transaction.c 37 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423
  1. /*
  2. * Copyright (C) 2007 Oracle. All rights reserved.
  3. *
  4. * This program is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU General Public
  6. * License v2 as published by the Free Software Foundation.
  7. *
  8. * This program is distributed in the hope that it will be useful,
  9. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  11. * General Public License for more details.
  12. *
  13. * You should have received a copy of the GNU General Public
  14. * License along with this program; if not, write to the
  15. * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16. * Boston, MA 021110-1307, USA.
  17. */
  18. #include <linux/fs.h>
  19. #include <linux/slab.h>
  20. #include <linux/sched.h>
  21. #include <linux/writeback.h>
  22. #include <linux/pagemap.h>
  23. #include <linux/blkdev.h>
  24. #include "ctree.h"
  25. #include "disk-io.h"
  26. #include "transaction.h"
  27. #include "locking.h"
  28. #include "tree-log.h"
  29. #include "inode-map.h"
  30. #define BTRFS_ROOT_TRANS_TAG 0
  31. static noinline void put_transaction(struct btrfs_transaction *transaction)
  32. {
  33. WARN_ON(atomic_read(&transaction->use_count) == 0);
  34. if (atomic_dec_and_test(&transaction->use_count)) {
  35. BUG_ON(!list_empty(&transaction->list));
  36. memset(transaction, 0, sizeof(*transaction));
  37. kmem_cache_free(btrfs_transaction_cachep, transaction);
  38. }
  39. }
  40. static noinline void switch_commit_root(struct btrfs_root *root)
  41. {
  42. free_extent_buffer(root->commit_root);
  43. root->commit_root = btrfs_root_node(root);
  44. }
  45. /*
  46. * either allocate a new transaction or hop into the existing one
  47. */
  48. static noinline int join_transaction(struct btrfs_root *root, int nofail)
  49. {
  50. struct btrfs_transaction *cur_trans;
  51. spin_lock(&root->fs_info->trans_lock);
  52. if (root->fs_info->trans_no_join) {
  53. if (!nofail) {
  54. spin_unlock(&root->fs_info->trans_lock);
  55. return -EBUSY;
  56. }
  57. }
  58. cur_trans = root->fs_info->running_transaction;
  59. if (cur_trans) {
  60. atomic_inc(&cur_trans->use_count);
  61. atomic_inc(&cur_trans->num_writers);
  62. cur_trans->num_joined++;
  63. spin_unlock(&root->fs_info->trans_lock);
  64. return 0;
  65. }
  66. spin_unlock(&root->fs_info->trans_lock);
  67. cur_trans = kmem_cache_alloc(btrfs_transaction_cachep, GFP_NOFS);
  68. if (!cur_trans)
  69. return -ENOMEM;
  70. spin_lock(&root->fs_info->trans_lock);
  71. if (root->fs_info->running_transaction) {
  72. kmem_cache_free(btrfs_transaction_cachep, cur_trans);
  73. cur_trans = root->fs_info->running_transaction;
  74. atomic_inc(&cur_trans->use_count);
  75. atomic_inc(&cur_trans->num_writers);
  76. cur_trans->num_joined++;
  77. spin_unlock(&root->fs_info->trans_lock);
  78. return 0;
  79. }
  80. atomic_set(&cur_trans->num_writers, 1);
  81. cur_trans->num_joined = 0;
  82. init_waitqueue_head(&cur_trans->writer_wait);
  83. init_waitqueue_head(&cur_trans->commit_wait);
  84. cur_trans->in_commit = 0;
  85. cur_trans->blocked = 0;
  86. /*
  87. * One for this trans handle, one so it will live on until we
  88. * commit the transaction.
  89. */
  90. atomic_set(&cur_trans->use_count, 2);
  91. cur_trans->commit_done = 0;
  92. cur_trans->start_time = get_seconds();
  93. cur_trans->delayed_refs.root = RB_ROOT;
  94. cur_trans->delayed_refs.num_entries = 0;
  95. cur_trans->delayed_refs.num_heads_ready = 0;
  96. cur_trans->delayed_refs.num_heads = 0;
  97. cur_trans->delayed_refs.flushing = 0;
  98. cur_trans->delayed_refs.run_delayed_start = 0;
  99. spin_lock_init(&cur_trans->commit_lock);
  100. spin_lock_init(&cur_trans->delayed_refs.lock);
  101. INIT_LIST_HEAD(&cur_trans->pending_snapshots);
  102. list_add_tail(&cur_trans->list, &root->fs_info->trans_list);
  103. extent_io_tree_init(&cur_trans->dirty_pages,
  104. root->fs_info->btree_inode->i_mapping);
  105. root->fs_info->generation++;
  106. cur_trans->transid = root->fs_info->generation;
  107. root->fs_info->running_transaction = cur_trans;
  108. spin_unlock(&root->fs_info->trans_lock);
  109. return 0;
  110. }
  111. /*
  112. * this does all the record keeping required to make sure that a reference
  113. * counted root is properly recorded in a given transaction. This is required
  114. * to make sure the old root from before we joined the transaction is deleted
  115. * when the transaction commits
  116. */
  117. static int record_root_in_trans(struct btrfs_trans_handle *trans,
  118. struct btrfs_root *root)
  119. {
  120. if (root->ref_cows && root->last_trans < trans->transid) {
  121. WARN_ON(root == root->fs_info->extent_root);
  122. WARN_ON(root->commit_root != root->node);
  123. /*
  124. * see below for in_trans_setup usage rules
  125. * we have the reloc mutex held now, so there
  126. * is only one writer in this function
  127. */
  128. root->in_trans_setup = 1;
  129. /* make sure readers find in_trans_setup before
  130. * they find our root->last_trans update
  131. */
  132. smp_wmb();
  133. spin_lock(&root->fs_info->fs_roots_radix_lock);
  134. if (root->last_trans == trans->transid) {
  135. spin_unlock(&root->fs_info->fs_roots_radix_lock);
  136. return 0;
  137. }
  138. radix_tree_tag_set(&root->fs_info->fs_roots_radix,
  139. (unsigned long)root->root_key.objectid,
  140. BTRFS_ROOT_TRANS_TAG);
  141. spin_unlock(&root->fs_info->fs_roots_radix_lock);
  142. root->last_trans = trans->transid;
  143. /* this is pretty tricky. We don't want to
  144. * take the relocation lock in btrfs_record_root_in_trans
  145. * unless we're really doing the first setup for this root in
  146. * this transaction.
  147. *
  148. * Normally we'd use root->last_trans as a flag to decide
  149. * if we want to take the expensive mutex.
  150. *
  151. * But, we have to set root->last_trans before we
  152. * init the relocation root, otherwise, we trip over warnings
  153. * in ctree.c. The solution used here is to flag ourselves
  154. * with root->in_trans_setup. When this is 1, we're still
  155. * fixing up the reloc trees and everyone must wait.
  156. *
  157. * When this is zero, they can trust root->last_trans and fly
  158. * through btrfs_record_root_in_trans without having to take the
  159. * lock. smp_wmb() makes sure that all the writes above are
  160. * done before we pop in the zero below
  161. */
  162. btrfs_init_reloc_root(trans, root);
  163. smp_wmb();
  164. root->in_trans_setup = 0;
  165. }
  166. return 0;
  167. }
  168. int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
  169. struct btrfs_root *root)
  170. {
  171. if (!root->ref_cows)
  172. return 0;
  173. /*
  174. * see record_root_in_trans for comments about in_trans_setup usage
  175. * and barriers
  176. */
  177. smp_rmb();
  178. if (root->last_trans == trans->transid &&
  179. !root->in_trans_setup)
  180. return 0;
  181. mutex_lock(&root->fs_info->reloc_mutex);
  182. record_root_in_trans(trans, root);
  183. mutex_unlock(&root->fs_info->reloc_mutex);
  184. return 0;
  185. }
  186. /* wait for commit against the current transaction to become unblocked
  187. * when this is done, it is safe to start a new transaction, but the current
  188. * transaction might not be fully on disk.
  189. */
  190. static void wait_current_trans(struct btrfs_root *root)
  191. {
  192. struct btrfs_transaction *cur_trans;
  193. spin_lock(&root->fs_info->trans_lock);
  194. cur_trans = root->fs_info->running_transaction;
  195. if (cur_trans && cur_trans->blocked) {
  196. atomic_inc(&cur_trans->use_count);
  197. spin_unlock(&root->fs_info->trans_lock);
  198. wait_event(root->fs_info->transaction_wait,
  199. !cur_trans->blocked);
  200. put_transaction(cur_trans);
  201. } else {
  202. spin_unlock(&root->fs_info->trans_lock);
  203. }
  204. }
  205. enum btrfs_trans_type {
  206. TRANS_START,
  207. TRANS_JOIN,
  208. TRANS_USERSPACE,
  209. TRANS_JOIN_NOLOCK,
  210. };
  211. static int may_wait_transaction(struct btrfs_root *root, int type)
  212. {
  213. if (root->fs_info->log_root_recovering)
  214. return 0;
  215. if (type == TRANS_USERSPACE)
  216. return 1;
  217. if (type == TRANS_START &&
  218. !atomic_read(&root->fs_info->open_ioctl_trans))
  219. return 1;
  220. return 0;
  221. }
  222. static struct btrfs_trans_handle *start_transaction(struct btrfs_root *root,
  223. u64 num_items, int type)
  224. {
  225. struct btrfs_trans_handle *h;
  226. struct btrfs_transaction *cur_trans;
  227. u64 num_bytes = 0;
  228. int ret;
  229. if (root->fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR)
  230. return ERR_PTR(-EROFS);
  231. if (current->journal_info) {
  232. WARN_ON(type != TRANS_JOIN && type != TRANS_JOIN_NOLOCK);
  233. h = current->journal_info;
  234. h->use_count++;
  235. h->orig_rsv = h->block_rsv;
  236. h->block_rsv = NULL;
  237. goto got_it;
  238. }
  239. /*
  240. * Do the reservation before we join the transaction so we can do all
  241. * the appropriate flushing if need be.
  242. */
  243. if (num_items > 0 && root != root->fs_info->chunk_root) {
  244. num_bytes = btrfs_calc_trans_metadata_size(root, num_items);
  245. ret = btrfs_block_rsv_add(NULL, root,
  246. &root->fs_info->trans_block_rsv,
  247. num_bytes);
  248. if (ret)
  249. return ERR_PTR(ret);
  250. }
  251. again:
  252. h = kmem_cache_alloc(btrfs_trans_handle_cachep, GFP_NOFS);
  253. if (!h)
  254. return ERR_PTR(-ENOMEM);
  255. if (may_wait_transaction(root, type))
  256. wait_current_trans(root);
  257. do {
  258. ret = join_transaction(root, type == TRANS_JOIN_NOLOCK);
  259. if (ret == -EBUSY)
  260. wait_current_trans(root);
  261. } while (ret == -EBUSY);
  262. if (ret < 0) {
  263. kmem_cache_free(btrfs_trans_handle_cachep, h);
  264. return ERR_PTR(ret);
  265. }
  266. cur_trans = root->fs_info->running_transaction;
  267. h->transid = cur_trans->transid;
  268. h->transaction = cur_trans;
  269. h->blocks_used = 0;
  270. h->bytes_reserved = 0;
  271. h->delayed_ref_updates = 0;
  272. h->use_count = 1;
  273. h->block_rsv = NULL;
  274. h->orig_rsv = NULL;
  275. smp_mb();
  276. if (cur_trans->blocked && may_wait_transaction(root, type)) {
  277. btrfs_commit_transaction(h, root);
  278. goto again;
  279. }
  280. if (num_bytes) {
  281. h->block_rsv = &root->fs_info->trans_block_rsv;
  282. h->bytes_reserved = num_bytes;
  283. }
  284. got_it:
  285. btrfs_record_root_in_trans(h, root);
  286. if (!current->journal_info && type != TRANS_USERSPACE)
  287. current->journal_info = h;
  288. return h;
  289. }
  290. struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
  291. int num_items)
  292. {
  293. return start_transaction(root, num_items, TRANS_START);
  294. }
  295. struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root)
  296. {
  297. return start_transaction(root, 0, TRANS_JOIN);
  298. }
  299. struct btrfs_trans_handle *btrfs_join_transaction_nolock(struct btrfs_root *root)
  300. {
  301. return start_transaction(root, 0, TRANS_JOIN_NOLOCK);
  302. }
  303. struct btrfs_trans_handle *btrfs_start_ioctl_transaction(struct btrfs_root *root)
  304. {
  305. return start_transaction(root, 0, TRANS_USERSPACE);
  306. }
  307. /* wait for a transaction commit to be fully complete */
  308. static noinline int wait_for_commit(struct btrfs_root *root,
  309. struct btrfs_transaction *commit)
  310. {
  311. wait_event(commit->commit_wait, commit->commit_done);
  312. return 0;
  313. }
  314. int btrfs_wait_for_commit(struct btrfs_root *root, u64 transid)
  315. {
  316. struct btrfs_transaction *cur_trans = NULL, *t;
  317. int ret;
  318. ret = 0;
  319. if (transid) {
  320. if (transid <= root->fs_info->last_trans_committed)
  321. goto out;
  322. /* find specified transaction */
  323. spin_lock(&root->fs_info->trans_lock);
  324. list_for_each_entry(t, &root->fs_info->trans_list, list) {
  325. if (t->transid == transid) {
  326. cur_trans = t;
  327. atomic_inc(&cur_trans->use_count);
  328. break;
  329. }
  330. if (t->transid > transid)
  331. break;
  332. }
  333. spin_unlock(&root->fs_info->trans_lock);
  334. ret = -EINVAL;
  335. if (!cur_trans)
  336. goto out; /* bad transid */
  337. } else {
  338. /* find newest transaction that is committing | committed */
  339. spin_lock(&root->fs_info->trans_lock);
  340. list_for_each_entry_reverse(t, &root->fs_info->trans_list,
  341. list) {
  342. if (t->in_commit) {
  343. if (t->commit_done)
  344. break;
  345. cur_trans = t;
  346. atomic_inc(&cur_trans->use_count);
  347. break;
  348. }
  349. }
  350. spin_unlock(&root->fs_info->trans_lock);
  351. if (!cur_trans)
  352. goto out; /* nothing committing|committed */
  353. }
  354. wait_for_commit(root, cur_trans);
  355. put_transaction(cur_trans);
  356. ret = 0;
  357. out:
  358. return ret;
  359. }
  360. void btrfs_throttle(struct btrfs_root *root)
  361. {
  362. if (!atomic_read(&root->fs_info->open_ioctl_trans))
  363. wait_current_trans(root);
  364. }
  365. static int should_end_transaction(struct btrfs_trans_handle *trans,
  366. struct btrfs_root *root)
  367. {
  368. int ret;
  369. ret = btrfs_block_rsv_check(trans, root,
  370. &root->fs_info->global_block_rsv, 0, 5);
  371. return ret ? 1 : 0;
  372. }
  373. int btrfs_should_end_transaction(struct btrfs_trans_handle *trans,
  374. struct btrfs_root *root)
  375. {
  376. struct btrfs_transaction *cur_trans = trans->transaction;
  377. int updates;
  378. smp_mb();
  379. if (cur_trans->blocked || cur_trans->delayed_refs.flushing)
  380. return 1;
  381. updates = trans->delayed_ref_updates;
  382. trans->delayed_ref_updates = 0;
  383. if (updates)
  384. btrfs_run_delayed_refs(trans, root, updates);
  385. return should_end_transaction(trans, root);
  386. }
  387. static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
  388. struct btrfs_root *root, int throttle, int lock)
  389. {
  390. struct btrfs_transaction *cur_trans = trans->transaction;
  391. struct btrfs_fs_info *info = root->fs_info;
  392. int count = 0;
  393. if (--trans->use_count) {
  394. trans->block_rsv = trans->orig_rsv;
  395. return 0;
  396. }
  397. while (count < 4) {
  398. unsigned long cur = trans->delayed_ref_updates;
  399. trans->delayed_ref_updates = 0;
  400. if (cur &&
  401. trans->transaction->delayed_refs.num_heads_ready > 64) {
  402. trans->delayed_ref_updates = 0;
  403. /*
  404. * do a full flush if the transaction is trying
  405. * to close
  406. */
  407. if (trans->transaction->delayed_refs.flushing)
  408. cur = 0;
  409. btrfs_run_delayed_refs(trans, root, cur);
  410. } else {
  411. break;
  412. }
  413. count++;
  414. }
  415. btrfs_trans_release_metadata(trans, root);
  416. if (lock && !atomic_read(&root->fs_info->open_ioctl_trans) &&
  417. should_end_transaction(trans, root)) {
  418. trans->transaction->blocked = 1;
  419. smp_wmb();
  420. }
  421. if (lock && cur_trans->blocked && !cur_trans->in_commit) {
  422. if (throttle) {
  423. /*
  424. * We may race with somebody else here so end up having
  425. * to call end_transaction on ourselves again, so inc
  426. * our use_count.
  427. */
  428. trans->use_count++;
  429. return btrfs_commit_transaction(trans, root);
  430. } else {
  431. wake_up_process(info->transaction_kthread);
  432. }
  433. }
  434. WARN_ON(cur_trans != info->running_transaction);
  435. WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
  436. atomic_dec(&cur_trans->num_writers);
  437. smp_mb();
  438. if (waitqueue_active(&cur_trans->writer_wait))
  439. wake_up(&cur_trans->writer_wait);
  440. put_transaction(cur_trans);
  441. if (current->journal_info == trans)
  442. current->journal_info = NULL;
  443. memset(trans, 0, sizeof(*trans));
  444. kmem_cache_free(btrfs_trans_handle_cachep, trans);
  445. if (throttle)
  446. btrfs_run_delayed_iputs(root);
  447. return 0;
  448. }
  449. int btrfs_end_transaction(struct btrfs_trans_handle *trans,
  450. struct btrfs_root *root)
  451. {
  452. int ret;
  453. ret = __btrfs_end_transaction(trans, root, 0, 1);
  454. if (ret)
  455. return ret;
  456. return 0;
  457. }
  458. int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans,
  459. struct btrfs_root *root)
  460. {
  461. int ret;
  462. ret = __btrfs_end_transaction(trans, root, 1, 1);
  463. if (ret)
  464. return ret;
  465. return 0;
  466. }
  467. int btrfs_end_transaction_nolock(struct btrfs_trans_handle *trans,
  468. struct btrfs_root *root)
  469. {
  470. int ret;
  471. ret = __btrfs_end_transaction(trans, root, 0, 0);
  472. if (ret)
  473. return ret;
  474. return 0;
  475. }
  476. int btrfs_end_transaction_dmeta(struct btrfs_trans_handle *trans,
  477. struct btrfs_root *root)
  478. {
  479. return __btrfs_end_transaction(trans, root, 1, 1);
  480. }
  481. /*
  482. * when btree blocks are allocated, they have some corresponding bits set for
  483. * them in one of two extent_io trees. This is used to make sure all of
  484. * those extents are sent to disk but does not wait on them
  485. */
  486. int btrfs_write_marked_extents(struct btrfs_root *root,
  487. struct extent_io_tree *dirty_pages, int mark)
  488. {
  489. int ret;
  490. int err = 0;
  491. int werr = 0;
  492. struct page *page;
  493. struct inode *btree_inode = root->fs_info->btree_inode;
  494. u64 start = 0;
  495. u64 end;
  496. unsigned long index;
  497. while (1) {
  498. ret = find_first_extent_bit(dirty_pages, start, &start, &end,
  499. mark);
  500. if (ret)
  501. break;
  502. while (start <= end) {
  503. cond_resched();
  504. index = start >> PAGE_CACHE_SHIFT;
  505. start = (u64)(index + 1) << PAGE_CACHE_SHIFT;
  506. page = find_get_page(btree_inode->i_mapping, index);
  507. if (!page)
  508. continue;
  509. btree_lock_page_hook(page);
  510. if (!page->mapping) {
  511. unlock_page(page);
  512. page_cache_release(page);
  513. continue;
  514. }
  515. if (PageWriteback(page)) {
  516. if (PageDirty(page))
  517. wait_on_page_writeback(page);
  518. else {
  519. unlock_page(page);
  520. page_cache_release(page);
  521. continue;
  522. }
  523. }
  524. err = write_one_page(page, 0);
  525. if (err)
  526. werr = err;
  527. page_cache_release(page);
  528. }
  529. }
  530. if (err)
  531. werr = err;
  532. return werr;
  533. }
  534. /*
  535. * when btree blocks are allocated, they have some corresponding bits set for
  536. * them in one of two extent_io trees. This is used to make sure all of
  537. * those extents are on disk for transaction or log commit. We wait
  538. * on all the pages and clear them from the dirty pages state tree
  539. */
  540. int btrfs_wait_marked_extents(struct btrfs_root *root,
  541. struct extent_io_tree *dirty_pages, int mark)
  542. {
  543. int ret;
  544. int err = 0;
  545. int werr = 0;
  546. struct page *page;
  547. struct inode *btree_inode = root->fs_info->btree_inode;
  548. u64 start = 0;
  549. u64 end;
  550. unsigned long index;
  551. while (1) {
  552. ret = find_first_extent_bit(dirty_pages, start, &start, &end,
  553. mark);
  554. if (ret)
  555. break;
  556. clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
  557. while (start <= end) {
  558. index = start >> PAGE_CACHE_SHIFT;
  559. start = (u64)(index + 1) << PAGE_CACHE_SHIFT;
  560. page = find_get_page(btree_inode->i_mapping, index);
  561. if (!page)
  562. continue;
  563. if (PageDirty(page)) {
  564. btree_lock_page_hook(page);
  565. wait_on_page_writeback(page);
  566. err = write_one_page(page, 0);
  567. if (err)
  568. werr = err;
  569. }
  570. wait_on_page_writeback(page);
  571. page_cache_release(page);
  572. cond_resched();
  573. }
  574. }
  575. if (err)
  576. werr = err;
  577. return werr;
  578. }
  579. /*
  580. * when btree blocks are allocated, they have some corresponding bits set for
  581. * them in one of two extent_io trees. This is used to make sure all of
  582. * those extents are on disk for transaction or log commit
  583. */
  584. int btrfs_write_and_wait_marked_extents(struct btrfs_root *root,
  585. struct extent_io_tree *dirty_pages, int mark)
  586. {
  587. int ret;
  588. int ret2;
  589. ret = btrfs_write_marked_extents(root, dirty_pages, mark);
  590. ret2 = btrfs_wait_marked_extents(root, dirty_pages, mark);
  591. return ret || ret2;
  592. }
  593. int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans,
  594. struct btrfs_root *root)
  595. {
  596. if (!trans || !trans->transaction) {
  597. struct inode *btree_inode;
  598. btree_inode = root->fs_info->btree_inode;
  599. return filemap_write_and_wait(btree_inode->i_mapping);
  600. }
  601. return btrfs_write_and_wait_marked_extents(root,
  602. &trans->transaction->dirty_pages,
  603. EXTENT_DIRTY);
  604. }
  605. /*
  606. * this is used to update the root pointer in the tree of tree roots.
  607. *
  608. * But, in the case of the extent allocation tree, updating the root
  609. * pointer may allocate blocks which may change the root of the extent
  610. * allocation tree.
  611. *
  612. * So, this loops and repeats and makes sure the cowonly root didn't
  613. * change while the root pointer was being updated in the metadata.
  614. */
  615. static int update_cowonly_root(struct btrfs_trans_handle *trans,
  616. struct btrfs_root *root)
  617. {
  618. int ret;
  619. u64 old_root_bytenr;
  620. u64 old_root_used;
  621. struct btrfs_root *tree_root = root->fs_info->tree_root;
  622. old_root_used = btrfs_root_used(&root->root_item);
  623. btrfs_write_dirty_block_groups(trans, root);
  624. while (1) {
  625. old_root_bytenr = btrfs_root_bytenr(&root->root_item);
  626. if (old_root_bytenr == root->node->start &&
  627. old_root_used == btrfs_root_used(&root->root_item))
  628. break;
  629. btrfs_set_root_node(&root->root_item, root->node);
  630. ret = btrfs_update_root(trans, tree_root,
  631. &root->root_key,
  632. &root->root_item);
  633. BUG_ON(ret);
  634. old_root_used = btrfs_root_used(&root->root_item);
  635. ret = btrfs_write_dirty_block_groups(trans, root);
  636. BUG_ON(ret);
  637. }
  638. if (root != root->fs_info->extent_root)
  639. switch_commit_root(root);
  640. return 0;
  641. }
  642. /*
  643. * update all the cowonly tree roots on disk
  644. */
  645. static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans,
  646. struct btrfs_root *root)
  647. {
  648. struct btrfs_fs_info *fs_info = root->fs_info;
  649. struct list_head *next;
  650. struct extent_buffer *eb;
  651. int ret;
  652. ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
  653. BUG_ON(ret);
  654. eb = btrfs_lock_root_node(fs_info->tree_root);
  655. btrfs_cow_block(trans, fs_info->tree_root, eb, NULL, 0, &eb);
  656. btrfs_tree_unlock(eb);
  657. free_extent_buffer(eb);
  658. ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
  659. BUG_ON(ret);
  660. while (!list_empty(&fs_info->dirty_cowonly_roots)) {
  661. next = fs_info->dirty_cowonly_roots.next;
  662. list_del_init(next);
  663. root = list_entry(next, struct btrfs_root, dirty_list);
  664. update_cowonly_root(trans, root);
  665. }
  666. down_write(&fs_info->extent_commit_sem);
  667. switch_commit_root(fs_info->extent_root);
  668. up_write(&fs_info->extent_commit_sem);
  669. return 0;
  670. }
  671. /*
  672. * dead roots are old snapshots that need to be deleted. This allocates
  673. * a dirty root struct and adds it into the list of dead roots that need to
  674. * be deleted
  675. */
  676. int btrfs_add_dead_root(struct btrfs_root *root)
  677. {
  678. spin_lock(&root->fs_info->trans_lock);
  679. list_add(&root->root_list, &root->fs_info->dead_roots);
  680. spin_unlock(&root->fs_info->trans_lock);
  681. return 0;
  682. }
  683. /*
  684. * update all the cowonly tree roots on disk
  685. */
  686. static noinline int commit_fs_roots(struct btrfs_trans_handle *trans,
  687. struct btrfs_root *root)
  688. {
  689. struct btrfs_root *gang[8];
  690. struct btrfs_fs_info *fs_info = root->fs_info;
  691. int i;
  692. int ret;
  693. int err = 0;
  694. spin_lock(&fs_info->fs_roots_radix_lock);
  695. while (1) {
  696. ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
  697. (void **)gang, 0,
  698. ARRAY_SIZE(gang),
  699. BTRFS_ROOT_TRANS_TAG);
  700. if (ret == 0)
  701. break;
  702. for (i = 0; i < ret; i++) {
  703. root = gang[i];
  704. radix_tree_tag_clear(&fs_info->fs_roots_radix,
  705. (unsigned long)root->root_key.objectid,
  706. BTRFS_ROOT_TRANS_TAG);
  707. spin_unlock(&fs_info->fs_roots_radix_lock);
  708. btrfs_free_log(trans, root);
  709. btrfs_update_reloc_root(trans, root);
  710. btrfs_orphan_commit_root(trans, root);
  711. btrfs_save_ino_cache(root, trans);
  712. if (root->commit_root != root->node) {
  713. mutex_lock(&root->fs_commit_mutex);
  714. switch_commit_root(root);
  715. btrfs_unpin_free_ino(root);
  716. mutex_unlock(&root->fs_commit_mutex);
  717. btrfs_set_root_node(&root->root_item,
  718. root->node);
  719. }
  720. err = btrfs_update_root(trans, fs_info->tree_root,
  721. &root->root_key,
  722. &root->root_item);
  723. spin_lock(&fs_info->fs_roots_radix_lock);
  724. if (err)
  725. break;
  726. }
  727. }
  728. spin_unlock(&fs_info->fs_roots_radix_lock);
  729. return err;
  730. }
  731. /*
  732. * defrag a given btree. If cacheonly == 1, this won't read from the disk,
  733. * otherwise every leaf in the btree is read and defragged.
  734. */
  735. int btrfs_defrag_root(struct btrfs_root *root, int cacheonly)
  736. {
  737. struct btrfs_fs_info *info = root->fs_info;
  738. struct btrfs_trans_handle *trans;
  739. int ret;
  740. unsigned long nr;
  741. if (xchg(&root->defrag_running, 1))
  742. return 0;
  743. while (1) {
  744. trans = btrfs_start_transaction(root, 0);
  745. if (IS_ERR(trans))
  746. return PTR_ERR(trans);
  747. ret = btrfs_defrag_leaves(trans, root, cacheonly);
  748. nr = trans->blocks_used;
  749. btrfs_end_transaction(trans, root);
  750. btrfs_btree_balance_dirty(info->tree_root, nr);
  751. cond_resched();
  752. if (btrfs_fs_closing(root->fs_info) || ret != -EAGAIN)
  753. break;
  754. }
  755. root->defrag_running = 0;
  756. return ret;
  757. }
  758. /*
  759. * new snapshots need to be created at a very specific time in the
  760. * transaction commit. This does the actual creation
  761. */
  762. static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
  763. struct btrfs_fs_info *fs_info,
  764. struct btrfs_pending_snapshot *pending)
  765. {
  766. struct btrfs_key key;
  767. struct btrfs_root_item *new_root_item;
  768. struct btrfs_root *tree_root = fs_info->tree_root;
  769. struct btrfs_root *root = pending->root;
  770. struct btrfs_root *parent_root;
  771. struct inode *parent_inode;
  772. struct dentry *parent;
  773. struct dentry *dentry;
  774. struct extent_buffer *tmp;
  775. struct extent_buffer *old;
  776. int ret;
  777. u64 to_reserve = 0;
  778. u64 index = 0;
  779. u64 objectid;
  780. u64 root_flags;
  781. new_root_item = kmalloc(sizeof(*new_root_item), GFP_NOFS);
  782. if (!new_root_item) {
  783. pending->error = -ENOMEM;
  784. goto fail;
  785. }
  786. ret = btrfs_find_free_objectid(tree_root, &objectid);
  787. if (ret) {
  788. pending->error = ret;
  789. goto fail;
  790. }
  791. btrfs_reloc_pre_snapshot(trans, pending, &to_reserve);
  792. btrfs_orphan_pre_snapshot(trans, pending, &to_reserve);
  793. if (to_reserve > 0) {
  794. ret = btrfs_block_rsv_add(trans, root, &pending->block_rsv,
  795. to_reserve);
  796. if (ret) {
  797. pending->error = ret;
  798. goto fail;
  799. }
  800. }
  801. key.objectid = objectid;
  802. key.offset = (u64)-1;
  803. key.type = BTRFS_ROOT_ITEM_KEY;
  804. trans->block_rsv = &pending->block_rsv;
  805. dentry = pending->dentry;
  806. parent = dget_parent(dentry);
  807. parent_inode = parent->d_inode;
  808. parent_root = BTRFS_I(parent_inode)->root;
  809. record_root_in_trans(trans, parent_root);
  810. /*
  811. * insert the directory item
  812. */
  813. ret = btrfs_set_inode_index(parent_inode, &index);
  814. BUG_ON(ret);
  815. ret = btrfs_insert_dir_item(trans, parent_root,
  816. dentry->d_name.name, dentry->d_name.len,
  817. parent_inode, &key,
  818. BTRFS_FT_DIR, index);
  819. BUG_ON(ret);
  820. btrfs_i_size_write(parent_inode, parent_inode->i_size +
  821. dentry->d_name.len * 2);
  822. ret = btrfs_update_inode(trans, parent_root, parent_inode);
  823. BUG_ON(ret);
  824. /*
  825. * pull in the delayed directory update
  826. * and the delayed inode item
  827. * otherwise we corrupt the FS during
  828. * snapshot
  829. */
  830. ret = btrfs_run_delayed_items(trans, root);
  831. BUG_ON(ret);
  832. record_root_in_trans(trans, root);
  833. btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
  834. memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
  835. btrfs_check_and_init_root_item(new_root_item);
  836. root_flags = btrfs_root_flags(new_root_item);
  837. if (pending->readonly)
  838. root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
  839. else
  840. root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
  841. btrfs_set_root_flags(new_root_item, root_flags);
  842. old = btrfs_lock_root_node(root);
  843. btrfs_cow_block(trans, root, old, NULL, 0, &old);
  844. btrfs_set_lock_blocking(old);
  845. btrfs_copy_root(trans, root, old, &tmp, objectid);
  846. btrfs_tree_unlock(old);
  847. free_extent_buffer(old);
  848. btrfs_set_root_node(new_root_item, tmp);
  849. /* record when the snapshot was created in key.offset */
  850. key.offset = trans->transid;
  851. ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
  852. btrfs_tree_unlock(tmp);
  853. free_extent_buffer(tmp);
  854. BUG_ON(ret);
  855. /*
  856. * insert root back/forward references
  857. */
  858. ret = btrfs_add_root_ref(trans, tree_root, objectid,
  859. parent_root->root_key.objectid,
  860. btrfs_ino(parent_inode), index,
  861. dentry->d_name.name, dentry->d_name.len);
  862. BUG_ON(ret);
  863. dput(parent);
  864. key.offset = (u64)-1;
  865. pending->snap = btrfs_read_fs_root_no_name(root->fs_info, &key);
  866. BUG_ON(IS_ERR(pending->snap));
  867. btrfs_reloc_post_snapshot(trans, pending);
  868. btrfs_orphan_post_snapshot(trans, pending);
  869. fail:
  870. kfree(new_root_item);
  871. btrfs_block_rsv_release(root, &pending->block_rsv, (u64)-1);
  872. return 0;
  873. }
  874. /*
  875. * create all the snapshots we've scheduled for creation
  876. */
  877. static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans,
  878. struct btrfs_fs_info *fs_info)
  879. {
  880. struct btrfs_pending_snapshot *pending;
  881. struct list_head *head = &trans->transaction->pending_snapshots;
  882. int ret;
  883. list_for_each_entry(pending, head, list) {
  884. ret = create_pending_snapshot(trans, fs_info, pending);
  885. BUG_ON(ret);
  886. }
  887. return 0;
  888. }
  889. static void update_super_roots(struct btrfs_root *root)
  890. {
  891. struct btrfs_root_item *root_item;
  892. struct btrfs_super_block *super;
  893. super = &root->fs_info->super_copy;
  894. root_item = &root->fs_info->chunk_root->root_item;
  895. super->chunk_root = root_item->bytenr;
  896. super->chunk_root_generation = root_item->generation;
  897. super->chunk_root_level = root_item->level;
  898. root_item = &root->fs_info->tree_root->root_item;
  899. super->root = root_item->bytenr;
  900. super->generation = root_item->generation;
  901. super->root_level = root_item->level;
  902. if (super->cache_generation != 0 || btrfs_test_opt(root, SPACE_CACHE))
  903. super->cache_generation = root_item->generation;
  904. }
  905. int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
  906. {
  907. int ret = 0;
  908. spin_lock(&info->trans_lock);
  909. if (info->running_transaction)
  910. ret = info->running_transaction->in_commit;
  911. spin_unlock(&info->trans_lock);
  912. return ret;
  913. }
  914. int btrfs_transaction_blocked(struct btrfs_fs_info *info)
  915. {
  916. int ret = 0;
  917. spin_lock(&info->trans_lock);
  918. if (info->running_transaction)
  919. ret = info->running_transaction->blocked;
  920. spin_unlock(&info->trans_lock);
  921. return ret;
  922. }
  923. /*
  924. * wait for the current transaction commit to start and block subsequent
  925. * transaction joins
  926. */
  927. static void wait_current_trans_commit_start(struct btrfs_root *root,
  928. struct btrfs_transaction *trans)
  929. {
  930. wait_event(root->fs_info->transaction_blocked_wait, trans->in_commit);
  931. }
  932. /*
  933. * wait for the current transaction to start and then become unblocked.
  934. * caller holds ref.
  935. */
  936. static void wait_current_trans_commit_start_and_unblock(struct btrfs_root *root,
  937. struct btrfs_transaction *trans)
  938. {
  939. wait_event(root->fs_info->transaction_wait,
  940. trans->commit_done || (trans->in_commit && !trans->blocked));
  941. }
  942. /*
  943. * commit transactions asynchronously. once btrfs_commit_transaction_async
  944. * returns, any subsequent transaction will not be allowed to join.
  945. */
  946. struct btrfs_async_commit {
  947. struct btrfs_trans_handle *newtrans;
  948. struct btrfs_root *root;
  949. struct delayed_work work;
  950. };
  951. static void do_async_commit(struct work_struct *work)
  952. {
  953. struct btrfs_async_commit *ac =
  954. container_of(work, struct btrfs_async_commit, work.work);
  955. btrfs_commit_transaction(ac->newtrans, ac->root);
  956. kfree(ac);
  957. }
  958. int btrfs_commit_transaction_async(struct btrfs_trans_handle *trans,
  959. struct btrfs_root *root,
  960. int wait_for_unblock)
  961. {
  962. struct btrfs_async_commit *ac;
  963. struct btrfs_transaction *cur_trans;
  964. ac = kmalloc(sizeof(*ac), GFP_NOFS);
  965. if (!ac)
  966. return -ENOMEM;
  967. INIT_DELAYED_WORK(&ac->work, do_async_commit);
  968. ac->root = root;
  969. ac->newtrans = btrfs_join_transaction(root);
  970. if (IS_ERR(ac->newtrans)) {
  971. int err = PTR_ERR(ac->newtrans);
  972. kfree(ac);
  973. return err;
  974. }
  975. /* take transaction reference */
  976. cur_trans = trans->transaction;
  977. atomic_inc(&cur_trans->use_count);
  978. btrfs_end_transaction(trans, root);
  979. schedule_delayed_work(&ac->work, 0);
  980. /* wait for transaction to start and unblock */
  981. if (wait_for_unblock)
  982. wait_current_trans_commit_start_and_unblock(root, cur_trans);
  983. else
  984. wait_current_trans_commit_start(root, cur_trans);
  985. if (current->journal_info == trans)
  986. current->journal_info = NULL;
  987. put_transaction(cur_trans);
  988. return 0;
  989. }
  990. /*
  991. * btrfs_transaction state sequence:
  992. * in_commit = 0, blocked = 0 (initial)
  993. * in_commit = 1, blocked = 1
  994. * blocked = 0
  995. * commit_done = 1
  996. */
  997. int btrfs_commit_transaction(struct btrfs_trans_handle *trans,
  998. struct btrfs_root *root)
  999. {
  1000. unsigned long joined = 0;
  1001. struct btrfs_transaction *cur_trans;
  1002. struct btrfs_transaction *prev_trans = NULL;
  1003. DEFINE_WAIT(wait);
  1004. int ret;
  1005. int should_grow = 0;
  1006. unsigned long now = get_seconds();
  1007. int flush_on_commit = btrfs_test_opt(root, FLUSHONCOMMIT);
  1008. btrfs_run_ordered_operations(root, 0);
  1009. /* make a pass through all the delayed refs we have so far
  1010. * any runnings procs may add more while we are here
  1011. */
  1012. ret = btrfs_run_delayed_refs(trans, root, 0);
  1013. BUG_ON(ret);
  1014. btrfs_trans_release_metadata(trans, root);
  1015. cur_trans = trans->transaction;
  1016. /*
  1017. * set the flushing flag so procs in this transaction have to
  1018. * start sending their work down.
  1019. */
  1020. cur_trans->delayed_refs.flushing = 1;
  1021. ret = btrfs_run_delayed_refs(trans, root, 0);
  1022. BUG_ON(ret);
  1023. spin_lock(&cur_trans->commit_lock);
  1024. if (cur_trans->in_commit) {
  1025. spin_unlock(&cur_trans->commit_lock);
  1026. atomic_inc(&cur_trans->use_count);
  1027. btrfs_end_transaction(trans, root);
  1028. ret = wait_for_commit(root, cur_trans);
  1029. BUG_ON(ret);
  1030. put_transaction(cur_trans);
  1031. return 0;
  1032. }
  1033. trans->transaction->in_commit = 1;
  1034. trans->transaction->blocked = 1;
  1035. spin_unlock(&cur_trans->commit_lock);
  1036. wake_up(&root->fs_info->transaction_blocked_wait);
  1037. spin_lock(&root->fs_info->trans_lock);
  1038. if (cur_trans->list.prev != &root->fs_info->trans_list) {
  1039. prev_trans = list_entry(cur_trans->list.prev,
  1040. struct btrfs_transaction, list);
  1041. if (!prev_trans->commit_done) {
  1042. atomic_inc(&prev_trans->use_count);
  1043. spin_unlock(&root->fs_info->trans_lock);
  1044. wait_for_commit(root, prev_trans);
  1045. put_transaction(prev_trans);
  1046. } else {
  1047. spin_unlock(&root->fs_info->trans_lock);
  1048. }
  1049. } else {
  1050. spin_unlock(&root->fs_info->trans_lock);
  1051. }
  1052. if (now < cur_trans->start_time || now - cur_trans->start_time < 1)
  1053. should_grow = 1;
  1054. do {
  1055. int snap_pending = 0;
  1056. joined = cur_trans->num_joined;
  1057. if (!list_empty(&trans->transaction->pending_snapshots))
  1058. snap_pending = 1;
  1059. WARN_ON(cur_trans != trans->transaction);
  1060. if (flush_on_commit || snap_pending) {
  1061. btrfs_start_delalloc_inodes(root, 1);
  1062. ret = btrfs_wait_ordered_extents(root, 0, 1);
  1063. BUG_ON(ret);
  1064. }
  1065. ret = btrfs_run_delayed_items(trans, root);
  1066. BUG_ON(ret);
  1067. /*
  1068. * rename don't use btrfs_join_transaction, so, once we
  1069. * set the transaction to blocked above, we aren't going
  1070. * to get any new ordered operations. We can safely run
  1071. * it here and no for sure that nothing new will be added
  1072. * to the list
  1073. */
  1074. btrfs_run_ordered_operations(root, 1);
  1075. prepare_to_wait(&cur_trans->writer_wait, &wait,
  1076. TASK_UNINTERRUPTIBLE);
  1077. if (atomic_read(&cur_trans->num_writers) > 1)
  1078. schedule_timeout(MAX_SCHEDULE_TIMEOUT);
  1079. else if (should_grow)
  1080. schedule_timeout(1);
  1081. finish_wait(&cur_trans->writer_wait, &wait);
  1082. } while (atomic_read(&cur_trans->num_writers) > 1 ||
  1083. (should_grow && cur_trans->num_joined != joined));
  1084. /*
  1085. * Ok now we need to make sure to block out any other joins while we
  1086. * commit the transaction. We could have started a join before setting
  1087. * no_join so make sure to wait for num_writers to == 1 again.
  1088. */
  1089. spin_lock(&root->fs_info->trans_lock);
  1090. root->fs_info->trans_no_join = 1;
  1091. spin_unlock(&root->fs_info->trans_lock);
  1092. wait_event(cur_trans->writer_wait,
  1093. atomic_read(&cur_trans->num_writers) == 1);
  1094. /*
  1095. * the reloc mutex makes sure that we stop
  1096. * the balancing code from coming in and moving
  1097. * extents around in the middle of the commit
  1098. */
  1099. mutex_lock(&root->fs_info->reloc_mutex);
  1100. ret = btrfs_run_delayed_items(trans, root);
  1101. BUG_ON(ret);
  1102. ret = create_pending_snapshots(trans, root->fs_info);
  1103. BUG_ON(ret);
  1104. ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
  1105. BUG_ON(ret);
  1106. /*
  1107. * make sure none of the code above managed to slip in a
  1108. * delayed item
  1109. */
  1110. btrfs_assert_delayed_root_empty(root);
  1111. WARN_ON(cur_trans != trans->transaction);
  1112. btrfs_scrub_pause(root);
  1113. /* btrfs_commit_tree_roots is responsible for getting the
  1114. * various roots consistent with each other. Every pointer
  1115. * in the tree of tree roots has to point to the most up to date
  1116. * root for every subvolume and other tree. So, we have to keep
  1117. * the tree logging code from jumping in and changing any
  1118. * of the trees.
  1119. *
  1120. * At this point in the commit, there can't be any tree-log
  1121. * writers, but a little lower down we drop the trans mutex
  1122. * and let new people in. By holding the tree_log_mutex
  1123. * from now until after the super is written, we avoid races
  1124. * with the tree-log code.
  1125. */
  1126. mutex_lock(&root->fs_info->tree_log_mutex);
  1127. ret = commit_fs_roots(trans, root);
  1128. BUG_ON(ret);
  1129. /* commit_fs_roots gets rid of all the tree log roots, it is now
  1130. * safe to free the root of tree log roots
  1131. */
  1132. btrfs_free_log_root_tree(trans, root->fs_info);
  1133. ret = commit_cowonly_roots(trans, root);
  1134. BUG_ON(ret);
  1135. btrfs_prepare_extent_commit(trans, root);
  1136. cur_trans = root->fs_info->running_transaction;
  1137. btrfs_set_root_node(&root->fs_info->tree_root->root_item,
  1138. root->fs_info->tree_root->node);
  1139. switch_commit_root(root->fs_info->tree_root);
  1140. btrfs_set_root_node(&root->fs_info->chunk_root->root_item,
  1141. root->fs_info->chunk_root->node);
  1142. switch_commit_root(root->fs_info->chunk_root);
  1143. update_super_roots(root);
  1144. if (!root->fs_info->log_root_recovering) {
  1145. btrfs_set_super_log_root(&root->fs_info->super_copy, 0);
  1146. btrfs_set_super_log_root_level(&root->fs_info->super_copy, 0);
  1147. }
  1148. memcpy(&root->fs_info->super_for_commit, &root->fs_info->super_copy,
  1149. sizeof(root->fs_info->super_copy));
  1150. trans->transaction->blocked = 0;
  1151. spin_lock(&root->fs_info->trans_lock);
  1152. root->fs_info->running_transaction = NULL;
  1153. root->fs_info->trans_no_join = 0;
  1154. spin_unlock(&root->fs_info->trans_lock);
  1155. mutex_unlock(&root->fs_info->reloc_mutex);
  1156. wake_up(&root->fs_info->transaction_wait);
  1157. ret = btrfs_write_and_wait_transaction(trans, root);
  1158. BUG_ON(ret);
  1159. write_ctree_super(trans, root, 0);
  1160. /*
  1161. * the super is written, we can safely allow the tree-loggers
  1162. * to go about their business
  1163. */
  1164. mutex_unlock(&root->fs_info->tree_log_mutex);
  1165. btrfs_finish_extent_commit(trans, root);
  1166. cur_trans->commit_done = 1;
  1167. root->fs_info->last_trans_committed = cur_trans->transid;
  1168. wake_up(&cur_trans->commit_wait);
  1169. spin_lock(&root->fs_info->trans_lock);
  1170. list_del_init(&cur_trans->list);
  1171. spin_unlock(&root->fs_info->trans_lock);
  1172. put_transaction(cur_trans);
  1173. put_transaction(cur_trans);
  1174. trace_btrfs_transaction_commit(root);
  1175. btrfs_scrub_continue(root);
  1176. if (current->journal_info == trans)
  1177. current->journal_info = NULL;
  1178. kmem_cache_free(btrfs_trans_handle_cachep, trans);
  1179. if (current != root->fs_info->transaction_kthread)
  1180. btrfs_run_delayed_iputs(root);
  1181. return ret;
  1182. }
  1183. /*
  1184. * interface function to delete all the snapshots we have scheduled for deletion
  1185. */
  1186. int btrfs_clean_old_snapshots(struct btrfs_root *root)
  1187. {
  1188. LIST_HEAD(list);
  1189. struct btrfs_fs_info *fs_info = root->fs_info;
  1190. spin_lock(&fs_info->trans_lock);
  1191. list_splice_init(&fs_info->dead_roots, &list);
  1192. spin_unlock(&fs_info->trans_lock);
  1193. while (!list_empty(&list)) {
  1194. root = list_entry(list.next, struct btrfs_root, root_list);
  1195. list_del(&root->root_list);
  1196. btrfs_kill_all_delayed_nodes(root);
  1197. if (btrfs_header_backref_rev(root->node) <
  1198. BTRFS_MIXED_BACKREF_REV)
  1199. btrfs_drop_snapshot(root, NULL, 0);
  1200. else
  1201. btrfs_drop_snapshot(root, NULL, 1);
  1202. }
  1203. return 0;
  1204. }