. If the slab allocator
  2238. * is passed an offline node, it will fall back to the local node.
  2239. * See kmem_cache_alloc_node().
  2240. */
  2241. static int cpuset_spread_node(int *rotor)
  2242. {
  2243. int node;
  2244. node = next_node(*rotor, current->mems_allowed);
  2245. if (node == MAX_NUMNODES)
  2246. node = first_node(current->mems_allowed);
  2247. *rotor = node;
  2248. return node;
  2249. }
  2250. int cpuset_mem_spread_node(void)
  2251. {
  2252. if (current->cpuset_mem_spread_rotor == NUMA_NO_NODE)
  2253. current->cpuset_mem_spread_rotor =
  2254. node_random(&current->mems_allowed);
  2255. return cpuset_spread_node(&current->cpuset_mem_spread_rotor);
  2256. }
  2257. int cpuset_slab_spread_node(void)
  2258. {
  2259. if (current->cpuset_slab_spread_rotor == NUMA_NO_NODE)
  2260. current->cpuset_slab_spread_rotor =
  2261. node_random(&current->mems_allowed);
  2262. return cpuset_spread_node(&current->cpuset_slab_spread_rotor);
  2263. }
  2264. EXPORT_SYMBOL_GPL(cpuset_mem_spread_node);
  2265. /**
  2266. * cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's?
  2267. * @tsk1: pointer to task_struct of some task.
  2268. * @tsk2: pointer to task_struct of some other task.
  2269. *
  2270. * Description: Return true if @tsk1's mems_allowed intersects the
  2271. * mems_allowed of @tsk2. Used by the OOM killer to determine if
  2272. * one of the task's memory usage might impact the memory available
  2273. * to the other.
  2274. **/
  2275. int cpuset_mems_allowed_intersects(const struct task_struct *tsk1,
  2276. const struct task_struct *tsk2)
  2277. {
  2278. return nodes_intersects(tsk1->mems_allowed, tsk2->mems_allowed);
  2279. }
  2280. #define CPUSET_NODELIST_LEN (256)
  2281. /**
  2282. * cpuset_print_task_mems_allowed - prints task's cpuset and mems_allowed
  2283. * @task: pointer to task_struct of some task.
  2284. *
  2285. * Description: Prints @task's name, cpuset name, and cached copy of its
  2286. * mems_allowed to the kernel log. Must hold task_lock(task) to allow
  2287. * dereferencing task_cs(task).
  2288. */
  2289. void cpuset_print_task_mems_allowed(struct task_struct *tsk)
  2290. {
  2291. /* Statically allocated to prevent using excess stack. */
  2292. static char cpuset_nodelist[CPUSET_NODELIST_LEN];
  2293. static DEFINE_SPINLOCK(cpuset_buffer_lock);
  2294. struct cgroup *cgrp = task_cs(tsk)->css.cgroup;
  2295. rcu_read_lock();
  2296. spin_lock(&cpuset_buffer_lock);
  2297. nodelist_scnprintf(cpuset_nodelist, CPUSET_NODELIST_LEN,
  2298. tsk->mems_allowed);
  2299. printk(KERN_INFO "%s cpuset=%s mems_allowed=%s\n",
  2300. tsk->comm, cgroup_name(cgrp), cpuset_nodelist);
  2301. spin_unlock(&cpuset_buffer_lock);
  2302. rcu_read_unlock();
  2303. }
  2304. /*
  2305. * Collection of memory_pressure is suppressed unless
  2306. * this flag is enabled by writing "1" to the special
  2307. * cpuset file 'memory_pressure_enabled' in the root cpuset.
  2308. */
  2309. int cpuset_memory_pressure_enabled __read_mostly;
  2310. /**
  2311. * cpuset_memory_pressure_bump - keep stats of per-cpuset reclaims.
  2312. *
  2313. * Keep a running average of the rate of synchronous (direct)
  2314. * page reclaim efforts initiated by tasks in each cpuset.
  2315. *
  2316. * This represents the rate at which some task in the cpuset
  2317. * ran low on memory on all nodes it was allowed to use, and
  2318. * had to enter the kernels page reclaim code in an effort to
  2319. * create more free memory by tossing clean pages or swapping
  2320. * or writing dirty pages.
  2321. *
  2322. * Display to user space in the per-cpuset read-only file
  2323. * "memory_pressure". Value displayed is an integer
  2324. * representing the recent rate of entry into the synchronous
  2325. * (direct) page reclaim by any task attached to the cpuset.
  2326. **/
  2327. void __cpuset_memory_pressure_bump(void)
  2328. {
  2329. task_lock(current);
  2330. fmeter_markevent(&task_cs(current)->fmeter);
  2331. task_unlock(current);
  2332. }
  2333. #ifdef CONFIG_PROC_PID_CPUSET
  2334. /*
  2335. * proc_cpuset_show()
  2336. * - Print tasks cpuset path into seq_file.
  2337. * - Used for /proc/<pid>/cpuset.
  2338. * - No need to task_lock(tsk) on this tsk->cpuset reference, as it
  2339. * doesn't really matter if tsk->cpuset changes after we read it,
  2340. * and we take cpuset_mutex, keeping cpuset_attach() from changing it
  2341. * anyway.
  2342. */
  2343. int proc_cpuset_show(struct seq_file *m, void *unused_v)
  2344. {
  2345. struct pid *pid;
  2346. struct task_struct *tsk;
  2347. char *buf;
  2348. struct cgroup_subsys_state *css;
  2349. int retval;
  2350. retval = -ENOMEM;
  2351. buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
  2352. if (!buf)
  2353. goto out;
  2354. retval = -ESRCH;
  2355. pid = m->private;
  2356. tsk = get_pid_task(pid, PIDTYPE_PID);
  2357. if (!tsk)
  2358. goto out_free;
  2359. rcu_read_lock();
  2360. css = task_css(tsk, cpuset_subsys_id);
  2361. retval = cgroup_path(css->cgroup, buf, PAGE_SIZE);
  2362. rcu_read_unlock();
  2363. if (retval < 0)
  2364. goto out_put_task;
  2365. seq_puts(m, buf);
  2366. seq_putc(m, '\n');
  2367. out_put_task:
  2368. put_task_struct(tsk);
  2369. out_free:
  2370. kfree(buf);
  2371. out:
  2372. return retval;
  2373. }
  2374. #endif /* CONFIG_PROC_PID_CPUSET */
  2375. /* Display task mems_allowed in /proc/<pid>/status file. */
  2376. void cpuset_task_status_allowed(struct seq_file *m, struct task_struct *task)
  2377. {
  2378. seq_printf(m, "Mems_allowed:\t");
  2379. seq_nodemask(m, &task->mems_allowed);
  2380. seq_printf(m, "\n");
  2381. seq_printf(m, "Mems_allowed_list:\t");
  2382. seq_nodemask_list(m, &task->mems_allowed);
  2383. seq_printf(m, "\n");
  2384. }