nvme-core.c 46 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865
  1. /*
  2. * NVM Express device driver
  3. * Copyright (c) 2011, Intel Corporation.
  4. *
  5. * This program is free software; you can redistribute it and/or modify it
  6. * under the terms and conditions of the GNU General Public License,
  7. * version 2, as published by the Free Software Foundation.
  8. *
  9. * This program is distributed in the hope it will be useful, but WITHOUT
  10. * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11. * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
  12. * more details.
  13. *
  14. * You should have received a copy of the GNU General Public License along with
  15. * this program; if not, write to the Free Software Foundation, Inc.,
  16. * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
  17. */
  18. #include <linux/nvme.h>
  19. #include <linux/bio.h>
  20. #include <linux/bitops.h>
  21. #include <linux/blkdev.h>
  22. #include <linux/delay.h>
  23. #include <linux/errno.h>
  24. #include <linux/fs.h>
  25. #include <linux/genhd.h>
  26. #include <linux/idr.h>
  27. #include <linux/init.h>
  28. #include <linux/interrupt.h>
  29. #include <linux/io.h>
  30. #include <linux/kdev_t.h>
  31. #include <linux/kthread.h>
  32. #include <linux/kernel.h>
  33. #include <linux/mm.h>
  34. #include <linux/module.h>
  35. #include <linux/moduleparam.h>
  36. #include <linux/pci.h>
  37. #include <linux/poison.h>
  38. #include <linux/sched.h>
  39. #include <linux/slab.h>
  40. #include <linux/types.h>
  41. #include <asm-generic/io-64-nonatomic-lo-hi.h>
  42. #define NVME_Q_DEPTH 1024
  43. #define SQ_SIZE(depth) (depth * sizeof(struct nvme_command))
  44. #define CQ_SIZE(depth) (depth * sizeof(struct nvme_completion))
  45. #define NVME_MINORS 64
  46. #define NVME_IO_TIMEOUT (5 * HZ)
  47. #define ADMIN_TIMEOUT (60 * HZ)
  48. static int nvme_major;
  49. module_param(nvme_major, int, 0);
  50. static int use_threaded_interrupts;
  51. module_param(use_threaded_interrupts, int, 0);
  52. static DEFINE_SPINLOCK(dev_list_lock);
  53. static LIST_HEAD(dev_list);
  54. static struct task_struct *nvme_thread;
  55. /*
  56. * Represents an NVM Express device. Each nvme_dev is a PCI function.
  57. */
  58. struct nvme_dev {
  59. struct list_head node;
  60. struct nvme_queue **queues;
  61. u32 __iomem *dbs;
  62. struct pci_dev *pci_dev;
  63. struct dma_pool *prp_page_pool;
  64. struct dma_pool *prp_small_pool;
  65. int instance;
  66. int queue_count;
  67. int db_stride;
  68. u32 ctrl_config;
  69. struct msix_entry *entry;
  70. struct nvme_bar __iomem *bar;
  71. struct list_head namespaces;
  72. char serial[20];
  73. char model[40];
  74. char firmware_rev[8];
  75. u32 max_hw_sectors;
  76. u16 oncs;
  77. };
  78. /*
  79. * An NVM Express namespace is equivalent to a SCSI LUN
  80. */
  81. struct nvme_ns {
  82. struct list_head list;
  83. struct nvme_dev *dev;
  84. struct request_queue *queue;
  85. struct gendisk *disk;
  86. int ns_id;
  87. int lba_shift;
  88. };
  89. /*
  90. * An NVM Express queue. Each device has at least two (one for admin
  91. * commands and one for I/O commands).
  92. */
  93. struct nvme_queue {
  94. struct device *q_dmadev;
  95. struct nvme_dev *dev;
  96. spinlock_t q_lock;
  97. struct nvme_command *sq_cmds;
  98. volatile struct nvme_completion *cqes;
  99. dma_addr_t sq_dma_addr;
  100. dma_addr_t cq_dma_addr;
  101. wait_queue_head_t sq_full;
  102. wait_queue_t sq_cong_wait;
  103. struct bio_list sq_cong;
  104. u32 __iomem *q_db;
  105. u16 q_depth;
  106. u16 cq_vector;
  107. u16 sq_head;
  108. u16 sq_tail;
  109. u16 cq_head;
  110. u16 cq_phase;
  111. unsigned long cmdid_data[];
  112. };
  113. /*
  114. * Check we didin't inadvertently grow the command struct
  115. */
  116. static inline void _nvme_check_size(void)
  117. {
  118. BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
  119. BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
  120. BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
  121. BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
  122. BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
  123. BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
  124. BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != 4096);
  125. BUILD_BUG_ON(sizeof(struct nvme_id_ns) != 4096);
  126. BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
  127. BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
  128. }
  129. typedef void (*nvme_completion_fn)(struct nvme_dev *, void *,
  130. struct nvme_completion *);
  131. struct nvme_cmd_info {
  132. nvme_completion_fn fn;
  133. void *ctx;
  134. unsigned long timeout;
  135. };
  136. static struct nvme_cmd_info *nvme_cmd_info(struct nvme_queue *nvmeq)
  137. {
  138. return (void *)&nvmeq->cmdid_data[BITS_TO_LONGS(nvmeq->q_depth)];
  139. }
  140. /**
  141. * alloc_cmdid() - Allocate a Command ID
  142. * @nvmeq: The queue that will be used for this command
  143. * @ctx: A pointer that will be passed to the handler
  144. * @handler: The function to call on completion
  145. *
  146. * Allocate a Command ID for a queue. The data passed in will
  147. * be passed to the completion handler. This is implemented by using
  148. * the bottom two bits of the ctx pointer to store the handler ID.
  149. * Passing in a pointer that's not 4-byte aligned will cause a BUG.
  150. * We can change this if it becomes a problem.
  151. *
  152. * May be called with local interrupts disabled and the q_lock held,
  153. * or with interrupts enabled and no locks held.
  154. */
  155. static int alloc_cmdid(struct nvme_queue *nvmeq, void *ctx,
  156. nvme_completion_fn handler, unsigned timeout)
  157. {
  158. int depth = nvmeq->q_depth - 1;
  159. struct nvme_cmd_info *info = nvme_cmd_info(nvmeq);
  160. int cmdid;
  161. do {
  162. cmdid = find_first_zero_bit(nvmeq->cmdid_data, depth);
  163. if (cmdid >= depth)
  164. return -EBUSY;
  165. } while (test_and_set_bit(cmdid, nvmeq->cmdid_data));
  166. info[cmdid].fn = handler;
  167. info[cmdid].ctx = ctx;
  168. info[cmdid].timeout = jiffies + timeout;
  169. return cmdid;
  170. }
  171. static int alloc_cmdid_killable(struct nvme_queue *nvmeq, void *ctx,
  172. nvme_completion_fn handler, unsigned timeout)
  173. {
  174. int cmdid;
  175. wait_event_killable(nvmeq->sq_full,
  176. (cmdid = alloc_cmdid(nvmeq, ctx, handler, timeout)) >= 0);
  177. return (cmdid < 0) ? -EINTR : cmdid;
  178. }
  179. /* Special values must be less than 0x1000 */
  180. #define CMD_CTX_BASE ((void *)POISON_POINTER_DELTA)
  181. #define CMD_CTX_CANCELLED (0x30C + CMD_CTX_BASE)
  182. #define CMD_CTX_COMPLETED (0x310 + CMD_CTX_BASE)
  183. #define CMD_CTX_INVALID (0x314 + CMD_CTX_BASE)
  184. #define CMD_CTX_FLUSH (0x318 + CMD_CTX_BASE)
  185. static void special_completion(struct nvme_dev *dev, void *ctx,
  186. struct nvme_completion *cqe)
  187. {
  188. if (ctx == CMD_CTX_CANCELLED)
  189. return;
  190. if (ctx == CMD_CTX_FLUSH)
  191. return;
  192. if (ctx == CMD_CTX_COMPLETED) {
  193. dev_warn(&dev->pci_dev->dev,
  194. "completed id %d twice on queue %d\n",
  195. cqe->command_id, le16_to_cpup(&cqe->sq_id));
  196. return;
  197. }
  198. if (ctx == CMD_CTX_INVALID) {
  199. dev_warn(&dev->pci_dev->dev,
  200. "invalid id %d completed on queue %d\n",
  201. cqe->command_id, le16_to_cpup(&cqe->sq_id));
  202. return;
  203. }
  204. dev_warn(&dev->pci_dev->dev, "Unknown special completion %p\n", ctx);
  205. }
  206. /*
  207. * Called with local interrupts disabled and the q_lock held. May not sleep.
  208. */
  209. static void *free_cmdid(struct nvme_queue *nvmeq, int cmdid,
  210. nvme_completion_fn *fn)
  211. {
  212. void *ctx;
  213. struct nvme_cmd_info *info = nvme_cmd_info(nvmeq);
  214. if (cmdid >= nvmeq->q_depth) {
  215. *fn = special_completion;
  216. return CMD_CTX_INVALID;
  217. }
  218. if (fn)
  219. *fn = info[cmdid].fn;
  220. ctx = info[cmdid].ctx;
  221. info[cmdid].fn = special_completion;
  222. info[cmdid].ctx = CMD_CTX_COMPLETED;
  223. clear_bit(cmdid, nvmeq->cmdid_data);
  224. wake_up(&nvmeq->sq_full);
  225. return ctx;
  226. }
  227. static void *cancel_cmdid(struct nvme_queue *nvmeq, int cmdid,
  228. nvme_completion_fn *fn)
  229. {
  230. void *ctx;
  231. struct nvme_cmd_info *info = nvme_cmd_info(nvmeq);
  232. if (fn)
  233. *fn = info[cmdid].fn;
  234. ctx = info[cmdid].ctx;
  235. info[cmdid].fn = special_completion;
  236. info[cmdid].ctx = CMD_CTX_CANCELLED;
  237. return ctx;
  238. }
  239. static struct nvme_queue *get_nvmeq(struct nvme_dev *dev)
  240. {
  241. return dev->queues[get_cpu() + 1];
  242. }
  243. static void put_nvmeq(struct nvme_queue *nvmeq)
  244. {
  245. put_cpu();
  246. }
  247. /**
  248. * nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
  249. * @nvmeq: The queue to use
  250. * @cmd: The command to send
  251. *
  252. * Safe to use from interrupt context
  253. */
  254. static int nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd)
  255. {
  256. unsigned long flags;
  257. u16 tail;
  258. spin_lock_irqsave(&nvmeq->q_lock, flags);
  259. tail = nvmeq->sq_tail;
  260. memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd));
  261. if (++tail == nvmeq->q_depth)
  262. tail = 0;
  263. writel(tail, nvmeq->q_db);
  264. nvmeq->sq_tail = tail;
  265. spin_unlock_irqrestore(&nvmeq->q_lock, flags);
  266. return 0;
  267. }
  268. /*
  269. * The nvme_iod describes the data in an I/O, including the list of PRP
  270. * entries. You can't see it in this data structure because C doesn't let
  271. * me express that. Use nvme_alloc_iod to ensure there's enough space
  272. * allocated to store the PRP list.
  273. */
  274. struct nvme_iod {
  275. void *private; /* For the use of the submitter of the I/O */
  276. int npages; /* In the PRP list. 0 means small pool in use */
  277. int offset; /* Of PRP list */
  278. int nents; /* Used in scatterlist */
  279. int length; /* Of data, in bytes */
  280. dma_addr_t first_dma;
  281. struct scatterlist sg[0];
  282. };
  283. static __le64 **iod_list(struct nvme_iod *iod)
  284. {
  285. return ((void *)iod) + iod->offset;
  286. }
  287. /*
  288. * Will slightly overestimate the number of pages needed. This is OK
  289. * as it only leads to a small amount of wasted memory for the lifetime of
  290. * the I/O.
  291. */
  292. static int nvme_npages(unsigned size)
  293. {
  294. unsigned nprps = DIV_ROUND_UP(size + PAGE_SIZE, PAGE_SIZE);
  295. return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
  296. }
  297. static struct nvme_iod *
  298. nvme_alloc_iod(unsigned nseg, unsigned nbytes, gfp_t gfp)
  299. {
  300. struct nvme_iod *iod = kmalloc(sizeof(struct nvme_iod) +
  301. sizeof(__le64 *) * nvme_npages(nbytes) +
  302. sizeof(struct scatterlist) * nseg, gfp);
  303. if (iod) {
  304. iod->offset = offsetof(struct nvme_iod, sg[nseg]);
  305. iod->npages = -1;
  306. iod->length = nbytes;
  307. iod->nents = 0;
  308. }
  309. return iod;
  310. }
  311. static void nvme_free_iod(struct nvme_dev *dev, struct nvme_iod *iod)
  312. {
  313. const int last_prp = PAGE_SIZE / 8 - 1;
  314. int i;
  315. __le64 **list = iod_list(iod);
  316. dma_addr_t prp_dma = iod->first_dma;
  317. if (iod->npages == 0)
  318. dma_pool_free(dev->prp_small_pool, list[0], prp_dma);
  319. for (i = 0; i < iod->npages; i++) {
  320. __le64 *prp_list = list[i];
  321. dma_addr_t next_prp_dma = le64_to_cpu(prp_list[last_prp]);
  322. dma_pool_free(dev->prp_page_pool, prp_list, prp_dma);
  323. prp_dma = next_prp_dma;
  324. }
  325. kfree(iod);
  326. }
  327. static void requeue_bio(struct nvme_dev *dev, struct bio *bio)
  328. {
  329. struct nvme_queue *nvmeq = get_nvmeq(dev);
  330. if (bio_list_empty(&nvmeq->sq_cong))
  331. add_wait_queue(&nvmeq->sq_full, &nvmeq->sq_cong_wait);
  332. bio_list_add(&nvmeq->sq_cong, bio);
  333. put_nvmeq(nvmeq);
  334. wake_up_process(nvme_thread);
  335. }
  336. static void bio_completion(struct nvme_dev *dev, void *ctx,
  337. struct nvme_completion *cqe)
  338. {
  339. struct nvme_iod *iod = ctx;
  340. struct bio *bio = iod->private;
  341. u16 status = le16_to_cpup(&cqe->status) >> 1;
  342. if (iod->nents)
  343. dma_unmap_sg(&dev->pci_dev->dev, iod->sg, iod->nents,
  344. bio_data_dir(bio) ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
  345. nvme_free_iod(dev, iod);
  346. if (status) {
  347. bio_endio(bio, -EIO);
  348. } else if (bio->bi_vcnt > bio->bi_idx) {
  349. requeue_bio(dev, bio);
  350. } else {
  351. bio_endio(bio, 0);
  352. }
  353. }
  354. /* length is in bytes. gfp flags indicates whether we may sleep. */
  355. static int nvme_setup_prps(struct nvme_dev *dev,
  356. struct nvme_common_command *cmd, struct nvme_iod *iod,
  357. int total_len, gfp_t gfp)
  358. {
  359. struct dma_pool *pool;
  360. int length = total_len;
  361. struct scatterlist *sg = iod->sg;
  362. int dma_len = sg_dma_len(sg);
  363. u64 dma_addr = sg_dma_address(sg);
  364. int offset = offset_in_page(dma_addr);
  365. __le64 *prp_list;
  366. __le64 **list = iod_list(iod);
  367. dma_addr_t prp_dma;
  368. int nprps, i;
  369. cmd->prp1 = cpu_to_le64(dma_addr);
  370. length -= (PAGE_SIZE - offset);
  371. if (length <= 0)
  372. return total_len;
  373. dma_len -= (PAGE_SIZE - offset);
  374. if (dma_len) {
  375. dma_addr += (PAGE_SIZE - offset);
  376. } else {
  377. sg = sg_next(sg);
  378. dma_addr = sg_dma_address(sg);
  379. dma_len = sg_dma_len(sg);
  380. }
  381. if (length <= PAGE_SIZE) {
  382. cmd->prp2 = cpu_to_le64(dma_addr);
  383. return total_len;
  384. }
  385. nprps = DIV_ROUND_UP(length, PAGE_SIZE);
  386. if (nprps <= (256 / 8)) {
  387. pool = dev->prp_small_pool;
  388. iod->npages = 0;
  389. } else {
  390. pool = dev->prp_page_pool;
  391. iod->npages = 1;
  392. }
  393. prp_list = dma_pool_alloc(pool, gfp, &prp_dma);
  394. if (!prp_list) {
  395. cmd->prp2 = cpu_to_le64(dma_addr);
  396. iod->npages = -1;
  397. return (total_len - length) + PAGE_SIZE;
  398. }
  399. list[0] = prp_list;
  400. iod->first_dma = prp_dma;
  401. cmd->prp2 = cpu_to_le64(prp_dma);
  402. i = 0;
  403. for (;;) {
  404. if (i == PAGE_SIZE / 8) {
  405. __le64 *old_prp_list = prp_list;
  406. prp_list = dma_pool_alloc(pool, gfp, &prp_dma);
  407. if (!prp_list)
  408. return total_len - length;
  409. list[iod->npages++] = prp_list;
  410. prp_list[0] = old_prp_list[i - 1];
  411. old_prp_list[i - 1] = cpu_to_le64(prp_dma);
  412. i = 1;
  413. }
  414. prp_list[i++] = cpu_to_le64(dma_addr);
  415. dma_len -= PAGE_SIZE;
  416. dma_addr += PAGE_SIZE;
  417. length -= PAGE_SIZE;
  418. if (length <= 0)
  419. break;
  420. if (dma_len > 0)
  421. continue;
  422. BUG_ON(dma_len < 0);
  423. sg = sg_next(sg);
  424. dma_addr = sg_dma_address(sg);
  425. dma_len = sg_dma_len(sg);
  426. }
  427. return total_len;
  428. }
  429. /* NVMe scatterlists require no holes in the virtual address */
  430. #define BIOVEC_NOT_VIRT_MERGEABLE(vec1, vec2) ((vec2)->bv_offset || \
  431. (((vec1)->bv_offset + (vec1)->bv_len) % PAGE_SIZE))
  432. static int nvme_map_bio(struct device *dev, struct nvme_iod *iod,
  433. struct bio *bio, enum dma_data_direction dma_dir, int psegs)
  434. {
  435. struct bio_vec *bvec, *bvprv = NULL;
  436. struct scatterlist *sg = NULL;
  437. int i, old_idx, length = 0, nsegs = 0;
  438. sg_init_table(iod->sg, psegs);
  439. old_idx = bio->bi_idx;
  440. bio_for_each_segment(bvec, bio, i) {
  441. if (bvprv && BIOVEC_PHYS_MERGEABLE(bvprv, bvec)) {
  442. sg->length += bvec->bv_len;
  443. } else {
  444. if (bvprv && BIOVEC_NOT_VIRT_MERGEABLE(bvprv, bvec))
  445. break;
  446. sg = sg ? sg + 1 : iod->sg;
  447. sg_set_page(sg, bvec->bv_page, bvec->bv_len,
  448. bvec->bv_offset);
  449. nsegs++;
  450. }
  451. length += bvec->bv_len;
  452. bvprv = bvec;
  453. }
  454. bio->bi_idx = i;
  455. iod->nents = nsegs;
  456. sg_mark_end(sg);
  457. if (dma_map_sg(dev, iod->sg, iod->nents, dma_dir) == 0) {
  458. bio->bi_idx = old_idx;
  459. return -ENOMEM;
  460. }
  461. return length;
  462. }
  463. /*
  464. * We reuse the small pool to allocate the 16-byte range here as it is not
  465. * worth having a special pool for these or additional cases to handle freeing
  466. * the iod.
  467. */
  468. static int nvme_submit_discard(struct nvme_queue *nvmeq, struct nvme_ns *ns,
  469. struct bio *bio, struct nvme_iod *iod, int cmdid)
  470. {
  471. struct nvme_dsm_range *range;
  472. struct nvme_command *cmnd = &nvmeq->sq_cmds[nvmeq->sq_tail];
  473. range = dma_pool_alloc(nvmeq->dev->prp_small_pool, GFP_ATOMIC,
  474. &iod->first_dma);
  475. if (!range)
  476. return -ENOMEM;
  477. iod_list(iod)[0] = (__le64 *)range;
  478. iod->npages = 0;
  479. range->cattr = cpu_to_le32(0);
  480. range->nlb = cpu_to_le32(bio->bi_size >> ns->lba_shift);
  481. range->slba = cpu_to_le64(bio->bi_sector >> (ns->lba_shift - 9));
  482. memset(cmnd, 0, sizeof(*cmnd));
  483. cmnd->dsm.opcode = nvme_cmd_dsm;
  484. cmnd->dsm.command_id = cmdid;
  485. cmnd->dsm.nsid = cpu_to_le32(ns->ns_id);
  486. cmnd->dsm.prp1 = cpu_to_le64(iod->first_dma);
  487. cmnd->dsm.nr = 0;
  488. cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);
  489. if (++nvmeq->sq_tail == nvmeq->q_depth)
  490. nvmeq->sq_tail = 0;
  491. writel(nvmeq->sq_tail, nvmeq->q_db);
  492. return 0;
  493. }
  494. static int nvme_submit_flush(struct nvme_queue *nvmeq, struct nvme_ns *ns,
  495. int cmdid)
  496. {
  497. struct nvme_command *cmnd = &nvmeq->sq_cmds[nvmeq->sq_tail];
  498. memset(cmnd, 0, sizeof(*cmnd));
  499. cmnd->common.opcode = nvme_cmd_flush;
  500. cmnd->common.command_id = cmdid;
  501. cmnd->common.nsid = cpu_to_le32(ns->ns_id);
  502. if (++nvmeq->sq_tail == nvmeq->q_depth)
  503. nvmeq->sq_tail = 0;
  504. writel(nvmeq->sq_tail, nvmeq->q_db);
  505. return 0;
  506. }
  507. static int nvme_submit_flush_data(struct nvme_queue *nvmeq, struct nvme_ns *ns)
  508. {
  509. int cmdid = alloc_cmdid(nvmeq, (void *)CMD_CTX_FLUSH,
  510. special_completion, NVME_IO_TIMEOUT);
  511. if (unlikely(cmdid < 0))
  512. return cmdid;
  513. return nvme_submit_flush(nvmeq, ns, cmdid);
  514. }
  515. /*
  516. * Called with local interrupts disabled and the q_lock held. May not sleep.
  517. */
  518. static int nvme_submit_bio_queue(struct nvme_queue *nvmeq, struct nvme_ns *ns,
  519. struct bio *bio)
  520. {
  521. struct nvme_command *cmnd;
  522. struct nvme_iod *iod;
  523. enum dma_data_direction dma_dir;
  524. int cmdid, length, result = -ENOMEM;
  525. u16 control;
  526. u32 dsmgmt;
  527. int psegs = bio_phys_segments(ns->queue, bio);
  528. if ((bio->bi_rw & REQ_FLUSH) && psegs) {
  529. result = nvme_submit_flush_data(nvmeq, ns);
  530. if (result)
  531. return result;
  532. }
  533. iod = nvme_alloc_iod(psegs, bio->bi_size, GFP_ATOMIC);
  534. if (!iod)
  535. goto nomem;
  536. iod->private = bio;
  537. result = -EBUSY;
  538. cmdid = alloc_cmdid(nvmeq, iod, bio_completion, NVME_IO_TIMEOUT);
  539. if (unlikely(cmdid < 0))
  540. goto free_iod;
  541. if (bio->bi_rw & REQ_DISCARD) {
  542. result = nvme_submit_discard(nvmeq, ns, bio, iod, cmdid);
  543. if (result)
  544. goto free_cmdid;
  545. return result;
  546. }
  547. if ((bio->bi_rw & REQ_FLUSH) && !psegs)
  548. return nvme_submit_flush(nvmeq, ns, cmdid);
  549. control = 0;
  550. if (bio->bi_rw & REQ_FUA)
  551. control |= NVME_RW_FUA;
  552. if (bio->bi_rw & (REQ_FAILFAST_DEV | REQ_RAHEAD))
  553. control |= NVME_RW_LR;
  554. dsmgmt = 0;
  555. if (bio->bi_rw & REQ_RAHEAD)
  556. dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
  557. cmnd = &nvmeq->sq_cmds[nvmeq->sq_tail];
  558. memset(cmnd, 0, sizeof(*cmnd));
  559. if (bio_data_dir(bio)) {
  560. cmnd->rw.opcode = nvme_cmd_write;
  561. dma_dir = DMA_TO_DEVICE;
  562. } else {
  563. cmnd->rw.opcode = nvme_cmd_read;
  564. dma_dir = DMA_FROM_DEVICE;
  565. }
  566. result = nvme_map_bio(nvmeq->q_dmadev, iod, bio, dma_dir, psegs);
  567. if (result < 0)
  568. goto free_cmdid;
  569. length = result;
  570. cmnd->rw.command_id = cmdid;
  571. cmnd->rw.nsid = cpu_to_le32(ns->ns_id);
  572. length = nvme_setup_prps(nvmeq->dev, &cmnd->common, iod, length,
  573. GFP_ATOMIC);
  574. cmnd->rw.slba = cpu_to_le64(bio->bi_sector >> (ns->lba_shift - 9));
  575. cmnd->rw.length = cpu_to_le16((length >> ns->lba_shift) - 1);
  576. cmnd->rw.control = cpu_to_le16(control);
  577. cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);
  578. bio->bi_sector += length >> 9;
  579. if (++nvmeq->sq_tail == nvmeq->q_depth)
  580. nvmeq->sq_tail = 0;
  581. writel(nvmeq->sq_tail, nvmeq->q_db);
  582. return 0;
  583. free_cmdid:
  584. free_cmdid(nvmeq, cmdid, NULL);
  585. free_iod:
  586. nvme_free_iod(nvmeq->dev, iod);
  587. nomem:
  588. return result;
  589. }
  590. static void nvme_make_request(struct request_queue *q, struct bio *bio)
  591. {
  592. struct nvme_ns *ns = q->queuedata;
  593. struct nvme_queue *nvmeq = get_nvmeq(ns->dev);
  594. int result = -EBUSY;
  595. spin_lock_irq(&nvmeq->q_lock);
  596. if (bio_list_empty(&nvmeq->sq_cong))
  597. result = nvme_submit_bio_queue(nvmeq, ns, bio);
  598. if (unlikely(result)) {
  599. if (bio_list_empty(&nvmeq->sq_cong))
  600. add_wait_queue(&nvmeq->sq_full, &nvmeq->sq_cong_wait);
  601. bio_list_add(&nvmeq->sq_cong, bio);
  602. }
  603. spin_unlock_irq(&nvmeq->q_lock);
  604. put_nvmeq(nvmeq);
  605. }
  606. static irqreturn_t nvme_process_cq(struct nvme_queue *nvmeq)
  607. {
  608. u16 head, phase;
  609. head = nvmeq->cq_head;
  610. phase = nvmeq->cq_phase;
  611. for (;;) {
  612. void *ctx;
  613. nvme_completion_fn fn;
  614. struct nvme_completion cqe = nvmeq->cqes[head];
  615. if ((le16_to_cpu(cqe.status) & 1) != phase)
  616. break;
  617. nvmeq->sq_head = le16_to_cpu(cqe.sq_head);
  618. if (++head == nvmeq->q_depth) {
  619. head = 0;
  620. phase = !phase;
  621. }
  622. ctx = free_cmdid(nvmeq, cqe.command_id, &fn);
  623. fn(nvmeq->dev, ctx, &cqe);
  624. }
  625. /* If the controller ignores the cq head doorbell and continuously
  626. * writes to the queue, it is theoretically possible to wrap around
  627. * the queue twice and mistakenly return IRQ_NONE. Linux only
  628. * requires that 0.1% of your interrupts are handled, so this isn't
  629. * a big problem.
  630. */
  631. if (head == nvmeq->cq_head && phase == nvmeq->cq_phase)
  632. return IRQ_NONE;
  633. writel(head, nvmeq->q_db + (1 << nvmeq->dev->db_stride));
  634. nvmeq->cq_head = head;
  635. nvmeq->cq_phase = phase;
  636. return IRQ_HANDLED;
  637. }
  638. static irqreturn_t nvme_irq(int irq, void *data)
  639. {
  640. irqreturn_t result;
  641. struct nvme_queue *nvmeq = data;
  642. spin_lock(&nvmeq->q_lock);
  643. result = nvme_process_cq(nvmeq);
  644. spin_unlock(&nvmeq->q_lock);
  645. return result;
  646. }
  647. static irqreturn_t nvme_irq_check(int irq, void *data)
  648. {
  649. struct nvme_queue *nvmeq = data;
  650. struct nvme_completion cqe = nvmeq->cqes[nvmeq->cq_head];
  651. if ((le16_to_cpu(cqe.status) & 1) != nvmeq->cq_phase)
  652. return IRQ_NONE;
  653. return IRQ_WAKE_THREAD;
  654. }
  655. static void nvme_abort_command(struct nvme_queue *nvmeq, int cmdid)
  656. {
  657. spin_lock_irq(&nvmeq->q_lock);
  658. cancel_cmdid(nvmeq, cmdid, NULL);
  659. spin_unlock_irq(&nvmeq->q_lock);
  660. }
  661. struct sync_cmd_info {
  662. struct task_struct *task;
  663. u32 result;
  664. int status;
  665. };
  666. static void sync_completion(struct nvme_dev *dev, void *ctx,
  667. struct nvme_completion *cqe)
  668. {
  669. struct sync_cmd_info *cmdinfo = ctx;
  670. cmdinfo->result = le32_to_cpup(&cqe->result);
  671. cmdinfo->status = le16_to_cpup(&cqe->status) >> 1;
  672. wake_up_process(cmdinfo->task);
  673. }
  674. /*
  675. * Returns 0 on success. If the result is negative, it's a Linux error code;
  676. * if the result is positive, it's an NVM Express status code
  677. */
  678. static int nvme_submit_sync_cmd(struct nvme_queue *nvmeq,
  679. struct nvme_command *cmd, u32 *result, unsigned timeout)
  680. {
  681. int cmdid;
  682. struct sync_cmd_info cmdinfo;
  683. cmdinfo.task = current;
  684. cmdinfo.status = -EINTR;
  685. cmdid = alloc_cmdid_killable(nvmeq, &cmdinfo, sync_completion,
  686. timeout);
  687. if (cmdid < 0)
  688. return cmdid;
  689. cmd->common.command_id = cmdid;
  690. set_current_state(TASK_KILLABLE);
  691. nvme_submit_cmd(nvmeq, cmd);
  692. schedule();
  693. if (cmdinfo.status == -EINTR) {
  694. nvme_abort_command(nvmeq, cmdid);
  695. return -EINTR;
  696. }
  697. if (result)
  698. *result = cmdinfo.result;
  699. return cmdinfo.status;
  700. }
  701. static int nvme_submit_admin_cmd(struct nvme_dev *dev, struct nvme_command *cmd,
  702. u32 *result)
  703. {
  704. return nvme_submit_sync_cmd(dev->queues[0], cmd, result, ADMIN_TIMEOUT);
  705. }
  706. static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
  707. {
  708. int status;
  709. struct nvme_command c;
  710. memset(&c, 0, sizeof(c));
  711. c.delete_queue.opcode = opcode;
  712. c.delete_queue.qid = cpu_to_le16(id);
  713. status = nvme_submit_admin_cmd(dev, &c, NULL);
  714. if (status)
  715. return -EIO;
  716. return 0;
  717. }
  718. static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
  719. struct nvme_queue *nvmeq)
  720. {
  721. int status;
  722. struct nvme_command c;
  723. int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
  724. memset(&c, 0, sizeof(c));
  725. c.create_cq.opcode = nvme_admin_create_cq;
  726. c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
  727. c.create_cq.cqid = cpu_to_le16(qid);
  728. c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
  729. c.create_cq.cq_flags = cpu_to_le16(flags);
  730. c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector);
  731. status = nvme_submit_admin_cmd(dev, &c, NULL);
  732. if (status)
  733. return -EIO;
  734. return 0;
  735. }
  736. static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
  737. struct nvme_queue *nvmeq)
  738. {
  739. int status;
  740. struct nvme_command c;
  741. int flags = NVME_QUEUE_PHYS_CONTIG | NVME_SQ_PRIO_MEDIUM;
  742. memset(&c, 0, sizeof(c));
  743. c.create_sq.opcode = nvme_admin_create_sq;
  744. c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
  745. c.create_sq.sqid = cpu_to_le16(qid);
  746. c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
  747. c.create_sq.sq_flags = cpu_to_le16(flags);
  748. c.create_sq.cqid = cpu_to_le16(qid);
  749. status = nvme_submit_admin_cmd(dev, &c, NULL);
  750. if (status)
  751. return -EIO;
  752. return 0;
  753. }
  754. static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
  755. {
  756. return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
  757. }
  758. static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
  759. {
  760. return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
  761. }
  762. static int nvme_identify(struct nvme_dev *dev, unsigned nsid, unsigned cns,
  763. dma_addr_t dma_addr)
  764. {
  765. struct nvme_command c;
  766. memset(&c, 0, sizeof(c));
  767. c.identify.opcode = nvme_admin_identify;
  768. c.identify.nsid = cpu_to_le32(nsid);
  769. c.identify.prp1 = cpu_to_le64(dma_addr);
  770. c.identify.cns = cpu_to_le32(cns);
  771. return nvme_submit_admin_cmd(dev, &c, NULL);
  772. }
  773. static int nvme_get_features(struct nvme_dev *dev, unsigned fid, unsigned nsid,
  774. dma_addr_t dma_addr, u32 *result)
  775. {
  776. struct nvme_command c;
  777. memset(&c, 0, sizeof(c));
  778. c.features.opcode = nvme_admin_get_features;
  779. c.features.nsid = cpu_to_le32(nsid);
  780. c.features.prp1 = cpu_to_le64(dma_addr);
  781. c.features.fid = cpu_to_le32(fid);
  782. return nvme_submit_admin_cmd(dev, &c, result);
  783. }
  784. static int nvme_set_features(struct nvme_dev *dev, unsigned fid,
  785. unsigned dword11, dma_addr_t dma_addr, u32 *result)
  786. {
  787. struct nvme_command c;
  788. memset(&c, 0, sizeof(c));
  789. c.features.opcode = nvme_admin_set_features;
  790. c.features.prp1 = cpu_to_le64(dma_addr);
  791. c.features.fid = cpu_to_le32(fid);
  792. c.features.dword11 = cpu_to_le32(dword11);
  793. return nvme_submit_admin_cmd(dev, &c, result);
  794. }
  795. /**
  796. * nvme_cancel_ios - Cancel outstanding I/Os
  797. * @queue: The queue to cancel I/Os on
  798. * @timeout: True to only cancel I/Os which have timed out
  799. */
  800. static void nvme_cancel_ios(struct nvme_queue *nvmeq, bool timeout)
  801. {
  802. int depth = nvmeq->q_depth - 1;
  803. struct nvme_cmd_info *info = nvme_cmd_info(nvmeq);
  804. unsigned long now = jiffies;
  805. int cmdid;
  806. for_each_set_bit(cmdid, nvmeq->cmdid_data, depth) {
  807. void *ctx;
  808. nvme_completion_fn fn;
  809. static struct nvme_completion cqe = {
  810. .status = cpu_to_le16(NVME_SC_ABORT_REQ) << 1,
  811. };
  812. if (timeout && !time_after(now, info[cmdid].timeout))
  813. continue;
  814. dev_warn(nvmeq->q_dmadev, "Cancelling I/O %d\n", cmdid);
  815. ctx = cancel_cmdid(nvmeq, cmdid, &fn);
  816. fn(nvmeq->dev, ctx, &cqe);
  817. }
  818. }
  819. static void nvme_free_queue_mem(struct nvme_queue *nvmeq)
  820. {
  821. dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
  822. (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
  823. dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
  824. nvmeq->sq_cmds, nvmeq->sq_dma_addr);
  825. kfree(nvmeq);
  826. }
  827. static void nvme_free_queue(struct nvme_dev *dev, int qid)
  828. {
  829. struct nvme_queue *nvmeq = dev->queues[qid];
  830. int vector = dev->entry[nvmeq->cq_vector].vector;
  831. spin_lock_irq(&nvmeq->q_lock);
  832. nvme_cancel_ios(nvmeq, false);
  833. while (bio_list_peek(&nvmeq->sq_cong)) {
  834. struct bio *bio = bio_list_pop(&nvmeq->sq_cong);
  835. bio_endio(bio, -EIO);
  836. }
  837. spin_unlock_irq(&nvmeq->q_lock);
  838. irq_set_affinity_hint(vector, NULL);
  839. free_irq(vector, nvmeq);
  840. /* Don't tell the adapter to delete the admin queue */
  841. if (qid) {
  842. adapter_delete_sq(dev, qid);
  843. adapter_delete_cq(dev, qid);
  844. }
  845. nvme_free_queue_mem(nvmeq);
  846. }
  847. static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev, int qid,
  848. int depth, int vector)
  849. {
  850. struct device *dmadev = &dev->pci_dev->dev;
  851. unsigned extra = DIV_ROUND_UP(depth, 8) + (depth *
  852. sizeof(struct nvme_cmd_info));
  853. struct nvme_queue *nvmeq = kzalloc(sizeof(*nvmeq) + extra, GFP_KERNEL);
  854. if (!nvmeq)
  855. return NULL;
  856. nvmeq->cqes = dma_alloc_coherent(dmadev, CQ_SIZE(depth),
  857. &nvmeq->cq_dma_addr, GFP_KERNEL);
  858. if (!nvmeq->cqes)
  859. goto free_nvmeq;
  860. memset((void *)nvmeq->cqes, 0, CQ_SIZE(depth));
  861. nvmeq->sq_cmds = dma_alloc_coherent(dmadev, SQ_SIZE(depth),
  862. &nvmeq->sq_dma_addr, GFP_KERNEL);
  863. if (!nvmeq->sq_cmds)
  864. goto free_cqdma;
  865. nvmeq->q_dmadev = dmadev;
  866. nvmeq->dev = dev;
  867. spin_lock_init(&nvmeq->q_lock);
  868. nvmeq->cq_head = 0;
  869. nvmeq->cq_phase = 1;
  870. init_waitqueue_head(&nvmeq->sq_full);
  871. init_waitqueue_entry(&nvmeq->sq_cong_wait, nvme_thread);
  872. bio_list_init(&nvmeq->sq_cong);
  873. nvmeq->q_db = &dev->dbs[qid << (dev->db_stride + 1)];
  874. nvmeq->q_depth = depth;
  875. nvmeq->cq_vector = vector;
  876. return nvmeq;
  877. free_cqdma:
  878. dma_free_coherent(dmadev, CQ_SIZE(nvmeq->q_depth), (void *)nvmeq->cqes,
  879. nvmeq->cq_dma_addr);
  880. free_nvmeq:
  881. kfree(nvmeq);
  882. return NULL;
  883. }
  884. static int queue_request_irq(struct nvme_dev *dev, struct nvme_queue *nvmeq,
  885. const char *name)
  886. {
  887. if (use_threaded_interrupts)
  888. return request_threaded_irq(dev->entry[nvmeq->cq_vector].vector,
  889. nvme_irq_check, nvme_irq,
  890. IRQF_DISABLED | IRQF_SHARED,
  891. name, nvmeq);
  892. return request_irq(dev->entry[nvmeq->cq_vector].vector, nvme_irq,
  893. IRQF_DISABLED | IRQF_SHARED, name, nvmeq);
  894. }
  895. static struct nvme_queue *nvme_create_queue(struct nvme_dev *dev, int qid,
  896. int cq_size, int vector)
  897. {
  898. int result;
  899. struct nvme_queue *nvmeq = nvme_alloc_queue(dev, qid, cq_size, vector);
  900. if (!nvmeq)
  901. return ERR_PTR(-ENOMEM);
  902. result = adapter_alloc_cq(dev, qid, nvmeq);
  903. if (result < 0)
  904. goto free_nvmeq;
  905. result = adapter_alloc_sq(dev, qid, nvmeq);
  906. if (result < 0)
  907. goto release_cq;
  908. result = queue_request_irq(dev, nvmeq, "nvme");
  909. if (result < 0)
  910. goto release_sq;
  911. return nvmeq;
  912. release_sq:
  913. adapter_delete_sq(dev, qid);
  914. release_cq:
  915. adapter_delete_cq(dev, qid);
  916. free_nvmeq:
  917. dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
  918. (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
  919. dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
  920. nvmeq->sq_cmds, nvmeq->sq_dma_addr);
  921. kfree(nvmeq);
  922. return ERR_PTR(result);
  923. }
  924. static int nvme_configure_admin_queue(struct nvme_dev *dev)
  925. {
  926. int result = 0;
  927. u32 aqa;
  928. u64 cap;
  929. unsigned long timeout;
  930. struct nvme_queue *nvmeq;
  931. dev->dbs = ((void __iomem *)dev->bar) + 4096;
  932. nvmeq = nvme_alloc_queue(dev, 0, 64, 0);
  933. if (!nvmeq)
  934. return -ENOMEM;
  935. aqa = nvmeq->q_depth - 1;
  936. aqa |= aqa << 16;
  937. dev->ctrl_config = NVME_CC_ENABLE | NVME_CC_CSS_NVM;
  938. dev->ctrl_config |= (PAGE_SHIFT - 12) << NVME_CC_MPS_SHIFT;
  939. dev->ctrl_config |= NVME_CC_ARB_RR | NVME_CC_SHN_NONE;
  940. dev->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
  941. writel(0, &dev->bar->cc);
  942. writel(aqa, &dev->bar->aqa);
  943. writeq(nvmeq->sq_dma_addr, &dev->bar->asq);
  944. writeq(nvmeq->cq_dma_addr, &dev->bar->acq);
  945. writel(dev->ctrl_config, &dev->bar->cc);
  946. cap = readq(&dev->bar->cap);
  947. timeout = ((NVME_CAP_TIMEOUT(cap) + 1) * HZ / 2) + jiffies;
  948. dev->db_stride = NVME_CAP_STRIDE(cap);
  949. while (!result && !(readl(&dev->bar->csts) & NVME_CSTS_RDY)) {
  950. msleep(100);
  951. if (fatal_signal_pending(current))
  952. result = -EINTR;
  953. if (time_after(jiffies, timeout)) {
  954. dev_err(&dev->pci_dev->dev,
  955. "Device not ready; aborting initialisation\n");
  956. result = -ENODEV;
  957. }
  958. }
  959. if (result) {
  960. nvme_free_queue_mem(nvmeq);
  961. return result;
  962. }
  963. result = queue_request_irq(dev, nvmeq, "nvme admin");
  964. dev->queues[0] = nvmeq;
  965. return result;
  966. }
  967. static struct nvme_iod *nvme_map_user_pages(struct nvme_dev *dev, int write,
  968. unsigned long addr, unsigned length)
  969. {
  970. int i, err, count, nents, offset;
  971. struct scatterlist *sg;
  972. struct page **pages;
  973. struct nvme_iod *iod;
  974. if (addr & 3)
  975. return ERR_PTR(-EINVAL);
  976. if (!length)
  977. return ERR_PTR(-EINVAL);
  978. offset = offset_in_page(addr);
  979. count = DIV_ROUND_UP(offset + length, PAGE_SIZE);
  980. pages = kcalloc(count, sizeof(*pages), GFP_KERNEL);
  981. if (!pages)
  982. return ERR_PTR(-ENOMEM);
  983. err = get_user_pages_fast(addr, count, 1, pages);
  984. if (err < count) {
  985. count = err;
  986. err = -EFAULT;
  987. goto put_pages;
  988. }
  989. iod = nvme_alloc_iod(count, length, GFP_KERNEL);
  990. sg = iod->sg;
  991. sg_init_table(sg, count);
  992. for (i = 0; i < count; i++) {
  993. sg_set_page(&sg[i], pages[i],
  994. min_t(int, length, PAGE_SIZE - offset), offset);
  995. length -= (PAGE_SIZE - offset);
  996. offset = 0;
  997. }
  998. sg_mark_end(&sg[i - 1]);
  999. iod->nents = count;
  1000. err = -ENOMEM;
  1001. nents = dma_map_sg(&dev->pci_dev->dev, sg, count,
  1002. write ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
  1003. if (!nents)
  1004. goto free_iod;
  1005. kfree(pages);
  1006. return iod;
  1007. free_iod:
  1008. kfree(iod);
  1009. put_pages:
  1010. for (i = 0; i < count; i++)
  1011. put_page(pages[i]);
  1012. kfree(pages);
  1013. return ERR_PTR(err);
  1014. }
  1015. static void nvme_unmap_user_pages(struct nvme_dev *dev, int write,
  1016. struct nvme_iod *iod)
  1017. {
  1018. int i;
  1019. dma_unmap_sg(&dev->pci_dev->dev, iod->sg, iod->nents,
  1020. write ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
  1021. for (i = 0; i < iod->nents; i++)
  1022. put_page(sg_page(&iod->sg[i]));
  1023. }
  1024. static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio)
  1025. {
  1026. struct nvme_dev *dev = ns->dev;
  1027. struct nvme_queue *nvmeq;
  1028. struct nvme_user_io io;
  1029. struct nvme_command c;
  1030. unsigned length;
  1031. int status;
  1032. struct nvme_iod *iod;
  1033. if (copy_from_user(&io, uio, sizeof(io)))
  1034. return -EFAULT;
  1035. length = (io.nblocks + 1) << ns->lba_shift;
  1036. switch (io.opcode) {
  1037. case nvme_cmd_write:
  1038. case nvme_cmd_read:
  1039. case nvme_cmd_compare:
  1040. iod = nvme_map_user_pages(dev, io.opcode & 1, io.addr, length);
  1041. break;
  1042. default:
  1043. return -EINVAL;
  1044. }
  1045. if (IS_ERR(iod))
  1046. return PTR_ERR(iod);
  1047. memset(&c, 0, sizeof(c));
  1048. c.rw.opcode = io.opcode;
  1049. c.rw.flags = io.flags;
  1050. c.rw.nsid = cpu_to_le32(ns->ns_id);
  1051. c.rw.slba = cpu_to_le64(io.slba);
  1052. c.rw.length = cpu_to_le16(io.nblocks);
  1053. c.rw.control = cpu_to_le16(io.control);
  1054. c.rw.dsmgmt = cpu_to_le16(io.dsmgmt);
  1055. c.rw.reftag = io.reftag;
  1056. c.rw.apptag = io.apptag;
  1057. c.rw.appmask = io.appmask;
  1058. /* XXX: metadata */
  1059. length = nvme_setup_prps(dev, &c.common, iod, length, GFP_KERNEL);
  1060. nvmeq = get_nvmeq(dev);
  1061. /*
  1062. * Since nvme_submit_sync_cmd sleeps, we can't keep preemption
  1063. * disabled. We may be preempted at any point, and be rescheduled
  1064. * to a different CPU. That will cause cacheline bouncing, but no
  1065. * additional races since q_lock already protects against other CPUs.
  1066. */
  1067. put_nvmeq(nvmeq);
  1068. if (length != (io.nblocks + 1) << ns->lba_shift)
  1069. status = -ENOMEM;
  1070. else
  1071. status = nvme_submit_sync_cmd(nvmeq, &c, NULL, NVME_IO_TIMEOUT);
  1072. nvme_unmap_user_pages(dev, io.opcode & 1, iod);
  1073. nvme_free_iod(dev, iod);
  1074. return status;
  1075. }
  1076. static int nvme_user_admin_cmd(struct nvme_dev *dev,
  1077. struct nvme_admin_cmd __user *ucmd)
  1078. {
  1079. struct nvme_admin_cmd cmd;
  1080. struct nvme_command c;
  1081. int status, length;
  1082. struct nvme_iod *uninitialized_var(iod);
  1083. if (!capable(CAP_SYS_ADMIN))
  1084. return -EACCES;
  1085. if (copy_from_user(&cmd, ucmd, sizeof(cmd)))
  1086. return -EFAULT;
  1087. memset(&c, 0, sizeof(c));
  1088. c.common.opcode = cmd.opcode;
  1089. c.common.flags = cmd.flags;
  1090. c.common.nsid = cpu_to_le32(cmd.nsid);
  1091. c.common.cdw2[0] = cpu_to_le32(cmd.cdw2);
  1092. c.common.cdw2[1] = cpu_to_le32(cmd.cdw3);
  1093. c.common.cdw10[0] = cpu_to_le32(cmd.cdw10);
  1094. c.common.cdw10[1] = cpu_to_le32(cmd.cdw11);
  1095. c.common.cdw10[2] = cpu_to_le32(cmd.cdw12);
  1096. c.common.cdw10[3] = cpu_to_le32(cmd.cdw13);
  1097. c.common.cdw10[4] = cpu_to_le32(cmd.cdw14);
  1098. c.common.cdw10[5] = cpu_to_le32(cmd.cdw15);
  1099. length = cmd.data_len;
  1100. if (cmd.data_len) {
  1101. iod = nvme_map_user_pages(dev, cmd.opcode & 1, cmd.addr,
  1102. length);
  1103. if (IS_ERR(iod))
  1104. return PTR_ERR(iod);
  1105. length = nvme_setup_prps(dev, &c.common, iod, length,
  1106. GFP_KERNEL);
  1107. }
  1108. if (length != cmd.data_len)
  1109. status = -ENOMEM;
  1110. else
  1111. status = nvme_submit_admin_cmd(dev, &c, &cmd.result);
  1112. if (cmd.data_len) {
  1113. nvme_unmap_user_pages(dev, cmd.opcode & 1, iod);
  1114. nvme_free_iod(dev, iod);
  1115. }
  1116. if (!status && copy_to_user(&ucmd->result, &cmd.result,
  1117. sizeof(cmd.result)))
  1118. status = -EFAULT;
  1119. return status;
  1120. }
  1121. static int nvme_ioctl(struct block_device *bdev, fmode_t mode, unsigned int cmd,
  1122. unsigned long arg)
  1123. {
  1124. struct nvme_ns *ns = bdev->bd_disk->private_data;
  1125. switch (cmd) {
  1126. case NVME_IOCTL_ID:
  1127. return ns->ns_id;
  1128. case NVME_IOCTL_ADMIN_CMD:
  1129. return nvme_user_admin_cmd(ns->dev, (void __user *)arg);
  1130. case NVME_IOCTL_SUBMIT_IO:
  1131. return nvme_submit_io(ns, (void __user *)arg);
  1132. default:
  1133. return -ENOTTY;
  1134. }
  1135. }
  1136. static const struct block_device_operations nvme_fops = {
  1137. .owner = THIS_MODULE,
  1138. .ioctl = nvme_ioctl,
  1139. .compat_ioctl = nvme_ioctl,
  1140. };
  1141. static void nvme_resubmit_bios(struct nvme_queue *nvmeq)
  1142. {
  1143. while (bio_list_peek(&nvmeq->sq_cong)) {
  1144. struct bio *bio = bio_list_pop(&nvmeq->sq_cong);
  1145. struct nvme_ns *ns = bio->bi_bdev->bd_disk->private_data;
  1146. if (nvme_submit_bio_queue(nvmeq, ns, bio)) {
  1147. bio_list_add_head(&nvmeq->sq_cong, bio);
  1148. break;
  1149. }
  1150. if (bio_list_empty(&nvmeq->sq_cong))
  1151. remove_wait_queue(&nvmeq->sq_full,
  1152. &nvmeq->sq_cong_wait);
  1153. }
  1154. }
  1155. static int nvme_kthread(void *data)
  1156. {
  1157. struct nvme_dev *dev;
  1158. while (!kthread_should_stop()) {
  1159. __set_current_state(TASK_RUNNING);
  1160. spin_lock(&dev_list_lock);
  1161. list_for_each_entry(dev, &dev_list, node) {
  1162. int i;
  1163. for (i = 0; i < dev->queue_count; i++) {
  1164. struct nvme_queue *nvmeq = dev->queues[i];
  1165. if (!nvmeq)
  1166. continue;
  1167. spin_lock_irq(&nvmeq->q_lock);
  1168. if (nvme_process_cq(nvmeq))
  1169. printk("process_cq did something\n");
  1170. nvme_cancel_ios(nvmeq, true);
  1171. nvme_resubmit_bios(nvmeq);
  1172. spin_unlock_irq(&nvmeq->q_lock);
  1173. }
  1174. }
  1175. spin_unlock(&dev_list_lock);
  1176. set_current_state(TASK_INTERRUPTIBLE);
  1177. schedule_timeout(HZ);
  1178. }
  1179. return 0;
  1180. }
  1181. static DEFINE_IDA(nvme_index_ida);
  1182. static int nvme_get_ns_idx(void)
  1183. {
  1184. int index, error;
  1185. do {
  1186. if (!ida_pre_get(&nvme_index_ida, GFP_KERNEL))
  1187. return -1;
  1188. spin_lock(&dev_list_lock);
  1189. error = ida_get_new(&nvme_index_ida, &index);
  1190. spin_unlock(&dev_list_lock);
  1191. } while (error == -EAGAIN);
  1192. if (error)
  1193. index = -1;
  1194. return index;
  1195. }
  1196. static void nvme_put_ns_idx(int index)
  1197. {
  1198. spin_lock(&dev_list_lock);
  1199. ida_remove(&nvme_index_ida, index);
  1200. spin_unlock(&dev_list_lock);
  1201. }
  1202. static void nvme_config_discard(struct nvme_ns *ns)
  1203. {
  1204. u32 logical_block_size = queue_logical_block_size(ns->queue);
  1205. ns->queue->limits.discard_zeroes_data = 0;
  1206. ns->queue->limits.discard_alignment = logical_block_size;
  1207. ns->queue->limits.discard_granularity = logical_block_size;
  1208. ns->queue->limits.max_discard_sectors = 0xffffffff;
  1209. queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, ns->queue);
  1210. }
  1211. static struct nvme_ns *nvme_alloc_ns(struct nvme_dev *dev, int nsid,
  1212. struct nvme_id_ns *id, struct nvme_lba_range_type *rt)
  1213. {
  1214. struct nvme_ns *ns;
  1215. struct gendisk *disk;
  1216. int lbaf;
  1217. if (rt->attributes & NVME_LBART_ATTRIB_HIDE)
  1218. return NULL;
  1219. ns = kzalloc(sizeof(*ns), GFP_KERNEL);
  1220. if (!ns)
  1221. return NULL;
  1222. ns->queue = blk_alloc_queue(GFP_KERNEL);
  1223. if (!ns->queue)
  1224. goto out_free_ns;
  1225. ns->queue->queue_flags = QUEUE_FLAG_DEFAULT;
  1226. queue_flag_set_unlocked(QUEUE_FLAG_NOMERGES, ns->queue);
  1227. queue_flag_set_unlocked(QUEUE_FLAG_NONROT, ns->queue);
  1228. blk_queue_make_request(ns->queue, nvme_make_request);
  1229. ns->dev = dev;
  1230. ns->queue->queuedata = ns;
  1231. disk = alloc_disk(NVME_MINORS);
  1232. if (!disk)
  1233. goto out_free_queue;
  1234. ns->ns_id = nsid;
  1235. ns->disk = disk;
  1236. lbaf = id->flbas & 0xf;
  1237. ns->lba_shift = id->lbaf[lbaf].ds;
  1238. blk_queue_logical_block_size(ns->queue, 1 << ns->lba_shift);
  1239. if (dev->max_hw_sectors)
  1240. blk_queue_max_hw_sectors(ns->queue, dev->max_hw_sectors);
  1241. disk->major = nvme_major;
  1242. disk->minors = NVME_MINORS;
  1243. disk->first_minor = NVME_MINORS * nvme_get_ns_idx();
  1244. disk->fops = &nvme_fops;
  1245. disk->private_data = ns;
  1246. disk->queue = ns->queue;
  1247. disk->driverfs_dev = &dev->pci_dev->dev;
  1248. sprintf(disk->disk_name, "nvme%dn%d", dev->instance, nsid);
  1249. set_capacity(disk, le64_to_cpup(&id->nsze) << (ns->lba_shift - 9));
  1250. if (dev->oncs & NVME_CTRL_ONCS_DSM)
  1251. nvme_config_discard(ns);
  1252. return ns;
  1253. out_free_queue:
  1254. blk_cleanup_queue(ns->queue);
  1255. out_free_ns:
  1256. kfree(ns);
  1257. return NULL;
  1258. }
  1259. static void nvme_ns_free(struct nvme_ns *ns)
  1260. {
  1261. int index = ns->disk->first_minor / NVME_MINORS;
  1262. put_disk(ns->disk);
  1263. nvme_put_ns_idx(index);
  1264. blk_cleanup_queue(ns->queue);
  1265. kfree(ns);
  1266. }
  1267. static int set_queue_count(struct nvme_dev *dev, int count)
  1268. {
  1269. int status;
  1270. u32 result;
  1271. u32 q_count = (count - 1) | ((count - 1) << 16);
  1272. status = nvme_set_features(dev, NVME_FEAT_NUM_QUEUES, q_count, 0,
  1273. &result);
  1274. if (status)
  1275. return -EIO;
  1276. return min(result & 0xffff, result >> 16) + 1;
  1277. }
  1278. static int nvme_setup_io_queues(struct nvme_dev *dev)
  1279. {
  1280. int result, cpu, i, nr_io_queues, db_bar_size, q_depth;
  1281. nr_io_queues = num_online_cpus();
  1282. result = set_queue_count(dev, nr_io_queues);
  1283. if (result < 0)
  1284. return result;
  1285. if (result < nr_io_queues)
  1286. nr_io_queues = result;
  1287. /* Deregister the admin queue's interrupt */
  1288. free_irq(dev->entry[0].vector, dev->queues[0]);
  1289. db_bar_size = 4096 + ((nr_io_queues + 1) << (dev->db_stride + 3));
  1290. if (db_bar_size > 8192) {
  1291. iounmap(dev->bar);
  1292. dev->bar = ioremap(pci_resource_start(dev->pci_dev, 0),
  1293. db_bar_size);
  1294. dev->dbs = ((void __iomem *)dev->bar) + 4096;
  1295. dev->queues[0]->q_db = dev->dbs;
  1296. }
  1297. for (i = 0; i < nr_io_queues; i++)
  1298. dev->entry[i].entry = i;
  1299. for (;;) {
  1300. result = pci_enable_msix(dev->pci_dev, dev->entry,
  1301. nr_io_queues);
  1302. if (result == 0) {
  1303. break;
  1304. } else if (result > 0) {
  1305. nr_io_queues = result;
  1306. continue;
  1307. } else {
  1308. nr_io_queues = 1;
  1309. break;
  1310. }
  1311. }
  1312. result = queue_request_irq(dev, dev->queues[0], "nvme admin");
  1313. /* XXX: handle failure here */
  1314. cpu = cpumask_first(cpu_online_mask);
  1315. for (i = 0; i < nr_io_queues; i++) {
  1316. irq_set_affinity_hint(dev->entry[i].vector, get_cpu_mask(cpu));
  1317. cpu = cpumask_next(cpu, cpu_online_mask);
  1318. }
  1319. q_depth = min_t(int, NVME_CAP_MQES(readq(&dev->bar->cap)) + 1,
  1320. NVME_Q_DEPTH);
  1321. for (i = 0; i < nr_io_queues; i++) {
  1322. dev->queues[i + 1] = nvme_create_queue(dev, i + 1, q_depth, i);
  1323. if (IS_ERR(dev->queues[i + 1]))
  1324. return PTR_ERR(dev->queues[i + 1]);
  1325. dev->queue_count++;
  1326. }
  1327. for (; i < num_possible_cpus(); i++) {
  1328. int target = i % rounddown_pow_of_two(dev->queue_count - 1);
  1329. dev->queues[i + 1] = dev->queues[target + 1];
  1330. }
  1331. return 0;
  1332. }
  1333. static void nvme_free_queues(struct nvme_dev *dev)
  1334. {
  1335. int i;
  1336. for (i = dev->queue_count - 1; i >= 0; i--)
  1337. nvme_free_queue(dev, i);
  1338. }
  1339. static int nvme_dev_add(struct nvme_dev *dev)
  1340. {
  1341. int res, nn, i;
  1342. struct nvme_ns *ns, *next;
  1343. struct nvme_id_ctrl *ctrl;
  1344. struct nvme_id_ns *id_ns;
  1345. void *mem;
  1346. dma_addr_t dma_addr;
  1347. res = nvme_setup_io_queues(dev);
  1348. if (res)
  1349. return res;
  1350. mem = dma_alloc_coherent(&dev->pci_dev->dev, 8192, &dma_addr,
  1351. GFP_KERNEL);
  1352. res = nvme_identify(dev, 0, 1, dma_addr);
  1353. if (res) {
  1354. res = -EIO;
  1355. goto out_free;
  1356. }
  1357. ctrl = mem;
  1358. nn = le32_to_cpup(&ctrl->nn);
  1359. dev->oncs = le16_to_cpup(&ctrl->oncs);
  1360. memcpy(dev->serial, ctrl->sn, sizeof(ctrl->sn));
  1361. memcpy(dev->model, ctrl->mn, sizeof(ctrl->mn));
  1362. memcpy(dev->firmware_rev, ctrl->fr, sizeof(ctrl->fr));
  1363. if (ctrl->mdts) {
  1364. int shift = NVME_CAP_MPSMIN(readq(&dev->bar->cap)) + 12;
  1365. dev->max_hw_sectors = 1 << (ctrl->mdts + shift - 9);
  1366. }
  1367. id_ns = mem;
  1368. for (i = 1; i <= nn; i++) {
  1369. res = nvme_identify(dev, i, 0, dma_addr);
  1370. if (res)
  1371. continue;
  1372. if (id_ns->ncap == 0)
  1373. continue;
  1374. res = nvme_get_features(dev, NVME_FEAT_LBA_RANGE, i,
  1375. dma_addr + 4096, NULL);
  1376. if (res)
  1377. memset(mem + 4096, 0, 4096);
  1378. ns = nvme_alloc_ns(dev, i, mem, mem + 4096);
  1379. if (ns)
  1380. list_add_tail(&ns->list, &dev->namespaces);
  1381. }
  1382. list_for_each_entry(ns, &dev->namespaces, list)
  1383. add_disk(ns->disk);
  1384. goto out;
  1385. out_free:
  1386. list_for_each_entry_safe(ns, next, &dev->namespaces, list) {
  1387. list_del(&ns->list);
  1388. nvme_ns_free(ns);
  1389. }
  1390. out:
  1391. dma_free_coherent(&dev->pci_dev->dev, 8192, mem, dma_addr);
  1392. return res;
  1393. }
  1394. static int nvme_dev_remove(struct nvme_dev *dev)
  1395. {
  1396. struct nvme_ns *ns, *next;
  1397. spin_lock(&dev_list_lock);
  1398. list_del(&dev->node);
  1399. spin_unlock(&dev_list_lock);
  1400. list_for_each_entry_safe(ns, next, &dev->namespaces, list) {
  1401. list_del(&ns->list);
  1402. del_gendisk(ns->disk);
  1403. nvme_ns_free(ns);
  1404. }
  1405. nvme_free_queues(dev);
  1406. return 0;
  1407. }
  1408. static int nvme_setup_prp_pools(struct nvme_dev *dev)
  1409. {
  1410. struct device *dmadev = &dev->pci_dev->dev;
  1411. dev->prp_page_pool = dma_pool_create("prp list page", dmadev,
  1412. PAGE_SIZE, PAGE_SIZE, 0);
  1413. if (!dev->prp_page_pool)
  1414. return -ENOMEM;
  1415. /* Optimisation for I/Os between 4k and 128k */
  1416. dev->prp_small_pool = dma_pool_create("prp list 256", dmadev,
  1417. 256, 256, 0);
  1418. if (!dev->prp_small_pool) {
  1419. dma_pool_destroy(dev->prp_page_pool);
  1420. return -ENOMEM;
  1421. }
  1422. return 0;
  1423. }
  1424. static void nvme_release_prp_pools(struct nvme_dev *dev)
  1425. {
  1426. dma_pool_destroy(dev->prp_page_pool);
  1427. dma_pool_destroy(dev->prp_small_pool);
  1428. }
  1429. static DEFINE_IDA(nvme_instance_ida);
  1430. static int nvme_set_instance(struct nvme_dev *dev)
  1431. {
  1432. int instance, error;
  1433. do {
  1434. if (!ida_pre_get(&nvme_instance_ida, GFP_KERNEL))
  1435. return -ENODEV;
  1436. spin_lock(&dev_list_lock);
  1437. error = ida_get_new(&nvme_instance_ida, &instance);
  1438. spin_unlock(&dev_list_lock);
  1439. } while (error == -EAGAIN);
  1440. if (error)
  1441. return -ENODEV;
  1442. dev->instance = instance;
  1443. return 0;
  1444. }
  1445. static void nvme_release_instance(struct nvme_dev *dev)
  1446. {
  1447. spin_lock(&dev_list_lock);
  1448. ida_remove(&nvme_instance_ida, dev->instance);
  1449. spin_unlock(&dev_list_lock);
  1450. }
  1451. static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
  1452. {
  1453. int bars, result = -ENOMEM;
  1454. struct nvme_dev *dev;
  1455. dev = kzalloc(sizeof(*dev), GFP_KERNEL);
  1456. if (!dev)
  1457. return -ENOMEM;
  1458. dev->entry = kcalloc(num_possible_cpus(), sizeof(*dev->entry),
  1459. GFP_KERNEL);
  1460. if (!dev->entry)
  1461. goto free;
  1462. dev->queues = kcalloc(num_possible_cpus() + 1, sizeof(void *),
  1463. GFP_KERNEL);
  1464. if (!dev->queues)
  1465. goto free;
  1466. if (pci_enable_device_mem(pdev))
  1467. goto free;
  1468. pci_set_master(pdev);
  1469. bars = pci_select_bars(pdev, IORESOURCE_MEM);
  1470. if (pci_request_selected_regions(pdev, bars, "nvme"))
  1471. goto disable;
  1472. INIT_LIST_HEAD(&dev->namespaces);
  1473. dev->pci_dev = pdev;
  1474. pci_set_drvdata(pdev, dev);
  1475. dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
  1476. dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
  1477. result = nvme_set_instance(dev);
  1478. if (result)
  1479. goto disable;
  1480. dev->entry[0].vector = pdev->irq;
  1481. result = nvme_setup_prp_pools(dev);
  1482. if (result)
  1483. goto disable_msix;
  1484. dev->bar = ioremap(pci_resource_start(pdev, 0), 8192);
  1485. if (!dev->bar) {
  1486. result = -ENOMEM;
  1487. goto disable_msix;
  1488. }
  1489. result = nvme_configure_admin_queue(dev);
  1490. if (result)
  1491. goto unmap;
  1492. dev->queue_count++;
  1493. spin_lock(&dev_list_lock);
  1494. list_add(&dev->node, &dev_list);
  1495. spin_unlock(&dev_list_lock);
  1496. result = nvme_dev_add(dev);
  1497. if (result)
  1498. goto delete;
  1499. return 0;
  1500. delete:
  1501. spin_lock(&dev_list_lock);
  1502. list_del(&dev->node);
  1503. spin_unlock(&dev_list_lock);
  1504. nvme_free_queues(dev);
  1505. unmap:
  1506. iounmap(dev->bar);
  1507. disable_msix:
  1508. pci_disable_msix(pdev);
  1509. nvme_release_instance(dev);
  1510. nvme_release_prp_pools(dev);
  1511. disable:
  1512. pci_disable_device(pdev);
  1513. pci_release_regions(pdev);
  1514. free:
  1515. kfree(dev->queues);
  1516. kfree(dev->entry);
  1517. kfree(dev);
  1518. return result;
  1519. }
  1520. static void nvme_remove(struct pci_dev *pdev)
  1521. {
  1522. struct nvme_dev *dev = pci_get_drvdata(pdev);
  1523. nvme_dev_remove(dev);
  1524. pci_disable_msix(pdev);
  1525. iounmap(dev->bar);
  1526. nvme_release_instance(dev);
  1527. nvme_release_prp_pools(dev);
  1528. pci_disable_device(pdev);
  1529. pci_release_regions(pdev);
  1530. kfree(dev->queues);
  1531. kfree(dev->entry);
  1532. kfree(dev);
  1533. }
  1534. /* These functions are yet to be implemented */
  1535. #define nvme_error_detected NULL
  1536. #define nvme_dump_registers NULL
  1537. #define nvme_link_reset NULL
  1538. #define nvme_slot_reset NULL
  1539. #define nvme_error_resume NULL
  1540. #define nvme_suspend NULL
  1541. #define nvme_resume NULL
  1542. static const struct pci_error_handlers nvme_err_handler = {
  1543. .error_detected = nvme_error_detected,
  1544. .mmio_enabled = nvme_dump_registers,
  1545. .link_reset = nvme_link_reset,
  1546. .slot_reset = nvme_slot_reset,
  1547. .resume = nvme_error_resume,
  1548. };
  1549. /* Move to pci_ids.h later */
  1550. #define PCI_CLASS_STORAGE_EXPRESS 0x010802
  1551. static DEFINE_PCI_DEVICE_TABLE(nvme_id_table) = {
  1552. { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
  1553. { 0, }
  1554. };
  1555. MODULE_DEVICE_TABLE(pci, nvme_id_table);
  1556. static struct pci_driver nvme_driver = {
  1557. .name = "nvme",
  1558. .id_table = nvme_id_table,
  1559. .probe = nvme_probe,
  1560. .remove = nvme_remove,
  1561. .suspend = nvme_suspend,
  1562. .resume = nvme_resume,
  1563. .err_handler = &nvme_err_handler,
  1564. };
  1565. static int __init nvme_init(void)
  1566. {
  1567. int result;
  1568. nvme_thread = kthread_run(nvme_kthread, NULL, "nvme");
  1569. if (IS_ERR(nvme_thread))
  1570. return PTR_ERR(nvme_thread);
  1571. result = register_blkdev(nvme_major, "nvme");
  1572. if (result < 0)
  1573. goto kill_kthread;
  1574. else if (result > 0)
  1575. nvme_major = result;
  1576. result = pci_register_driver(&nvme_driver);
  1577. if (result)
  1578. goto unregister_blkdev;
  1579. return 0;
  1580. unregister_blkdev:
  1581. unregister_blkdev(nvme_major, "nvme");
  1582. kill_kthread:
  1583. kthread_stop(nvme_thread);
  1584. return result;
  1585. }
  1586. static void __exit nvme_exit(void)
  1587. {
  1588. pci_unregister_driver(&nvme_driver);
  1589. unregister_blkdev(nvme_major, "nvme");
  1590. kthread_stop(nvme_thread);
  1591. }
  1592. MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
  1593. MODULE_LICENSE("GPL");
  1594. MODULE_VERSION("0.8");
  1595. module_init(nvme_init);
  1596. module_exit(nvme_exit);