btree.c 56 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512
  1. /*
  2. * Copyright (C) 2010 Kent Overstreet <kent.overstreet@gmail.com>
  3. *
  4. * Uses a block device as cache for other block devices; optimized for SSDs.
  5. * All allocation is done in buckets, which should match the erase block size
  6. * of the device.
  7. *
  8. * Buckets containing cached data are kept on a heap sorted by priority;
  9. * bucket priority is increased on cache hit, and periodically all the buckets
  10. * on the heap have their priority scaled down. This currently is just used as
  11. * an LRU but in the future should allow for more intelligent heuristics.
  12. *
  13. * Buckets have an 8 bit counter; freeing is accomplished by incrementing the
  14. * counter. Garbage collection is used to remove stale pointers.
  15. *
  16. * Indexing is done via a btree; nodes are not necessarily fully sorted, rather
  17. * as keys are inserted we only sort the pages that have not yet been written.
  18. * When garbage collection is run, we resort the entire node.
  19. *
  20. * All configuration is done via sysfs; see Documentation/bcache.txt.
  21. */
  22. #include "bcache.h"
  23. #include "btree.h"
  24. #include "debug.h"
  25. #include "request.h"
  26. #include "writeback.h"
  27. #include <linux/slab.h>
  28. #include <linux/bitops.h>
  29. #include <linux/freezer.h>
  30. #include <linux/hash.h>
  31. #include <linux/kthread.h>
  32. #include <linux/prefetch.h>
  33. #include <linux/random.h>
  34. #include <linux/rcupdate.h>
  35. #include <trace/events/bcache.h>
  36. /*
  37. * Todo:
  38. * register_bcache: Return errors out to userspace correctly
  39. *
  40. * Writeback: don't undirty key until after a cache flush
  41. *
  42. * Create an iterator for key pointers
  43. *
  44. * On btree write error, mark bucket such that it won't be freed from the cache
  45. *
  46. * Journalling:
  47. * Check for bad keys in replay
  48. * Propagate barriers
  49. * Refcount journal entries in journal_replay
  50. *
  51. * Garbage collection:
  52. * Finish incremental gc
  53. * Gc should free old UUIDs, data for invalid UUIDs
  54. *
  55. * Provide a way to list backing device UUIDs we have data cached for, and
  56. * probably how long it's been since we've seen them, and a way to invalidate
  57. * dirty data for devices that will never be attached again
  58. *
  59. * Keep 1 min/5 min/15 min statistics of how busy a block device has been, so
  60. * that based on that and how much dirty data we have we can keep writeback
  61. * from being starved
  62. *
  63. * Add a tracepoint or somesuch to watch for writeback starvation
  64. *
  65. * When btree depth > 1 and splitting an interior node, we have to make sure
  66. * alloc_bucket() cannot fail. This should be true but is not completely
  67. * obvious.
  68. *
  69. * Make sure all allocations get charged to the root cgroup
  70. *
  71. * Plugging?
  72. *
  73. * If data write is less than hard sector size of ssd, round up offset in open
  74. * bucket to the next whole sector
  75. *
  76. * Also lookup by cgroup in get_open_bucket()
  77. *
  78. * Superblock needs to be fleshed out for multiple cache devices
  79. *
  80. * Add a sysfs tunable for the number of writeback IOs in flight
  81. *
  82. * Add a sysfs tunable for the number of open data buckets
  83. *
  84. * IO tracking: Can we track when one process is doing io on behalf of another?
  85. * IO tracking: Don't use just an average, weigh more recent stuff higher
  86. *
  87. * Test module load/unload
  88. */
  89. static const char * const op_types[] = {
  90. "insert", "replace"
  91. };
  92. static const char *op_type(struct btree_op *op)
  93. {
  94. return op_types[op->type];
  95. }
  96. #define MAX_NEED_GC 64
  97. #define MAX_SAVE_PRIO 72
  98. #define PTR_DIRTY_BIT (((uint64_t) 1 << 36))
  99. #define PTR_HASH(c, k) \
  100. (((k)->ptr[0] >> c->bucket_bits) | PTR_GEN(k, 0))
  101. static struct workqueue_struct *btree_io_wq;
  102. void bch_btree_op_init_stack(struct btree_op *op)
  103. {
  104. memset(op, 0, sizeof(struct btree_op));
  105. closure_init_stack(&op->cl);
  106. op->lock = -1;
  107. }
  108. /* Btree key manipulation */
  109. void __bkey_put(struct cache_set *c, struct bkey *k)
  110. {
  111. unsigned i;
  112. for (i = 0; i < KEY_PTRS(k); i++)
  113. if (ptr_available(c, k, i))
  114. atomic_dec_bug(&PTR_BUCKET(c, k, i)->pin);
  115. }
  116. static void bkey_put(struct cache_set *c, struct bkey *k, int level)
  117. {
  118. if ((level && KEY_OFFSET(k)) || !level)
  119. __bkey_put(c, k);
  120. }
  121. /* Btree IO */
  122. static uint64_t btree_csum_set(struct btree *b, struct bset *i)
  123. {
  124. uint64_t crc = b->key.ptr[0];
  125. void *data = (void *) i + 8, *end = end(i);
  126. crc = bch_crc64_update(crc, data, end - data);
  127. return crc ^ 0xffffffffffffffffULL;
  128. }
  129. static void bch_btree_node_read_done(struct btree *b)
  130. {
  131. const char *err = "bad btree header";
  132. struct bset *i = b->sets[0].data;
  133. struct btree_iter *iter;
  134. iter = mempool_alloc(b->c->fill_iter, GFP_NOWAIT);
  135. iter->size = b->c->sb.bucket_size / b->c->sb.block_size;
  136. iter->used = 0;
  137. if (!i->seq)
  138. goto err;
  139. for (;
  140. b->written < btree_blocks(b) && i->seq == b->sets[0].data->seq;
  141. i = write_block(b)) {
  142. err = "unsupported bset version";
  143. if (i->version > BCACHE_BSET_VERSION)
  144. goto err;
  145. err = "bad btree header";
  146. if (b->written + set_blocks(i, b->c) > btree_blocks(b))
  147. goto err;
  148. err = "bad magic";
  149. if (i->magic != bset_magic(b->c))
  150. goto err;
  151. err = "bad checksum";
  152. switch (i->version) {
  153. case 0:
  154. if (i->csum != csum_set(i))
  155. goto err;
  156. break;
  157. case BCACHE_BSET_VERSION:
  158. if (i->csum != btree_csum_set(b, i))
  159. goto err;
  160. break;
  161. }
  162. err = "empty set";
  163. if (i != b->sets[0].data && !i->keys)
  164. goto err;
  165. bch_btree_iter_push(iter, i->start, end(i));
  166. b->written += set_blocks(i, b->c);
  167. }
  168. err = "corrupted btree";
  169. for (i = write_block(b);
  170. index(i, b) < btree_blocks(b);
  171. i = ((void *) i) + block_bytes(b->c))
  172. if (i->seq == b->sets[0].data->seq)
  173. goto err;
  174. bch_btree_sort_and_fix_extents(b, iter);
  175. i = b->sets[0].data;
  176. err = "short btree key";
  177. if (b->sets[0].size &&
  178. bkey_cmp(&b->key, &b->sets[0].end) < 0)
  179. goto err;
  180. if (b->written < btree_blocks(b))
  181. bch_bset_init_next(b);
  182. out:
  183. mempool_free(iter, b->c->fill_iter);
  184. return;
  185. err:
  186. set_btree_node_io_error(b);
  187. bch_cache_set_error(b->c, "%s at bucket %zu, block %zu, %u keys",
  188. err, PTR_BUCKET_NR(b->c, &b->key, 0),
  189. index(i, b), i->keys);
  190. goto out;
  191. }
  192. static void btree_node_read_endio(struct bio *bio, int error)
  193. {
  194. struct closure *cl = bio->bi_private;
  195. closure_put(cl);
  196. }
  197. void bch_btree_node_read(struct btree *b)
  198. {
  199. uint64_t start_time = local_clock();
  200. struct closure cl;
  201. struct bio *bio;
  202. trace_bcache_btree_read(b);
  203. closure_init_stack(&cl);
  204. bio = bch_bbio_alloc(b->c);
  205. bio->bi_rw = REQ_META|READ_SYNC;
  206. bio->bi_size = KEY_SIZE(&b->key) << 9;
  207. bio->bi_end_io = btree_node_read_endio;
  208. bio->bi_private = &cl;
  209. bch_bio_map(bio, b->sets[0].data);
  210. bch_submit_bbio(bio, b->c, &b->key, 0);
  211. closure_sync(&cl);
  212. if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
  213. set_btree_node_io_error(b);
  214. bch_bbio_free(bio, b->c);
  215. if (btree_node_io_error(b))
  216. goto err;
  217. bch_btree_node_read_done(b);
  218. spin_lock(&b->c->btree_read_time_lock);
  219. bch_time_stats_update(&b->c->btree_read_time, start_time);
  220. spin_unlock(&b->c->btree_read_time_lock);
  221. return;
  222. err:
  223. bch_cache_set_error(b->c, "io error reading bucket %zu",
  224. PTR_BUCKET_NR(b->c, &b->key, 0));
  225. }
  226. static void btree_complete_write(struct btree *b, struct btree_write *w)
  227. {
  228. if (w->prio_blocked &&
  229. !atomic_sub_return(w->prio_blocked, &b->c->prio_blocked))
  230. wake_up_allocators(b->c);
  231. if (w->journal) {
  232. atomic_dec_bug(w->journal);
  233. __closure_wake_up(&b->c->journal.wait);
  234. }
  235. w->prio_blocked = 0;
  236. w->journal = NULL;
  237. }
  238. static void __btree_node_write_done(struct closure *cl)
  239. {
  240. struct btree *b = container_of(cl, struct btree, io.cl);
  241. struct btree_write *w = btree_prev_write(b);
  242. bch_bbio_free(b->bio, b->c);
  243. b->bio = NULL;
  244. btree_complete_write(b, w);
  245. if (btree_node_dirty(b))
  246. queue_delayed_work(btree_io_wq, &b->work,
  247. msecs_to_jiffies(30000));
  248. closure_return(cl);
  249. }
  250. static void btree_node_write_done(struct closure *cl)
  251. {
  252. struct btree *b = container_of(cl, struct btree, io.cl);
  253. struct bio_vec *bv;
  254. int n;
  255. __bio_for_each_segment(bv, b->bio, n, 0)
  256. __free_page(bv->bv_page);
  257. __btree_node_write_done(cl);
  258. }
  259. static void btree_node_write_endio(struct bio *bio, int error)
  260. {
  261. struct closure *cl = bio->bi_private;
  262. struct btree *b = container_of(cl, struct btree, io.cl);
  263. if (error)
  264. set_btree_node_io_error(b);
  265. bch_bbio_count_io_errors(b->c, bio, error, "writing btree");
  266. closure_put(cl);
  267. }
  268. static void do_btree_node_write(struct btree *b)
  269. {
  270. struct closure *cl = &b->io.cl;
  271. struct bset *i = b->sets[b->nsets].data;
  272. BKEY_PADDED(key) k;
  273. i->version = BCACHE_BSET_VERSION;
  274. i->csum = btree_csum_set(b, i);
  275. BUG_ON(b->bio);
  276. b->bio = bch_bbio_alloc(b->c);
  277. b->bio->bi_end_io = btree_node_write_endio;
  278. b->bio->bi_private = &b->io.cl;
  279. b->bio->bi_rw = REQ_META|WRITE_SYNC|REQ_FUA;
  280. b->bio->bi_size = set_blocks(i, b->c) * block_bytes(b->c);
  281. bch_bio_map(b->bio, i);
  282. /*
  283. * If we're appending to a leaf node, we don't technically need FUA -
  284. * this write just needs to be persisted before the next journal write,
  285. * which will be marked FLUSH|FUA.
  286. *
  287. * Similarly if we're writing a new btree root - the pointer is going to
  288. * be in the next journal entry.
  289. *
  290. * But if we're writing a new btree node (that isn't a root) or
  291. * appending to a non leaf btree node, we need either FUA or a flush
  292. * when we write the parent with the new pointer. FUA is cheaper than a
  293. * flush, and writes appending to leaf nodes aren't blocking anything so
  294. * just make all btree node writes FUA to keep things sane.
  295. */
  296. bkey_copy(&k.key, &b->key);
  297. SET_PTR_OFFSET(&k.key, 0, PTR_OFFSET(&k.key, 0) + bset_offset(b, i));
  298. if (!bio_alloc_pages(b->bio, GFP_NOIO)) {
  299. int j;
  300. struct bio_vec *bv;
  301. void *base = (void *) ((unsigned long) i & ~(PAGE_SIZE - 1));
  302. bio_for_each_segment(bv, b->bio, j)
  303. memcpy(page_address(bv->bv_page),
  304. base + j * PAGE_SIZE, PAGE_SIZE);
  305. bch_submit_bbio(b->bio, b->c, &k.key, 0);
  306. continue_at(cl, btree_node_write_done, NULL);
  307. } else {
  308. b->bio->bi_vcnt = 0;
  309. bch_bio_map(b->bio, i);
  310. bch_submit_bbio(b->bio, b->c, &k.key, 0);
  311. closure_sync(cl);
  312. __btree_node_write_done(cl);
  313. }
  314. }
  315. void bch_btree_node_write(struct btree *b, struct closure *parent)
  316. {
  317. struct bset *i = b->sets[b->nsets].data;
  318. trace_bcache_btree_write(b);
  319. BUG_ON(current->bio_list);
  320. BUG_ON(b->written >= btree_blocks(b));
  321. BUG_ON(b->written && !i->keys);
  322. BUG_ON(b->sets->data->seq != i->seq);
  323. bch_check_key_order(b, i);
  324. cancel_delayed_work(&b->work);
  325. /* If caller isn't waiting for write, parent refcount is cache set */
  326. closure_lock(&b->io, parent ?: &b->c->cl);
  327. clear_bit(BTREE_NODE_dirty, &b->flags);
  328. change_bit(BTREE_NODE_write_idx, &b->flags);
  329. do_btree_node_write(b);
  330. b->written += set_blocks(i, b->c);
  331. atomic_long_add(set_blocks(i, b->c) * b->c->sb.block_size,
  332. &PTR_CACHE(b->c, &b->key, 0)->btree_sectors_written);
  333. bch_btree_sort_lazy(b);
  334. if (b->written < btree_blocks(b))
  335. bch_bset_init_next(b);
  336. }
  337. static void btree_node_write_work(struct work_struct *w)
  338. {
  339. struct btree *b = container_of(to_delayed_work(w), struct btree, work);
  340. rw_lock(true, b, b->level);
  341. if (btree_node_dirty(b))
  342. bch_btree_node_write(b, NULL);
  343. rw_unlock(true, b);
  344. }
  345. static void bch_btree_leaf_dirty(struct btree *b, struct btree_op *op)
  346. {
  347. struct bset *i = b->sets[b->nsets].data;
  348. struct btree_write *w = btree_current_write(b);
  349. BUG_ON(!b->written);
  350. BUG_ON(!i->keys);
  351. if (!btree_node_dirty(b))
  352. queue_delayed_work(btree_io_wq, &b->work, 30 * HZ);
  353. set_btree_node_dirty(b);
  354. if (op->journal) {
  355. if (w->journal &&
  356. journal_pin_cmp(b->c, w, op)) {
  357. atomic_dec_bug(w->journal);
  358. w->journal = NULL;
  359. }
  360. if (!w->journal) {
  361. w->journal = op->journal;
  362. atomic_inc(w->journal);
  363. }
  364. }
  365. /* Force write if set is too big */
  366. if (set_bytes(i) > PAGE_SIZE - 48 &&
  367. !current->bio_list)
  368. bch_btree_node_write(b, NULL);
  369. }
  370. /*
  371. * Btree in memory cache - allocation/freeing
  372. * mca -> memory cache
  373. */
  374. static void mca_reinit(struct btree *b)
  375. {
  376. unsigned i;
  377. b->flags = 0;
  378. b->written = 0;
  379. b->nsets = 0;
  380. for (i = 0; i < MAX_BSETS; i++)
  381. b->sets[i].size = 0;
  382. /*
  383. * Second loop starts at 1 because b->sets[0]->data is the memory we
  384. * allocated
  385. */
  386. for (i = 1; i < MAX_BSETS; i++)
  387. b->sets[i].data = NULL;
  388. }
  389. #define mca_reserve(c) (((c->root && c->root->level) \
  390. ? c->root->level : 1) * 8 + 16)
  391. #define mca_can_free(c) \
  392. max_t(int, 0, c->bucket_cache_used - mca_reserve(c))
  393. static void mca_data_free(struct btree *b)
  394. {
  395. struct bset_tree *t = b->sets;
  396. BUG_ON(!closure_is_unlocked(&b->io.cl));
  397. if (bset_prev_bytes(b) < PAGE_SIZE)
  398. kfree(t->prev);
  399. else
  400. free_pages((unsigned long) t->prev,
  401. get_order(bset_prev_bytes(b)));
  402. if (bset_tree_bytes(b) < PAGE_SIZE)
  403. kfree(t->tree);
  404. else
  405. free_pages((unsigned long) t->tree,
  406. get_order(bset_tree_bytes(b)));
  407. free_pages((unsigned long) t->data, b->page_order);
  408. t->prev = NULL;
  409. t->tree = NULL;
  410. t->data = NULL;
  411. list_move(&b->list, &b->c->btree_cache_freed);
  412. b->c->bucket_cache_used--;
  413. }
  414. static void mca_bucket_free(struct btree *b)
  415. {
  416. BUG_ON(btree_node_dirty(b));
  417. b->key.ptr[0] = 0;
  418. hlist_del_init_rcu(&b->hash);
  419. list_move(&b->list, &b->c->btree_cache_freeable);
  420. }
  421. static unsigned btree_order(struct bkey *k)
  422. {
  423. return ilog2(KEY_SIZE(k) / PAGE_SECTORS ?: 1);
  424. }
  425. static void mca_data_alloc(struct btree *b, struct bkey *k, gfp_t gfp)
  426. {
  427. struct bset_tree *t = b->sets;
  428. BUG_ON(t->data);
  429. b->page_order = max_t(unsigned,
  430. ilog2(b->c->btree_pages),
  431. btree_order(k));
  432. t->data = (void *) __get_free_pages(gfp, b->page_order);
  433. if (!t->data)
  434. goto err;
  435. t->tree = bset_tree_bytes(b) < PAGE_SIZE
  436. ? kmalloc(bset_tree_bytes(b), gfp)
  437. : (void *) __get_free_pages(gfp, get_order(bset_tree_bytes(b)));
  438. if (!t->tree)
  439. goto err;
  440. t->prev = bset_prev_bytes(b) < PAGE_SIZE
  441. ? kmalloc(bset_prev_bytes(b), gfp)
  442. : (void *) __get_free_pages(gfp, get_order(bset_prev_bytes(b)));
  443. if (!t->prev)
  444. goto err;
  445. list_move(&b->list, &b->c->btree_cache);
  446. b->c->bucket_cache_used++;
  447. return;
  448. err:
  449. mca_data_free(b);
  450. }
  451. static struct btree *mca_bucket_alloc(struct cache_set *c,
  452. struct bkey *k, gfp_t gfp)
  453. {
  454. struct btree *b = kzalloc(sizeof(struct btree), gfp);
  455. if (!b)
  456. return NULL;
  457. init_rwsem(&b->lock);
  458. lockdep_set_novalidate_class(&b->lock);
  459. INIT_LIST_HEAD(&b->list);
  460. INIT_DELAYED_WORK(&b->work, btree_node_write_work);
  461. b->c = c;
  462. closure_init_unlocked(&b->io);
  463. mca_data_alloc(b, k, gfp);
  464. return b;
  465. }
  466. static int mca_reap(struct btree *b, unsigned min_order, bool flush)
  467. {
  468. struct closure cl;
  469. closure_init_stack(&cl);
  470. lockdep_assert_held(&b->c->bucket_lock);
  471. if (!down_write_trylock(&b->lock))
  472. return -ENOMEM;
  473. BUG_ON(btree_node_dirty(b) && !b->sets[0].data);
  474. if (b->page_order < min_order ||
  475. (!flush &&
  476. (btree_node_dirty(b) ||
  477. atomic_read(&b->io.cl.remaining) != -1))) {
  478. rw_unlock(true, b);
  479. return -ENOMEM;
  480. }
  481. if (btree_node_dirty(b)) {
  482. bch_btree_node_write(b, &cl);
  483. closure_sync(&cl);
  484. }
  485. /* wait for any in flight btree write */
  486. closure_wait_event_sync(&b->io.wait, &cl,
  487. atomic_read(&b->io.cl.remaining) == -1);
  488. return 0;
  489. }
  490. static unsigned long bch_mca_scan(struct shrinker *shrink,
  491. struct shrink_control *sc)
  492. {
  493. struct cache_set *c = container_of(shrink, struct cache_set, shrink);
  494. struct btree *b, *t;
  495. unsigned long i, nr = sc->nr_to_scan;
  496. unsigned long freed = 0;
  497. if (c->shrinker_disabled)
  498. return SHRINK_STOP;
  499. if (c->try_harder)
  500. return SHRINK_STOP;
  501. /* Return -1 if we can't do anything right now */
  502. if (sc->gfp_mask & __GFP_IO)
  503. mutex_lock(&c->bucket_lock);
  504. else if (!mutex_trylock(&c->bucket_lock))
  505. return -1;
  506. /*
  507. * It's _really_ critical that we don't free too many btree nodes - we
  508. * have to always leave ourselves a reserve. The reserve is how we
  509. * guarantee that allocating memory for a new btree node can always
  510. * succeed, so that inserting keys into the btree can always succeed and
  511. * IO can always make forward progress:
  512. */
  513. nr /= c->btree_pages;
  514. nr = min_t(unsigned long, nr, mca_can_free(c));
  515. i = 0;
  516. list_for_each_entry_safe(b, t, &c->btree_cache_freeable, list) {
  517. if (freed >= nr)
  518. break;
  519. if (++i > 3 &&
  520. !mca_reap(b, 0, false)) {
  521. mca_data_free(b);
  522. rw_unlock(true, b);
  523. freed++;
  524. }
  525. }
  526. /*
  527. * Can happen right when we first start up, before we've read in any
  528. * btree nodes
  529. */
  530. if (list_empty(&c->btree_cache))
  531. goto out;
  532. for (i = 0; (nr--) && i < c->bucket_cache_used; i++) {
  533. b = list_first_entry(&c->btree_cache, struct btree, list);
  534. list_rotate_left(&c->btree_cache);
  535. if (!b->accessed &&
  536. !mca_reap(b, 0, false)) {
  537. mca_bucket_free(b);
  538. mca_data_free(b);
  539. rw_unlock(true, b);
  540. freed++;
  541. } else
  542. b->accessed = 0;
  543. }
  544. out:
  545. mutex_unlock(&c->bucket_lock);
  546. return freed;
  547. }
  548. static unsigned long bch_mca_count(struct shrinker *shrink,
  549. struct shrink_control *sc)
  550. {
  551. struct cache_set *c = container_of(shrink, struct cache_set, shrink);
  552. if (c->shrinker_disabled)
  553. return 0;
  554. if (c->try_harder)
  555. return 0;
  556. return mca_can_free(c) * c->btree_pages;
  557. }
  558. void bch_btree_cache_free(struct cache_set *c)
  559. {
  560. struct btree *b;
  561. struct closure cl;
  562. closure_init_stack(&cl);
  563. if (c->shrink.list.next)
  564. unregister_shrinker(&c->shrink);
  565. mutex_lock(&c->bucket_lock);
  566. #ifdef CONFIG_BCACHE_DEBUG
  567. if (c->verify_data)
  568. list_move(&c->verify_data->list, &c->btree_cache);
  569. #endif
  570. list_splice(&c->btree_cache_freeable,
  571. &c->btree_cache);
  572. while (!list_empty(&c->btree_cache)) {
  573. b = list_first_entry(&c->btree_cache, struct btree, list);
  574. if (btree_node_dirty(b))
  575. btree_complete_write(b, btree_current_write(b));
  576. clear_bit(BTREE_NODE_dirty, &b->flags);
  577. mca_data_free(b);
  578. }
  579. while (!list_empty(&c->btree_cache_freed)) {
  580. b = list_first_entry(&c->btree_cache_freed,
  581. struct btree, list);
  582. list_del(&b->list);
  583. cancel_delayed_work_sync(&b->work);
  584. kfree(b);
  585. }
  586. mutex_unlock(&c->bucket_lock);
  587. }
  588. int bch_btree_cache_alloc(struct cache_set *c)
  589. {
  590. unsigned i;
  591. for (i = 0; i < mca_reserve(c); i++)
  592. if (!mca_bucket_alloc(c, &ZERO_KEY, GFP_KERNEL))
  593. return -ENOMEM;
  594. list_splice_init(&c->btree_cache,
  595. &c->btree_cache_freeable);
  596. #ifdef CONFIG_BCACHE_DEBUG
  597. mutex_init(&c->verify_lock);
  598. c->verify_data = mca_bucket_alloc(c, &ZERO_KEY, GFP_KERNEL);
  599. if (c->verify_data &&
  600. c->verify_data->sets[0].data)
  601. list_del_init(&c->verify_data->list);
  602. else
  603. c->verify_data = NULL;
  604. #endif
  605. c->shrink.count_objects = bch_mca_count;
  606. c->shrink.scan_objects = bch_mca_scan;
  607. c->shrink.seeks = 4;
  608. c->shrink.batch = c->btree_pages * 2;
  609. register_shrinker(&c->shrink);
  610. return 0;
  611. }
  612. /* Btree in memory cache - hash table */
  613. static struct hlist_head *mca_hash(struct cache_set *c, struct bkey *k)
  614. {
  615. return &c->bucket_hash[hash_32(PTR_HASH(c, k), BUCKET_HASH_BITS)];
  616. }
  617. static struct btree *mca_find(struct cache_set *c, struct bkey *k)
  618. {
  619. struct btree *b;
  620. rcu_read_lock();
  621. hlist_for_each_entry_rcu(b, mca_hash(c, k), hash)
  622. if (PTR_HASH(c, &b->key) == PTR_HASH(c, k))
  623. goto out;
  624. b = NULL;
  625. out:
  626. rcu_read_unlock();
  627. return b;
  628. }
  629. static struct btree *mca_cannibalize(struct cache_set *c, struct bkey *k)
  630. {
  631. struct btree *b;
  632. trace_bcache_btree_cache_cannibalize(c);
  633. if (!c->try_harder) {
  634. c->try_harder = current;
  635. c->try_harder_start = local_clock();
  636. } else if (c->try_harder != current)
  637. return ERR_PTR(-ENOSPC);
  638. list_for_each_entry_reverse(b, &c->btree_cache, list)
  639. if (!mca_reap(b, btree_order(k), false))
  640. return b;
  641. list_for_each_entry_reverse(b, &c->btree_cache, list)
  642. if (!mca_reap(b, btree_order(k), true))
  643. return b;
  644. return ERR_PTR(-ENOMEM);
  645. }
  646. /*
  647. * We can only have one thread cannibalizing other cached btree nodes at a time,
  648. * or we'll deadlock. We use an open coded mutex to ensure that, which a
  649. * cannibalize_bucket() will take. This means every time we unlock the root of
  650. * the btree, we need to release this lock if we have it held.
  651. */
  652. void bch_cannibalize_unlock(struct cache_set *c)
  653. {
  654. if (c->try_harder == current) {
  655. bch_time_stats_update(&c->try_harder_time, c->try_harder_start);
  656. c->try_harder = NULL;
  657. wake_up(&c->try_wait);
  658. }
  659. }
  660. static struct btree *mca_alloc(struct cache_set *c, struct bkey *k, int level)
  661. {
  662. struct btree *b;
  663. BUG_ON(current->bio_list);
  664. lockdep_assert_held(&c->bucket_lock);
  665. if (mca_find(c, k))
  666. return NULL;
  667. /* btree_free() doesn't free memory; it sticks the node on the end of
  668. * the list. Check if there's any freed nodes there:
  669. */
  670. list_for_each_entry(b, &c->btree_cache_freeable, list)
  671. if (!mca_reap(b, btree_order(k), false))
  672. goto out;
  673. /* We never free struct btree itself, just the memory that holds the on
  674. * disk node. Check the freed list before allocating a new one:
  675. */
  676. list_for_each_entry(b, &c->btree_cache_freed, list)
  677. if (!mca_reap(b, 0, false)) {
  678. mca_data_alloc(b, k, __GFP_NOWARN|GFP_NOIO);
  679. if (!b->sets[0].data)
  680. goto err;
  681. else
  682. goto out;
  683. }
  684. b = mca_bucket_alloc(c, k, __GFP_NOWARN|GFP_NOIO);
  685. if (!b)
  686. goto err;
  687. BUG_ON(!down_write_trylock(&b->lock));
  688. if (!b->sets->data)
  689. goto err;
  690. out:
  691. BUG_ON(!closure_is_unlocked(&b->io.cl));
  692. bkey_copy(&b->key, k);
  693. list_move(&b->list, &c->btree_cache);
  694. hlist_del_init_rcu(&b->hash);
  695. hlist_add_head_rcu(&b->hash, mca_hash(c, k));
  696. lock_set_subclass(&b->lock.dep_map, level + 1, _THIS_IP_);
  697. b->level = level;
  698. b->parent = (void *) ~0UL;
  699. mca_reinit(b);
  700. return b;
  701. err:
  702. if (b)
  703. rw_unlock(true, b);
  704. b = mca_cannibalize(c, k);
  705. if (!IS_ERR(b))
  706. goto out;
  707. return b;
  708. }
  709. /**
  710. * bch_btree_node_get - find a btree node in the cache and lock it, reading it
  711. * in from disk if necessary.
  712. *
  713. * If IO is necessary, it uses the closure embedded in struct btree_op to wait;
  714. * if that closure is in non blocking mode, will return -EAGAIN.
  715. *
  716. * The btree node will have either a read or a write lock held, depending on
  717. * level and op->lock.
  718. */
  719. struct btree *bch_btree_node_get(struct cache_set *c, struct bkey *k,
  720. int level, bool write)
  721. {
  722. int i = 0;
  723. struct btree *b;
  724. BUG_ON(level < 0);
  725. retry:
  726. b = mca_find(c, k);
  727. if (!b) {
  728. if (current->bio_list)
  729. return ERR_PTR(-EAGAIN);
  730. mutex_lock(&c->bucket_lock);
  731. b = mca_alloc(c, k, level);
  732. mutex_unlock(&c->bucket_lock);
  733. if (!b)
  734. goto retry;
  735. if (IS_ERR(b))
  736. return b;
  737. bch_btree_node_read(b);
  738. if (!write)
  739. downgrade_write(&b->lock);
  740. } else {
  741. rw_lock(write, b, level);
  742. if (PTR_HASH(c, &b->key) != PTR_HASH(c, k)) {
  743. rw_unlock(write, b);
  744. goto retry;
  745. }
  746. BUG_ON(b->level != level);
  747. }
  748. b->accessed = 1;
  749. for (; i <= b->nsets && b->sets[i].size; i++) {
  750. prefetch(b->sets[i].tree);
  751. prefetch(b->sets[i].data);
  752. }
  753. for (; i <= b->nsets; i++)
  754. prefetch(b->sets[i].data);
  755. if (btree_node_io_error(b)) {
  756. rw_unlock(write, b);
  757. return ERR_PTR(-EIO);
  758. }
  759. BUG_ON(!b->written);
  760. return b;
  761. }
  762. static void btree_node_prefetch(struct cache_set *c, struct bkey *k, int level)
  763. {
  764. struct btree *b;
  765. mutex_lock(&c->bucket_lock);
  766. b = mca_alloc(c, k, level);
  767. mutex_unlock(&c->bucket_lock);
  768. if (!IS_ERR_OR_NULL(b)) {
  769. bch_btree_node_read(b);
  770. rw_unlock(true, b);
  771. }
  772. }
  773. /* Btree alloc */
  774. static void btree_node_free(struct btree *b)
  775. {
  776. unsigned i;
  777. trace_bcache_btree_node_free(b);
  778. BUG_ON(b == b->c->root);
  779. if (btree_node_dirty(b))
  780. btree_complete_write(b, btree_current_write(b));
  781. clear_bit(BTREE_NODE_dirty, &b->flags);
  782. cancel_delayed_work(&b->work);
  783. mutex_lock(&b->c->bucket_lock);
  784. for (i = 0; i < KEY_PTRS(&b->key); i++) {
  785. BUG_ON(atomic_read(&PTR_BUCKET(b->c, &b->key, i)->pin));
  786. bch_inc_gen(PTR_CACHE(b->c, &b->key, i),
  787. PTR_BUCKET(b->c, &b->key, i));
  788. }
  789. bch_bucket_free(b->c, &b->key);
  790. mca_bucket_free(b);
  791. mutex_unlock(&b->c->bucket_lock);
  792. }
  793. struct btree *bch_btree_node_alloc(struct cache_set *c, int level)
  794. {
  795. BKEY_PADDED(key) k;
  796. struct btree *b = ERR_PTR(-EAGAIN);
  797. mutex_lock(&c->bucket_lock);
  798. retry:
  799. if (__bch_bucket_alloc_set(c, WATERMARK_METADATA, &k.key, 1, true))
  800. goto err;
  801. SET_KEY_SIZE(&k.key, c->btree_pages * PAGE_SECTORS);
  802. b = mca_alloc(c, &k.key, level);
  803. if (IS_ERR(b))
  804. goto err_free;
  805. if (!b) {
  806. cache_bug(c,
  807. "Tried to allocate bucket that was in btree cache");
  808. __bkey_put(c, &k.key);
  809. goto retry;
  810. }
  811. b->accessed = 1;
  812. bch_bset_init_next(b);
  813. mutex_unlock(&c->bucket_lock);
  814. trace_bcache_btree_node_alloc(b);
  815. return b;
  816. err_free:
  817. bch_bucket_free(c, &k.key);
  818. __bkey_put(c, &k.key);
  819. err:
  820. mutex_unlock(&c->bucket_lock);
  821. trace_bcache_btree_node_alloc_fail(b);
  822. return b;
  823. }
  824. static struct btree *btree_node_alloc_replacement(struct btree *b)
  825. {
  826. struct btree *n = bch_btree_node_alloc(b->c, b->level);
  827. if (!IS_ERR_OR_NULL(n))
  828. bch_btree_sort_into(b, n);
  829. return n;
  830. }
  831. /* Garbage collection */
  832. uint8_t __bch_btree_mark_key(struct cache_set *c, int level, struct bkey *k)
  833. {
  834. uint8_t stale = 0;
  835. unsigned i;
  836. struct bucket *g;
  837. /*
  838. * ptr_invalid() can't return true for the keys that mark btree nodes as
  839. * freed, but since ptr_bad() returns true we'll never actually use them
  840. * for anything and thus we don't want mark their pointers here
  841. */
  842. if (!bkey_cmp(k, &ZERO_KEY))
  843. return stale;
  844. for (i = 0; i < KEY_PTRS(k); i++) {
  845. if (!ptr_available(c, k, i))
  846. continue;
  847. g = PTR_BUCKET(c, k, i);
  848. if (gen_after(g->gc_gen, PTR_GEN(k, i)))
  849. g->gc_gen = PTR_GEN(k, i);
  850. if (ptr_stale(c, k, i)) {
  851. stale = max(stale, ptr_stale(c, k, i));
  852. continue;
  853. }
  854. cache_bug_on(GC_MARK(g) &&
  855. (GC_MARK(g) == GC_MARK_METADATA) != (level != 0),
  856. c, "inconsistent ptrs: mark = %llu, level = %i",
  857. GC_MARK(g), level);
  858. if (level)
  859. SET_GC_MARK(g, GC_MARK_METADATA);
  860. else if (KEY_DIRTY(k))
  861. SET_GC_MARK(g, GC_MARK_DIRTY);
  862. /* guard against overflow */
  863. SET_GC_SECTORS_USED(g, min_t(unsigned,
  864. GC_SECTORS_USED(g) + KEY_SIZE(k),
  865. (1 << 14) - 1));
  866. BUG_ON(!GC_SECTORS_USED(g));
  867. }
  868. return stale;
  869. }
  870. #define btree_mark_key(b, k) __bch_btree_mark_key(b->c, b->level, k)
  871. static int btree_gc_mark_node(struct btree *b, unsigned *keys,
  872. struct gc_stat *gc)
  873. {
  874. uint8_t stale = 0;
  875. unsigned last_dev = -1;
  876. struct bcache_device *d = NULL;
  877. struct bkey *k;
  878. struct btree_iter iter;
  879. struct bset_tree *t;
  880. gc->nodes++;
  881. for_each_key_filter(b, k, &iter, bch_ptr_invalid) {
  882. if (last_dev != KEY_INODE(k)) {
  883. last_dev = KEY_INODE(k);
  884. d = KEY_INODE(k) < b->c->nr_uuids
  885. ? b->c->devices[last_dev]
  886. : NULL;
  887. }
  888. stale = max(stale, btree_mark_key(b, k));
  889. if (bch_ptr_bad(b, k))
  890. continue;
  891. *keys += bkey_u64s(k);
  892. gc->key_bytes += bkey_u64s(k);
  893. gc->nkeys++;
  894. gc->data += KEY_SIZE(k);
  895. if (KEY_DIRTY(k))
  896. gc->dirty += KEY_SIZE(k);
  897. }
  898. for (t = b->sets; t <= &b->sets[b->nsets]; t++)
  899. btree_bug_on(t->size &&
  900. bset_written(b, t) &&
  901. bkey_cmp(&b->key, &t->end) < 0,
  902. b, "found short btree key in gc");
  903. return stale;
  904. }
  905. static struct btree *btree_gc_alloc(struct btree *b, struct bkey *k)
  906. {
  907. /*
  908. * We block priorities from being written for the duration of garbage
  909. * collection, so we can't sleep in btree_alloc() ->
  910. * bch_bucket_alloc_set(), or we'd risk deadlock - so we don't pass it
  911. * our closure.
  912. */
  913. struct btree *n = btree_node_alloc_replacement(b);
  914. if (!IS_ERR_OR_NULL(n)) {
  915. swap(b, n);
  916. __bkey_put(b->c, &b->key);
  917. memcpy(k->ptr, b->key.ptr,
  918. sizeof(uint64_t) * KEY_PTRS(&b->key));
  919. btree_node_free(n);
  920. up_write(&n->lock);
  921. }
  922. return b;
  923. }
  924. /*
  925. * Leaving this at 2 until we've got incremental garbage collection done; it
  926. * could be higher (and has been tested with 4) except that garbage collection
  927. * could take much longer, adversely affecting latency.
  928. */
  929. #define GC_MERGE_NODES 2U
  930. struct gc_merge_info {
  931. struct btree *b;
  932. struct bkey *k;
  933. unsigned keys;
  934. };
  935. static void btree_gc_coalesce(struct btree *b, struct gc_stat *gc,
  936. struct gc_merge_info *r)
  937. {
  938. unsigned nodes = 0, keys = 0, blocks;
  939. int i;
  940. while (nodes < GC_MERGE_NODES && r[nodes].b)
  941. keys += r[nodes++].keys;
  942. blocks = btree_default_blocks(b->c) * 2 / 3;
  943. if (nodes < 2 ||
  944. __set_blocks(b->sets[0].data, keys, b->c) > blocks * (nodes - 1))
  945. return;
  946. for (i = nodes - 1; i >= 0; --i) {
  947. if (r[i].b->written)
  948. r[i].b = btree_gc_alloc(r[i].b, r[i].k);
  949. if (r[i].b->written)
  950. return;
  951. }
  952. for (i = nodes - 1; i > 0; --i) {
  953. struct bset *n1 = r[i].b->sets->data;
  954. struct bset *n2 = r[i - 1].b->sets->data;
  955. struct bkey *k, *last = NULL;
  956. keys = 0;
  957. if (i == 1) {
  958. /*
  959. * Last node we're not getting rid of - we're getting
  960. * rid of the node at r[0]. Have to try and fit all of
  961. * the remaining keys into this node; we can't ensure
  962. * they will always fit due to rounding and variable
  963. * length keys (shouldn't be possible in practice,
  964. * though)
  965. */
  966. if (__set_blocks(n1, n1->keys + r->keys,
  967. b->c) > btree_blocks(r[i].b))
  968. return;
  969. keys = n2->keys;
  970. last = &r->b->key;
  971. } else
  972. for (k = n2->start;
  973. k < end(n2);
  974. k = bkey_next(k)) {
  975. if (__set_blocks(n1, n1->keys + keys +
  976. bkey_u64s(k), b->c) > blocks)
  977. break;
  978. last = k;
  979. keys += bkey_u64s(k);
  980. }
  981. BUG_ON(__set_blocks(n1, n1->keys + keys,
  982. b->c) > btree_blocks(r[i].b));
  983. if (last) {
  984. bkey_copy_key(&r[i].b->key, last);
  985. bkey_copy_key(r[i].k, last);
  986. }
  987. memcpy(end(n1),
  988. n2->start,
  989. (void *) node(n2, keys) - (void *) n2->start);
  990. n1->keys += keys;
  991. memmove(n2->start,
  992. node(n2, keys),
  993. (void *) end(n2) - (void *) node(n2, keys));
  994. n2->keys -= keys;
  995. r[i].keys = n1->keys;
  996. r[i - 1].keys = n2->keys;
  997. }
  998. btree_node_free(r->b);
  999. up_write(&r->b->lock);
  1000. trace_bcache_btree_gc_coalesce(nodes);
  1001. gc->nodes--;
  1002. nodes--;
  1003. memmove(&r[0], &r[1], sizeof(struct gc_merge_info) * nodes);
  1004. memset(&r[nodes], 0, sizeof(struct gc_merge_info));
  1005. }
  1006. static int btree_gc_recurse(struct btree *b, struct btree_op *op,
  1007. struct closure *writes, struct gc_stat *gc)
  1008. {
  1009. void write(struct btree *r)
  1010. {
  1011. if (!r->written)
  1012. bch_btree_node_write(r, &op->cl);
  1013. else if (btree_node_dirty(r))
  1014. bch_btree_node_write(r, writes);
  1015. up_write(&r->lock);
  1016. }
  1017. int ret = 0, stale;
  1018. unsigned i;
  1019. struct gc_merge_info r[GC_MERGE_NODES];
  1020. memset(r, 0, sizeof(r));
  1021. while ((r->k = bch_next_recurse_key(b, &b->c->gc_done))) {
  1022. r->b = bch_btree_node_get(b->c, r->k, b->level - 1, true);
  1023. if (IS_ERR(r->b)) {
  1024. ret = PTR_ERR(r->b);
  1025. break;
  1026. }
  1027. r->keys = 0;
  1028. stale = btree_gc_mark_node(r->b, &r->keys, gc);
  1029. if (!b->written &&
  1030. (r->b->level || stale > 10 ||
  1031. b->c->gc_always_rewrite))
  1032. r->b = btree_gc_alloc(r->b, r->k);
  1033. if (r->b->level)
  1034. ret = btree_gc_recurse(r->b, op, writes, gc);
  1035. if (ret) {
  1036. write(r->b);
  1037. break;
  1038. }
  1039. bkey_copy_key(&b->c->gc_done, r->k);
  1040. if (!b->written)
  1041. btree_gc_coalesce(b, gc, r);
  1042. if (r[GC_MERGE_NODES - 1].b)
  1043. write(r[GC_MERGE_NODES - 1].b);
  1044. memmove(&r[1], &r[0],
  1045. sizeof(struct gc_merge_info) * (GC_MERGE_NODES - 1));
  1046. /* When we've got incremental GC working, we'll want to do
  1047. * if (should_resched())
  1048. * return -EAGAIN;
  1049. */
  1050. cond_resched();
  1051. #if 0
  1052. if (need_resched()) {
  1053. ret = -EAGAIN;
  1054. break;
  1055. }
  1056. #endif
  1057. }
  1058. for (i = 1; i < GC_MERGE_NODES && r[i].b; i++)
  1059. write(r[i].b);
  1060. /* Might have freed some children, must remove their keys */
  1061. if (!b->written)
  1062. bch_btree_sort(b);
  1063. return ret;
  1064. }
  1065. static int bch_btree_gc_root(struct btree *b, struct btree_op *op,
  1066. struct closure *writes, struct gc_stat *gc)
  1067. {
  1068. struct btree *n = NULL;
  1069. unsigned keys = 0;
  1070. int ret = 0, stale = btree_gc_mark_node(b, &keys, gc);
  1071. if (b->level || stale > 10)
  1072. n = btree_node_alloc_replacement(b);
  1073. if (!IS_ERR_OR_NULL(n))
  1074. swap(b, n);
  1075. if (b->level)
  1076. ret = btree_gc_recurse(b, op, writes, gc);
  1077. if (!b->written || btree_node_dirty(b)) {
  1078. bch_btree_node_write(b, n ? &op->cl : NULL);
  1079. }
  1080. if (!IS_ERR_OR_NULL(n)) {
  1081. closure_sync(&op->cl);
  1082. bch_btree_set_root(b);
  1083. btree_node_free(n);
  1084. rw_unlock(true, b);
  1085. }
  1086. return ret;
  1087. }
  1088. static void btree_gc_start(struct cache_set *c)
  1089. {
  1090. struct cache *ca;
  1091. struct bucket *b;
  1092. unsigned i;
  1093. if (!c->gc_mark_valid)
  1094. return;
  1095. mutex_lock(&c->bucket_lock);
  1096. c->gc_mark_valid = 0;
  1097. c->gc_done = ZERO_KEY;
  1098. for_each_cache(ca, c, i)
  1099. for_each_bucket(b, ca) {
  1100. b->gc_gen = b->gen;
  1101. if (!atomic_read(&b->pin)) {
  1102. SET_GC_MARK(b, GC_MARK_RECLAIMABLE);
  1103. SET_GC_SECTORS_USED(b, 0);
  1104. }
  1105. }
  1106. mutex_unlock(&c->bucket_lock);
  1107. }
  1108. size_t bch_btree_gc_finish(struct cache_set *c)
  1109. {
  1110. size_t available = 0;
  1111. struct bucket *b;
  1112. struct cache *ca;
  1113. unsigned i;
  1114. mutex_lock(&c->bucket_lock);
  1115. set_gc_sectors(c);
  1116. c->gc_mark_valid = 1;
  1117. c->need_gc = 0;
  1118. if (c->root)
  1119. for (i = 0; i < KEY_PTRS(&c->root->key); i++)
  1120. SET_GC_MARK(PTR_BUCKET(c, &c->root->key, i),
  1121. GC_MARK_METADATA);
  1122. for (i = 0; i < KEY_PTRS(&c->uuid_bucket); i++)
  1123. SET_GC_MARK(PTR_BUCKET(c, &c->uuid_bucket, i),
  1124. GC_MARK_METADATA);
  1125. for_each_cache(ca, c, i) {
  1126. uint64_t *i;
  1127. ca->invalidate_needs_gc = 0;
  1128. for (i = ca->sb.d; i < ca->sb.d + ca->sb.keys; i++)
  1129. SET_GC_MARK(ca->buckets + *i, GC_MARK_METADATA);
  1130. for (i = ca->prio_buckets;
  1131. i < ca->prio_buckets + prio_buckets(ca) * 2; i++)
  1132. SET_GC_MARK(ca->buckets + *i, GC_MARK_METADATA);
  1133. for_each_bucket(b, ca) {
  1134. b->last_gc = b->gc_gen;
  1135. c->need_gc = max(c->need_gc, bucket_gc_gen(b));
  1136. if (!atomic_read(&b->pin) &&
  1137. GC_MARK(b) == GC_MARK_RECLAIMABLE) {
  1138. available++;
  1139. if (!GC_SECTORS_USED(b))
  1140. bch_bucket_add_unused(ca, b);
  1141. }
  1142. }
  1143. }
  1144. mutex_unlock(&c->bucket_lock);
  1145. return available;
  1146. }
  1147. static void bch_btree_gc(struct cache_set *c)
  1148. {
  1149. int ret;
  1150. unsigned long available;
  1151. struct gc_stat stats;
  1152. struct closure writes;
  1153. struct btree_op op;
  1154. uint64_t start_time = local_clock();
  1155. trace_bcache_gc_start(c);
  1156. memset(&stats, 0, sizeof(struct gc_stat));
  1157. closure_init_stack(&writes);
  1158. bch_btree_op_init_stack(&op);
  1159. op.lock = SHRT_MAX;
  1160. btree_gc_start(c);
  1161. atomic_inc(&c->prio_blocked);
  1162. ret = btree_root(gc_root, c, &op, &writes, &stats);
  1163. closure_sync(&op.cl);
  1164. closure_sync(&writes);
  1165. if (ret) {
  1166. pr_warn("gc failed!");
  1167. return;
  1168. }
  1169. /* Possibly wait for new UUIDs or whatever to hit disk */
  1170. bch_journal_meta(c, &op.cl);
  1171. closure_sync(&op.cl);
  1172. available = bch_btree_gc_finish(c);
  1173. atomic_dec(&c->prio_blocked);
  1174. wake_up_allocators(c);
  1175. bch_time_stats_update(&c->btree_gc_time, start_time);
  1176. stats.key_bytes *= sizeof(uint64_t);
  1177. stats.dirty <<= 9;
  1178. stats.data <<= 9;
  1179. stats.in_use = (c->nbuckets - available) * 100 / c->nbuckets;
  1180. memcpy(&c->gc_stats, &stats, sizeof(struct gc_stat));
  1181. trace_bcache_gc_end(c);
  1182. bch_moving_gc(c);
  1183. }
  1184. static int bch_gc_thread(void *arg)
  1185. {
  1186. struct cache_set *c = arg;
  1187. while (1) {
  1188. bch_btree_gc(c);
  1189. set_current_state(TASK_INTERRUPTIBLE);
  1190. if (kthread_should_stop())
  1191. break;
  1192. try_to_freeze();
  1193. schedule();
  1194. }
  1195. return 0;
  1196. }
  1197. int bch_gc_thread_start(struct cache_set *c)
  1198. {
  1199. c->gc_thread = kthread_create(bch_gc_thread, c, "bcache_gc");
  1200. if (IS_ERR(c->gc_thread))
  1201. return PTR_ERR(c->gc_thread);
  1202. set_task_state(c->gc_thread, TASK_INTERRUPTIBLE);
  1203. return 0;
  1204. }
  1205. /* Initial partial gc */
  1206. static int bch_btree_check_recurse(struct btree *b, struct btree_op *op,
  1207. unsigned long **seen)
  1208. {
  1209. int ret;
  1210. unsigned i;
  1211. struct bkey *k;
  1212. struct bucket *g;
  1213. struct btree_iter iter;
  1214. for_each_key_filter(b, k, &iter, bch_ptr_invalid) {
  1215. for (i = 0; i < KEY_PTRS(k); i++) {
  1216. if (!ptr_available(b->c, k, i))
  1217. continue;
  1218. g = PTR_BUCKET(b->c, k, i);
  1219. if (!__test_and_set_bit(PTR_BUCKET_NR(b->c, k, i),
  1220. seen[PTR_DEV(k, i)]) ||
  1221. !ptr_stale(b->c, k, i)) {
  1222. g->gen = PTR_GEN(k, i);
  1223. if (b->level)
  1224. g->prio = BTREE_PRIO;
  1225. else if (g->prio == BTREE_PRIO)
  1226. g->prio = INITIAL_PRIO;
  1227. }
  1228. }
  1229. btree_mark_key(b, k);
  1230. }
  1231. if (b->level) {
  1232. k = bch_next_recurse_key(b, &ZERO_KEY);
  1233. while (k) {
  1234. struct bkey *p = bch_next_recurse_key(b, k);
  1235. if (p)
  1236. btree_node_prefetch(b->c, p, b->level - 1);
  1237. ret = btree(check_recurse, k, b, op, seen);
  1238. if (ret)
  1239. return ret;
  1240. k = p;
  1241. }
  1242. }
  1243. return 0;
  1244. }
  1245. int bch_btree_check(struct cache_set *c, struct btree_op *op)
  1246. {
  1247. int ret = -ENOMEM;
  1248. unsigned i;
  1249. unsigned long *seen[MAX_CACHES_PER_SET];
  1250. memset(seen, 0, sizeof(seen));
  1251. for (i = 0; c->cache[i]; i++) {
  1252. size_t n = DIV_ROUND_UP(c->cache[i]->sb.nbuckets, 8);
  1253. seen[i] = kmalloc(n, GFP_KERNEL);
  1254. if (!seen[i])
  1255. goto err;
  1256. /* Disables the seen array until prio_read() uses it too */
  1257. memset(seen[i], 0xFF, n);
  1258. }
  1259. ret = btree_root(check_recurse, c, op, seen);
  1260. err:
  1261. for (i = 0; i < MAX_CACHES_PER_SET; i++)
  1262. kfree(seen[i]);
  1263. return ret;
  1264. }
  1265. /* Btree insertion */
  1266. static void shift_keys(struct btree *b, struct bkey *where, struct bkey *insert)
  1267. {
  1268. struct bset *i = b->sets[b->nsets].data;
  1269. memmove((uint64_t *) where + bkey_u64s(insert),
  1270. where,
  1271. (void *) end(i) - (void *) where);
  1272. i->keys += bkey_u64s(insert);
  1273. bkey_copy(where, insert);
  1274. bch_bset_fix_lookup_table(b, where);
  1275. }
  1276. static bool fix_overlapping_extents(struct btree *b,
  1277. struct bkey *insert,
  1278. struct btree_iter *iter,
  1279. struct btree_op *op)
  1280. {
  1281. void subtract_dirty(struct bkey *k, uint64_t offset, int sectors)
  1282. {
  1283. if (KEY_DIRTY(k))
  1284. bcache_dev_sectors_dirty_add(b->c, KEY_INODE(k),
  1285. offset, -sectors);
  1286. }
  1287. uint64_t old_offset;
  1288. unsigned old_size, sectors_found = 0;
  1289. while (1) {
  1290. struct bkey *k = bch_btree_iter_next(iter);
  1291. if (!k ||
  1292. bkey_cmp(&START_KEY(k), insert) >= 0)
  1293. break;
  1294. if (bkey_cmp(k, &START_KEY(insert)) <= 0)
  1295. continue;
  1296. old_offset = KEY_START(k);
  1297. old_size = KEY_SIZE(k);
  1298. /*
  1299. * We might overlap with 0 size extents; we can't skip these
  1300. * because if they're in the set we're inserting to we have to
  1301. * adjust them so they don't overlap with the key we're
  1302. * inserting. But we don't want to check them for BTREE_REPLACE
  1303. * operations.
  1304. */
  1305. if (op->type == BTREE_REPLACE &&
  1306. KEY_SIZE(k)) {
  1307. /*
  1308. * k might have been split since we inserted/found the
  1309. * key we're replacing
  1310. */
  1311. unsigned i;
  1312. uint64_t offset = KEY_START(k) -
  1313. KEY_START(&op->replace);
  1314. /* But it must be a subset of the replace key */
  1315. if (KEY_START(k) < KEY_START(&op->replace) ||
  1316. KEY_OFFSET(k) > KEY_OFFSET(&op->replace))
  1317. goto check_failed;
  1318. /* We didn't find a key that we were supposed to */
  1319. if (KEY_START(k) > KEY_START(insert) + sectors_found)
  1320. goto check_failed;
  1321. if (KEY_PTRS(&op->replace) != KEY_PTRS(k))
  1322. goto check_failed;
  1323. /* skip past gen */
  1324. offset <<= 8;
  1325. BUG_ON(!KEY_PTRS(&op->replace));
  1326. for (i = 0; i < KEY_PTRS(&op->replace); i++)
  1327. if (k->ptr[i] != op->replace.ptr[i] + offset)
  1328. goto check_failed;
  1329. sectors_found = KEY_OFFSET(k) - KEY_START(insert);
  1330. }
  1331. if (bkey_cmp(insert, k) < 0 &&
  1332. bkey_cmp(&START_KEY(insert), &START_KEY(k)) > 0) {
  1333. /*
  1334. * We overlapped in the middle of an existing key: that
  1335. * means we have to split the old key. But we have to do
  1336. * slightly different things depending on whether the
  1337. * old key has been written out yet.
  1338. */
  1339. struct bkey *top;
  1340. subtract_dirty(k, KEY_START(insert), KEY_SIZE(insert));
  1341. if (bkey_written(b, k)) {
  1342. /*
  1343. * We insert a new key to cover the top of the
  1344. * old key, and the old key is modified in place
  1345. * to represent the bottom split.
  1346. *
  1347. * It's completely arbitrary whether the new key
  1348. * is the top or the bottom, but it has to match
  1349. * up with what btree_sort_fixup() does - it
  1350. * doesn't check for this kind of overlap, it
  1351. * depends on us inserting a new key for the top
  1352. * here.
  1353. */
  1354. top = bch_bset_search(b, &b->sets[b->nsets],
  1355. insert);
  1356. shift_keys(b, top, k);
  1357. } else {
  1358. BKEY_PADDED(key) temp;
  1359. bkey_copy(&temp.key, k);
  1360. shift_keys(b, k, &temp.key);
  1361. top = bkey_next(k);
  1362. }
  1363. bch_cut_front(insert, top);
  1364. bch_cut_back(&START_KEY(insert), k);
  1365. bch_bset_fix_invalidated_key(b, k);
  1366. return false;
  1367. }
  1368. if (bkey_cmp(insert, k) < 0) {
  1369. bch_cut_front(insert, k);
  1370. } else {
  1371. if (bkey_cmp(&START_KEY(insert), &START_KEY(k)) > 0)
  1372. old_offset = KEY_START(insert);
  1373. if (bkey_written(b, k) &&
  1374. bkey_cmp(&START_KEY(insert), &START_KEY(k)) <= 0) {
  1375. /*
  1376. * Completely overwrote, so we don't have to
  1377. * invalidate the binary search tree
  1378. */
  1379. bch_cut_front(k, k);
  1380. } else {
  1381. __bch_cut_back(&START_KEY(insert), k);
  1382. bch_bset_fix_invalidated_key(b, k);
  1383. }
  1384. }
  1385. subtract_dirty(k, old_offset, old_size - KEY_SIZE(k));
  1386. }
  1387. check_failed:
  1388. if (op->type == BTREE_REPLACE) {
  1389. if (!sectors_found) {
  1390. op->insert_collision = true;
  1391. return true;
  1392. } else if (sectors_found < KEY_SIZE(insert)) {
  1393. SET_KEY_OFFSET(insert, KEY_OFFSET(insert) -
  1394. (KEY_SIZE(insert) - sectors_found));
  1395. SET_KEY_SIZE(insert, sectors_found);
  1396. }
  1397. }
  1398. return false;
  1399. }
  1400. static bool btree_insert_key(struct btree *b, struct btree_op *op,
  1401. struct bkey *k)
  1402. {
  1403. struct bset *i = b->sets[b->nsets].data;
  1404. struct bkey *m, *prev;
  1405. unsigned status = BTREE_INSERT_STATUS_INSERT;
  1406. BUG_ON(bkey_cmp(k, &b->key) > 0);
  1407. BUG_ON(b->level && !KEY_PTRS(k));
  1408. BUG_ON(!b->level && !KEY_OFFSET(k));
  1409. if (!b->level) {
  1410. struct btree_iter iter;
  1411. struct bkey search = KEY(KEY_INODE(k), KEY_START(k), 0);
  1412. /*
  1413. * bset_search() returns the first key that is strictly greater
  1414. * than the search key - but for back merging, we want to find
  1415. * the first key that is greater than or equal to KEY_START(k) -
  1416. * unless KEY_START(k) is 0.
  1417. */
  1418. if (KEY_OFFSET(&search))
  1419. SET_KEY_OFFSET(&search, KEY_OFFSET(&search) - 1);
  1420. prev = NULL;
  1421. m = bch_btree_iter_init(b, &iter, &search);
  1422. if (fix_overlapping_extents(b, k, &iter, op))
  1423. return false;
  1424. if (KEY_DIRTY(k))
  1425. bcache_dev_sectors_dirty_add(b->c, KEY_INODE(k),
  1426. KEY_START(k), KEY_SIZE(k));
  1427. while (m != end(i) &&
  1428. bkey_cmp(k, &START_KEY(m)) > 0)
  1429. prev = m, m = bkey_next(m);
  1430. if (key_merging_disabled(b->c))
  1431. goto insert;
  1432. /* prev is in the tree, if we merge we're done */
  1433. status = BTREE_INSERT_STATUS_BACK_MERGE;
  1434. if (prev &&
  1435. bch_bkey_try_merge(b, prev, k))
  1436. goto merged;
  1437. status = BTREE_INSERT_STATUS_OVERWROTE;
  1438. if (m != end(i) &&
  1439. KEY_PTRS(m) == KEY_PTRS(k) && !KEY_SIZE(m))
  1440. goto copy;
  1441. status = BTREE_INSERT_STATUS_FRONT_MERGE;
  1442. if (m != end(i) &&
  1443. bch_bkey_try_merge(b, k, m))
  1444. goto copy;
  1445. } else
  1446. m = bch_bset_search(b, &b->sets[b->nsets], k);
  1447. insert: shift_keys(b, m, k);
  1448. copy: bkey_copy(m, k);
  1449. merged:
  1450. bch_check_keys(b, "%u for %s", status, op_type(op));
  1451. if (b->level && !KEY_OFFSET(k))
  1452. btree_current_write(b)->prio_blocked++;
  1453. trace_bcache_btree_insert_key(b, k, op->type, status);
  1454. return true;
  1455. }
  1456. static bool bch_btree_insert_keys(struct btree *b, struct btree_op *op,
  1457. struct keylist *insert_keys)
  1458. {
  1459. bool ret = false;
  1460. unsigned oldsize = bch_count_data(b);
  1461. while (!bch_keylist_empty(insert_keys)) {
  1462. struct bset *i = write_block(b);
  1463. struct bkey *k = insert_keys->keys;
  1464. if (b->written + __set_blocks(i, i->keys + bkey_u64s(k), b->c)
  1465. > btree_blocks(b))
  1466. break;
  1467. if (bkey_cmp(k, &b->key) <= 0) {
  1468. bkey_put(b->c, k, b->level);
  1469. ret |= btree_insert_key(b, op, k);
  1470. bch_keylist_pop_front(insert_keys);
  1471. } else if (bkey_cmp(&START_KEY(k), &b->key) < 0) {
  1472. #if 0
  1473. if (op->type == BTREE_REPLACE) {
  1474. bkey_put(b->c, k, b->level);
  1475. bch_keylist_pop_front(insert_keys);
  1476. op->insert_collision = true;
  1477. break;
  1478. }
  1479. #endif
  1480. BKEY_PADDED(key) temp;
  1481. bkey_copy(&temp.key, insert_keys->keys);
  1482. bch_cut_back(&b->key, &temp.key);
  1483. bch_cut_front(&b->key, insert_keys->keys);
  1484. ret |= btree_insert_key(b, op, &temp.key);
  1485. break;
  1486. } else {
  1487. break;
  1488. }
  1489. }
  1490. BUG_ON(!bch_keylist_empty(insert_keys) && b->level);
  1491. BUG_ON(bch_count_data(b) < oldsize);
  1492. return ret;
  1493. }
  1494. static int btree_split(struct btree *b, struct btree_op *op,
  1495. struct keylist *insert_keys,
  1496. struct keylist *parent_keys)
  1497. {
  1498. bool split;
  1499. struct btree *n1, *n2 = NULL, *n3 = NULL;
  1500. uint64_t start_time = local_clock();
  1501. n1 = btree_node_alloc_replacement(b);
  1502. if (IS_ERR(n1))
  1503. goto err;
  1504. split = set_blocks(n1->sets[0].data, n1->c) > (btree_blocks(b) * 4) / 5;
  1505. if (split) {
  1506. unsigned keys = 0;
  1507. trace_bcache_btree_node_split(b, n1->sets[0].data->keys);
  1508. n2 = bch_btree_node_alloc(b->c, b->level);
  1509. if (IS_ERR(n2))
  1510. goto err_free1;
  1511. if (!b->parent) {
  1512. n3 = bch_btree_node_alloc(b->c, b->level + 1);
  1513. if (IS_ERR(n3))
  1514. goto err_free2;
  1515. }
  1516. bch_btree_insert_keys(n1, op, insert_keys);
  1517. /*
  1518. * Has to be a linear search because we don't have an auxiliary
  1519. * search tree yet
  1520. */
  1521. while (keys < (n1->sets[0].data->keys * 3) / 5)
  1522. keys += bkey_u64s(node(n1->sets[0].data, keys));
  1523. bkey_copy_key(&n1->key, node(n1->sets[0].data, keys));
  1524. keys += bkey_u64s(node(n1->sets[0].data, keys));
  1525. n2->sets[0].data->keys = n1->sets[0].data->keys - keys;
  1526. n1->sets[0].data->keys = keys;
  1527. memcpy(n2->sets[0].data->start,
  1528. end(n1->sets[0].data),
  1529. n2->sets[0].data->keys * sizeof(uint64_t));
  1530. bkey_copy_key(&n2->key, &b->key);
  1531. bch_keylist_add(parent_keys, &n2->key);
  1532. bch_btree_node_write(n2, &op->cl);
  1533. rw_unlock(true, n2);
  1534. } else {
  1535. trace_bcache_btree_node_compact(b, n1->sets[0].data->keys);
  1536. bch_btree_insert_keys(n1, op, insert_keys);
  1537. }
  1538. bch_keylist_add(parent_keys, &n1->key);
  1539. bch_btree_node_write(n1, &op->cl);
  1540. if (n3) {
  1541. /* Depth increases, make a new root */
  1542. bkey_copy_key(&n3->key, &MAX_KEY);
  1543. bch_btree_insert_keys(n3, op, parent_keys);
  1544. bch_btree_node_write(n3, &op->cl);
  1545. closure_sync(&op->cl);
  1546. bch_btree_set_root(n3);
  1547. rw_unlock(true, n3);
  1548. } else if (!b->parent) {
  1549. /* Root filled up but didn't need to be split */
  1550. bch_keylist_reset(parent_keys);
  1551. closure_sync(&op->cl);
  1552. bch_btree_set_root(n1);
  1553. } else {
  1554. unsigned i;
  1555. bkey_copy(parent_keys->top, &b->key);
  1556. bkey_copy_key(parent_keys->top, &ZERO_KEY);
  1557. for (i = 0; i < KEY_PTRS(&b->key); i++) {
  1558. uint8_t g = PTR_BUCKET(b->c, &b->key, i)->gen + 1;
  1559. SET_PTR_GEN(parent_keys->top, i, g);
  1560. }
  1561. bch_keylist_push(parent_keys);
  1562. closure_sync(&op->cl);
  1563. atomic_inc(&b->c->prio_blocked);
  1564. }
  1565. rw_unlock(true, n1);
  1566. btree_node_free(b);
  1567. bch_time_stats_update(&b->c->btree_split_time, start_time);
  1568. return 0;
  1569. err_free2:
  1570. __bkey_put(n2->c, &n2->key);
  1571. btree_node_free(n2);
  1572. rw_unlock(true, n2);
  1573. err_free1:
  1574. __bkey_put(n1->c, &n1->key);
  1575. btree_node_free(n1);
  1576. rw_unlock(true, n1);
  1577. err:
  1578. if (n3 == ERR_PTR(-EAGAIN) ||
  1579. n2 == ERR_PTR(-EAGAIN) ||
  1580. n1 == ERR_PTR(-EAGAIN))
  1581. return -EAGAIN;
  1582. pr_warn("couldn't split");
  1583. return -ENOMEM;
  1584. }
  1585. static int bch_btree_insert_node(struct btree *b, struct btree_op *op,
  1586. struct keylist *insert_keys)
  1587. {
  1588. int ret = 0;
  1589. struct keylist split_keys;
  1590. bch_keylist_init(&split_keys);
  1591. BUG_ON(b->level);
  1592. do {
  1593. if (should_split(b)) {
  1594. if (current->bio_list) {
  1595. op->lock = b->c->root->level + 1;
  1596. ret = -EAGAIN;
  1597. } else if (op->lock <= b->c->root->level) {
  1598. op->lock = b->c->root->level + 1;
  1599. ret = -EINTR;
  1600. } else {
  1601. struct btree *parent = b->parent;
  1602. ret = btree_split(b, op, insert_keys,
  1603. &split_keys);
  1604. insert_keys = &split_keys;
  1605. b = parent;
  1606. if (!ret)
  1607. ret = -EINTR;
  1608. }
  1609. } else {
  1610. BUG_ON(write_block(b) != b->sets[b->nsets].data);
  1611. if (bch_btree_insert_keys(b, op, insert_keys)) {
  1612. if (!b->level)
  1613. bch_btree_leaf_dirty(b, op);
  1614. else
  1615. bch_btree_node_write(b, &op->cl);
  1616. }
  1617. }
  1618. } while (!bch_keylist_empty(&split_keys));
  1619. return ret;
  1620. }
  1621. int bch_btree_insert_check_key(struct btree *b, struct btree_op *op,
  1622. struct bkey *check_key)
  1623. {
  1624. int ret = -EINTR;
  1625. uint64_t btree_ptr = b->key.ptr[0];
  1626. unsigned long seq = b->seq;
  1627. struct keylist insert;
  1628. bool upgrade = op->lock == -1;
  1629. bch_keylist_init(&insert);
  1630. if (upgrade) {
  1631. rw_unlock(false, b);
  1632. rw_lock(true, b, b->level);
  1633. if (b->key.ptr[0] != btree_ptr ||
  1634. b->seq != seq + 1)
  1635. goto out;
  1636. }
  1637. SET_KEY_PTRS(check_key, 1);
  1638. get_random_bytes(&check_key->ptr[0], sizeof(uint64_t));
  1639. SET_PTR_DEV(check_key, 0, PTR_CHECK_DEV);
  1640. bch_keylist_add(&insert, check_key);
  1641. BUG_ON(op->type != BTREE_INSERT);
  1642. ret = bch_btree_insert_node(b, op, &insert);
  1643. BUG_ON(!ret && !bch_keylist_empty(&insert));
  1644. out:
  1645. if (upgrade)
  1646. downgrade_write(&b->lock);
  1647. return ret;
  1648. }
  1649. static int bch_btree_insert_recurse(struct btree *b, struct btree_op *op,
  1650. struct keylist *keys)
  1651. {
  1652. if (bch_keylist_empty(keys))
  1653. return 0;
  1654. if (b->level) {
  1655. struct bkey *k;
  1656. k = bch_next_recurse_key(b, &START_KEY(keys->keys));
  1657. if (!k) {
  1658. btree_bug(b, "no key to recurse on at level %i/%i",
  1659. b->level, b->c->root->level);
  1660. bch_keylist_reset(keys);
  1661. return -EIO;
  1662. }
  1663. return btree(insert_recurse, k, b, op, keys);
  1664. } else {
  1665. return bch_btree_insert_node(b, op, keys);
  1666. }
  1667. }
  1668. int bch_btree_insert(struct btree_op *op, struct cache_set *c,
  1669. struct keylist *keys)
  1670. {
  1671. int ret = 0;
  1672. /*
  1673. * Don't want to block with the btree locked unless we have to,
  1674. * otherwise we get deadlocks with try_harder and between split/gc
  1675. */
  1676. clear_closure_blocking(&op->cl);
  1677. BUG_ON(bch_keylist_empty(keys));
  1678. while (!bch_keylist_empty(keys)) {
  1679. op->lock = 0;
  1680. ret = btree_root(insert_recurse, c, op, keys);
  1681. if (ret == -EAGAIN) {
  1682. ret = 0;
  1683. closure_sync(&op->cl);
  1684. } else if (ret) {
  1685. struct bkey *k;
  1686. pr_err("error %i trying to insert key for %s",
  1687. ret, op_type(op));
  1688. while ((k = bch_keylist_pop(keys)))
  1689. bkey_put(c, k, 0);
  1690. }
  1691. }
  1692. return ret;
  1693. }
  1694. void bch_btree_set_root(struct btree *b)
  1695. {
  1696. unsigned i;
  1697. struct closure cl;
  1698. closure_init_stack(&cl);
  1699. trace_bcache_btree_set_root(b);
  1700. BUG_ON(!b->written);
  1701. for (i = 0; i < KEY_PTRS(&b->key); i++)
  1702. BUG_ON(PTR_BUCKET(b->c, &b->key, i)->prio != BTREE_PRIO);
  1703. mutex_lock(&b->c->bucket_lock);
  1704. list_del_init(&b->list);
  1705. mutex_unlock(&b->c->bucket_lock);
  1706. b->c->root = b;
  1707. __bkey_put(b->c, &b->key);
  1708. bch_journal_meta(b->c, &cl);
  1709. closure_sync(&cl);
  1710. }
  1711. /* Cache lookup */
  1712. static int submit_partial_cache_miss(struct btree *b, struct btree_op *op,
  1713. struct bkey *k)
  1714. {
  1715. struct search *s = container_of(op, struct search, op);
  1716. struct bio *bio = &s->bio.bio;
  1717. int ret = 0;
  1718. while (!ret &&
  1719. !op->lookup_done) {
  1720. unsigned sectors = INT_MAX;
  1721. if (KEY_INODE(k) == op->inode) {
  1722. if (KEY_START(k) <= bio->bi_sector)
  1723. break;
  1724. sectors = min_t(uint64_t, sectors,
  1725. KEY_START(k) - bio->bi_sector);
  1726. }
  1727. ret = s->d->cache_miss(b, s, bio, sectors);
  1728. }
  1729. return ret;
  1730. }
  1731. /*
  1732. * Read from a single key, handling the initial cache miss if the key starts in
  1733. * the middle of the bio
  1734. */
  1735. static int submit_partial_cache_hit(struct btree *b, struct btree_op *op,
  1736. struct bkey *k)
  1737. {
  1738. struct search *s = container_of(op, struct search, op);
  1739. struct bio *bio = &s->bio.bio;
  1740. unsigned ptr;
  1741. struct bio *n;
  1742. int ret = submit_partial_cache_miss(b, op, k);
  1743. if (ret || op->lookup_done)
  1744. return ret;
  1745. /* XXX: figure out best pointer - for multiple cache devices */
  1746. ptr = 0;
  1747. PTR_BUCKET(b->c, k, ptr)->prio = INITIAL_PRIO;
  1748. while (!op->lookup_done &&
  1749. KEY_INODE(k) == op->inode &&
  1750. bio->bi_sector < KEY_OFFSET(k)) {
  1751. struct bkey *bio_key;
  1752. sector_t sector = PTR_OFFSET(k, ptr) +
  1753. (bio->bi_sector - KEY_START(k));
  1754. unsigned sectors = min_t(uint64_t, INT_MAX,
  1755. KEY_OFFSET(k) - bio->bi_sector);
  1756. n = bch_bio_split(bio, sectors, GFP_NOIO, s->d->bio_split);
  1757. if (n == bio)
  1758. op->lookup_done = true;
  1759. bio_key = &container_of(n, struct bbio, bio)->key;
  1760. /*
  1761. * The bucket we're reading from might be reused while our bio
  1762. * is in flight, and we could then end up reading the wrong
  1763. * data.
  1764. *
  1765. * We guard against this by checking (in cache_read_endio()) if
  1766. * the pointer is stale again; if so, we treat it as an error
  1767. * and reread from the backing device (but we don't pass that
  1768. * error up anywhere).
  1769. */
  1770. bch_bkey_copy_single_ptr(bio_key, k, ptr);
  1771. SET_PTR_OFFSET(bio_key, 0, sector);
  1772. n->bi_end_io = bch_cache_read_endio;
  1773. n->bi_private = &s->cl;
  1774. __bch_submit_bbio(n, b->c);
  1775. }
  1776. return 0;
  1777. }
  1778. int bch_btree_search_recurse(struct btree *b, struct btree_op *op)
  1779. {
  1780. struct search *s = container_of(op, struct search, op);
  1781. struct bio *bio = &s->bio.bio;
  1782. int ret = 0;
  1783. struct bkey *k;
  1784. struct btree_iter iter;
  1785. bch_btree_iter_init(b, &iter, &KEY(op->inode, bio->bi_sector, 0));
  1786. do {
  1787. k = bch_btree_iter_next_filter(&iter, b, bch_ptr_bad);
  1788. if (!k) {
  1789. /*
  1790. * b->key would be exactly what we want, except that
  1791. * pointers to btree nodes have nonzero size - we
  1792. * wouldn't go far enough
  1793. */
  1794. ret = submit_partial_cache_miss(b, op,
  1795. &KEY(KEY_INODE(&b->key),
  1796. KEY_OFFSET(&b->key), 0));
  1797. break;
  1798. }
  1799. ret = b->level
  1800. ? btree(search_recurse, k, b, op)
  1801. : submit_partial_cache_hit(b, op, k);
  1802. } while (!ret &&
  1803. !op->lookup_done);
  1804. return ret;
  1805. }
  1806. /* Keybuf code */
  1807. static inline int keybuf_cmp(struct keybuf_key *l, struct keybuf_key *r)
  1808. {
  1809. /* Overlapping keys compare equal */
  1810. if (bkey_cmp(&l->key, &START_KEY(&r->key)) <= 0)
  1811. return -1;
  1812. if (bkey_cmp(&START_KEY(&l->key), &r->key) >= 0)
  1813. return 1;
  1814. return 0;
  1815. }
  1816. static inline int keybuf_nonoverlapping_cmp(struct keybuf_key *l,
  1817. struct keybuf_key *r)
  1818. {
  1819. return clamp_t(int64_t, bkey_cmp(&l->key, &r->key), -1, 1);
  1820. }
  1821. static int bch_btree_refill_keybuf(struct btree *b, struct btree_op *op,
  1822. struct keybuf *buf, struct bkey *end,
  1823. keybuf_pred_fn *pred)
  1824. {
  1825. struct btree_iter iter;
  1826. bch_btree_iter_init(b, &iter, &buf->last_scanned);
  1827. while (!array_freelist_empty(&buf->freelist)) {
  1828. struct bkey *k = bch_btree_iter_next_filter(&iter, b,
  1829. bch_ptr_bad);
  1830. if (!b->level) {
  1831. if (!k) {
  1832. buf->last_scanned = b->key;
  1833. break;
  1834. }
  1835. buf->last_scanned = *k;
  1836. if (bkey_cmp(&buf->last_scanned, end) >= 0)
  1837. break;
  1838. if (pred(buf, k)) {
  1839. struct keybuf_key *w;
  1840. spin_lock(&buf->lock);
  1841. w = array_alloc(&buf->freelist);
  1842. w->private = NULL;
  1843. bkey_copy(&w->key, k);
  1844. if (RB_INSERT(&buf->keys, w, node, keybuf_cmp))
  1845. array_free(&buf->freelist, w);
  1846. spin_unlock(&buf->lock);
  1847. }
  1848. } else {
  1849. if (!k)
  1850. break;
  1851. btree(refill_keybuf, k, b, op, buf, end, pred);
  1852. /*
  1853. * Might get an error here, but can't really do anything
  1854. * and it'll get logged elsewhere. Just read what we
  1855. * can.
  1856. */
  1857. if (bkey_cmp(&buf->last_scanned, end) >= 0)
  1858. break;
  1859. cond_resched();
  1860. }
  1861. }
  1862. return 0;
  1863. }
  1864. void bch_refill_keybuf(struct cache_set *c, struct keybuf *buf,
  1865. struct bkey *end, keybuf_pred_fn *pred)
  1866. {
  1867. struct bkey start = buf->last_scanned;
  1868. struct btree_op op;
  1869. bch_btree_op_init_stack(&op);
  1870. cond_resched();
  1871. btree_root(refill_keybuf, c, &op, buf, end, pred);
  1872. closure_sync(&op.cl);
  1873. pr_debug("found %s keys from %llu:%llu to %llu:%llu",
  1874. RB_EMPTY_ROOT(&buf->keys) ? "no" :
  1875. array_freelist_empty(&buf->freelist) ? "some" : "a few",
  1876. KEY_INODE(&start), KEY_OFFSET(&start),
  1877. KEY_INODE(&buf->last_scanned), KEY_OFFSET(&buf->last_scanned));
  1878. spin_lock(&buf->lock);
  1879. if (!RB_EMPTY_ROOT(&buf->keys)) {
  1880. struct keybuf_key *w;
  1881. w = RB_FIRST(&buf->keys, struct keybuf_key, node);
  1882. buf->start = START_KEY(&w->key);
  1883. w = RB_LAST(&buf->keys, struct keybuf_key, node);
  1884. buf->end = w->key;
  1885. } else {
  1886. buf->start = MAX_KEY;
  1887. buf->end = MAX_KEY;
  1888. }
  1889. spin_unlock(&buf->lock);
  1890. }
  1891. static void __bch_keybuf_del(struct keybuf *buf, struct keybuf_key *w)
  1892. {
  1893. rb_erase(&w->node, &buf->keys);
  1894. array_free(&buf->freelist, w);
  1895. }
  1896. void bch_keybuf_del(struct keybuf *buf, struct keybuf_key *w)
  1897. {
  1898. spin_lock(&buf->lock);
  1899. __bch_keybuf_del(buf, w);
  1900. spin_unlock(&buf->lock);
  1901. }
  1902. bool bch_keybuf_check_overlapping(struct keybuf *buf, struct bkey *start,
  1903. struct bkey *end)
  1904. {
  1905. bool ret = false;
  1906. struct keybuf_key *p, *w, s;
  1907. s.key = *start;
  1908. if (bkey_cmp(end, &buf->start) <= 0 ||
  1909. bkey_cmp(start, &buf->end) >= 0)
  1910. return false;
  1911. spin_lock(&buf->lock);
  1912. w = RB_GREATER(&buf->keys, s, node, keybuf_nonoverlapping_cmp);
  1913. while (w && bkey_cmp(&START_KEY(&w->key), end) < 0) {
  1914. p = w;
  1915. w = RB_NEXT(w, node);
  1916. if (p->private)
  1917. ret = true;
  1918. else
  1919. __bch_keybuf_del(buf, p);
  1920. }
  1921. spin_unlock(&buf->lock);
  1922. return ret;
  1923. }
  1924. struct keybuf_key *bch_keybuf_next(struct keybuf *buf)
  1925. {
  1926. struct keybuf_key *w;
  1927. spin_lock(&buf->lock);
  1928. w = RB_FIRST(&buf->keys, struct keybuf_key, node);
  1929. while (w && w->private)
  1930. w = RB_NEXT(w, node);
  1931. if (w)
  1932. w->private = ERR_PTR(-EINTR);
  1933. spin_unlock(&buf->lock);
  1934. return w;
  1935. }
  1936. struct keybuf_key *bch_keybuf_next_rescan(struct cache_set *c,
  1937. struct keybuf *buf,
  1938. struct bkey *end,
  1939. keybuf_pred_fn *pred)
  1940. {
  1941. struct keybuf_key *ret;
  1942. while (1) {
  1943. ret = bch_keybuf_next(buf);
  1944. if (ret)
  1945. break;
  1946. if (bkey_cmp(&buf->last_scanned, end) >= 0) {
  1947. pr_debug("scan finished");
  1948. break;
  1949. }
  1950. bch_refill_keybuf(c, buf, end, pred);
  1951. }
  1952. return ret;
  1953. }
  1954. void bch_keybuf_init(struct keybuf *buf)
  1955. {
  1956. buf->last_scanned = MAX_KEY;
  1957. buf->keys = RB_ROOT;
  1958. spin_lock_init(&buf->lock);
  1959. array_allocator_init(&buf->freelist);
  1960. }
  1961. void bch_btree_exit(void)
  1962. {
  1963. if (btree_io_wq)
  1964. destroy_workqueue(btree_io_wq);
  1965. }
  1966. int __init bch_btree_init(void)
  1967. {
  1968. btree_io_wq = create_singlethread_workqueue("bch_btree_io");
  1969. if (!btree_io_wq)
  1970. return -ENOMEM;
  1971. return 0;
  1972. }