mm.h 42 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235
  1. #ifndef _LINUX_MM_H
  2. #define _LINUX_MM_H
  3. #include <linux/errno.h>
  4. #ifdef __KERNEL__
  5. #include <linux/gfp.h>
  6. #include <linux/list.h>
  7. #include <linux/mmzone.h>
  8. #include <linux/rbtree.h>
  9. #include <linux/prio_tree.h>
  10. #include <linux/debug_locks.h>
  11. #include <linux/mm_types.h>
  12. struct mempolicy;
  13. struct anon_vma;
  14. struct file_ra_state;
  15. struct user_struct;
  16. struct writeback_control;
  17. #ifndef CONFIG_DISCONTIGMEM /* Don't use mapnrs, do it properly */
  18. extern unsigned long max_mapnr;
  19. #endif
  20. extern unsigned long num_physpages;
  21. extern void * high_memory;
  22. extern int page_cluster;
  23. #ifdef CONFIG_SYSCTL
  24. extern int sysctl_legacy_va_layout;
  25. #else
  26. #define sysctl_legacy_va_layout 0
  27. #endif
  28. extern unsigned long mmap_min_addr;
  29. #include <asm/page.h>
  30. #include <asm/pgtable.h>
  31. #include <asm/processor.h>
  32. #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
  33. /*
  34. * Linux kernel virtual memory manager primitives.
  35. * The idea being to have a "virtual" mm in the same way
  36. * we have a virtual fs - giving a cleaner interface to the
  37. * mm details, and allowing different kinds of memory mappings
  38. * (from shared memory to executable loading to arbitrary
  39. * mmap() functions).
  40. */
  41. extern struct kmem_cache *vm_area_cachep;
  42. /*
  43. * This struct defines the per-mm list of VMAs for uClinux. If CONFIG_MMU is
  44. * disabled, then there's a single shared list of VMAs maintained by the
  45. * system, and mm's subscribe to these individually
  46. */
  47. struct vm_list_struct {
  48. struct vm_list_struct *next;
  49. struct vm_area_struct *vma;
  50. };
  51. #ifndef CONFIG_MMU
  52. extern struct rb_root nommu_vma_tree;
  53. extern struct rw_semaphore nommu_vma_sem;
  54. extern unsigned int kobjsize(const void *objp);
  55. #endif
  56. /*
  57. * vm_flags..
  58. */
  59. #define VM_READ 0x00000001 /* currently active flags */
  60. #define VM_WRITE 0x00000002
  61. #define VM_EXEC 0x00000004
  62. #define VM_SHARED 0x00000008
  63. /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
  64. #define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
  65. #define VM_MAYWRITE 0x00000020
  66. #define VM_MAYEXEC 0x00000040
  67. #define VM_MAYSHARE 0x00000080
  68. #define VM_GROWSDOWN 0x00000100 /* general info on the segment */
  69. #define VM_GROWSUP 0x00000200
  70. #define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
  71. #define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
  72. #define VM_EXECUTABLE 0x00001000
  73. #define VM_LOCKED 0x00002000
  74. #define VM_IO 0x00004000 /* Memory mapped I/O or similar */
  75. /* Used by sys_madvise() */
  76. #define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
  77. #define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
  78. #define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
  79. #define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
  80. #define VM_RESERVED 0x00080000 /* Count as reserved_vm like IO */
  81. #define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
  82. #define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
  83. #define VM_NONLINEAR 0x00800000 /* Is non-linear (remap_file_pages) */
  84. #define VM_MAPPED_COPY 0x01000000 /* T if mapped copy of data (nommu mmap) */
  85. #define VM_INSERTPAGE 0x02000000 /* The vma has had "vm_insert_page()" done on it */
  86. #define VM_ALWAYSDUMP 0x04000000 /* Always include in core dumps */
  87. #define VM_CAN_NONLINEAR 0x08000000 /* Has ->fault & does nonlinear pages */
  88. #ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
  89. #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
  90. #endif
  91. #ifdef CONFIG_STACK_GROWSUP
  92. #define VM_STACK_FLAGS (VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
  93. #else
  94. #define VM_STACK_FLAGS (VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
  95. #endif
  96. #define VM_READHINTMASK (VM_SEQ_READ | VM_RAND_READ)
  97. #define VM_ClearReadHint(v) (v)->vm_flags &= ~VM_READHINTMASK
  98. #define VM_NormalReadHint(v) (!((v)->vm_flags & VM_READHINTMASK))
  99. #define VM_SequentialReadHint(v) ((v)->vm_flags & VM_SEQ_READ)
  100. #define VM_RandomReadHint(v) ((v)->vm_flags & VM_RAND_READ)
  101. /*
  102. * mapping from the currently active vm_flags protection bits (the
  103. * low four bits) to a page protection mask..
  104. */
  105. extern pgprot_t protection_map[16];
  106. #define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */
  107. #define FAULT_FLAG_NONLINEAR 0x02 /* Fault was via a nonlinear mapping */
  108. /*
  109. * vm_fault is filled by the the pagefault handler and passed to the vma's
  110. * ->fault function. The vma's ->fault is responsible for returning a bitmask
  111. * of VM_FAULT_xxx flags that give details about how the fault was handled.
  112. *
  113. * pgoff should be used in favour of virtual_address, if possible. If pgoff
  114. * is used, one may set VM_CAN_NONLINEAR in the vma->vm_flags to get nonlinear
  115. * mapping support.
  116. */
  117. struct vm_fault {
  118. unsigned int flags; /* FAULT_FLAG_xxx flags */
  119. pgoff_t pgoff; /* Logical page offset based on vma */
  120. void __user *virtual_address; /* Faulting virtual address */
  121. struct page *page; /* ->fault handlers should return a
  122. * page here, unless VM_FAULT_NOPAGE
  123. * is set (which is also implied by
  124. * VM_FAULT_ERROR).
  125. */
  126. };
  127. /*
  128. * These are the virtual MM functions - opening of an area, closing and
  129. * unmapping it (needed to keep files on disk up-to-date etc), pointer
  130. * to the functions called when a no-page or a wp-page exception occurs.
  131. */
  132. struct vm_operations_struct {
  133. void (*open)(struct vm_area_struct * area);
  134. void (*close)(struct vm_area_struct * area);
  135. int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf);
  136. unsigned long (*nopfn)(struct vm_area_struct *area,
  137. unsigned long address);
  138. /* notification that a previously read-only page is about to become
  139. * writable, if an error is returned it will cause a SIGBUS */
  140. int (*page_mkwrite)(struct vm_area_struct *vma, struct page *page);
  141. #ifdef CONFIG_NUMA
  142. int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
  143. struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
  144. unsigned long addr);
  145. int (*migrate)(struct vm_area_struct *vma, const nodemask_t *from,
  146. const nodemask_t *to, unsigned long flags);
  147. #endif
  148. };
  149. struct mmu_gather;
  150. struct inode;
  151. #define page_private(page) ((page)->private)
  152. #define set_page_private(page, v) ((page)->private = (v))
  153. /*
  154. * FIXME: take this include out, include page-flags.h in
  155. * files which need it (119 of them)
  156. */
  157. #include <linux/page-flags.h>
  158. #ifdef CONFIG_DEBUG_VM
  159. #define VM_BUG_ON(cond) BUG_ON(cond)
  160. #else
  161. #define VM_BUG_ON(condition) do { } while(0)
  162. #endif
  163. /*
  164. * Methods to modify the page usage count.
  165. *
  166. * What counts for a page usage:
  167. * - cache mapping (page->mapping)
  168. * - private data (page->private)
  169. * - page mapped in a task's page tables, each mapping
  170. * is counted separately
  171. *
  172. * Also, many kernel routines increase the page count before a critical
  173. * routine so they can be sure the page doesn't go away from under them.
  174. */
  175. /*
  176. * Drop a ref, return true if the refcount fell to zero (the page has no users)
  177. */
  178. static inline int put_page_testzero(struct page *page)
  179. {
  180. VM_BUG_ON(atomic_read(&page->_count) == 0);
  181. return atomic_dec_and_test(&page->_count);
  182. }
  183. /*
  184. * Try to grab a ref unless the page has a refcount of zero, return false if
  185. * that is the case.
  186. */
  187. static inline int get_page_unless_zero(struct page *page)
  188. {
  189. VM_BUG_ON(PageTail(page));
  190. return atomic_inc_not_zero(&page->_count);
  191. }
  192. /* Support for virtually mapped pages */
  193. struct page *vmalloc_to_page(const void *addr);
  194. unsigned long vmalloc_to_pfn(const void *addr);
  195. /*
  196. * Determine if an address is within the vmalloc range
  197. *
  198. * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
  199. * is no special casing required.
  200. */
  201. static inline int is_vmalloc_addr(const void *x)
  202. {
  203. #ifdef CONFIG_MMU
  204. unsigned long addr = (unsigned long)x;
  205. return addr >= VMALLOC_START && addr < VMALLOC_END;
  206. #else
  207. return 0;
  208. #endif
  209. }
  210. static inline struct page *compound_head(struct page *page)
  211. {
  212. if (unlikely(PageTail(page)))
  213. return page->first_page;
  214. return page;
  215. }
  216. static inline int page_count(struct page *page)
  217. {
  218. return atomic_read(&compound_head(page)->_count);
  219. }
  220. static inline void get_page(struct page *page)
  221. {
  222. page = compound_head(page);
  223. VM_BUG_ON(atomic_read(&page->_count) == 0);
  224. atomic_inc(&page->_count);
  225. }
  226. static inline struct page *virt_to_head_page(const void *x)
  227. {
  228. struct page *page = virt_to_page(x);
  229. return compound_head(page);
  230. }
  231. /*
  232. * Setup the page count before being freed into the page allocator for
  233. * the first time (boot or memory hotplug)
  234. */
  235. static inline void init_page_count(struct page *page)
  236. {
  237. atomic_set(&page->_count, 1);
  238. }
  239. void put_page(struct page *page);
  240. void put_pages_list(struct list_head *pages);
  241. void split_page(struct page *page, unsigned int order);
  242. /*
  243. * Compound pages have a destructor function. Provide a
  244. * prototype for that function and accessor functions.
  245. * These are _only_ valid on the head of a PG_compound page.
  246. */
  247. typedef void compound_page_dtor(struct page *);
  248. static inline void set_compound_page_dtor(struct page *page,
  249. compound_page_dtor *dtor)
  250. {
  251. page[1].lru.next = (void *)dtor;
  252. }
  253. static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
  254. {
  255. return (compound_page_dtor *)page[1].lru.next;
  256. }
  257. static inline int compound_order(struct page *page)
  258. {
  259. if (!PageHead(page))
  260. return 0;
  261. return (unsigned long)page[1].lru.prev;
  262. }
  263. static inline void set_compound_order(struct page *page, unsigned long order)
  264. {
  265. page[1].lru.prev = (void *)order;
  266. }
  267. /*
  268. * Multiple processes may "see" the same page. E.g. for untouched
  269. * mappings of /dev/null, all processes see the same page full of
  270. * zeroes, and text pages of executables and shared libraries have
  271. * only one copy in memory, at most, normally.
  272. *
  273. * For the non-reserved pages, page_count(page) denotes a reference count.
  274. * page_count() == 0 means the page is free. page->lru is then used for
  275. * freelist management in the buddy allocator.
  276. * page_count() > 0 means the page has been allocated.
  277. *
  278. * Pages are allocated by the slab allocator in order to provide memory
  279. * to kmalloc and kmem_cache_alloc. In this case, the management of the
  280. * page, and the fields in 'struct page' are the responsibility of mm/slab.c
  281. * unless a particular usage is carefully commented. (the responsibility of
  282. * freeing the kmalloc memory is the caller's, of course).
  283. *
  284. * A page may be used by anyone else who does a __get_free_page().
  285. * In this case, page_count still tracks the references, and should only
  286. * be used through the normal accessor functions. The top bits of page->flags
  287. * and page->virtual store page management information, but all other fields
  288. * are unused and could be used privately, carefully. The management of this
  289. * page is the responsibility of the one who allocated it, and those who have
  290. * subsequently been given references to it.
  291. *
  292. * The other pages (we may call them "pagecache pages") are completely
  293. * managed by the Linux memory manager: I/O, buffers, swapping etc.
  294. * The following discussion applies only to them.
  295. *
  296. * A pagecache page contains an opaque `private' member, which belongs to the
  297. * page's address_space. Usually, this is the address of a circular list of
  298. * the page's disk buffers. PG_private must be set to tell the VM to call
  299. * into the filesystem to release these pages.
  300. *
  301. * A page may belong to an inode's memory mapping. In this case, page->mapping
  302. * is the pointer to the inode, and page->index is the file offset of the page,
  303. * in units of PAGE_CACHE_SIZE.
  304. *
  305. * If pagecache pages are not associated with an inode, they are said to be
  306. * anonymous pages. These may become associated with the swapcache, and in that
  307. * case PG_swapcache is set, and page->private is an offset into the swapcache.
  308. *
  309. * In either case (swapcache or inode backed), the pagecache itself holds one
  310. * reference to the page. Setting PG_private should also increment the
  311. * refcount. The each user mapping also has a reference to the page.
  312. *
  313. * The pagecache pages are stored in a per-mapping radix tree, which is
  314. * rooted at mapping->page_tree, and indexed by offset.
  315. * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
  316. * lists, we instead now tag pages as dirty/writeback in the radix tree.
  317. *
  318. * All pagecache pages may be subject to I/O:
  319. * - inode pages may need to be read from disk,
  320. * - inode pages which have been modified and are MAP_SHARED may need
  321. * to be written back to the inode on disk,
  322. * - anonymous pages (including MAP_PRIVATE file mappings) which have been
  323. * modified may need to be swapped out to swap space and (later) to be read
  324. * back into memory.
  325. */
  326. /*
  327. * The zone field is never updated after free_area_init_core()
  328. * sets it, so none of the operations on it need to be atomic.
  329. */
  330. /*
  331. * page->flags layout:
  332. *
  333. * There are three possibilities for how page->flags get
  334. * laid out. The first is for the normal case, without
  335. * sparsemem. The second is for sparsemem when there is
  336. * plenty of space for node and section. The last is when
  337. * we have run out of space and have to fall back to an
  338. * alternate (slower) way of determining the node.
  339. *
  340. * No sparsemem or sparsemem vmemmap: | NODE | ZONE | ... | FLAGS |
  341. * classic sparse with space for node:| SECTION | NODE | ZONE | ... | FLAGS |
  342. * classic sparse no space for node: | SECTION | ZONE | ... | FLAGS |
  343. */
  344. #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
  345. #define SECTIONS_WIDTH SECTIONS_SHIFT
  346. #else
  347. #define SECTIONS_WIDTH 0
  348. #endif
  349. #define ZONES_WIDTH ZONES_SHIFT
  350. #if SECTIONS_WIDTH+ZONES_WIDTH+NODES_SHIFT <= FLAGS_RESERVED
  351. #define NODES_WIDTH NODES_SHIFT
  352. #else
  353. #ifdef CONFIG_SPARSEMEM_VMEMMAP
  354. #error "Vmemmap: No space for nodes field in page flags"
  355. #endif
  356. #define NODES_WIDTH 0
  357. #endif
  358. /* Page flags: | [SECTION] | [NODE] | ZONE | ... | FLAGS | */
  359. #define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
  360. #define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
  361. #define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
  362. /*
  363. * We are going to use the flags for the page to node mapping if its in
  364. * there. This includes the case where there is no node, so it is implicit.
  365. */
  366. #if !(NODES_WIDTH > 0 || NODES_SHIFT == 0)
  367. #define NODE_NOT_IN_PAGE_FLAGS
  368. #endif
  369. #ifndef PFN_SECTION_SHIFT
  370. #define PFN_SECTION_SHIFT 0
  371. #endif
  372. /*
  373. * Define the bit shifts to access each section. For non-existant
  374. * sections we define the shift as 0; that plus a 0 mask ensures
  375. * the compiler will optimise away reference to them.
  376. */
  377. #define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
  378. #define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
  379. #define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
  380. /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allcator */
  381. #ifdef NODE_NOT_IN_PAGEFLAGS
  382. #define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
  383. #define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
  384. SECTIONS_PGOFF : ZONES_PGOFF)
  385. #else
  386. #define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
  387. #define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
  388. NODES_PGOFF : ZONES_PGOFF)
  389. #endif
  390. #define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
  391. #if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > FLAGS_RESERVED
  392. #error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > FLAGS_RESERVED
  393. #endif
  394. #define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
  395. #define NODES_MASK ((1UL << NODES_WIDTH) - 1)
  396. #define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
  397. #define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
  398. static inline enum zone_type page_zonenum(struct page *page)
  399. {
  400. return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
  401. }
  402. /*
  403. * The identification function is only used by the buddy allocator for
  404. * determining if two pages could be buddies. We are not really
  405. * identifying a zone since we could be using a the section number
  406. * id if we have not node id available in page flags.
  407. * We guarantee only that it will return the same value for two
  408. * combinable pages in a zone.
  409. */
  410. static inline int page_zone_id(struct page *page)
  411. {
  412. return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
  413. }
  414. static inline int zone_to_nid(struct zone *zone)
  415. {
  416. #ifdef CONFIG_NUMA
  417. return zone->node;
  418. #else
  419. return 0;
  420. #endif
  421. }
  422. #ifdef NODE_NOT_IN_PAGE_FLAGS
  423. extern int page_to_nid(struct page *page);
  424. #else
  425. static inline int page_to_nid(struct page *page)
  426. {
  427. return (page->flags >> NODES_PGSHIFT) & NODES_MASK;
  428. }
  429. #endif
  430. static inline struct zone *page_zone(struct page *page)
  431. {
  432. return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
  433. }
  434. #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
  435. static inline unsigned long page_to_section(struct page *page)
  436. {
  437. return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
  438. }
  439. #endif
  440. static inline void set_page_zone(struct page *page, enum zone_type zone)
  441. {
  442. page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
  443. page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
  444. }
  445. static inline void set_page_node(struct page *page, unsigned long node)
  446. {
  447. page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
  448. page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
  449. }
  450. static inline void set_page_section(struct page *page, unsigned long section)
  451. {
  452. page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
  453. page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
  454. }
  455. static inline void set_page_links(struct page *page, enum zone_type zone,
  456. unsigned long node, unsigned long pfn)
  457. {
  458. set_page_zone(page, zone);
  459. set_page_node(page, node);
  460. set_page_section(page, pfn_to_section_nr(pfn));
  461. }
  462. /*
  463. * If a hint addr is less than mmap_min_addr change hint to be as
  464. * low as possible but still greater than mmap_min_addr
  465. */
  466. static inline unsigned long round_hint_to_min(unsigned long hint)
  467. {
  468. #ifdef CONFIG_SECURITY
  469. hint &= PAGE_MASK;
  470. if (((void *)hint != NULL) &&
  471. (hint < mmap_min_addr))
  472. return PAGE_ALIGN(mmap_min_addr);
  473. #endif
  474. return hint;
  475. }
  476. /*
  477. * Some inline functions in vmstat.h depend on page_zone()
  478. */
  479. #include <linux/vmstat.h>
  480. static __always_inline void *lowmem_page_address(struct page *page)
  481. {
  482. return __va(page_to_pfn(page) << PAGE_SHIFT);
  483. }
  484. #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
  485. #define HASHED_PAGE_VIRTUAL
  486. #endif
  487. #if defined(WANT_PAGE_VIRTUAL)
  488. #define page_address(page) ((page)->virtual)
  489. #define set_page_address(page, address) \
  490. do { \
  491. (page)->virtual = (address); \
  492. } while(0)
  493. #define page_address_init() do { } while(0)
  494. #endif
  495. #if defined(HASHED_PAGE_VIRTUAL)
  496. void *page_address(struct page *page);
  497. void set_page_address(struct page *page, void *virtual);
  498. void page_address_init(void);
  499. #endif
  500. #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
  501. #define page_address(page) lowmem_page_address(page)
  502. #define set_page_address(page, address) do { } while(0)
  503. #define page_address_init() do { } while(0)
  504. #endif
  505. /*
  506. * On an anonymous page mapped into a user virtual memory area,
  507. * page->mapping points to its anon_vma, not to a struct address_space;
  508. * with the PAGE_MAPPING_ANON bit set to distinguish it.
  509. *
  510. * Please note that, confusingly, "page_mapping" refers to the inode
  511. * address_space which maps the page from disk; whereas "page_mapped"
  512. * refers to user virtual address space into which the page is mapped.
  513. */
  514. #define PAGE_MAPPING_ANON 1
  515. extern struct address_space swapper_space;
  516. static inline struct address_space *page_mapping(struct page *page)
  517. {
  518. struct address_space *mapping = page->mapping;
  519. VM_BUG_ON(PageSlab(page));
  520. #ifdef CONFIG_SWAP
  521. if (unlikely(PageSwapCache(page)))
  522. mapping = &swapper_space;
  523. else
  524. #endif
  525. if (unlikely((unsigned long)mapping & PAGE_MAPPING_ANON))
  526. mapping = NULL;
  527. return mapping;
  528. }
  529. static inline int PageAnon(struct page *page)
  530. {
  531. return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0;
  532. }
  533. /*
  534. * Return the pagecache index of the passed page. Regular pagecache pages
  535. * use ->index whereas swapcache pages use ->private
  536. */
  537. static inline pgoff_t page_index(struct page *page)
  538. {
  539. if (unlikely(PageSwapCache(page)))
  540. return page_private(page);
  541. return page->index;
  542. }
  543. /*
  544. * The atomic page->_mapcount, like _count, starts from -1:
  545. * so that transitions both from it and to it can be tracked,
  546. * using atomic_inc_and_test and atomic_add_negative(-1).
  547. */
  548. static inline void reset_page_mapcount(struct page *page)
  549. {
  550. atomic_set(&(page)->_mapcount, -1);
  551. }
  552. static inline int page_mapcount(struct page *page)
  553. {
  554. return atomic_read(&(page)->_mapcount) + 1;
  555. }
  556. /*
  557. * Return true if this page is mapped into pagetables.
  558. */
  559. static inline int page_mapped(struct page *page)
  560. {
  561. return atomic_read(&(page)->_mapcount) >= 0;
  562. }
  563. /*
  564. * Error return values for the *_nopfn functions
  565. */
  566. #define NOPFN_SIGBUS ((unsigned long) -1)
  567. #define NOPFN_OOM ((unsigned long) -2)
  568. #define NOPFN_REFAULT ((unsigned long) -3)
  569. /*
  570. * Different kinds of faults, as returned by handle_mm_fault().
  571. * Used to decide whether a process gets delivered SIGBUS or
  572. * just gets major/minor fault counters bumped up.
  573. */
  574. #define VM_FAULT_MINOR 0 /* For backwards compat. Remove me quickly. */
  575. #define VM_FAULT_OOM 0x0001
  576. #define VM_FAULT_SIGBUS 0x0002
  577. #define VM_FAULT_MAJOR 0x0004
  578. #define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */
  579. #define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */
  580. #define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */
  581. #define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS)
  582. #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
  583. extern void show_free_areas(void);
  584. #ifdef CONFIG_SHMEM
  585. int shmem_lock(struct file *file, int lock, struct user_struct *user);
  586. #else
  587. static inline int shmem_lock(struct file *file, int lock,
  588. struct user_struct *user)
  589. {
  590. return 0;
  591. }
  592. #endif
  593. struct file *shmem_file_setup(char *name, loff_t size, unsigned long flags);
  594. int shmem_zero_setup(struct vm_area_struct *);
  595. #ifndef CONFIG_MMU
  596. extern unsigned long shmem_get_unmapped_area(struct file *file,
  597. unsigned long addr,
  598. unsigned long len,
  599. unsigned long pgoff,
  600. unsigned long flags);
  601. #endif
  602. extern int can_do_mlock(void);
  603. extern int user_shm_lock(size_t, struct user_struct *);
  604. extern void user_shm_unlock(size_t, struct user_struct *);
  605. /*
  606. * Parameter block passed down to zap_pte_range in exceptional cases.
  607. */
  608. struct zap_details {
  609. struct vm_area_struct *nonlinear_vma; /* Check page->index if set */
  610. struct address_space *check_mapping; /* Check page->mapping if set */
  611. pgoff_t first_index; /* Lowest page->index to unmap */
  612. pgoff_t last_index; /* Highest page->index to unmap */
  613. spinlock_t *i_mmap_lock; /* For unmap_mapping_range: */
  614. unsigned long truncate_count; /* Compare vm_truncate_count */
  615. };
  616. struct page *vm_normal_page(struct vm_area_struct *, unsigned long, pte_t);
  617. unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
  618. unsigned long size, struct zap_details *);
  619. unsigned long unmap_vmas(struct mmu_gather **tlb,
  620. struct vm_area_struct *start_vma, unsigned long start_addr,
  621. unsigned long end_addr, unsigned long *nr_accounted,
  622. struct zap_details *);
  623. /**
  624. * mm_walk - callbacks for walk_page_range
  625. * @pgd_entry: if set, called for each non-empty PGD (top-level) entry
  626. * @pud_entry: if set, called for each non-empty PUD (2nd-level) entry
  627. * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry
  628. * @pte_entry: if set, called for each non-empty PTE (4th-level) entry
  629. * @pte_hole: if set, called for each hole at all levels
  630. *
  631. * (see walk_page_range for more details)
  632. */
  633. struct mm_walk {
  634. int (*pgd_entry)(pgd_t *, unsigned long, unsigned long, void *);
  635. int (*pud_entry)(pud_t *, unsigned long, unsigned long, void *);
  636. int (*pmd_entry)(pmd_t *, unsigned long, unsigned long, void *);
  637. int (*pte_entry)(pte_t *, unsigned long, unsigned long, void *);
  638. int (*pte_hole)(unsigned long, unsigned long, void *);
  639. };
  640. int walk_page_range(const struct mm_struct *, unsigned long addr,
  641. unsigned long end, const struct mm_walk *walk,
  642. void *private);
  643. void free_pgd_range(struct mmu_gather **tlb, unsigned long addr,
  644. unsigned long end, unsigned long floor, unsigned long ceiling);
  645. void free_pgtables(struct mmu_gather **tlb, struct vm_area_struct *start_vma,
  646. unsigned long floor, unsigned long ceiling);
  647. int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
  648. struct vm_area_struct *vma);
  649. void unmap_mapping_range(struct address_space *mapping,
  650. loff_t const holebegin, loff_t const holelen, int even_cows);
  651. static inline void unmap_shared_mapping_range(struct address_space *mapping,
  652. loff_t const holebegin, loff_t const holelen)
  653. {
  654. unmap_mapping_range(mapping, holebegin, holelen, 0);
  655. }
  656. extern int vmtruncate(struct inode * inode, loff_t offset);
  657. extern int vmtruncate_range(struct inode * inode, loff_t offset, loff_t end);
  658. #ifdef CONFIG_MMU
  659. extern int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
  660. unsigned long address, int write_access);
  661. #else
  662. static inline int handle_mm_fault(struct mm_struct *mm,
  663. struct vm_area_struct *vma, unsigned long address,
  664. int write_access)
  665. {
  666. /* should never happen if there's no MMU */
  667. BUG();
  668. return VM_FAULT_SIGBUS;
  669. }
  670. #endif
  671. extern int make_pages_present(unsigned long addr, unsigned long end);
  672. extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write);
  673. int get_user_pages(struct task_struct *tsk, struct mm_struct *mm, unsigned long start,
  674. int len, int write, int force, struct page **pages, struct vm_area_struct **vmas);
  675. void print_bad_pte(struct vm_area_struct *, pte_t, unsigned long);
  676. extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
  677. extern void do_invalidatepage(struct page *page, unsigned long offset);
  678. int __set_page_dirty_nobuffers(struct page *page);
  679. int __set_page_dirty_no_writeback(struct page *page);
  680. int redirty_page_for_writepage(struct writeback_control *wbc,
  681. struct page *page);
  682. int set_page_dirty(struct page *page);
  683. int set_page_dirty_lock(struct page *page);
  684. int clear_page_dirty_for_io(struct page *page);
  685. extern unsigned long move_page_tables(struct vm_area_struct *vma,
  686. unsigned long old_addr, struct vm_area_struct *new_vma,
  687. unsigned long new_addr, unsigned long len);
  688. extern unsigned long do_mremap(unsigned long addr,
  689. unsigned long old_len, unsigned long new_len,
  690. unsigned long flags, unsigned long new_addr);
  691. extern int mprotect_fixup(struct vm_area_struct *vma,
  692. struct vm_area_struct **pprev, unsigned long start,
  693. unsigned long end, unsigned long newflags);
  694. /*
  695. * A callback you can register to apply pressure to ageable caches.
  696. *
  697. * 'shrink' is passed a count 'nr_to_scan' and a 'gfpmask'. It should
  698. * look through the least-recently-used 'nr_to_scan' entries and
  699. * attempt to free them up. It should return the number of objects
  700. * which remain in the cache. If it returns -1, it means it cannot do
  701. * any scanning at this time (eg. there is a risk of deadlock).
  702. *
  703. * The 'gfpmask' refers to the allocation we are currently trying to
  704. * fulfil.
  705. *
  706. * Note that 'shrink' will be passed nr_to_scan == 0 when the VM is
  707. * querying the cache size, so a fastpath for that case is appropriate.
  708. */
  709. struct shrinker {
  710. int (*shrink)(int nr_to_scan, gfp_t gfp_mask);
  711. int seeks; /* seeks to recreate an obj */
  712. /* These are for internal use */
  713. struct list_head list;
  714. long nr; /* objs pending delete */
  715. };
  716. #define DEFAULT_SEEKS 2 /* A good number if you don't know better. */
  717. extern void register_shrinker(struct shrinker *);
  718. extern void unregister_shrinker(struct shrinker *);
  719. int vma_wants_writenotify(struct vm_area_struct *vma);
  720. extern pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr, spinlock_t **ptl);
  721. #ifdef __PAGETABLE_PUD_FOLDED
  722. static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd,
  723. unsigned long address)
  724. {
  725. return 0;
  726. }
  727. #else
  728. int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
  729. #endif
  730. #ifdef __PAGETABLE_PMD_FOLDED
  731. static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
  732. unsigned long address)
  733. {
  734. return 0;
  735. }
  736. #else
  737. int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
  738. #endif
  739. int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address);
  740. int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
  741. /*
  742. * The following ifdef needed to get the 4level-fixup.h header to work.
  743. * Remove it when 4level-fixup.h has been removed.
  744. */
  745. #if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
  746. static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
  747. {
  748. return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))?
  749. NULL: pud_offset(pgd, address);
  750. }
  751. static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
  752. {
  753. return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
  754. NULL: pmd_offset(pud, address);
  755. }
  756. #endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
  757. #if NR_CPUS >= CONFIG_SPLIT_PTLOCK_CPUS
  758. /*
  759. * We tuck a spinlock to guard each pagetable page into its struct page,
  760. * at page->private, with BUILD_BUG_ON to make sure that this will not
  761. * overflow into the next struct page (as it might with DEBUG_SPINLOCK).
  762. * When freeing, reset page->mapping so free_pages_check won't complain.
  763. */
  764. #define __pte_lockptr(page) &((page)->ptl)
  765. #define pte_lock_init(_page) do { \
  766. spin_lock_init(__pte_lockptr(_page)); \
  767. } while (0)
  768. #define pte_lock_deinit(page) ((page)->mapping = NULL)
  769. #define pte_lockptr(mm, pmd) ({(void)(mm); __pte_lockptr(pmd_page(*(pmd)));})
  770. #else
  771. /*
  772. * We use mm->page_table_lock to guard all pagetable pages of the mm.
  773. */
  774. #define pte_lock_init(page) do {} while (0)
  775. #define pte_lock_deinit(page) do {} while (0)
  776. #define pte_lockptr(mm, pmd) ({(void)(pmd); &(mm)->page_table_lock;})
  777. #endif /* NR_CPUS < CONFIG_SPLIT_PTLOCK_CPUS */
  778. static inline void pgtable_page_ctor(struct page *page)
  779. {
  780. pte_lock_init(page);
  781. inc_zone_page_state(page, NR_PAGETABLE);
  782. }
  783. static inline void pgtable_page_dtor(struct page *page)
  784. {
  785. pte_lock_deinit(page);
  786. dec_zone_page_state(page, NR_PAGETABLE);
  787. }
  788. #define pte_offset_map_lock(mm, pmd, address, ptlp) \
  789. ({ \
  790. spinlock_t *__ptl = pte_lockptr(mm, pmd); \
  791. pte_t *__pte = pte_offset_map(pmd, address); \
  792. *(ptlp) = __ptl; \
  793. spin_lock(__ptl); \
  794. __pte; \
  795. })
  796. #define pte_unmap_unlock(pte, ptl) do { \
  797. spin_unlock(ptl); \
  798. pte_unmap(pte); \
  799. } while (0)
  800. #define pte_alloc_map(mm, pmd, address) \
  801. ((unlikely(!pmd_present(*(pmd))) && __pte_alloc(mm, pmd, address))? \
  802. NULL: pte_offset_map(pmd, address))
  803. #define pte_alloc_map_lock(mm, pmd, address, ptlp) \
  804. ((unlikely(!pmd_present(*(pmd))) && __pte_alloc(mm, pmd, address))? \
  805. NULL: pte_offset_map_lock(mm, pmd, address, ptlp))
  806. #define pte_alloc_kernel(pmd, address) \
  807. ((unlikely(!pmd_present(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
  808. NULL: pte_offset_kernel(pmd, address))
  809. extern void free_area_init(unsigned long * zones_size);
  810. extern void free_area_init_node(int nid, pg_data_t *pgdat,
  811. unsigned long * zones_size, unsigned long zone_start_pfn,
  812. unsigned long *zholes_size);
  813. #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
  814. /*
  815. * With CONFIG_ARCH_POPULATES_NODE_MAP set, an architecture may initialise its
  816. * zones, allocate the backing mem_map and account for memory holes in a more
  817. * architecture independent manner. This is a substitute for creating the
  818. * zone_sizes[] and zholes_size[] arrays and passing them to
  819. * free_area_init_node()
  820. *
  821. * An architecture is expected to register range of page frames backed by
  822. * physical memory with add_active_range() before calling
  823. * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
  824. * usage, an architecture is expected to do something like
  825. *
  826. * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
  827. * max_highmem_pfn};
  828. * for_each_valid_physical_page_range()
  829. * add_active_range(node_id, start_pfn, end_pfn)
  830. * free_area_init_nodes(max_zone_pfns);
  831. *
  832. * If the architecture guarantees that there are no holes in the ranges
  833. * registered with add_active_range(), free_bootmem_active_regions()
  834. * will call free_bootmem_node() for each registered physical page range.
  835. * Similarly sparse_memory_present_with_active_regions() calls
  836. * memory_present() for each range when SPARSEMEM is enabled.
  837. *
  838. * See mm/page_alloc.c for more information on each function exposed by
  839. * CONFIG_ARCH_POPULATES_NODE_MAP
  840. */
  841. extern void free_area_init_nodes(unsigned long *max_zone_pfn);
  842. extern void add_active_range(unsigned int nid, unsigned long start_pfn,
  843. unsigned long end_pfn);
  844. extern void shrink_active_range(unsigned int nid, unsigned long old_end_pfn,
  845. unsigned long new_end_pfn);
  846. extern void push_node_boundaries(unsigned int nid, unsigned long start_pfn,
  847. unsigned long end_pfn);
  848. extern void remove_all_active_ranges(void);
  849. extern unsigned long absent_pages_in_range(unsigned long start_pfn,
  850. unsigned long end_pfn);
  851. extern void get_pfn_range_for_nid(unsigned int nid,
  852. unsigned long *start_pfn, unsigned long *end_pfn);
  853. extern unsigned long find_min_pfn_with_active_regions(void);
  854. extern unsigned long find_max_pfn_with_active_regions(void);
  855. extern void free_bootmem_with_active_regions(int nid,
  856. unsigned long max_low_pfn);
  857. extern void sparse_memory_present_with_active_regions(int nid);
  858. #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
  859. extern int early_pfn_to_nid(unsigned long pfn);
  860. #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
  861. #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
  862. extern void set_dma_reserve(unsigned long new_dma_reserve);
  863. extern void memmap_init_zone(unsigned long, int, unsigned long,
  864. unsigned long, enum memmap_context);
  865. extern void setup_per_zone_pages_min(void);
  866. extern void mem_init(void);
  867. extern void show_mem(void);
  868. extern void si_meminfo(struct sysinfo * val);
  869. extern void si_meminfo_node(struct sysinfo *val, int nid);
  870. #ifdef CONFIG_NUMA
  871. extern void setup_per_cpu_pageset(void);
  872. #else
  873. static inline void setup_per_cpu_pageset(void) {}
  874. #endif
  875. /* prio_tree.c */
  876. void vma_prio_tree_add(struct vm_area_struct *, struct vm_area_struct *old);
  877. void vma_prio_tree_insert(struct vm_area_struct *, struct prio_tree_root *);
  878. void vma_prio_tree_remove(struct vm_area_struct *, struct prio_tree_root *);
  879. struct vm_area_struct *vma_prio_tree_next(struct vm_area_struct *vma,
  880. struct prio_tree_iter *iter);
  881. #define vma_prio_tree_foreach(vma, iter, root, begin, end) \
  882. for (prio_tree_iter_init(iter, root, begin, end), vma = NULL; \
  883. (vma = vma_prio_tree_next(vma, iter)); )
  884. static inline void vma_nonlinear_insert(struct vm_area_struct *vma,
  885. struct list_head *list)
  886. {
  887. vma->shared.vm_set.parent = NULL;
  888. list_add_tail(&vma->shared.vm_set.list, list);
  889. }
  890. /* mmap.c */
  891. extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
  892. extern void vma_adjust(struct vm_area_struct *vma, unsigned long start,
  893. unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert);
  894. extern struct vm_area_struct *vma_merge(struct mm_struct *,
  895. struct vm_area_struct *prev, unsigned long addr, unsigned long end,
  896. unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
  897. struct mempolicy *);
  898. extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
  899. extern int split_vma(struct mm_struct *,
  900. struct vm_area_struct *, unsigned long addr, int new_below);
  901. extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
  902. extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
  903. struct rb_node **, struct rb_node *);
  904. extern void unlink_file_vma(struct vm_area_struct *);
  905. extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
  906. unsigned long addr, unsigned long len, pgoff_t pgoff);
  907. extern void exit_mmap(struct mm_struct *);
  908. extern int may_expand_vm(struct mm_struct *mm, unsigned long npages);
  909. extern int install_special_mapping(struct mm_struct *mm,
  910. unsigned long addr, unsigned long len,
  911. unsigned long flags, struct page **pages);
  912. extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
  913. extern unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
  914. unsigned long len, unsigned long prot,
  915. unsigned long flag, unsigned long pgoff);
  916. extern unsigned long mmap_region(struct file *file, unsigned long addr,
  917. unsigned long len, unsigned long flags,
  918. unsigned int vm_flags, unsigned long pgoff,
  919. int accountable);
  920. static inline unsigned long do_mmap(struct file *file, unsigned long addr,
  921. unsigned long len, unsigned long prot,
  922. unsigned long flag, unsigned long offset)
  923. {
  924. unsigned long ret = -EINVAL;
  925. if ((offset + PAGE_ALIGN(len)) < offset)
  926. goto out;
  927. if (!(offset & ~PAGE_MASK))
  928. ret = do_mmap_pgoff(file, addr, len, prot, flag, offset >> PAGE_SHIFT);
  929. out:
  930. return ret;
  931. }
  932. extern int do_munmap(struct mm_struct *, unsigned long, size_t);
  933. extern unsigned long do_brk(unsigned long, unsigned long);
  934. /* filemap.c */
  935. extern unsigned long page_unuse(struct page *);
  936. extern void truncate_inode_pages(struct address_space *, loff_t);
  937. extern void truncate_inode_pages_range(struct address_space *,
  938. loff_t lstart, loff_t lend);
  939. /* generic vm_area_ops exported for stackable file systems */
  940. extern int filemap_fault(struct vm_area_struct *, struct vm_fault *);
  941. /* mm/page-writeback.c */
  942. int write_one_page(struct page *page, int wait);
  943. /* readahead.c */
  944. #define VM_MAX_READAHEAD 128 /* kbytes */
  945. #define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */
  946. int do_page_cache_readahead(struct address_space *mapping, struct file *filp,
  947. pgoff_t offset, unsigned long nr_to_read);
  948. int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
  949. pgoff_t offset, unsigned long nr_to_read);
  950. void page_cache_sync_readahead(struct address_space *mapping,
  951. struct file_ra_state *ra,
  952. struct file *filp,
  953. pgoff_t offset,
  954. unsigned long size);
  955. void page_cache_async_readahead(struct address_space *mapping,
  956. struct file_ra_state *ra,
  957. struct file *filp,
  958. struct page *pg,
  959. pgoff_t offset,
  960. unsigned long size);
  961. unsigned long max_sane_readahead(unsigned long nr);
  962. /* Do stack extension */
  963. extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
  964. #ifdef CONFIG_IA64
  965. extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
  966. #endif
  967. extern int expand_stack_downwards(struct vm_area_struct *vma,
  968. unsigned long address);
  969. /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
  970. extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
  971. extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
  972. struct vm_area_struct **pprev);
  973. /* Look up the first VMA which intersects the interval start_addr..end_addr-1,
  974. NULL if none. Assume start_addr < end_addr. */
  975. static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
  976. {
  977. struct vm_area_struct * vma = find_vma(mm,start_addr);
  978. if (vma && end_addr <= vma->vm_start)
  979. vma = NULL;
  980. return vma;
  981. }
  982. static inline unsigned long vma_pages(struct vm_area_struct *vma)
  983. {
  984. return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
  985. }
  986. pgprot_t vm_get_page_prot(unsigned long vm_flags);
  987. struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
  988. int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
  989. unsigned long pfn, unsigned long size, pgprot_t);
  990. int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
  991. int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
  992. unsigned long pfn);
  993. struct page *follow_page(struct vm_area_struct *, unsigned long address,
  994. unsigned int foll_flags);
  995. #define FOLL_WRITE 0x01 /* check pte is writable */
  996. #define FOLL_TOUCH 0x02 /* mark page accessed */
  997. #define FOLL_GET 0x04 /* do get_page on page */
  998. #define FOLL_ANON 0x08 /* give ZERO_PAGE if no pgtable */
  999. typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr,
  1000. void *data);
  1001. extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
  1002. unsigned long size, pte_fn_t fn, void *data);
  1003. #ifdef CONFIG_PROC_FS
  1004. void vm_stat_account(struct mm_struct *, unsigned long, struct file *, long);
  1005. #else
  1006. static inline void vm_stat_account(struct mm_struct *mm,
  1007. unsigned long flags, struct file *file, long pages)
  1008. {
  1009. }
  1010. #endif /* CONFIG_PROC_FS */
  1011. #ifdef CONFIG_DEBUG_PAGEALLOC
  1012. extern int debug_pagealloc_enabled;
  1013. extern void kernel_map_pages(struct page *page, int numpages, int enable);
  1014. static inline void enable_debug_pagealloc(void)
  1015. {
  1016. debug_pagealloc_enabled = 1;
  1017. }
  1018. #ifdef CONFIG_HIBERNATION
  1019. extern bool kernel_page_present(struct page *page);
  1020. #endif /* CONFIG_HIBERNATION */
  1021. #else
  1022. static inline void
  1023. kernel_map_pages(struct page *page, int numpages, int enable) {}
  1024. static inline void enable_debug_pagealloc(void)
  1025. {
  1026. }
  1027. #ifdef CONFIG_HIBERNATION
  1028. static inline bool kernel_page_present(struct page *page) { return true; }
  1029. #endif /* CONFIG_HIBERNATION */
  1030. #endif
  1031. extern struct vm_area_struct *get_gate_vma(struct task_struct *tsk);
  1032. #ifdef __HAVE_ARCH_GATE_AREA
  1033. int in_gate_area_no_task(unsigned long addr);
  1034. int in_gate_area(struct task_struct *task, unsigned long addr);
  1035. #else
  1036. int in_gate_area_no_task(unsigned long addr);
  1037. #define in_gate_area(task, addr) ({(void)task; in_gate_area_no_task(addr);})
  1038. #endif /* __HAVE_ARCH_GATE_AREA */
  1039. int drop_caches_sysctl_handler(struct ctl_table *, int, struct file *,
  1040. void __user *, size_t *, loff_t *);
  1041. unsigned long shrink_slab(unsigned long scanned, gfp_t gfp_mask,
  1042. unsigned long lru_pages);
  1043. void drop_pagecache(void);
  1044. void drop_slab(void);
  1045. #ifndef CONFIG_MMU
  1046. #define randomize_va_space 0
  1047. #else
  1048. extern int randomize_va_space;
  1049. #endif
  1050. const char * arch_vma_name(struct vm_area_struct *vma);
  1051. void print_vma_addr(char *prefix, unsigned long rip);
  1052. struct page *sparse_mem_map_populate(unsigned long pnum, int nid);
  1053. pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
  1054. pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node);
  1055. pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
  1056. pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
  1057. void *vmemmap_alloc_block(unsigned long size, int node);
  1058. void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
  1059. int vmemmap_populate_basepages(struct page *start_page,
  1060. unsigned long pages, int node);
  1061. int vmemmap_populate(struct page *start_page, unsigned long pages, int node);
  1062. void vmemmap_populate_print_last(void);
  1063. #endif /* __KERNEL__ */
  1064. #endif /* _LINUX_MM_H */