writeback.c 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520
  1. /*
  2. * background writeback - scan btree for dirty data and write it to the backing
  3. * device
  4. *
  5. * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com>
  6. * Copyright 2012 Google, Inc.
  7. */
  8. #include "bcache.h"
  9. #include "btree.h"
  10. #include "debug.h"
  11. #include "writeback.h"
  12. #include <trace/events/bcache.h>
  13. static struct workqueue_struct *dirty_wq;
  14. static void read_dirty(struct closure *);
  15. struct dirty_io {
  16. struct closure cl;
  17. struct cached_dev *dc;
  18. struct bio bio;
  19. };
  20. /* Rate limiting */
  21. static void __update_writeback_rate(struct cached_dev *dc)
  22. {
  23. struct cache_set *c = dc->disk.c;
  24. uint64_t cache_sectors = c->nbuckets * c->sb.bucket_size;
  25. uint64_t cache_dirty_target =
  26. div_u64(cache_sectors * dc->writeback_percent, 100);
  27. int64_t target = div64_u64(cache_dirty_target * bdev_sectors(dc->bdev),
  28. c->cached_dev_sectors);
  29. /* PD controller */
  30. int change = 0;
  31. int64_t error;
  32. int64_t dirty = bcache_dev_sectors_dirty(&dc->disk);
  33. int64_t derivative = dirty - dc->disk.sectors_dirty_last;
  34. dc->disk.sectors_dirty_last = dirty;
  35. derivative *= dc->writeback_rate_d_term;
  36. derivative = clamp(derivative, -dirty, dirty);
  37. derivative = ewma_add(dc->disk.sectors_dirty_derivative, derivative,
  38. dc->writeback_rate_d_smooth, 0);
  39. /* Avoid divide by zero */
  40. if (!target)
  41. goto out;
  42. error = div64_s64((dirty + derivative - target) << 8, target);
  43. change = div_s64((dc->writeback_rate.rate * error) >> 8,
  44. dc->writeback_rate_p_term_inverse);
  45. /* Don't increase writeback rate if the device isn't keeping up */
  46. if (change > 0 &&
  47. time_after64(local_clock(),
  48. dc->writeback_rate.next + 10 * NSEC_PER_MSEC))
  49. change = 0;
  50. dc->writeback_rate.rate =
  51. clamp_t(int64_t, dc->writeback_rate.rate + change,
  52. 1, NSEC_PER_MSEC);
  53. out:
  54. dc->writeback_rate_derivative = derivative;
  55. dc->writeback_rate_change = change;
  56. dc->writeback_rate_target = target;
  57. schedule_delayed_work(&dc->writeback_rate_update,
  58. dc->writeback_rate_update_seconds * HZ);
  59. }
  60. static void update_writeback_rate(struct work_struct *work)
  61. {
  62. struct cached_dev *dc = container_of(to_delayed_work(work),
  63. struct cached_dev,
  64. writeback_rate_update);
  65. down_read(&dc->writeback_lock);
  66. if (atomic_read(&dc->has_dirty) &&
  67. dc->writeback_percent)
  68. __update_writeback_rate(dc);
  69. up_read(&dc->writeback_lock);
  70. }
  71. static unsigned writeback_delay(struct cached_dev *dc, unsigned sectors)
  72. {
  73. if (atomic_read(&dc->disk.detaching) ||
  74. !dc->writeback_percent)
  75. return 0;
  76. return bch_next_delay(&dc->writeback_rate, sectors * 10000000ULL);
  77. }
  78. /* Background writeback */
  79. static bool dirty_pred(struct keybuf *buf, struct bkey *k)
  80. {
  81. return KEY_DIRTY(k);
  82. }
  83. static bool dirty_full_stripe_pred(struct keybuf *buf, struct bkey *k)
  84. {
  85. uint64_t stripe;
  86. unsigned nr_sectors = KEY_SIZE(k);
  87. struct cached_dev *dc = container_of(buf, struct cached_dev,
  88. writeback_keys);
  89. unsigned stripe_size = 1 << dc->disk.stripe_size_bits;
  90. if (!KEY_DIRTY(k))
  91. return false;
  92. stripe = KEY_START(k) >> dc->disk.stripe_size_bits;
  93. while (1) {
  94. if (atomic_read(dc->disk.stripe_sectors_dirty + stripe) !=
  95. stripe_size)
  96. return false;
  97. if (nr_sectors <= stripe_size)
  98. return true;
  99. nr_sectors -= stripe_size;
  100. stripe++;
  101. }
  102. }
  103. static void dirty_init(struct keybuf_key *w)
  104. {
  105. struct dirty_io *io = w->private;
  106. struct bio *bio = &io->bio;
  107. bio_init(bio);
  108. if (!io->dc->writeback_percent)
  109. bio_set_prio(bio, IOPRIO_PRIO_VALUE(IOPRIO_CLASS_IDLE, 0));
  110. bio->bi_size = KEY_SIZE(&w->key) << 9;
  111. bio->bi_max_vecs = DIV_ROUND_UP(KEY_SIZE(&w->key), PAGE_SECTORS);
  112. bio->bi_private = w;
  113. bio->bi_io_vec = bio->bi_inline_vecs;
  114. bch_bio_map(bio, NULL);
  115. }
  116. static void refill_dirty(struct closure *cl)
  117. {
  118. struct cached_dev *dc = container_of(cl, struct cached_dev,
  119. writeback.cl);
  120. struct keybuf *buf = &dc->writeback_keys;
  121. bool searched_from_start = false;
  122. struct bkey end = MAX_KEY;
  123. SET_KEY_INODE(&end, dc->disk.id);
  124. if (!atomic_read(&dc->disk.detaching) &&
  125. !dc->writeback_running)
  126. closure_return(cl);
  127. down_write(&dc->writeback_lock);
  128. if (!atomic_read(&dc->has_dirty)) {
  129. SET_BDEV_STATE(&dc->sb, BDEV_STATE_CLEAN);
  130. bch_write_bdev_super(dc, NULL);
  131. up_write(&dc->writeback_lock);
  132. closure_return(cl);
  133. }
  134. if (bkey_cmp(&buf->last_scanned, &end) >= 0) {
  135. buf->last_scanned = KEY(dc->disk.id, 0, 0);
  136. searched_from_start = true;
  137. }
  138. if (dc->partial_stripes_expensive) {
  139. uint64_t i;
  140. for (i = 0; i < dc->disk.nr_stripes; i++)
  141. if (atomic_read(dc->disk.stripe_sectors_dirty + i) ==
  142. 1 << dc->disk.stripe_size_bits)
  143. goto full_stripes;
  144. goto normal_refill;
  145. full_stripes:
  146. bch_refill_keybuf(dc->disk.c, buf, &end,
  147. dirty_full_stripe_pred);
  148. } else {
  149. normal_refill:
  150. bch_refill_keybuf(dc->disk.c, buf, &end, dirty_pred);
  151. }
  152. if (bkey_cmp(&buf->last_scanned, &end) >= 0 && searched_from_start) {
  153. /* Searched the entire btree - delay awhile */
  154. if (RB_EMPTY_ROOT(&buf->keys)) {
  155. atomic_set(&dc->has_dirty, 0);
  156. cached_dev_put(dc);
  157. }
  158. if (!atomic_read(&dc->disk.detaching))
  159. closure_delay(&dc->writeback, dc->writeback_delay * HZ);
  160. }
  161. up_write(&dc->writeback_lock);
  162. ratelimit_reset(&dc->writeback_rate);
  163. /* Punt to workqueue only so we don't recurse and blow the stack */
  164. continue_at(cl, read_dirty, dirty_wq);
  165. }
  166. void bch_writeback_queue(struct cached_dev *dc)
  167. {
  168. if (closure_trylock(&dc->writeback.cl, &dc->disk.cl)) {
  169. if (!atomic_read(&dc->disk.detaching))
  170. closure_delay(&dc->writeback, dc->writeback_delay * HZ);
  171. continue_at(&dc->writeback.cl, refill_dirty, dirty_wq);
  172. }
  173. }
  174. void bch_writeback_add(struct cached_dev *dc)
  175. {
  176. if (!atomic_read(&dc->has_dirty) &&
  177. !atomic_xchg(&dc->has_dirty, 1)) {
  178. atomic_inc(&dc->count);
  179. if (BDEV_STATE(&dc->sb) != BDEV_STATE_DIRTY) {
  180. SET_BDEV_STATE(&dc->sb, BDEV_STATE_DIRTY);
  181. /* XXX: should do this synchronously */
  182. bch_write_bdev_super(dc, NULL);
  183. }
  184. bch_writeback_queue(dc);
  185. if (dc->writeback_percent)
  186. schedule_delayed_work(&dc->writeback_rate_update,
  187. dc->writeback_rate_update_seconds * HZ);
  188. }
  189. }
  190. void bcache_dev_sectors_dirty_add(struct cache_set *c, unsigned inode,
  191. uint64_t offset, int nr_sectors)
  192. {
  193. struct bcache_device *d = c->devices[inode];
  194. unsigned stripe_size, stripe_offset;
  195. uint64_t stripe;
  196. if (!d)
  197. return;
  198. stripe_size = 1 << d->stripe_size_bits;
  199. stripe = offset >> d->stripe_size_bits;
  200. stripe_offset = offset & (stripe_size - 1);
  201. while (nr_sectors) {
  202. int s = min_t(unsigned, abs(nr_sectors),
  203. stripe_size - stripe_offset);
  204. if (nr_sectors < 0)
  205. s = -s;
  206. atomic_add(s, d->stripe_sectors_dirty + stripe);
  207. nr_sectors -= s;
  208. stripe_offset = 0;
  209. stripe++;
  210. }
  211. }
  212. /* Background writeback - IO loop */
  213. static void dirty_io_destructor(struct closure *cl)
  214. {
  215. struct dirty_io *io = container_of(cl, struct dirty_io, cl);
  216. kfree(io);
  217. }
  218. static void write_dirty_finish(struct closure *cl)
  219. {
  220. struct dirty_io *io = container_of(cl, struct dirty_io, cl);
  221. struct keybuf_key *w = io->bio.bi_private;
  222. struct cached_dev *dc = io->dc;
  223. struct bio_vec *bv = bio_iovec_idx(&io->bio, io->bio.bi_vcnt);
  224. while (bv-- != io->bio.bi_io_vec)
  225. __free_page(bv->bv_page);
  226. /* This is kind of a dumb way of signalling errors. */
  227. if (KEY_DIRTY(&w->key)) {
  228. unsigned i;
  229. struct btree_op op;
  230. bch_btree_op_init_stack(&op);
  231. op.type = BTREE_REPLACE;
  232. bkey_copy(&op.replace, &w->key);
  233. SET_KEY_DIRTY(&w->key, false);
  234. bch_keylist_add(&op.keys, &w->key);
  235. for (i = 0; i < KEY_PTRS(&w->key); i++)
  236. atomic_inc(&PTR_BUCKET(dc->disk.c, &w->key, i)->pin);
  237. bch_btree_insert(&op, dc->disk.c);
  238. closure_sync(&op.cl);
  239. if (op.insert_collision)
  240. trace_bcache_writeback_collision(&w->key);
  241. atomic_long_inc(op.insert_collision
  242. ? &dc->disk.c->writeback_keys_failed
  243. : &dc->disk.c->writeback_keys_done);
  244. }
  245. bch_keybuf_del(&dc->writeback_keys, w);
  246. atomic_dec_bug(&dc->in_flight);
  247. closure_wake_up(&dc->writeback_wait);
  248. closure_return_with_destructor(cl, dirty_io_destructor);
  249. }
  250. static void dirty_endio(struct bio *bio, int error)
  251. {
  252. struct keybuf_key *w = bio->bi_private;
  253. struct dirty_io *io = w->private;
  254. if (error)
  255. SET_KEY_DIRTY(&w->key, false);
  256. closure_put(&io->cl);
  257. }
  258. static void write_dirty(struct closure *cl)
  259. {
  260. struct dirty_io *io = container_of(cl, struct dirty_io, cl);
  261. struct keybuf_key *w = io->bio.bi_private;
  262. dirty_init(w);
  263. io->bio.bi_rw = WRITE;
  264. io->bio.bi_sector = KEY_START(&w->key);
  265. io->bio.bi_bdev = io->dc->bdev;
  266. io->bio.bi_end_io = dirty_endio;
  267. closure_bio_submit(&io->bio, cl, &io->dc->disk);
  268. continue_at(cl, write_dirty_finish, dirty_wq);
  269. }
  270. static void read_dirty_endio(struct bio *bio, int error)
  271. {
  272. struct keybuf_key *w = bio->bi_private;
  273. struct dirty_io *io = w->private;
  274. bch_count_io_errors(PTR_CACHE(io->dc->disk.c, &w->key, 0),
  275. error, "reading dirty data from cache");
  276. dirty_endio(bio, error);
  277. }
  278. static void read_dirty_submit(struct closure *cl)
  279. {
  280. struct dirty_io *io = container_of(cl, struct dirty_io, cl);
  281. closure_bio_submit(&io->bio, cl, &io->dc->disk);
  282. continue_at(cl, write_dirty, dirty_wq);
  283. }
  284. static void read_dirty(struct closure *cl)
  285. {
  286. struct cached_dev *dc = container_of(cl, struct cached_dev,
  287. writeback.cl);
  288. unsigned delay = writeback_delay(dc, 0);
  289. struct keybuf_key *w;
  290. struct dirty_io *io;
  291. /*
  292. * XXX: if we error, background writeback just spins. Should use some
  293. * mempools.
  294. */
  295. while (1) {
  296. w = bch_keybuf_next(&dc->writeback_keys);
  297. if (!w)
  298. break;
  299. BUG_ON(ptr_stale(dc->disk.c, &w->key, 0));
  300. if (delay > 0 &&
  301. (KEY_START(&w->key) != dc->last_read ||
  302. jiffies_to_msecs(delay) > 50)) {
  303. w->private = NULL;
  304. closure_delay(&dc->writeback, delay);
  305. continue_at(cl, read_dirty, dirty_wq);
  306. }
  307. dc->last_read = KEY_OFFSET(&w->key);
  308. io = kzalloc(sizeof(struct dirty_io) + sizeof(struct bio_vec)
  309. * DIV_ROUND_UP(KEY_SIZE(&w->key), PAGE_SECTORS),
  310. GFP_KERNEL);
  311. if (!io)
  312. goto err;
  313. w->private = io;
  314. io->dc = dc;
  315. dirty_init(w);
  316. io->bio.bi_sector = PTR_OFFSET(&w->key, 0);
  317. io->bio.bi_bdev = PTR_CACHE(dc->disk.c,
  318. &w->key, 0)->bdev;
  319. io->bio.bi_rw = READ;
  320. io->bio.bi_end_io = read_dirty_endio;
  321. if (bch_bio_alloc_pages(&io->bio, GFP_KERNEL))
  322. goto err_free;
  323. trace_bcache_writeback(&w->key);
  324. closure_call(&io->cl, read_dirty_submit, NULL, &dc->disk.cl);
  325. delay = writeback_delay(dc, KEY_SIZE(&w->key));
  326. atomic_inc(&dc->in_flight);
  327. if (!closure_wait_event(&dc->writeback_wait, cl,
  328. atomic_read(&dc->in_flight) < 64))
  329. continue_at(cl, read_dirty, dirty_wq);
  330. }
  331. if (0) {
  332. err_free:
  333. kfree(w->private);
  334. err:
  335. bch_keybuf_del(&dc->writeback_keys, w);
  336. }
  337. refill_dirty(cl);
  338. }
  339. /* Init */
  340. static int bch_btree_sectors_dirty_init(struct btree *b, struct btree_op *op,
  341. struct cached_dev *dc)
  342. {
  343. struct bkey *k;
  344. struct btree_iter iter;
  345. bch_btree_iter_init(b, &iter, &KEY(dc->disk.id, 0, 0));
  346. while ((k = bch_btree_iter_next_filter(&iter, b, bch_ptr_bad)))
  347. if (!b->level) {
  348. if (KEY_INODE(k) > dc->disk.id)
  349. break;
  350. if (KEY_DIRTY(k))
  351. bcache_dev_sectors_dirty_add(b->c, dc->disk.id,
  352. KEY_START(k),
  353. KEY_SIZE(k));
  354. } else {
  355. btree(sectors_dirty_init, k, b, op, dc);
  356. if (KEY_INODE(k) > dc->disk.id)
  357. break;
  358. cond_resched();
  359. }
  360. return 0;
  361. }
  362. void bch_sectors_dirty_init(struct cached_dev *dc)
  363. {
  364. struct btree_op op;
  365. bch_btree_op_init_stack(&op);
  366. btree_root(sectors_dirty_init, dc->disk.c, &op, dc);
  367. }
  368. void bch_cached_dev_writeback_init(struct cached_dev *dc)
  369. {
  370. closure_init_unlocked(&dc->writeback);
  371. init_rwsem(&dc->writeback_lock);
  372. bch_keybuf_init(&dc->writeback_keys);
  373. dc->writeback_metadata = true;
  374. dc->writeback_running = true;
  375. dc->writeback_percent = 10;
  376. dc->writeback_delay = 30;
  377. dc->writeback_rate.rate = 1024;
  378. dc->writeback_rate_update_seconds = 30;
  379. dc->writeback_rate_d_term = 16;
  380. dc->writeback_rate_p_term_inverse = 64;
  381. dc->writeback_rate_d_smooth = 8;
  382. INIT_DELAYED_WORK(&dc->writeback_rate_update, update_writeback_rate);
  383. schedule_delayed_work(&dc->writeback_rate_update,
  384. dc->writeback_rate_update_seconds * HZ);
  385. }
  386. void bch_writeback_exit(void)
  387. {
  388. if (dirty_wq)
  389. destroy_workqueue(dirty_wq);
  390. }
  391. int __init bch_writeback_init(void)
  392. {
  393. dirty_wq = create_singlethread_workqueue("bcache_writeback");
  394. if (!dirty_wq)
  395. return -ENOMEM;
  396. return 0;
  397. }