md.c 98 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115
  1. /*
  2. md.c : Multiple Devices driver for Linux
  3. Copyright (C) 1998, 1999, 2000 Ingo Molnar
  4. completely rewritten, based on the MD driver code from Marc Zyngier
  5. Changes:
  6. - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
  7. - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
  8. - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
  9. - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
  10. - kmod support by: Cyrus Durgin
  11. - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
  12. - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
  13. - lots of fixes and improvements to the RAID1/RAID5 and generic
  14. RAID code (such as request based resynchronization):
  15. Neil Brown <neilb@cse.unsw.edu.au>.
  16. - persistent bitmap code
  17. Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
  18. This program is free software; you can redistribute it and/or modify
  19. it under the terms of the GNU General Public License as published by
  20. the Free Software Foundation; either version 2, or (at your option)
  21. any later version.
  22. You should have received a copy of the GNU General Public License
  23. (for example /usr/src/linux/COPYING); if not, write to the Free
  24. Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  25. */
  26. #include <linux/module.h>
  27. #include <linux/config.h>
  28. #include <linux/linkage.h>
  29. #include <linux/raid/md.h>
  30. #include <linux/raid/bitmap.h>
  31. #include <linux/sysctl.h>
  32. #include <linux/devfs_fs_kernel.h>
  33. #include <linux/buffer_head.h> /* for invalidate_bdev */
  34. #include <linux/suspend.h>
  35. #include <linux/init.h>
  36. #include <linux/file.h>
  37. #ifdef CONFIG_KMOD
  38. #include <linux/kmod.h>
  39. #endif
  40. #include <asm/unaligned.h>
  41. #define MAJOR_NR MD_MAJOR
  42. #define MD_DRIVER
  43. /* 63 partitions with the alternate major number (mdp) */
  44. #define MdpMinorShift 6
  45. #define DEBUG 0
  46. #define dprintk(x...) ((void)(DEBUG && printk(x)))
  47. #ifndef MODULE
  48. static void autostart_arrays (int part);
  49. #endif
  50. static mdk_personality_t *pers[MAX_PERSONALITY];
  51. static DEFINE_SPINLOCK(pers_lock);
  52. /*
  53. * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
  54. * is 1000 KB/sec, so the extra system load does not show up that much.
  55. * Increase it if you want to have more _guaranteed_ speed. Note that
  56. * the RAID driver will use the maximum available bandwith if the IO
  57. * subsystem is idle. There is also an 'absolute maximum' reconstruction
  58. * speed limit - in case reconstruction slows down your system despite
  59. * idle IO detection.
  60. *
  61. * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
  62. */
  63. static int sysctl_speed_limit_min = 1000;
  64. static int sysctl_speed_limit_max = 200000;
  65. static struct ctl_table_header *raid_table_header;
  66. static ctl_table raid_table[] = {
  67. {
  68. .ctl_name = DEV_RAID_SPEED_LIMIT_MIN,
  69. .procname = "speed_limit_min",
  70. .data = &sysctl_speed_limit_min,
  71. .maxlen = sizeof(int),
  72. .mode = 0644,
  73. .proc_handler = &proc_dointvec,
  74. },
  75. {
  76. .ctl_name = DEV_RAID_SPEED_LIMIT_MAX,
  77. .procname = "speed_limit_max",
  78. .data = &sysctl_speed_limit_max,
  79. .maxlen = sizeof(int),
  80. .mode = 0644,
  81. .proc_handler = &proc_dointvec,
  82. },
  83. { .ctl_name = 0 }
  84. };
  85. static ctl_table raid_dir_table[] = {
  86. {
  87. .ctl_name = DEV_RAID,
  88. .procname = "raid",
  89. .maxlen = 0,
  90. .mode = 0555,
  91. .child = raid_table,
  92. },
  93. { .ctl_name = 0 }
  94. };
  95. static ctl_table raid_root_table[] = {
  96. {
  97. .ctl_name = CTL_DEV,
  98. .procname = "dev",
  99. .maxlen = 0,
  100. .mode = 0555,
  101. .child = raid_dir_table,
  102. },
  103. { .ctl_name = 0 }
  104. };
  105. static struct block_device_operations md_fops;
  106. /*
  107. * Enables to iterate over all existing md arrays
  108. * all_mddevs_lock protects this list.
  109. */
  110. static LIST_HEAD(all_mddevs);
  111. static DEFINE_SPINLOCK(all_mddevs_lock);
  112. /*
  113. * iterates through all used mddevs in the system.
  114. * We take care to grab the all_mddevs_lock whenever navigating
  115. * the list, and to always hold a refcount when unlocked.
  116. * Any code which breaks out of this loop while own
  117. * a reference to the current mddev and must mddev_put it.
  118. */
  119. #define ITERATE_MDDEV(mddev,tmp) \
  120. \
  121. for (({ spin_lock(&all_mddevs_lock); \
  122. tmp = all_mddevs.next; \
  123. mddev = NULL;}); \
  124. ({ if (tmp != &all_mddevs) \
  125. mddev_get(list_entry(tmp, mddev_t, all_mddevs));\
  126. spin_unlock(&all_mddevs_lock); \
  127. if (mddev) mddev_put(mddev); \
  128. mddev = list_entry(tmp, mddev_t, all_mddevs); \
  129. tmp != &all_mddevs;}); \
  130. ({ spin_lock(&all_mddevs_lock); \
  131. tmp = tmp->next;}) \
  132. )
  133. static int md_fail_request (request_queue_t *q, struct bio *bio)
  134. {
  135. bio_io_error(bio, bio->bi_size);
  136. return 0;
  137. }
  138. static inline mddev_t *mddev_get(mddev_t *mddev)
  139. {
  140. atomic_inc(&mddev->active);
  141. return mddev;
  142. }
  143. static void mddev_put(mddev_t *mddev)
  144. {
  145. if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
  146. return;
  147. if (!mddev->raid_disks && list_empty(&mddev->disks)) {
  148. list_del(&mddev->all_mddevs);
  149. blk_put_queue(mddev->queue);
  150. kfree(mddev);
  151. }
  152. spin_unlock(&all_mddevs_lock);
  153. }
  154. static mddev_t * mddev_find(dev_t unit)
  155. {
  156. mddev_t *mddev, *new = NULL;
  157. retry:
  158. spin_lock(&all_mddevs_lock);
  159. list_for_each_entry(mddev, &all_mddevs, all_mddevs)
  160. if (mddev->unit == unit) {
  161. mddev_get(mddev);
  162. spin_unlock(&all_mddevs_lock);
  163. kfree(new);
  164. return mddev;
  165. }
  166. if (new) {
  167. list_add(&new->all_mddevs, &all_mddevs);
  168. spin_unlock(&all_mddevs_lock);
  169. return new;
  170. }
  171. spin_unlock(&all_mddevs_lock);
  172. new = (mddev_t *) kmalloc(sizeof(*new), GFP_KERNEL);
  173. if (!new)
  174. return NULL;
  175. memset(new, 0, sizeof(*new));
  176. new->unit = unit;
  177. if (MAJOR(unit) == MD_MAJOR)
  178. new->md_minor = MINOR(unit);
  179. else
  180. new->md_minor = MINOR(unit) >> MdpMinorShift;
  181. init_MUTEX(&new->reconfig_sem);
  182. INIT_LIST_HEAD(&new->disks);
  183. INIT_LIST_HEAD(&new->all_mddevs);
  184. init_timer(&new->safemode_timer);
  185. atomic_set(&new->active, 1);
  186. spin_lock_init(&new->write_lock);
  187. init_waitqueue_head(&new->sb_wait);
  188. new->queue = blk_alloc_queue(GFP_KERNEL);
  189. if (!new->queue) {
  190. kfree(new);
  191. return NULL;
  192. }
  193. blk_queue_make_request(new->queue, md_fail_request);
  194. goto retry;
  195. }
  196. static inline int mddev_lock(mddev_t * mddev)
  197. {
  198. return down_interruptible(&mddev->reconfig_sem);
  199. }
  200. static inline void mddev_lock_uninterruptible(mddev_t * mddev)
  201. {
  202. down(&mddev->reconfig_sem);
  203. }
  204. static inline int mddev_trylock(mddev_t * mddev)
  205. {
  206. return down_trylock(&mddev->reconfig_sem);
  207. }
  208. static inline void mddev_unlock(mddev_t * mddev)
  209. {
  210. up(&mddev->reconfig_sem);
  211. md_wakeup_thread(mddev->thread);
  212. }
  213. mdk_rdev_t * find_rdev_nr(mddev_t *mddev, int nr)
  214. {
  215. mdk_rdev_t * rdev;
  216. struct list_head *tmp;
  217. ITERATE_RDEV(mddev,rdev,tmp) {
  218. if (rdev->desc_nr == nr)
  219. return rdev;
  220. }
  221. return NULL;
  222. }
  223. static mdk_rdev_t * find_rdev(mddev_t * mddev, dev_t dev)
  224. {
  225. struct list_head *tmp;
  226. mdk_rdev_t *rdev;
  227. ITERATE_RDEV(mddev,rdev,tmp) {
  228. if (rdev->bdev->bd_dev == dev)
  229. return rdev;
  230. }
  231. return NULL;
  232. }
  233. static inline sector_t calc_dev_sboffset(struct block_device *bdev)
  234. {
  235. sector_t size = bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
  236. return MD_NEW_SIZE_BLOCKS(size);
  237. }
  238. static sector_t calc_dev_size(mdk_rdev_t *rdev, unsigned chunk_size)
  239. {
  240. sector_t size;
  241. size = rdev->sb_offset;
  242. if (chunk_size)
  243. size &= ~((sector_t)chunk_size/1024 - 1);
  244. return size;
  245. }
  246. static int alloc_disk_sb(mdk_rdev_t * rdev)
  247. {
  248. if (rdev->sb_page)
  249. MD_BUG();
  250. rdev->sb_page = alloc_page(GFP_KERNEL);
  251. if (!rdev->sb_page) {
  252. printk(KERN_ALERT "md: out of memory.\n");
  253. return -EINVAL;
  254. }
  255. return 0;
  256. }
  257. static void free_disk_sb(mdk_rdev_t * rdev)
  258. {
  259. if (rdev->sb_page) {
  260. page_cache_release(rdev->sb_page);
  261. rdev->sb_loaded = 0;
  262. rdev->sb_page = NULL;
  263. rdev->sb_offset = 0;
  264. rdev->size = 0;
  265. }
  266. }
  267. static int super_written(struct bio *bio, unsigned int bytes_done, int error)
  268. {
  269. mdk_rdev_t *rdev = bio->bi_private;
  270. if (bio->bi_size)
  271. return 1;
  272. if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags))
  273. md_error(rdev->mddev, rdev);
  274. if (atomic_dec_and_test(&rdev->mddev->pending_writes))
  275. wake_up(&rdev->mddev->sb_wait);
  276. bio_put(bio);
  277. return 0;
  278. }
  279. void md_super_write(mddev_t *mddev, mdk_rdev_t *rdev,
  280. sector_t sector, int size, struct page *page)
  281. {
  282. /* write first size bytes of page to sector of rdev
  283. * Increment mddev->pending_writes before returning
  284. * and decrement it on completion, waking up sb_wait
  285. * if zero is reached.
  286. * If an error occurred, call md_error
  287. */
  288. struct bio *bio = bio_alloc(GFP_NOIO, 1);
  289. bio->bi_bdev = rdev->bdev;
  290. bio->bi_sector = sector;
  291. bio_add_page(bio, page, size, 0);
  292. bio->bi_private = rdev;
  293. bio->bi_end_io = super_written;
  294. atomic_inc(&mddev->pending_writes);
  295. submit_bio((1<<BIO_RW)|(1<<BIO_RW_SYNC), bio);
  296. }
  297. static int bi_complete(struct bio *bio, unsigned int bytes_done, int error)
  298. {
  299. if (bio->bi_size)
  300. return 1;
  301. complete((struct completion*)bio->bi_private);
  302. return 0;
  303. }
  304. int sync_page_io(struct block_device *bdev, sector_t sector, int size,
  305. struct page *page, int rw)
  306. {
  307. struct bio *bio = bio_alloc(GFP_NOIO, 1);
  308. struct completion event;
  309. int ret;
  310. rw |= (1 << BIO_RW_SYNC);
  311. bio->bi_bdev = bdev;
  312. bio->bi_sector = sector;
  313. bio_add_page(bio, page, size, 0);
  314. init_completion(&event);
  315. bio->bi_private = &event;
  316. bio->bi_end_io = bi_complete;
  317. submit_bio(rw, bio);
  318. wait_for_completion(&event);
  319. ret = test_bit(BIO_UPTODATE, &bio->bi_flags);
  320. bio_put(bio);
  321. return ret;
  322. }
  323. static int read_disk_sb(mdk_rdev_t * rdev, int size)
  324. {
  325. char b[BDEVNAME_SIZE];
  326. if (!rdev->sb_page) {
  327. MD_BUG();
  328. return -EINVAL;
  329. }
  330. if (rdev->sb_loaded)
  331. return 0;
  332. if (!sync_page_io(rdev->bdev, rdev->sb_offset<<1, size, rdev->sb_page, READ))
  333. goto fail;
  334. rdev->sb_loaded = 1;
  335. return 0;
  336. fail:
  337. printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
  338. bdevname(rdev->bdev,b));
  339. return -EINVAL;
  340. }
  341. static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
  342. {
  343. if ( (sb1->set_uuid0 == sb2->set_uuid0) &&
  344. (sb1->set_uuid1 == sb2->set_uuid1) &&
  345. (sb1->set_uuid2 == sb2->set_uuid2) &&
  346. (sb1->set_uuid3 == sb2->set_uuid3))
  347. return 1;
  348. return 0;
  349. }
  350. static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
  351. {
  352. int ret;
  353. mdp_super_t *tmp1, *tmp2;
  354. tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
  355. tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
  356. if (!tmp1 || !tmp2) {
  357. ret = 0;
  358. printk(KERN_INFO "md.c: sb1 is not equal to sb2!\n");
  359. goto abort;
  360. }
  361. *tmp1 = *sb1;
  362. *tmp2 = *sb2;
  363. /*
  364. * nr_disks is not constant
  365. */
  366. tmp1->nr_disks = 0;
  367. tmp2->nr_disks = 0;
  368. if (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4))
  369. ret = 0;
  370. else
  371. ret = 1;
  372. abort:
  373. kfree(tmp1);
  374. kfree(tmp2);
  375. return ret;
  376. }
  377. static unsigned int calc_sb_csum(mdp_super_t * sb)
  378. {
  379. unsigned int disk_csum, csum;
  380. disk_csum = sb->sb_csum;
  381. sb->sb_csum = 0;
  382. csum = csum_partial((void *)sb, MD_SB_BYTES, 0);
  383. sb->sb_csum = disk_csum;
  384. return csum;
  385. }
  386. /*
  387. * Handle superblock details.
  388. * We want to be able to handle multiple superblock formats
  389. * so we have a common interface to them all, and an array of
  390. * different handlers.
  391. * We rely on user-space to write the initial superblock, and support
  392. * reading and updating of superblocks.
  393. * Interface methods are:
  394. * int load_super(mdk_rdev_t *dev, mdk_rdev_t *refdev, int minor_version)
  395. * loads and validates a superblock on dev.
  396. * if refdev != NULL, compare superblocks on both devices
  397. * Return:
  398. * 0 - dev has a superblock that is compatible with refdev
  399. * 1 - dev has a superblock that is compatible and newer than refdev
  400. * so dev should be used as the refdev in future
  401. * -EINVAL superblock incompatible or invalid
  402. * -othererror e.g. -EIO
  403. *
  404. * int validate_super(mddev_t *mddev, mdk_rdev_t *dev)
  405. * Verify that dev is acceptable into mddev.
  406. * The first time, mddev->raid_disks will be 0, and data from
  407. * dev should be merged in. Subsequent calls check that dev
  408. * is new enough. Return 0 or -EINVAL
  409. *
  410. * void sync_super(mddev_t *mddev, mdk_rdev_t *dev)
  411. * Update the superblock for rdev with data in mddev
  412. * This does not write to disc.
  413. *
  414. */
  415. struct super_type {
  416. char *name;
  417. struct module *owner;
  418. int (*load_super)(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version);
  419. int (*validate_super)(mddev_t *mddev, mdk_rdev_t *rdev);
  420. void (*sync_super)(mddev_t *mddev, mdk_rdev_t *rdev);
  421. };
  422. /*
  423. * load_super for 0.90.0
  424. */
  425. static int super_90_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version)
  426. {
  427. char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
  428. mdp_super_t *sb;
  429. int ret;
  430. sector_t sb_offset;
  431. /*
  432. * Calculate the position of the superblock,
  433. * it's at the end of the disk.
  434. *
  435. * It also happens to be a multiple of 4Kb.
  436. */
  437. sb_offset = calc_dev_sboffset(rdev->bdev);
  438. rdev->sb_offset = sb_offset;
  439. ret = read_disk_sb(rdev, MD_SB_BYTES);
  440. if (ret) return ret;
  441. ret = -EINVAL;
  442. bdevname(rdev->bdev, b);
  443. sb = (mdp_super_t*)page_address(rdev->sb_page);
  444. if (sb->md_magic != MD_SB_MAGIC) {
  445. printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
  446. b);
  447. goto abort;
  448. }
  449. if (sb->major_version != 0 ||
  450. sb->minor_version != 90) {
  451. printk(KERN_WARNING "Bad version number %d.%d on %s\n",
  452. sb->major_version, sb->minor_version,
  453. b);
  454. goto abort;
  455. }
  456. if (sb->raid_disks <= 0)
  457. goto abort;
  458. if (csum_fold(calc_sb_csum(sb)) != csum_fold(sb->sb_csum)) {
  459. printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
  460. b);
  461. goto abort;
  462. }
  463. rdev->preferred_minor = sb->md_minor;
  464. rdev->data_offset = 0;
  465. rdev->sb_size = MD_SB_BYTES;
  466. if (sb->level == LEVEL_MULTIPATH)
  467. rdev->desc_nr = -1;
  468. else
  469. rdev->desc_nr = sb->this_disk.number;
  470. if (refdev == 0)
  471. ret = 1;
  472. else {
  473. __u64 ev1, ev2;
  474. mdp_super_t *refsb = (mdp_super_t*)page_address(refdev->sb_page);
  475. if (!uuid_equal(refsb, sb)) {
  476. printk(KERN_WARNING "md: %s has different UUID to %s\n",
  477. b, bdevname(refdev->bdev,b2));
  478. goto abort;
  479. }
  480. if (!sb_equal(refsb, sb)) {
  481. printk(KERN_WARNING "md: %s has same UUID"
  482. " but different superblock to %s\n",
  483. b, bdevname(refdev->bdev, b2));
  484. goto abort;
  485. }
  486. ev1 = md_event(sb);
  487. ev2 = md_event(refsb);
  488. if (ev1 > ev2)
  489. ret = 1;
  490. else
  491. ret = 0;
  492. }
  493. rdev->size = calc_dev_size(rdev, sb->chunk_size);
  494. abort:
  495. return ret;
  496. }
  497. /*
  498. * validate_super for 0.90.0
  499. */
  500. static int super_90_validate(mddev_t *mddev, mdk_rdev_t *rdev)
  501. {
  502. mdp_disk_t *desc;
  503. mdp_super_t *sb = (mdp_super_t *)page_address(rdev->sb_page);
  504. rdev->raid_disk = -1;
  505. rdev->in_sync = 0;
  506. if (mddev->raid_disks == 0) {
  507. mddev->major_version = 0;
  508. mddev->minor_version = sb->minor_version;
  509. mddev->patch_version = sb->patch_version;
  510. mddev->persistent = ! sb->not_persistent;
  511. mddev->chunk_size = sb->chunk_size;
  512. mddev->ctime = sb->ctime;
  513. mddev->utime = sb->utime;
  514. mddev->level = sb->level;
  515. mddev->layout = sb->layout;
  516. mddev->raid_disks = sb->raid_disks;
  517. mddev->size = sb->size;
  518. mddev->events = md_event(sb);
  519. mddev->bitmap_offset = 0;
  520. mddev->default_bitmap_offset = MD_SB_BYTES >> 9;
  521. if (sb->state & (1<<MD_SB_CLEAN))
  522. mddev->recovery_cp = MaxSector;
  523. else {
  524. if (sb->events_hi == sb->cp_events_hi &&
  525. sb->events_lo == sb->cp_events_lo) {
  526. mddev->recovery_cp = sb->recovery_cp;
  527. } else
  528. mddev->recovery_cp = 0;
  529. }
  530. memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
  531. memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
  532. memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
  533. memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
  534. mddev->max_disks = MD_SB_DISKS;
  535. if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
  536. mddev->bitmap_file == NULL) {
  537. if (mddev->level != 1 && mddev->level != 5) {
  538. /* FIXME use a better test */
  539. printk(KERN_WARNING "md: bitmaps only support for raid1\n");
  540. return -EINVAL;
  541. }
  542. mddev->bitmap_offset = mddev->default_bitmap_offset;
  543. }
  544. } else if (mddev->pers == NULL) {
  545. /* Insist on good event counter while assembling */
  546. __u64 ev1 = md_event(sb);
  547. ++ev1;
  548. if (ev1 < mddev->events)
  549. return -EINVAL;
  550. } else if (mddev->bitmap) {
  551. /* if adding to array with a bitmap, then we can accept an
  552. * older device ... but not too old.
  553. */
  554. __u64 ev1 = md_event(sb);
  555. if (ev1 < mddev->bitmap->events_cleared)
  556. return 0;
  557. } else /* just a hot-add of a new device, leave raid_disk at -1 */
  558. return 0;
  559. if (mddev->level != LEVEL_MULTIPATH) {
  560. rdev->faulty = 0;
  561. rdev->flags = 0;
  562. desc = sb->disks + rdev->desc_nr;
  563. if (desc->state & (1<<MD_DISK_FAULTY))
  564. rdev->faulty = 1;
  565. else if (desc->state & (1<<MD_DISK_SYNC) &&
  566. desc->raid_disk < mddev->raid_disks) {
  567. rdev->in_sync = 1;
  568. rdev->raid_disk = desc->raid_disk;
  569. }
  570. if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
  571. set_bit(WriteMostly, &rdev->flags);
  572. } else /* MULTIPATH are always insync */
  573. rdev->in_sync = 1;
  574. return 0;
  575. }
  576. /*
  577. * sync_super for 0.90.0
  578. */
  579. static void super_90_sync(mddev_t *mddev, mdk_rdev_t *rdev)
  580. {
  581. mdp_super_t *sb;
  582. struct list_head *tmp;
  583. mdk_rdev_t *rdev2;
  584. int next_spare = mddev->raid_disks;
  585. /* make rdev->sb match mddev data..
  586. *
  587. * 1/ zero out disks
  588. * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
  589. * 3/ any empty disks < next_spare become removed
  590. *
  591. * disks[0] gets initialised to REMOVED because
  592. * we cannot be sure from other fields if it has
  593. * been initialised or not.
  594. */
  595. int i;
  596. int active=0, working=0,failed=0,spare=0,nr_disks=0;
  597. sb = (mdp_super_t*)page_address(rdev->sb_page);
  598. memset(sb, 0, sizeof(*sb));
  599. sb->md_magic = MD_SB_MAGIC;
  600. sb->major_version = mddev->major_version;
  601. sb->minor_version = mddev->minor_version;
  602. sb->patch_version = mddev->patch_version;
  603. sb->gvalid_words = 0; /* ignored */
  604. memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
  605. memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
  606. memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
  607. memcpy(&sb->set_uuid3, mddev->uuid+12,4);
  608. sb->ctime = mddev->ctime;
  609. sb->level = mddev->level;
  610. sb->size = mddev->size;
  611. sb->raid_disks = mddev->raid_disks;
  612. sb->md_minor = mddev->md_minor;
  613. sb->not_persistent = !mddev->persistent;
  614. sb->utime = mddev->utime;
  615. sb->state = 0;
  616. sb->events_hi = (mddev->events>>32);
  617. sb->events_lo = (u32)mddev->events;
  618. if (mddev->in_sync)
  619. {
  620. sb->recovery_cp = mddev->recovery_cp;
  621. sb->cp_events_hi = (mddev->events>>32);
  622. sb->cp_events_lo = (u32)mddev->events;
  623. if (mddev->recovery_cp == MaxSector)
  624. sb->state = (1<< MD_SB_CLEAN);
  625. } else
  626. sb->recovery_cp = 0;
  627. sb->layout = mddev->layout;
  628. sb->chunk_size = mddev->chunk_size;
  629. if (mddev->bitmap && mddev->bitmap_file == NULL)
  630. sb->state |= (1<<MD_SB_BITMAP_PRESENT);
  631. sb->disks[0].state = (1<<MD_DISK_REMOVED);
  632. ITERATE_RDEV(mddev,rdev2,tmp) {
  633. mdp_disk_t *d;
  634. if (rdev2->raid_disk >= 0 && rdev2->in_sync && !rdev2->faulty)
  635. rdev2->desc_nr = rdev2->raid_disk;
  636. else
  637. rdev2->desc_nr = next_spare++;
  638. d = &sb->disks[rdev2->desc_nr];
  639. nr_disks++;
  640. d->number = rdev2->desc_nr;
  641. d->major = MAJOR(rdev2->bdev->bd_dev);
  642. d->minor = MINOR(rdev2->bdev->bd_dev);
  643. if (rdev2->raid_disk >= 0 && rdev->in_sync && !rdev2->faulty)
  644. d->raid_disk = rdev2->raid_disk;
  645. else
  646. d->raid_disk = rdev2->desc_nr; /* compatibility */
  647. if (rdev2->faulty) {
  648. d->state = (1<<MD_DISK_FAULTY);
  649. failed++;
  650. } else if (rdev2->in_sync) {
  651. d->state = (1<<MD_DISK_ACTIVE);
  652. d->state |= (1<<MD_DISK_SYNC);
  653. active++;
  654. working++;
  655. } else {
  656. d->state = 0;
  657. spare++;
  658. working++;
  659. }
  660. if (test_bit(WriteMostly, &rdev2->flags))
  661. d->state |= (1<<MD_DISK_WRITEMOSTLY);
  662. }
  663. /* now set the "removed" and "faulty" bits on any missing devices */
  664. for (i=0 ; i < mddev->raid_disks ; i++) {
  665. mdp_disk_t *d = &sb->disks[i];
  666. if (d->state == 0 && d->number == 0) {
  667. d->number = i;
  668. d->raid_disk = i;
  669. d->state = (1<<MD_DISK_REMOVED);
  670. d->state |= (1<<MD_DISK_FAULTY);
  671. failed++;
  672. }
  673. }
  674. sb->nr_disks = nr_disks;
  675. sb->active_disks = active;
  676. sb->working_disks = working;
  677. sb->failed_disks = failed;
  678. sb->spare_disks = spare;
  679. sb->this_disk = sb->disks[rdev->desc_nr];
  680. sb->sb_csum = calc_sb_csum(sb);
  681. }
  682. /*
  683. * version 1 superblock
  684. */
  685. static unsigned int calc_sb_1_csum(struct mdp_superblock_1 * sb)
  686. {
  687. unsigned int disk_csum, csum;
  688. unsigned long long newcsum;
  689. int size = 256 + le32_to_cpu(sb->max_dev)*2;
  690. unsigned int *isuper = (unsigned int*)sb;
  691. int i;
  692. disk_csum = sb->sb_csum;
  693. sb->sb_csum = 0;
  694. newcsum = 0;
  695. for (i=0; size>=4; size -= 4 )
  696. newcsum += le32_to_cpu(*isuper++);
  697. if (size == 2)
  698. newcsum += le16_to_cpu(*(unsigned short*) isuper);
  699. csum = (newcsum & 0xffffffff) + (newcsum >> 32);
  700. sb->sb_csum = disk_csum;
  701. return cpu_to_le32(csum);
  702. }
  703. static int super_1_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version)
  704. {
  705. struct mdp_superblock_1 *sb;
  706. int ret;
  707. sector_t sb_offset;
  708. char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
  709. int bmask;
  710. /*
  711. * Calculate the position of the superblock.
  712. * It is always aligned to a 4K boundary and
  713. * depeding on minor_version, it can be:
  714. * 0: At least 8K, but less than 12K, from end of device
  715. * 1: At start of device
  716. * 2: 4K from start of device.
  717. */
  718. switch(minor_version) {
  719. case 0:
  720. sb_offset = rdev->bdev->bd_inode->i_size >> 9;
  721. sb_offset -= 8*2;
  722. sb_offset &= ~(sector_t)(4*2-1);
  723. /* convert from sectors to K */
  724. sb_offset /= 2;
  725. break;
  726. case 1:
  727. sb_offset = 0;
  728. break;
  729. case 2:
  730. sb_offset = 4;
  731. break;
  732. default:
  733. return -EINVAL;
  734. }
  735. rdev->sb_offset = sb_offset;
  736. /* superblock is rarely larger than 1K, but it can be larger,
  737. * and it is safe to read 4k, so we do that
  738. */
  739. ret = read_disk_sb(rdev, 4096);
  740. if (ret) return ret;
  741. sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
  742. if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
  743. sb->major_version != cpu_to_le32(1) ||
  744. le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
  745. le64_to_cpu(sb->super_offset) != (rdev->sb_offset<<1) ||
  746. (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
  747. return -EINVAL;
  748. if (calc_sb_1_csum(sb) != sb->sb_csum) {
  749. printk("md: invalid superblock checksum on %s\n",
  750. bdevname(rdev->bdev,b));
  751. return -EINVAL;
  752. }
  753. if (le64_to_cpu(sb->data_size) < 10) {
  754. printk("md: data_size too small on %s\n",
  755. bdevname(rdev->bdev,b));
  756. return -EINVAL;
  757. }
  758. rdev->preferred_minor = 0xffff;
  759. rdev->data_offset = le64_to_cpu(sb->data_offset);
  760. rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
  761. bmask = block_size(rdev->bdev)-1;
  762. if (rdev->sb_size & bmask)
  763. rdev-> sb_size = (rdev->sb_size | bmask)+1;
  764. if (refdev == 0)
  765. return 1;
  766. else {
  767. __u64 ev1, ev2;
  768. struct mdp_superblock_1 *refsb =
  769. (struct mdp_superblock_1*)page_address(refdev->sb_page);
  770. if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
  771. sb->level != refsb->level ||
  772. sb->layout != refsb->layout ||
  773. sb->chunksize != refsb->chunksize) {
  774. printk(KERN_WARNING "md: %s has strangely different"
  775. " superblock to %s\n",
  776. bdevname(rdev->bdev,b),
  777. bdevname(refdev->bdev,b2));
  778. return -EINVAL;
  779. }
  780. ev1 = le64_to_cpu(sb->events);
  781. ev2 = le64_to_cpu(refsb->events);
  782. if (ev1 > ev2)
  783. return 1;
  784. }
  785. if (minor_version)
  786. rdev->size = ((rdev->bdev->bd_inode->i_size>>9) - le64_to_cpu(sb->data_offset)) / 2;
  787. else
  788. rdev->size = rdev->sb_offset;
  789. if (rdev->size < le64_to_cpu(sb->data_size)/2)
  790. return -EINVAL;
  791. rdev->size = le64_to_cpu(sb->data_size)/2;
  792. if (le32_to_cpu(sb->chunksize))
  793. rdev->size &= ~((sector_t)le32_to_cpu(sb->chunksize)/2 - 1);
  794. return 0;
  795. }
  796. static int super_1_validate(mddev_t *mddev, mdk_rdev_t *rdev)
  797. {
  798. struct mdp_superblock_1 *sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
  799. rdev->raid_disk = -1;
  800. rdev->in_sync = 0;
  801. if (mddev->raid_disks == 0) {
  802. mddev->major_version = 1;
  803. mddev->patch_version = 0;
  804. mddev->persistent = 1;
  805. mddev->chunk_size = le32_to_cpu(sb->chunksize) << 9;
  806. mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
  807. mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
  808. mddev->level = le32_to_cpu(sb->level);
  809. mddev->layout = le32_to_cpu(sb->layout);
  810. mddev->raid_disks = le32_to_cpu(sb->raid_disks);
  811. mddev->size = le64_to_cpu(sb->size)/2;
  812. mddev->events = le64_to_cpu(sb->events);
  813. mddev->bitmap_offset = 0;
  814. mddev->default_bitmap_offset = 0;
  815. if (mddev->minor_version == 0)
  816. mddev->default_bitmap_offset = -(64*1024)/512;
  817. mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
  818. memcpy(mddev->uuid, sb->set_uuid, 16);
  819. mddev->max_disks = (4096-256)/2;
  820. if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
  821. mddev->bitmap_file == NULL ) {
  822. if (mddev->level != 1) {
  823. printk(KERN_WARNING "md: bitmaps only supported for raid1\n");
  824. return -EINVAL;
  825. }
  826. mddev->bitmap_offset = (__s32)le32_to_cpu(sb->bitmap_offset);
  827. }
  828. } else if (mddev->pers == NULL) {
  829. /* Insist of good event counter while assembling */
  830. __u64 ev1 = le64_to_cpu(sb->events);
  831. ++ev1;
  832. if (ev1 < mddev->events)
  833. return -EINVAL;
  834. } else if (mddev->bitmap) {
  835. /* If adding to array with a bitmap, then we can accept an
  836. * older device, but not too old.
  837. */
  838. __u64 ev1 = le64_to_cpu(sb->events);
  839. if (ev1 < mddev->bitmap->events_cleared)
  840. return 0;
  841. } else /* just a hot-add of a new device, leave raid_disk at -1 */
  842. return 0;
  843. if (mddev->level != LEVEL_MULTIPATH) {
  844. int role;
  845. rdev->desc_nr = le32_to_cpu(sb->dev_number);
  846. role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
  847. switch(role) {
  848. case 0xffff: /* spare */
  849. rdev->faulty = 0;
  850. break;
  851. case 0xfffe: /* faulty */
  852. rdev->faulty = 1;
  853. break;
  854. default:
  855. rdev->in_sync = 1;
  856. rdev->faulty = 0;
  857. rdev->raid_disk = role;
  858. break;
  859. }
  860. rdev->flags = 0;
  861. if (sb->devflags & WriteMostly1)
  862. set_bit(WriteMostly, &rdev->flags);
  863. } else /* MULTIPATH are always insync */
  864. rdev->in_sync = 1;
  865. return 0;
  866. }
  867. static void super_1_sync(mddev_t *mddev, mdk_rdev_t *rdev)
  868. {
  869. struct mdp_superblock_1 *sb;
  870. struct list_head *tmp;
  871. mdk_rdev_t *rdev2;
  872. int max_dev, i;
  873. /* make rdev->sb match mddev and rdev data. */
  874. sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
  875. sb->feature_map = 0;
  876. sb->pad0 = 0;
  877. memset(sb->pad1, 0, sizeof(sb->pad1));
  878. memset(sb->pad2, 0, sizeof(sb->pad2));
  879. memset(sb->pad3, 0, sizeof(sb->pad3));
  880. sb->utime = cpu_to_le64((__u64)mddev->utime);
  881. sb->events = cpu_to_le64(mddev->events);
  882. if (mddev->in_sync)
  883. sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
  884. else
  885. sb->resync_offset = cpu_to_le64(0);
  886. if (mddev->bitmap && mddev->bitmap_file == NULL) {
  887. sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_offset);
  888. sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
  889. }
  890. max_dev = 0;
  891. ITERATE_RDEV(mddev,rdev2,tmp)
  892. if (rdev2->desc_nr+1 > max_dev)
  893. max_dev = rdev2->desc_nr+1;
  894. sb->max_dev = cpu_to_le32(max_dev);
  895. for (i=0; i<max_dev;i++)
  896. sb->dev_roles[i] = cpu_to_le16(0xfffe);
  897. ITERATE_RDEV(mddev,rdev2,tmp) {
  898. i = rdev2->desc_nr;
  899. if (rdev2->faulty)
  900. sb->dev_roles[i] = cpu_to_le16(0xfffe);
  901. else if (rdev2->in_sync)
  902. sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
  903. else
  904. sb->dev_roles[i] = cpu_to_le16(0xffff);
  905. }
  906. sb->recovery_offset = cpu_to_le64(0); /* not supported yet */
  907. sb->sb_csum = calc_sb_1_csum(sb);
  908. }
  909. static struct super_type super_types[] = {
  910. [0] = {
  911. .name = "0.90.0",
  912. .owner = THIS_MODULE,
  913. .load_super = super_90_load,
  914. .validate_super = super_90_validate,
  915. .sync_super = super_90_sync,
  916. },
  917. [1] = {
  918. .name = "md-1",
  919. .owner = THIS_MODULE,
  920. .load_super = super_1_load,
  921. .validate_super = super_1_validate,
  922. .sync_super = super_1_sync,
  923. },
  924. };
  925. static mdk_rdev_t * match_dev_unit(mddev_t *mddev, mdk_rdev_t *dev)
  926. {
  927. struct list_head *tmp;
  928. mdk_rdev_t *rdev;
  929. ITERATE_RDEV(mddev,rdev,tmp)
  930. if (rdev->bdev->bd_contains == dev->bdev->bd_contains)
  931. return rdev;
  932. return NULL;
  933. }
  934. static int match_mddev_units(mddev_t *mddev1, mddev_t *mddev2)
  935. {
  936. struct list_head *tmp;
  937. mdk_rdev_t *rdev;
  938. ITERATE_RDEV(mddev1,rdev,tmp)
  939. if (match_dev_unit(mddev2, rdev))
  940. return 1;
  941. return 0;
  942. }
  943. static LIST_HEAD(pending_raid_disks);
  944. static int bind_rdev_to_array(mdk_rdev_t * rdev, mddev_t * mddev)
  945. {
  946. mdk_rdev_t *same_pdev;
  947. char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
  948. if (rdev->mddev) {
  949. MD_BUG();
  950. return -EINVAL;
  951. }
  952. same_pdev = match_dev_unit(mddev, rdev);
  953. if (same_pdev)
  954. printk(KERN_WARNING
  955. "%s: WARNING: %s appears to be on the same physical"
  956. " disk as %s. True\n protection against single-disk"
  957. " failure might be compromised.\n",
  958. mdname(mddev), bdevname(rdev->bdev,b),
  959. bdevname(same_pdev->bdev,b2));
  960. /* Verify rdev->desc_nr is unique.
  961. * If it is -1, assign a free number, else
  962. * check number is not in use
  963. */
  964. if (rdev->desc_nr < 0) {
  965. int choice = 0;
  966. if (mddev->pers) choice = mddev->raid_disks;
  967. while (find_rdev_nr(mddev, choice))
  968. choice++;
  969. rdev->desc_nr = choice;
  970. } else {
  971. if (find_rdev_nr(mddev, rdev->desc_nr))
  972. return -EBUSY;
  973. }
  974. list_add(&rdev->same_set, &mddev->disks);
  975. rdev->mddev = mddev;
  976. printk(KERN_INFO "md: bind<%s>\n", bdevname(rdev->bdev,b));
  977. return 0;
  978. }
  979. static void unbind_rdev_from_array(mdk_rdev_t * rdev)
  980. {
  981. char b[BDEVNAME_SIZE];
  982. if (!rdev->mddev) {
  983. MD_BUG();
  984. return;
  985. }
  986. list_del_init(&rdev->same_set);
  987. printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
  988. rdev->mddev = NULL;
  989. }
  990. /*
  991. * prevent the device from being mounted, repartitioned or
  992. * otherwise reused by a RAID array (or any other kernel
  993. * subsystem), by bd_claiming the device.
  994. */
  995. static int lock_rdev(mdk_rdev_t *rdev, dev_t dev)
  996. {
  997. int err = 0;
  998. struct block_device *bdev;
  999. char b[BDEVNAME_SIZE];
  1000. bdev = open_by_devnum(dev, FMODE_READ|FMODE_WRITE);
  1001. if (IS_ERR(bdev)) {
  1002. printk(KERN_ERR "md: could not open %s.\n",
  1003. __bdevname(dev, b));
  1004. return PTR_ERR(bdev);
  1005. }
  1006. err = bd_claim(bdev, rdev);
  1007. if (err) {
  1008. printk(KERN_ERR "md: could not bd_claim %s.\n",
  1009. bdevname(bdev, b));
  1010. blkdev_put(bdev);
  1011. return err;
  1012. }
  1013. rdev->bdev = bdev;
  1014. return err;
  1015. }
  1016. static void unlock_rdev(mdk_rdev_t *rdev)
  1017. {
  1018. struct block_device *bdev = rdev->bdev;
  1019. rdev->bdev = NULL;
  1020. if (!bdev)
  1021. MD_BUG();
  1022. bd_release(bdev);
  1023. blkdev_put(bdev);
  1024. }
  1025. void md_autodetect_dev(dev_t dev);
  1026. static void export_rdev(mdk_rdev_t * rdev)
  1027. {
  1028. char b[BDEVNAME_SIZE];
  1029. printk(KERN_INFO "md: export_rdev(%s)\n",
  1030. bdevname(rdev->bdev,b));
  1031. if (rdev->mddev)
  1032. MD_BUG();
  1033. free_disk_sb(rdev);
  1034. list_del_init(&rdev->same_set);
  1035. #ifndef MODULE
  1036. md_autodetect_dev(rdev->bdev->bd_dev);
  1037. #endif
  1038. unlock_rdev(rdev);
  1039. kfree(rdev);
  1040. }
  1041. static void kick_rdev_from_array(mdk_rdev_t * rdev)
  1042. {
  1043. unbind_rdev_from_array(rdev);
  1044. export_rdev(rdev);
  1045. }
  1046. static void export_array(mddev_t *mddev)
  1047. {
  1048. struct list_head *tmp;
  1049. mdk_rdev_t *rdev;
  1050. ITERATE_RDEV(mddev,rdev,tmp) {
  1051. if (!rdev->mddev) {
  1052. MD_BUG();
  1053. continue;
  1054. }
  1055. kick_rdev_from_array(rdev);
  1056. }
  1057. if (!list_empty(&mddev->disks))
  1058. MD_BUG();
  1059. mddev->raid_disks = 0;
  1060. mddev->major_version = 0;
  1061. }
  1062. static void print_desc(mdp_disk_t *desc)
  1063. {
  1064. printk(" DISK<N:%d,(%d,%d),R:%d,S:%d>\n", desc->number,
  1065. desc->major,desc->minor,desc->raid_disk,desc->state);
  1066. }
  1067. static void print_sb(mdp_super_t *sb)
  1068. {
  1069. int i;
  1070. printk(KERN_INFO
  1071. "md: SB: (V:%d.%d.%d) ID:<%08x.%08x.%08x.%08x> CT:%08x\n",
  1072. sb->major_version, sb->minor_version, sb->patch_version,
  1073. sb->set_uuid0, sb->set_uuid1, sb->set_uuid2, sb->set_uuid3,
  1074. sb->ctime);
  1075. printk(KERN_INFO "md: L%d S%08d ND:%d RD:%d md%d LO:%d CS:%d\n",
  1076. sb->level, sb->size, sb->nr_disks, sb->raid_disks,
  1077. sb->md_minor, sb->layout, sb->chunk_size);
  1078. printk(KERN_INFO "md: UT:%08x ST:%d AD:%d WD:%d"
  1079. " FD:%d SD:%d CSUM:%08x E:%08lx\n",
  1080. sb->utime, sb->state, sb->active_disks, sb->working_disks,
  1081. sb->failed_disks, sb->spare_disks,
  1082. sb->sb_csum, (unsigned long)sb->events_lo);
  1083. printk(KERN_INFO);
  1084. for (i = 0; i < MD_SB_DISKS; i++) {
  1085. mdp_disk_t *desc;
  1086. desc = sb->disks + i;
  1087. if (desc->number || desc->major || desc->minor ||
  1088. desc->raid_disk || (desc->state && (desc->state != 4))) {
  1089. printk(" D %2d: ", i);
  1090. print_desc(desc);
  1091. }
  1092. }
  1093. printk(KERN_INFO "md: THIS: ");
  1094. print_desc(&sb->this_disk);
  1095. }
  1096. static void print_rdev(mdk_rdev_t *rdev)
  1097. {
  1098. char b[BDEVNAME_SIZE];
  1099. printk(KERN_INFO "md: rdev %s, SZ:%08llu F:%d S:%d DN:%u\n",
  1100. bdevname(rdev->bdev,b), (unsigned long long)rdev->size,
  1101. rdev->faulty, rdev->in_sync, rdev->desc_nr);
  1102. if (rdev->sb_loaded) {
  1103. printk(KERN_INFO "md: rdev superblock:\n");
  1104. print_sb((mdp_super_t*)page_address(rdev->sb_page));
  1105. } else
  1106. printk(KERN_INFO "md: no rdev superblock!\n");
  1107. }
  1108. void md_print_devices(void)
  1109. {
  1110. struct list_head *tmp, *tmp2;
  1111. mdk_rdev_t *rdev;
  1112. mddev_t *mddev;
  1113. char b[BDEVNAME_SIZE];
  1114. printk("\n");
  1115. printk("md: **********************************\n");
  1116. printk("md: * <COMPLETE RAID STATE PRINTOUT> *\n");
  1117. printk("md: **********************************\n");
  1118. ITERATE_MDDEV(mddev,tmp) {
  1119. if (mddev->bitmap)
  1120. bitmap_print_sb(mddev->bitmap);
  1121. else
  1122. printk("%s: ", mdname(mddev));
  1123. ITERATE_RDEV(mddev,rdev,tmp2)
  1124. printk("<%s>", bdevname(rdev->bdev,b));
  1125. printk("\n");
  1126. ITERATE_RDEV(mddev,rdev,tmp2)
  1127. print_rdev(rdev);
  1128. }
  1129. printk("md: **********************************\n");
  1130. printk("\n");
  1131. }
  1132. static void sync_sbs(mddev_t * mddev)
  1133. {
  1134. mdk_rdev_t *rdev;
  1135. struct list_head *tmp;
  1136. ITERATE_RDEV(mddev,rdev,tmp) {
  1137. super_types[mddev->major_version].
  1138. sync_super(mddev, rdev);
  1139. rdev->sb_loaded = 1;
  1140. }
  1141. }
  1142. static void md_update_sb(mddev_t * mddev)
  1143. {
  1144. int err;
  1145. struct list_head *tmp;
  1146. mdk_rdev_t *rdev;
  1147. int sync_req;
  1148. repeat:
  1149. spin_lock(&mddev->write_lock);
  1150. sync_req = mddev->in_sync;
  1151. mddev->utime = get_seconds();
  1152. mddev->events ++;
  1153. if (!mddev->events) {
  1154. /*
  1155. * oops, this 64-bit counter should never wrap.
  1156. * Either we are in around ~1 trillion A.C., assuming
  1157. * 1 reboot per second, or we have a bug:
  1158. */
  1159. MD_BUG();
  1160. mddev->events --;
  1161. }
  1162. mddev->sb_dirty = 2;
  1163. sync_sbs(mddev);
  1164. /*
  1165. * do not write anything to disk if using
  1166. * nonpersistent superblocks
  1167. */
  1168. if (!mddev->persistent) {
  1169. mddev->sb_dirty = 0;
  1170. spin_unlock(&mddev->write_lock);
  1171. wake_up(&mddev->sb_wait);
  1172. return;
  1173. }
  1174. spin_unlock(&mddev->write_lock);
  1175. dprintk(KERN_INFO
  1176. "md: updating %s RAID superblock on device (in sync %d)\n",
  1177. mdname(mddev),mddev->in_sync);
  1178. err = bitmap_update_sb(mddev->bitmap);
  1179. ITERATE_RDEV(mddev,rdev,tmp) {
  1180. char b[BDEVNAME_SIZE];
  1181. dprintk(KERN_INFO "md: ");
  1182. if (rdev->faulty)
  1183. dprintk("(skipping faulty ");
  1184. dprintk("%s ", bdevname(rdev->bdev,b));
  1185. if (!rdev->faulty) {
  1186. md_super_write(mddev,rdev,
  1187. rdev->sb_offset<<1, rdev->sb_size,
  1188. rdev->sb_page);
  1189. dprintk(KERN_INFO "(write) %s's sb offset: %llu\n",
  1190. bdevname(rdev->bdev,b),
  1191. (unsigned long long)rdev->sb_offset);
  1192. } else
  1193. dprintk(")\n");
  1194. if (mddev->level == LEVEL_MULTIPATH)
  1195. /* only need to write one superblock... */
  1196. break;
  1197. }
  1198. wait_event(mddev->sb_wait, atomic_read(&mddev->pending_writes)==0);
  1199. /* if there was a failure, sb_dirty was set to 1, and we re-write super */
  1200. spin_lock(&mddev->write_lock);
  1201. if (mddev->in_sync != sync_req|| mddev->sb_dirty == 1) {
  1202. /* have to write it out again */
  1203. spin_unlock(&mddev->write_lock);
  1204. goto repeat;
  1205. }
  1206. mddev->sb_dirty = 0;
  1207. spin_unlock(&mddev->write_lock);
  1208. wake_up(&mddev->sb_wait);
  1209. }
  1210. /*
  1211. * Import a device. If 'super_format' >= 0, then sanity check the superblock
  1212. *
  1213. * mark the device faulty if:
  1214. *
  1215. * - the device is nonexistent (zero size)
  1216. * - the device has no valid superblock
  1217. *
  1218. * a faulty rdev _never_ has rdev->sb set.
  1219. */
  1220. static mdk_rdev_t *md_import_device(dev_t newdev, int super_format, int super_minor)
  1221. {
  1222. char b[BDEVNAME_SIZE];
  1223. int err;
  1224. mdk_rdev_t *rdev;
  1225. sector_t size;
  1226. rdev = (mdk_rdev_t *) kmalloc(sizeof(*rdev), GFP_KERNEL);
  1227. if (!rdev) {
  1228. printk(KERN_ERR "md: could not alloc mem for new device!\n");
  1229. return ERR_PTR(-ENOMEM);
  1230. }
  1231. memset(rdev, 0, sizeof(*rdev));
  1232. if ((err = alloc_disk_sb(rdev)))
  1233. goto abort_free;
  1234. err = lock_rdev(rdev, newdev);
  1235. if (err)
  1236. goto abort_free;
  1237. rdev->desc_nr = -1;
  1238. rdev->faulty = 0;
  1239. rdev->in_sync = 0;
  1240. rdev->data_offset = 0;
  1241. atomic_set(&rdev->nr_pending, 0);
  1242. size = rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
  1243. if (!size) {
  1244. printk(KERN_WARNING
  1245. "md: %s has zero or unknown size, marking faulty!\n",
  1246. bdevname(rdev->bdev,b));
  1247. err = -EINVAL;
  1248. goto abort_free;
  1249. }
  1250. if (super_format >= 0) {
  1251. err = super_types[super_format].
  1252. load_super(rdev, NULL, super_minor);
  1253. if (err == -EINVAL) {
  1254. printk(KERN_WARNING
  1255. "md: %s has invalid sb, not importing!\n",
  1256. bdevname(rdev->bdev,b));
  1257. goto abort_free;
  1258. }
  1259. if (err < 0) {
  1260. printk(KERN_WARNING
  1261. "md: could not read %s's sb, not importing!\n",
  1262. bdevname(rdev->bdev,b));
  1263. goto abort_free;
  1264. }
  1265. }
  1266. INIT_LIST_HEAD(&rdev->same_set);
  1267. return rdev;
  1268. abort_free:
  1269. if (rdev->sb_page) {
  1270. if (rdev->bdev)
  1271. unlock_rdev(rdev);
  1272. free_disk_sb(rdev);
  1273. }
  1274. kfree(rdev);
  1275. return ERR_PTR(err);
  1276. }
  1277. /*
  1278. * Check a full RAID array for plausibility
  1279. */
  1280. static void analyze_sbs(mddev_t * mddev)
  1281. {
  1282. int i;
  1283. struct list_head *tmp;
  1284. mdk_rdev_t *rdev, *freshest;
  1285. char b[BDEVNAME_SIZE];
  1286. freshest = NULL;
  1287. ITERATE_RDEV(mddev,rdev,tmp)
  1288. switch (super_types[mddev->major_version].
  1289. load_super(rdev, freshest, mddev->minor_version)) {
  1290. case 1:
  1291. freshest = rdev;
  1292. break;
  1293. case 0:
  1294. break;
  1295. default:
  1296. printk( KERN_ERR \
  1297. "md: fatal superblock inconsistency in %s"
  1298. " -- removing from array\n",
  1299. bdevname(rdev->bdev,b));
  1300. kick_rdev_from_array(rdev);
  1301. }
  1302. super_types[mddev->major_version].
  1303. validate_super(mddev, freshest);
  1304. i = 0;
  1305. ITERATE_RDEV(mddev,rdev,tmp) {
  1306. if (rdev != freshest)
  1307. if (super_types[mddev->major_version].
  1308. validate_super(mddev, rdev)) {
  1309. printk(KERN_WARNING "md: kicking non-fresh %s"
  1310. " from array!\n",
  1311. bdevname(rdev->bdev,b));
  1312. kick_rdev_from_array(rdev);
  1313. continue;
  1314. }
  1315. if (mddev->level == LEVEL_MULTIPATH) {
  1316. rdev->desc_nr = i++;
  1317. rdev->raid_disk = rdev->desc_nr;
  1318. rdev->in_sync = 1;
  1319. }
  1320. }
  1321. if (mddev->recovery_cp != MaxSector &&
  1322. mddev->level >= 1)
  1323. printk(KERN_ERR "md: %s: raid array is not clean"
  1324. " -- starting background reconstruction\n",
  1325. mdname(mddev));
  1326. }
  1327. int mdp_major = 0;
  1328. static struct kobject *md_probe(dev_t dev, int *part, void *data)
  1329. {
  1330. static DECLARE_MUTEX(disks_sem);
  1331. mddev_t *mddev = mddev_find(dev);
  1332. struct gendisk *disk;
  1333. int partitioned = (MAJOR(dev) != MD_MAJOR);
  1334. int shift = partitioned ? MdpMinorShift : 0;
  1335. int unit = MINOR(dev) >> shift;
  1336. if (!mddev)
  1337. return NULL;
  1338. down(&disks_sem);
  1339. if (mddev->gendisk) {
  1340. up(&disks_sem);
  1341. mddev_put(mddev);
  1342. return NULL;
  1343. }
  1344. disk = alloc_disk(1 << shift);
  1345. if (!disk) {
  1346. up(&disks_sem);
  1347. mddev_put(mddev);
  1348. return NULL;
  1349. }
  1350. disk->major = MAJOR(dev);
  1351. disk->first_minor = unit << shift;
  1352. if (partitioned) {
  1353. sprintf(disk->disk_name, "md_d%d", unit);
  1354. sprintf(disk->devfs_name, "md/d%d", unit);
  1355. } else {
  1356. sprintf(disk->disk_name, "md%d", unit);
  1357. sprintf(disk->devfs_name, "md/%d", unit);
  1358. }
  1359. disk->fops = &md_fops;
  1360. disk->private_data = mddev;
  1361. disk->queue = mddev->queue;
  1362. add_disk(disk);
  1363. mddev->gendisk = disk;
  1364. up(&disks_sem);
  1365. return NULL;
  1366. }
  1367. void md_wakeup_thread(mdk_thread_t *thread);
  1368. static void md_safemode_timeout(unsigned long data)
  1369. {
  1370. mddev_t *mddev = (mddev_t *) data;
  1371. mddev->safemode = 1;
  1372. md_wakeup_thread(mddev->thread);
  1373. }
  1374. static int do_md_run(mddev_t * mddev)
  1375. {
  1376. int pnum, err;
  1377. int chunk_size;
  1378. struct list_head *tmp;
  1379. mdk_rdev_t *rdev;
  1380. struct gendisk *disk;
  1381. char b[BDEVNAME_SIZE];
  1382. if (list_empty(&mddev->disks))
  1383. /* cannot run an array with no devices.. */
  1384. return -EINVAL;
  1385. if (mddev->pers)
  1386. return -EBUSY;
  1387. /*
  1388. * Analyze all RAID superblock(s)
  1389. */
  1390. if (!mddev->raid_disks)
  1391. analyze_sbs(mddev);
  1392. chunk_size = mddev->chunk_size;
  1393. pnum = level_to_pers(mddev->level);
  1394. if ((pnum != MULTIPATH) && (pnum != RAID1)) {
  1395. if (!chunk_size) {
  1396. /*
  1397. * 'default chunksize' in the old md code used to
  1398. * be PAGE_SIZE, baaad.
  1399. * we abort here to be on the safe side. We don't
  1400. * want to continue the bad practice.
  1401. */
  1402. printk(KERN_ERR
  1403. "no chunksize specified, see 'man raidtab'\n");
  1404. return -EINVAL;
  1405. }
  1406. if (chunk_size > MAX_CHUNK_SIZE) {
  1407. printk(KERN_ERR "too big chunk_size: %d > %d\n",
  1408. chunk_size, MAX_CHUNK_SIZE);
  1409. return -EINVAL;
  1410. }
  1411. /*
  1412. * chunk-size has to be a power of 2 and multiples of PAGE_SIZE
  1413. */
  1414. if ( (1 << ffz(~chunk_size)) != chunk_size) {
  1415. printk(KERN_ERR "chunk_size of %d not valid\n", chunk_size);
  1416. return -EINVAL;
  1417. }
  1418. if (chunk_size < PAGE_SIZE) {
  1419. printk(KERN_ERR "too small chunk_size: %d < %ld\n",
  1420. chunk_size, PAGE_SIZE);
  1421. return -EINVAL;
  1422. }
  1423. /* devices must have minimum size of one chunk */
  1424. ITERATE_RDEV(mddev,rdev,tmp) {
  1425. if (rdev->faulty)
  1426. continue;
  1427. if (rdev->size < chunk_size / 1024) {
  1428. printk(KERN_WARNING
  1429. "md: Dev %s smaller than chunk_size:"
  1430. " %lluk < %dk\n",
  1431. bdevname(rdev->bdev,b),
  1432. (unsigned long long)rdev->size,
  1433. chunk_size / 1024);
  1434. return -EINVAL;
  1435. }
  1436. }
  1437. }
  1438. #ifdef CONFIG_KMOD
  1439. if (!pers[pnum])
  1440. {
  1441. request_module("md-personality-%d", pnum);
  1442. }
  1443. #endif
  1444. /*
  1445. * Drop all container device buffers, from now on
  1446. * the only valid external interface is through the md
  1447. * device.
  1448. * Also find largest hardsector size
  1449. */
  1450. ITERATE_RDEV(mddev,rdev,tmp) {
  1451. if (rdev->faulty)
  1452. continue;
  1453. sync_blockdev(rdev->bdev);
  1454. invalidate_bdev(rdev->bdev, 0);
  1455. }
  1456. md_probe(mddev->unit, NULL, NULL);
  1457. disk = mddev->gendisk;
  1458. if (!disk)
  1459. return -ENOMEM;
  1460. spin_lock(&pers_lock);
  1461. if (!pers[pnum] || !try_module_get(pers[pnum]->owner)) {
  1462. spin_unlock(&pers_lock);
  1463. printk(KERN_WARNING "md: personality %d is not loaded!\n",
  1464. pnum);
  1465. return -EINVAL;
  1466. }
  1467. mddev->pers = pers[pnum];
  1468. spin_unlock(&pers_lock);
  1469. mddev->recovery = 0;
  1470. mddev->resync_max_sectors = mddev->size << 1; /* may be over-ridden by personality */
  1471. /* before we start the array running, initialise the bitmap */
  1472. err = bitmap_create(mddev);
  1473. if (err)
  1474. printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
  1475. mdname(mddev), err);
  1476. else
  1477. err = mddev->pers->run(mddev);
  1478. if (err) {
  1479. printk(KERN_ERR "md: pers->run() failed ...\n");
  1480. module_put(mddev->pers->owner);
  1481. mddev->pers = NULL;
  1482. bitmap_destroy(mddev);
  1483. return err;
  1484. }
  1485. atomic_set(&mddev->writes_pending,0);
  1486. mddev->safemode = 0;
  1487. mddev->safemode_timer.function = md_safemode_timeout;
  1488. mddev->safemode_timer.data = (unsigned long) mddev;
  1489. mddev->safemode_delay = (20 * HZ)/1000 +1; /* 20 msec delay */
  1490. mddev->in_sync = 1;
  1491. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  1492. md_wakeup_thread(mddev->thread);
  1493. if (mddev->sb_dirty)
  1494. md_update_sb(mddev);
  1495. set_capacity(disk, mddev->array_size<<1);
  1496. /* If we call blk_queue_make_request here, it will
  1497. * re-initialise max_sectors etc which may have been
  1498. * refined inside -> run. So just set the bits we need to set.
  1499. * Most initialisation happended when we called
  1500. * blk_queue_make_request(..., md_fail_request)
  1501. * earlier.
  1502. */
  1503. mddev->queue->queuedata = mddev;
  1504. mddev->queue->make_request_fn = mddev->pers->make_request;
  1505. mddev->changed = 1;
  1506. return 0;
  1507. }
  1508. static int restart_array(mddev_t *mddev)
  1509. {
  1510. struct gendisk *disk = mddev->gendisk;
  1511. int err;
  1512. /*
  1513. * Complain if it has no devices
  1514. */
  1515. err = -ENXIO;
  1516. if (list_empty(&mddev->disks))
  1517. goto out;
  1518. if (mddev->pers) {
  1519. err = -EBUSY;
  1520. if (!mddev->ro)
  1521. goto out;
  1522. mddev->safemode = 0;
  1523. mddev->ro = 0;
  1524. set_disk_ro(disk, 0);
  1525. printk(KERN_INFO "md: %s switched to read-write mode.\n",
  1526. mdname(mddev));
  1527. /*
  1528. * Kick recovery or resync if necessary
  1529. */
  1530. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  1531. md_wakeup_thread(mddev->thread);
  1532. err = 0;
  1533. } else {
  1534. printk(KERN_ERR "md: %s has no personality assigned.\n",
  1535. mdname(mddev));
  1536. err = -EINVAL;
  1537. }
  1538. out:
  1539. return err;
  1540. }
  1541. static int do_md_stop(mddev_t * mddev, int ro)
  1542. {
  1543. int err = 0;
  1544. struct gendisk *disk = mddev->gendisk;
  1545. if (mddev->pers) {
  1546. if (atomic_read(&mddev->active)>2) {
  1547. printk("md: %s still in use.\n",mdname(mddev));
  1548. return -EBUSY;
  1549. }
  1550. if (mddev->sync_thread) {
  1551. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  1552. md_unregister_thread(mddev->sync_thread);
  1553. mddev->sync_thread = NULL;
  1554. }
  1555. del_timer_sync(&mddev->safemode_timer);
  1556. invalidate_partition(disk, 0);
  1557. if (ro) {
  1558. err = -ENXIO;
  1559. if (mddev->ro)
  1560. goto out;
  1561. mddev->ro = 1;
  1562. } else {
  1563. bitmap_flush(mddev);
  1564. wait_event(mddev->sb_wait, atomic_read(&mddev->pending_writes)==0);
  1565. if (mddev->ro)
  1566. set_disk_ro(disk, 0);
  1567. blk_queue_make_request(mddev->queue, md_fail_request);
  1568. mddev->pers->stop(mddev);
  1569. module_put(mddev->pers->owner);
  1570. mddev->pers = NULL;
  1571. if (mddev->ro)
  1572. mddev->ro = 0;
  1573. }
  1574. if (!mddev->in_sync) {
  1575. /* mark array as shutdown cleanly */
  1576. mddev->in_sync = 1;
  1577. md_update_sb(mddev);
  1578. }
  1579. if (ro)
  1580. set_disk_ro(disk, 1);
  1581. }
  1582. bitmap_destroy(mddev);
  1583. if (mddev->bitmap_file) {
  1584. atomic_set(&mddev->bitmap_file->f_dentry->d_inode->i_writecount, 1);
  1585. fput(mddev->bitmap_file);
  1586. mddev->bitmap_file = NULL;
  1587. }
  1588. mddev->bitmap_offset = 0;
  1589. /*
  1590. * Free resources if final stop
  1591. */
  1592. if (!ro) {
  1593. struct gendisk *disk;
  1594. printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
  1595. export_array(mddev);
  1596. mddev->array_size = 0;
  1597. disk = mddev->gendisk;
  1598. if (disk)
  1599. set_capacity(disk, 0);
  1600. mddev->changed = 1;
  1601. } else
  1602. printk(KERN_INFO "md: %s switched to read-only mode.\n",
  1603. mdname(mddev));
  1604. err = 0;
  1605. out:
  1606. return err;
  1607. }
  1608. static void autorun_array(mddev_t *mddev)
  1609. {
  1610. mdk_rdev_t *rdev;
  1611. struct list_head *tmp;
  1612. int err;
  1613. if (list_empty(&mddev->disks))
  1614. return;
  1615. printk(KERN_INFO "md: running: ");
  1616. ITERATE_RDEV(mddev,rdev,tmp) {
  1617. char b[BDEVNAME_SIZE];
  1618. printk("<%s>", bdevname(rdev->bdev,b));
  1619. }
  1620. printk("\n");
  1621. err = do_md_run (mddev);
  1622. if (err) {
  1623. printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
  1624. do_md_stop (mddev, 0);
  1625. }
  1626. }
  1627. /*
  1628. * lets try to run arrays based on all disks that have arrived
  1629. * until now. (those are in pending_raid_disks)
  1630. *
  1631. * the method: pick the first pending disk, collect all disks with
  1632. * the same UUID, remove all from the pending list and put them into
  1633. * the 'same_array' list. Then order this list based on superblock
  1634. * update time (freshest comes first), kick out 'old' disks and
  1635. * compare superblocks. If everything's fine then run it.
  1636. *
  1637. * If "unit" is allocated, then bump its reference count
  1638. */
  1639. static void autorun_devices(int part)
  1640. {
  1641. struct list_head candidates;
  1642. struct list_head *tmp;
  1643. mdk_rdev_t *rdev0, *rdev;
  1644. mddev_t *mddev;
  1645. char b[BDEVNAME_SIZE];
  1646. printk(KERN_INFO "md: autorun ...\n");
  1647. while (!list_empty(&pending_raid_disks)) {
  1648. dev_t dev;
  1649. rdev0 = list_entry(pending_raid_disks.next,
  1650. mdk_rdev_t, same_set);
  1651. printk(KERN_INFO "md: considering %s ...\n",
  1652. bdevname(rdev0->bdev,b));
  1653. INIT_LIST_HEAD(&candidates);
  1654. ITERATE_RDEV_PENDING(rdev,tmp)
  1655. if (super_90_load(rdev, rdev0, 0) >= 0) {
  1656. printk(KERN_INFO "md: adding %s ...\n",
  1657. bdevname(rdev->bdev,b));
  1658. list_move(&rdev->same_set, &candidates);
  1659. }
  1660. /*
  1661. * now we have a set of devices, with all of them having
  1662. * mostly sane superblocks. It's time to allocate the
  1663. * mddev.
  1664. */
  1665. if (rdev0->preferred_minor < 0 || rdev0->preferred_minor >= MAX_MD_DEVS) {
  1666. printk(KERN_INFO "md: unit number in %s is bad: %d\n",
  1667. bdevname(rdev0->bdev, b), rdev0->preferred_minor);
  1668. break;
  1669. }
  1670. if (part)
  1671. dev = MKDEV(mdp_major,
  1672. rdev0->preferred_minor << MdpMinorShift);
  1673. else
  1674. dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
  1675. md_probe(dev, NULL, NULL);
  1676. mddev = mddev_find(dev);
  1677. if (!mddev) {
  1678. printk(KERN_ERR
  1679. "md: cannot allocate memory for md drive.\n");
  1680. break;
  1681. }
  1682. if (mddev_lock(mddev))
  1683. printk(KERN_WARNING "md: %s locked, cannot run\n",
  1684. mdname(mddev));
  1685. else if (mddev->raid_disks || mddev->major_version
  1686. || !list_empty(&mddev->disks)) {
  1687. printk(KERN_WARNING
  1688. "md: %s already running, cannot run %s\n",
  1689. mdname(mddev), bdevname(rdev0->bdev,b));
  1690. mddev_unlock(mddev);
  1691. } else {
  1692. printk(KERN_INFO "md: created %s\n", mdname(mddev));
  1693. ITERATE_RDEV_GENERIC(candidates,rdev,tmp) {
  1694. list_del_init(&rdev->same_set);
  1695. if (bind_rdev_to_array(rdev, mddev))
  1696. export_rdev(rdev);
  1697. }
  1698. autorun_array(mddev);
  1699. mddev_unlock(mddev);
  1700. }
  1701. /* on success, candidates will be empty, on error
  1702. * it won't...
  1703. */
  1704. ITERATE_RDEV_GENERIC(candidates,rdev,tmp)
  1705. export_rdev(rdev);
  1706. mddev_put(mddev);
  1707. }
  1708. printk(KERN_INFO "md: ... autorun DONE.\n");
  1709. }
  1710. /*
  1711. * import RAID devices based on one partition
  1712. * if possible, the array gets run as well.
  1713. */
  1714. static int autostart_array(dev_t startdev)
  1715. {
  1716. char b[BDEVNAME_SIZE];
  1717. int err = -EINVAL, i;
  1718. mdp_super_t *sb = NULL;
  1719. mdk_rdev_t *start_rdev = NULL, *rdev;
  1720. start_rdev = md_import_device(startdev, 0, 0);
  1721. if (IS_ERR(start_rdev))
  1722. return err;
  1723. /* NOTE: this can only work for 0.90.0 superblocks */
  1724. sb = (mdp_super_t*)page_address(start_rdev->sb_page);
  1725. if (sb->major_version != 0 ||
  1726. sb->minor_version != 90 ) {
  1727. printk(KERN_WARNING "md: can only autostart 0.90.0 arrays\n");
  1728. export_rdev(start_rdev);
  1729. return err;
  1730. }
  1731. if (start_rdev->faulty) {
  1732. printk(KERN_WARNING
  1733. "md: can not autostart based on faulty %s!\n",
  1734. bdevname(start_rdev->bdev,b));
  1735. export_rdev(start_rdev);
  1736. return err;
  1737. }
  1738. list_add(&start_rdev->same_set, &pending_raid_disks);
  1739. for (i = 0; i < MD_SB_DISKS; i++) {
  1740. mdp_disk_t *desc = sb->disks + i;
  1741. dev_t dev = MKDEV(desc->major, desc->minor);
  1742. if (!dev)
  1743. continue;
  1744. if (dev == startdev)
  1745. continue;
  1746. if (MAJOR(dev) != desc->major || MINOR(dev) != desc->minor)
  1747. continue;
  1748. rdev = md_import_device(dev, 0, 0);
  1749. if (IS_ERR(rdev))
  1750. continue;
  1751. list_add(&rdev->same_set, &pending_raid_disks);
  1752. }
  1753. /*
  1754. * possibly return codes
  1755. */
  1756. autorun_devices(0);
  1757. return 0;
  1758. }
  1759. static int get_version(void __user * arg)
  1760. {
  1761. mdu_version_t ver;
  1762. ver.major = MD_MAJOR_VERSION;
  1763. ver.minor = MD_MINOR_VERSION;
  1764. ver.patchlevel = MD_PATCHLEVEL_VERSION;
  1765. if (copy_to_user(arg, &ver, sizeof(ver)))
  1766. return -EFAULT;
  1767. return 0;
  1768. }
  1769. static int get_array_info(mddev_t * mddev, void __user * arg)
  1770. {
  1771. mdu_array_info_t info;
  1772. int nr,working,active,failed,spare;
  1773. mdk_rdev_t *rdev;
  1774. struct list_head *tmp;
  1775. nr=working=active=failed=spare=0;
  1776. ITERATE_RDEV(mddev,rdev,tmp) {
  1777. nr++;
  1778. if (rdev->faulty)
  1779. failed++;
  1780. else {
  1781. working++;
  1782. if (rdev->in_sync)
  1783. active++;
  1784. else
  1785. spare++;
  1786. }
  1787. }
  1788. info.major_version = mddev->major_version;
  1789. info.minor_version = mddev->minor_version;
  1790. info.patch_version = MD_PATCHLEVEL_VERSION;
  1791. info.ctime = mddev->ctime;
  1792. info.level = mddev->level;
  1793. info.size = mddev->size;
  1794. info.nr_disks = nr;
  1795. info.raid_disks = mddev->raid_disks;
  1796. info.md_minor = mddev->md_minor;
  1797. info.not_persistent= !mddev->persistent;
  1798. info.utime = mddev->utime;
  1799. info.state = 0;
  1800. if (mddev->in_sync)
  1801. info.state = (1<<MD_SB_CLEAN);
  1802. if (mddev->bitmap && mddev->bitmap_offset)
  1803. info.state = (1<<MD_SB_BITMAP_PRESENT);
  1804. info.active_disks = active;
  1805. info.working_disks = working;
  1806. info.failed_disks = failed;
  1807. info.spare_disks = spare;
  1808. info.layout = mddev->layout;
  1809. info.chunk_size = mddev->chunk_size;
  1810. if (copy_to_user(arg, &info, sizeof(info)))
  1811. return -EFAULT;
  1812. return 0;
  1813. }
  1814. static int get_bitmap_file(mddev_t * mddev, void __user * arg)
  1815. {
  1816. mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
  1817. char *ptr, *buf = NULL;
  1818. int err = -ENOMEM;
  1819. file = kmalloc(sizeof(*file), GFP_KERNEL);
  1820. if (!file)
  1821. goto out;
  1822. /* bitmap disabled, zero the first byte and copy out */
  1823. if (!mddev->bitmap || !mddev->bitmap->file) {
  1824. file->pathname[0] = '\0';
  1825. goto copy_out;
  1826. }
  1827. buf = kmalloc(sizeof(file->pathname), GFP_KERNEL);
  1828. if (!buf)
  1829. goto out;
  1830. ptr = file_path(mddev->bitmap->file, buf, sizeof(file->pathname));
  1831. if (!ptr)
  1832. goto out;
  1833. strcpy(file->pathname, ptr);
  1834. copy_out:
  1835. err = 0;
  1836. if (copy_to_user(arg, file, sizeof(*file)))
  1837. err = -EFAULT;
  1838. out:
  1839. kfree(buf);
  1840. kfree(file);
  1841. return err;
  1842. }
  1843. static int get_disk_info(mddev_t * mddev, void __user * arg)
  1844. {
  1845. mdu_disk_info_t info;
  1846. unsigned int nr;
  1847. mdk_rdev_t *rdev;
  1848. if (copy_from_user(&info, arg, sizeof(info)))
  1849. return -EFAULT;
  1850. nr = info.number;
  1851. rdev = find_rdev_nr(mddev, nr);
  1852. if (rdev) {
  1853. info.major = MAJOR(rdev->bdev->bd_dev);
  1854. info.minor = MINOR(rdev->bdev->bd_dev);
  1855. info.raid_disk = rdev->raid_disk;
  1856. info.state = 0;
  1857. if (rdev->faulty)
  1858. info.state |= (1<<MD_DISK_FAULTY);
  1859. else if (rdev->in_sync) {
  1860. info.state |= (1<<MD_DISK_ACTIVE);
  1861. info.state |= (1<<MD_DISK_SYNC);
  1862. }
  1863. if (test_bit(WriteMostly, &rdev->flags))
  1864. info.state |= (1<<MD_DISK_WRITEMOSTLY);
  1865. } else {
  1866. info.major = info.minor = 0;
  1867. info.raid_disk = -1;
  1868. info.state = (1<<MD_DISK_REMOVED);
  1869. }
  1870. if (copy_to_user(arg, &info, sizeof(info)))
  1871. return -EFAULT;
  1872. return 0;
  1873. }
  1874. static int add_new_disk(mddev_t * mddev, mdu_disk_info_t *info)
  1875. {
  1876. char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
  1877. mdk_rdev_t *rdev;
  1878. dev_t dev = MKDEV(info->major,info->minor);
  1879. if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
  1880. return -EOVERFLOW;
  1881. if (!mddev->raid_disks) {
  1882. int err;
  1883. /* expecting a device which has a superblock */
  1884. rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
  1885. if (IS_ERR(rdev)) {
  1886. printk(KERN_WARNING
  1887. "md: md_import_device returned %ld\n",
  1888. PTR_ERR(rdev));
  1889. return PTR_ERR(rdev);
  1890. }
  1891. if (!list_empty(&mddev->disks)) {
  1892. mdk_rdev_t *rdev0 = list_entry(mddev->disks.next,
  1893. mdk_rdev_t, same_set);
  1894. int err = super_types[mddev->major_version]
  1895. .load_super(rdev, rdev0, mddev->minor_version);
  1896. if (err < 0) {
  1897. printk(KERN_WARNING
  1898. "md: %s has different UUID to %s\n",
  1899. bdevname(rdev->bdev,b),
  1900. bdevname(rdev0->bdev,b2));
  1901. export_rdev(rdev);
  1902. return -EINVAL;
  1903. }
  1904. }
  1905. err = bind_rdev_to_array(rdev, mddev);
  1906. if (err)
  1907. export_rdev(rdev);
  1908. return err;
  1909. }
  1910. /*
  1911. * add_new_disk can be used once the array is assembled
  1912. * to add "hot spares". They must already have a superblock
  1913. * written
  1914. */
  1915. if (mddev->pers) {
  1916. int err;
  1917. if (!mddev->pers->hot_add_disk) {
  1918. printk(KERN_WARNING
  1919. "%s: personality does not support diskops!\n",
  1920. mdname(mddev));
  1921. return -EINVAL;
  1922. }
  1923. if (mddev->persistent)
  1924. rdev = md_import_device(dev, mddev->major_version,
  1925. mddev->minor_version);
  1926. else
  1927. rdev = md_import_device(dev, -1, -1);
  1928. if (IS_ERR(rdev)) {
  1929. printk(KERN_WARNING
  1930. "md: md_import_device returned %ld\n",
  1931. PTR_ERR(rdev));
  1932. return PTR_ERR(rdev);
  1933. }
  1934. /* set save_raid_disk if appropriate */
  1935. if (!mddev->persistent) {
  1936. if (info->state & (1<<MD_DISK_SYNC) &&
  1937. info->raid_disk < mddev->raid_disks)
  1938. rdev->raid_disk = info->raid_disk;
  1939. else
  1940. rdev->raid_disk = -1;
  1941. } else
  1942. super_types[mddev->major_version].
  1943. validate_super(mddev, rdev);
  1944. rdev->saved_raid_disk = rdev->raid_disk;
  1945. rdev->in_sync = 0; /* just to be sure */
  1946. if (info->state & (1<<MD_DISK_WRITEMOSTLY))
  1947. set_bit(WriteMostly, &rdev->flags);
  1948. rdev->raid_disk = -1;
  1949. err = bind_rdev_to_array(rdev, mddev);
  1950. if (err)
  1951. export_rdev(rdev);
  1952. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  1953. md_wakeup_thread(mddev->thread);
  1954. return err;
  1955. }
  1956. /* otherwise, add_new_disk is only allowed
  1957. * for major_version==0 superblocks
  1958. */
  1959. if (mddev->major_version != 0) {
  1960. printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
  1961. mdname(mddev));
  1962. return -EINVAL;
  1963. }
  1964. if (!(info->state & (1<<MD_DISK_FAULTY))) {
  1965. int err;
  1966. rdev = md_import_device (dev, -1, 0);
  1967. if (IS_ERR(rdev)) {
  1968. printk(KERN_WARNING
  1969. "md: error, md_import_device() returned %ld\n",
  1970. PTR_ERR(rdev));
  1971. return PTR_ERR(rdev);
  1972. }
  1973. rdev->desc_nr = info->number;
  1974. if (info->raid_disk < mddev->raid_disks)
  1975. rdev->raid_disk = info->raid_disk;
  1976. else
  1977. rdev->raid_disk = -1;
  1978. rdev->faulty = 0;
  1979. if (rdev->raid_disk < mddev->raid_disks)
  1980. rdev->in_sync = (info->state & (1<<MD_DISK_SYNC));
  1981. else
  1982. rdev->in_sync = 0;
  1983. if (info->state & (1<<MD_DISK_WRITEMOSTLY))
  1984. set_bit(WriteMostly, &rdev->flags);
  1985. err = bind_rdev_to_array(rdev, mddev);
  1986. if (err) {
  1987. export_rdev(rdev);
  1988. return err;
  1989. }
  1990. if (!mddev->persistent) {
  1991. printk(KERN_INFO "md: nonpersistent superblock ...\n");
  1992. rdev->sb_offset = rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
  1993. } else
  1994. rdev->sb_offset = calc_dev_sboffset(rdev->bdev);
  1995. rdev->size = calc_dev_size(rdev, mddev->chunk_size);
  1996. if (!mddev->size || (mddev->size > rdev->size))
  1997. mddev->size = rdev->size;
  1998. }
  1999. return 0;
  2000. }
  2001. static int hot_remove_disk(mddev_t * mddev, dev_t dev)
  2002. {
  2003. char b[BDEVNAME_SIZE];
  2004. mdk_rdev_t *rdev;
  2005. if (!mddev->pers)
  2006. return -ENODEV;
  2007. rdev = find_rdev(mddev, dev);
  2008. if (!rdev)
  2009. return -ENXIO;
  2010. if (rdev->raid_disk >= 0)
  2011. goto busy;
  2012. kick_rdev_from_array(rdev);
  2013. md_update_sb(mddev);
  2014. return 0;
  2015. busy:
  2016. printk(KERN_WARNING "md: cannot remove active disk %s from %s ... \n",
  2017. bdevname(rdev->bdev,b), mdname(mddev));
  2018. return -EBUSY;
  2019. }
  2020. static int hot_add_disk(mddev_t * mddev, dev_t dev)
  2021. {
  2022. char b[BDEVNAME_SIZE];
  2023. int err;
  2024. unsigned int size;
  2025. mdk_rdev_t *rdev;
  2026. if (!mddev->pers)
  2027. return -ENODEV;
  2028. if (mddev->major_version != 0) {
  2029. printk(KERN_WARNING "%s: HOT_ADD may only be used with"
  2030. " version-0 superblocks.\n",
  2031. mdname(mddev));
  2032. return -EINVAL;
  2033. }
  2034. if (!mddev->pers->hot_add_disk) {
  2035. printk(KERN_WARNING
  2036. "%s: personality does not support diskops!\n",
  2037. mdname(mddev));
  2038. return -EINVAL;
  2039. }
  2040. rdev = md_import_device (dev, -1, 0);
  2041. if (IS_ERR(rdev)) {
  2042. printk(KERN_WARNING
  2043. "md: error, md_import_device() returned %ld\n",
  2044. PTR_ERR(rdev));
  2045. return -EINVAL;
  2046. }
  2047. if (mddev->persistent)
  2048. rdev->sb_offset = calc_dev_sboffset(rdev->bdev);
  2049. else
  2050. rdev->sb_offset =
  2051. rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
  2052. size = calc_dev_size(rdev, mddev->chunk_size);
  2053. rdev->size = size;
  2054. if (size < mddev->size) {
  2055. printk(KERN_WARNING
  2056. "%s: disk size %llu blocks < array size %llu\n",
  2057. mdname(mddev), (unsigned long long)size,
  2058. (unsigned long long)mddev->size);
  2059. err = -ENOSPC;
  2060. goto abort_export;
  2061. }
  2062. if (rdev->faulty) {
  2063. printk(KERN_WARNING
  2064. "md: can not hot-add faulty %s disk to %s!\n",
  2065. bdevname(rdev->bdev,b), mdname(mddev));
  2066. err = -EINVAL;
  2067. goto abort_export;
  2068. }
  2069. rdev->in_sync = 0;
  2070. rdev->desc_nr = -1;
  2071. bind_rdev_to_array(rdev, mddev);
  2072. /*
  2073. * The rest should better be atomic, we can have disk failures
  2074. * noticed in interrupt contexts ...
  2075. */
  2076. if (rdev->desc_nr == mddev->max_disks) {
  2077. printk(KERN_WARNING "%s: can not hot-add to full array!\n",
  2078. mdname(mddev));
  2079. err = -EBUSY;
  2080. goto abort_unbind_export;
  2081. }
  2082. rdev->raid_disk = -1;
  2083. md_update_sb(mddev);
  2084. /*
  2085. * Kick recovery, maybe this spare has to be added to the
  2086. * array immediately.
  2087. */
  2088. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  2089. md_wakeup_thread(mddev->thread);
  2090. return 0;
  2091. abort_unbind_export:
  2092. unbind_rdev_from_array(rdev);
  2093. abort_export:
  2094. export_rdev(rdev);
  2095. return err;
  2096. }
  2097. /* similar to deny_write_access, but accounts for our holding a reference
  2098. * to the file ourselves */
  2099. static int deny_bitmap_write_access(struct file * file)
  2100. {
  2101. struct inode *inode = file->f_mapping->host;
  2102. spin_lock(&inode->i_lock);
  2103. if (atomic_read(&inode->i_writecount) > 1) {
  2104. spin_unlock(&inode->i_lock);
  2105. return -ETXTBSY;
  2106. }
  2107. atomic_set(&inode->i_writecount, -1);
  2108. spin_unlock(&inode->i_lock);
  2109. return 0;
  2110. }
  2111. static int set_bitmap_file(mddev_t *mddev, int fd)
  2112. {
  2113. int err;
  2114. if (mddev->pers) {
  2115. if (!mddev->pers->quiesce)
  2116. return -EBUSY;
  2117. if (mddev->recovery || mddev->sync_thread)
  2118. return -EBUSY;
  2119. /* we should be able to change the bitmap.. */
  2120. }
  2121. if (fd >= 0) {
  2122. if (mddev->bitmap)
  2123. return -EEXIST; /* cannot add when bitmap is present */
  2124. mddev->bitmap_file = fget(fd);
  2125. if (mddev->bitmap_file == NULL) {
  2126. printk(KERN_ERR "%s: error: failed to get bitmap file\n",
  2127. mdname(mddev));
  2128. return -EBADF;
  2129. }
  2130. err = deny_bitmap_write_access(mddev->bitmap_file);
  2131. if (err) {
  2132. printk(KERN_ERR "%s: error: bitmap file is already in use\n",
  2133. mdname(mddev));
  2134. fput(mddev->bitmap_file);
  2135. mddev->bitmap_file = NULL;
  2136. return err;
  2137. }
  2138. mddev->bitmap_offset = 0; /* file overrides offset */
  2139. } else if (mddev->bitmap == NULL)
  2140. return -ENOENT; /* cannot remove what isn't there */
  2141. err = 0;
  2142. if (mddev->pers) {
  2143. mddev->pers->quiesce(mddev, 1);
  2144. if (fd >= 0)
  2145. err = bitmap_create(mddev);
  2146. if (fd < 0 || err)
  2147. bitmap_destroy(mddev);
  2148. mddev->pers->quiesce(mddev, 0);
  2149. } else if (fd < 0) {
  2150. if (mddev->bitmap_file)
  2151. fput(mddev->bitmap_file);
  2152. mddev->bitmap_file = NULL;
  2153. }
  2154. return err;
  2155. }
  2156. /*
  2157. * set_array_info is used two different ways
  2158. * The original usage is when creating a new array.
  2159. * In this usage, raid_disks is > 0 and it together with
  2160. * level, size, not_persistent,layout,chunksize determine the
  2161. * shape of the array.
  2162. * This will always create an array with a type-0.90.0 superblock.
  2163. * The newer usage is when assembling an array.
  2164. * In this case raid_disks will be 0, and the major_version field is
  2165. * use to determine which style super-blocks are to be found on the devices.
  2166. * The minor and patch _version numbers are also kept incase the
  2167. * super_block handler wishes to interpret them.
  2168. */
  2169. static int set_array_info(mddev_t * mddev, mdu_array_info_t *info)
  2170. {
  2171. if (info->raid_disks == 0) {
  2172. /* just setting version number for superblock loading */
  2173. if (info->major_version < 0 ||
  2174. info->major_version >= sizeof(super_types)/sizeof(super_types[0]) ||
  2175. super_types[info->major_version].name == NULL) {
  2176. /* maybe try to auto-load a module? */
  2177. printk(KERN_INFO
  2178. "md: superblock version %d not known\n",
  2179. info->major_version);
  2180. return -EINVAL;
  2181. }
  2182. mddev->major_version = info->major_version;
  2183. mddev->minor_version = info->minor_version;
  2184. mddev->patch_version = info->patch_version;
  2185. return 0;
  2186. }
  2187. mddev->major_version = MD_MAJOR_VERSION;
  2188. mddev->minor_version = MD_MINOR_VERSION;
  2189. mddev->patch_version = MD_PATCHLEVEL_VERSION;
  2190. mddev->ctime = get_seconds();
  2191. mddev->level = info->level;
  2192. mddev->size = info->size;
  2193. mddev->raid_disks = info->raid_disks;
  2194. /* don't set md_minor, it is determined by which /dev/md* was
  2195. * openned
  2196. */
  2197. if (info->state & (1<<MD_SB_CLEAN))
  2198. mddev->recovery_cp = MaxSector;
  2199. else
  2200. mddev->recovery_cp = 0;
  2201. mddev->persistent = ! info->not_persistent;
  2202. mddev->layout = info->layout;
  2203. mddev->chunk_size = info->chunk_size;
  2204. mddev->max_disks = MD_SB_DISKS;
  2205. mddev->sb_dirty = 1;
  2206. /*
  2207. * Generate a 128 bit UUID
  2208. */
  2209. get_random_bytes(mddev->uuid, 16);
  2210. return 0;
  2211. }
  2212. /*
  2213. * update_array_info is used to change the configuration of an
  2214. * on-line array.
  2215. * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
  2216. * fields in the info are checked against the array.
  2217. * Any differences that cannot be handled will cause an error.
  2218. * Normally, only one change can be managed at a time.
  2219. */
  2220. static int update_array_info(mddev_t *mddev, mdu_array_info_t *info)
  2221. {
  2222. int rv = 0;
  2223. int cnt = 0;
  2224. int state = 0;
  2225. /* calculate expected state,ignoring low bits */
  2226. if (mddev->bitmap && mddev->bitmap_offset)
  2227. state |= (1 << MD_SB_BITMAP_PRESENT);
  2228. if (mddev->major_version != info->major_version ||
  2229. mddev->minor_version != info->minor_version ||
  2230. /* mddev->patch_version != info->patch_version || */
  2231. mddev->ctime != info->ctime ||
  2232. mddev->level != info->level ||
  2233. /* mddev->layout != info->layout || */
  2234. !mddev->persistent != info->not_persistent||
  2235. mddev->chunk_size != info->chunk_size ||
  2236. /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
  2237. ((state^info->state) & 0xfffffe00)
  2238. )
  2239. return -EINVAL;
  2240. /* Check there is only one change */
  2241. if (mddev->size != info->size) cnt++;
  2242. if (mddev->raid_disks != info->raid_disks) cnt++;
  2243. if (mddev->layout != info->layout) cnt++;
  2244. if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) cnt++;
  2245. if (cnt == 0) return 0;
  2246. if (cnt > 1) return -EINVAL;
  2247. if (mddev->layout != info->layout) {
  2248. /* Change layout
  2249. * we don't need to do anything at the md level, the
  2250. * personality will take care of it all.
  2251. */
  2252. if (mddev->pers->reconfig == NULL)
  2253. return -EINVAL;
  2254. else
  2255. return mddev->pers->reconfig(mddev, info->layout, -1);
  2256. }
  2257. if (mddev->size != info->size) {
  2258. mdk_rdev_t * rdev;
  2259. struct list_head *tmp;
  2260. if (mddev->pers->resize == NULL)
  2261. return -EINVAL;
  2262. /* The "size" is the amount of each device that is used.
  2263. * This can only make sense for arrays with redundancy.
  2264. * linear and raid0 always use whatever space is available
  2265. * We can only consider changing the size if no resync
  2266. * or reconstruction is happening, and if the new size
  2267. * is acceptable. It must fit before the sb_offset or,
  2268. * if that is <data_offset, it must fit before the
  2269. * size of each device.
  2270. * If size is zero, we find the largest size that fits.
  2271. */
  2272. if (mddev->sync_thread)
  2273. return -EBUSY;
  2274. ITERATE_RDEV(mddev,rdev,tmp) {
  2275. sector_t avail;
  2276. int fit = (info->size == 0);
  2277. if (rdev->sb_offset > rdev->data_offset)
  2278. avail = (rdev->sb_offset*2) - rdev->data_offset;
  2279. else
  2280. avail = get_capacity(rdev->bdev->bd_disk)
  2281. - rdev->data_offset;
  2282. if (fit && (info->size == 0 || info->size > avail/2))
  2283. info->size = avail/2;
  2284. if (avail < ((sector_t)info->size << 1))
  2285. return -ENOSPC;
  2286. }
  2287. rv = mddev->pers->resize(mddev, (sector_t)info->size *2);
  2288. if (!rv) {
  2289. struct block_device *bdev;
  2290. bdev = bdget_disk(mddev->gendisk, 0);
  2291. if (bdev) {
  2292. down(&bdev->bd_inode->i_sem);
  2293. i_size_write(bdev->bd_inode, mddev->array_size << 10);
  2294. up(&bdev->bd_inode->i_sem);
  2295. bdput(bdev);
  2296. }
  2297. }
  2298. }
  2299. if (mddev->raid_disks != info->raid_disks) {
  2300. /* change the number of raid disks */
  2301. if (mddev->pers->reshape == NULL)
  2302. return -EINVAL;
  2303. if (info->raid_disks <= 0 ||
  2304. info->raid_disks >= mddev->max_disks)
  2305. return -EINVAL;
  2306. if (mddev->sync_thread)
  2307. return -EBUSY;
  2308. rv = mddev->pers->reshape(mddev, info->raid_disks);
  2309. if (!rv) {
  2310. struct block_device *bdev;
  2311. bdev = bdget_disk(mddev->gendisk, 0);
  2312. if (bdev) {
  2313. down(&bdev->bd_inode->i_sem);
  2314. i_size_write(bdev->bd_inode, mddev->array_size << 10);
  2315. up(&bdev->bd_inode->i_sem);
  2316. bdput(bdev);
  2317. }
  2318. }
  2319. }
  2320. if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
  2321. if (mddev->pers->quiesce == NULL)
  2322. return -EINVAL;
  2323. if (mddev->recovery || mddev->sync_thread)
  2324. return -EBUSY;
  2325. if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
  2326. /* add the bitmap */
  2327. if (mddev->bitmap)
  2328. return -EEXIST;
  2329. if (mddev->default_bitmap_offset == 0)
  2330. return -EINVAL;
  2331. mddev->bitmap_offset = mddev->default_bitmap_offset;
  2332. mddev->pers->quiesce(mddev, 1);
  2333. rv = bitmap_create(mddev);
  2334. if (rv)
  2335. bitmap_destroy(mddev);
  2336. mddev->pers->quiesce(mddev, 0);
  2337. } else {
  2338. /* remove the bitmap */
  2339. if (!mddev->bitmap)
  2340. return -ENOENT;
  2341. if (mddev->bitmap->file)
  2342. return -EINVAL;
  2343. mddev->pers->quiesce(mddev, 1);
  2344. bitmap_destroy(mddev);
  2345. mddev->pers->quiesce(mddev, 0);
  2346. mddev->bitmap_offset = 0;
  2347. }
  2348. }
  2349. md_update_sb(mddev);
  2350. return rv;
  2351. }
  2352. static int set_disk_faulty(mddev_t *mddev, dev_t dev)
  2353. {
  2354. mdk_rdev_t *rdev;
  2355. if (mddev->pers == NULL)
  2356. return -ENODEV;
  2357. rdev = find_rdev(mddev, dev);
  2358. if (!rdev)
  2359. return -ENODEV;
  2360. md_error(mddev, rdev);
  2361. return 0;
  2362. }
  2363. static int md_ioctl(struct inode *inode, struct file *file,
  2364. unsigned int cmd, unsigned long arg)
  2365. {
  2366. int err = 0;
  2367. void __user *argp = (void __user *)arg;
  2368. struct hd_geometry __user *loc = argp;
  2369. mddev_t *mddev = NULL;
  2370. if (!capable(CAP_SYS_ADMIN))
  2371. return -EACCES;
  2372. /*
  2373. * Commands dealing with the RAID driver but not any
  2374. * particular array:
  2375. */
  2376. switch (cmd)
  2377. {
  2378. case RAID_VERSION:
  2379. err = get_version(argp);
  2380. goto done;
  2381. case PRINT_RAID_DEBUG:
  2382. err = 0;
  2383. md_print_devices();
  2384. goto done;
  2385. #ifndef MODULE
  2386. case RAID_AUTORUN:
  2387. err = 0;
  2388. autostart_arrays(arg);
  2389. goto done;
  2390. #endif
  2391. default:;
  2392. }
  2393. /*
  2394. * Commands creating/starting a new array:
  2395. */
  2396. mddev = inode->i_bdev->bd_disk->private_data;
  2397. if (!mddev) {
  2398. BUG();
  2399. goto abort;
  2400. }
  2401. if (cmd == START_ARRAY) {
  2402. /* START_ARRAY doesn't need to lock the array as autostart_array
  2403. * does the locking, and it could even be a different array
  2404. */
  2405. static int cnt = 3;
  2406. if (cnt > 0 ) {
  2407. printk(KERN_WARNING
  2408. "md: %s(pid %d) used deprecated START_ARRAY ioctl. "
  2409. "This will not be supported beyond 2.6\n",
  2410. current->comm, current->pid);
  2411. cnt--;
  2412. }
  2413. err = autostart_array(new_decode_dev(arg));
  2414. if (err) {
  2415. printk(KERN_WARNING "md: autostart failed!\n");
  2416. goto abort;
  2417. }
  2418. goto done;
  2419. }
  2420. err = mddev_lock(mddev);
  2421. if (err) {
  2422. printk(KERN_INFO
  2423. "md: ioctl lock interrupted, reason %d, cmd %d\n",
  2424. err, cmd);
  2425. goto abort;
  2426. }
  2427. switch (cmd)
  2428. {
  2429. case SET_ARRAY_INFO:
  2430. {
  2431. mdu_array_info_t info;
  2432. if (!arg)
  2433. memset(&info, 0, sizeof(info));
  2434. else if (copy_from_user(&info, argp, sizeof(info))) {
  2435. err = -EFAULT;
  2436. goto abort_unlock;
  2437. }
  2438. if (mddev->pers) {
  2439. err = update_array_info(mddev, &info);
  2440. if (err) {
  2441. printk(KERN_WARNING "md: couldn't update"
  2442. " array info. %d\n", err);
  2443. goto abort_unlock;
  2444. }
  2445. goto done_unlock;
  2446. }
  2447. if (!list_empty(&mddev->disks)) {
  2448. printk(KERN_WARNING
  2449. "md: array %s already has disks!\n",
  2450. mdname(mddev));
  2451. err = -EBUSY;
  2452. goto abort_unlock;
  2453. }
  2454. if (mddev->raid_disks) {
  2455. printk(KERN_WARNING
  2456. "md: array %s already initialised!\n",
  2457. mdname(mddev));
  2458. err = -EBUSY;
  2459. goto abort_unlock;
  2460. }
  2461. err = set_array_info(mddev, &info);
  2462. if (err) {
  2463. printk(KERN_WARNING "md: couldn't set"
  2464. " array info. %d\n", err);
  2465. goto abort_unlock;
  2466. }
  2467. }
  2468. goto done_unlock;
  2469. default:;
  2470. }
  2471. /*
  2472. * Commands querying/configuring an existing array:
  2473. */
  2474. /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
  2475. * RUN_ARRAY, and SET_BITMAP_FILE are allowed */
  2476. if (!mddev->raid_disks && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
  2477. && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE) {
  2478. err = -ENODEV;
  2479. goto abort_unlock;
  2480. }
  2481. /*
  2482. * Commands even a read-only array can execute:
  2483. */
  2484. switch (cmd)
  2485. {
  2486. case GET_ARRAY_INFO:
  2487. err = get_array_info(mddev, argp);
  2488. goto done_unlock;
  2489. case GET_BITMAP_FILE:
  2490. err = get_bitmap_file(mddev, argp);
  2491. goto done_unlock;
  2492. case GET_DISK_INFO:
  2493. err = get_disk_info(mddev, argp);
  2494. goto done_unlock;
  2495. case RESTART_ARRAY_RW:
  2496. err = restart_array(mddev);
  2497. goto done_unlock;
  2498. case STOP_ARRAY:
  2499. err = do_md_stop (mddev, 0);
  2500. goto done_unlock;
  2501. case STOP_ARRAY_RO:
  2502. err = do_md_stop (mddev, 1);
  2503. goto done_unlock;
  2504. /*
  2505. * We have a problem here : there is no easy way to give a CHS
  2506. * virtual geometry. We currently pretend that we have a 2 heads
  2507. * 4 sectors (with a BIG number of cylinders...). This drives
  2508. * dosfs just mad... ;-)
  2509. */
  2510. case HDIO_GETGEO:
  2511. if (!loc) {
  2512. err = -EINVAL;
  2513. goto abort_unlock;
  2514. }
  2515. err = put_user (2, (char __user *) &loc->heads);
  2516. if (err)
  2517. goto abort_unlock;
  2518. err = put_user (4, (char __user *) &loc->sectors);
  2519. if (err)
  2520. goto abort_unlock;
  2521. err = put_user(get_capacity(mddev->gendisk)/8,
  2522. (short __user *) &loc->cylinders);
  2523. if (err)
  2524. goto abort_unlock;
  2525. err = put_user (get_start_sect(inode->i_bdev),
  2526. (long __user *) &loc->start);
  2527. goto done_unlock;
  2528. }
  2529. /*
  2530. * The remaining ioctls are changing the state of the
  2531. * superblock, so we do not allow read-only arrays
  2532. * here:
  2533. */
  2534. if (mddev->ro) {
  2535. err = -EROFS;
  2536. goto abort_unlock;
  2537. }
  2538. switch (cmd)
  2539. {
  2540. case ADD_NEW_DISK:
  2541. {
  2542. mdu_disk_info_t info;
  2543. if (copy_from_user(&info, argp, sizeof(info)))
  2544. err = -EFAULT;
  2545. else
  2546. err = add_new_disk(mddev, &info);
  2547. goto done_unlock;
  2548. }
  2549. case HOT_REMOVE_DISK:
  2550. err = hot_remove_disk(mddev, new_decode_dev(arg));
  2551. goto done_unlock;
  2552. case HOT_ADD_DISK:
  2553. err = hot_add_disk(mddev, new_decode_dev(arg));
  2554. goto done_unlock;
  2555. case SET_DISK_FAULTY:
  2556. err = set_disk_faulty(mddev, new_decode_dev(arg));
  2557. goto done_unlock;
  2558. case RUN_ARRAY:
  2559. err = do_md_run (mddev);
  2560. goto done_unlock;
  2561. case SET_BITMAP_FILE:
  2562. err = set_bitmap_file(mddev, (int)arg);
  2563. goto done_unlock;
  2564. default:
  2565. if (_IOC_TYPE(cmd) == MD_MAJOR)
  2566. printk(KERN_WARNING "md: %s(pid %d) used"
  2567. " obsolete MD ioctl, upgrade your"
  2568. " software to use new ictls.\n",
  2569. current->comm, current->pid);
  2570. err = -EINVAL;
  2571. goto abort_unlock;
  2572. }
  2573. done_unlock:
  2574. abort_unlock:
  2575. mddev_unlock(mddev);
  2576. return err;
  2577. done:
  2578. if (err)
  2579. MD_BUG();
  2580. abort:
  2581. return err;
  2582. }
  2583. static int md_open(struct inode *inode, struct file *file)
  2584. {
  2585. /*
  2586. * Succeed if we can lock the mddev, which confirms that
  2587. * it isn't being stopped right now.
  2588. */
  2589. mddev_t *mddev = inode->i_bdev->bd_disk->private_data;
  2590. int err;
  2591. if ((err = mddev_lock(mddev)))
  2592. goto out;
  2593. err = 0;
  2594. mddev_get(mddev);
  2595. mddev_unlock(mddev);
  2596. check_disk_change(inode->i_bdev);
  2597. out:
  2598. return err;
  2599. }
  2600. static int md_release(struct inode *inode, struct file * file)
  2601. {
  2602. mddev_t *mddev = inode->i_bdev->bd_disk->private_data;
  2603. if (!mddev)
  2604. BUG();
  2605. mddev_put(mddev);
  2606. return 0;
  2607. }
  2608. static int md_media_changed(struct gendisk *disk)
  2609. {
  2610. mddev_t *mddev = disk->private_data;
  2611. return mddev->changed;
  2612. }
  2613. static int md_revalidate(struct gendisk *disk)
  2614. {
  2615. mddev_t *mddev = disk->private_data;
  2616. mddev->changed = 0;
  2617. return 0;
  2618. }
  2619. static struct block_device_operations md_fops =
  2620. {
  2621. .owner = THIS_MODULE,
  2622. .open = md_open,
  2623. .release = md_release,
  2624. .ioctl = md_ioctl,
  2625. .media_changed = md_media_changed,
  2626. .revalidate_disk= md_revalidate,
  2627. };
  2628. static int md_thread(void * arg)
  2629. {
  2630. mdk_thread_t *thread = arg;
  2631. lock_kernel();
  2632. /*
  2633. * Detach thread
  2634. */
  2635. daemonize(thread->name, mdname(thread->mddev));
  2636. current->exit_signal = SIGCHLD;
  2637. allow_signal(SIGKILL);
  2638. thread->tsk = current;
  2639. /*
  2640. * md_thread is a 'system-thread', it's priority should be very
  2641. * high. We avoid resource deadlocks individually in each
  2642. * raid personality. (RAID5 does preallocation) We also use RR and
  2643. * the very same RT priority as kswapd, thus we will never get
  2644. * into a priority inversion deadlock.
  2645. *
  2646. * we definitely have to have equal or higher priority than
  2647. * bdflush, otherwise bdflush will deadlock if there are too
  2648. * many dirty RAID5 blocks.
  2649. */
  2650. unlock_kernel();
  2651. complete(thread->event);
  2652. while (thread->run) {
  2653. void (*run)(mddev_t *);
  2654. wait_event_interruptible_timeout(thread->wqueue,
  2655. test_bit(THREAD_WAKEUP, &thread->flags),
  2656. thread->timeout);
  2657. try_to_freeze();
  2658. clear_bit(THREAD_WAKEUP, &thread->flags);
  2659. run = thread->run;
  2660. if (run)
  2661. run(thread->mddev);
  2662. if (signal_pending(current))
  2663. flush_signals(current);
  2664. }
  2665. complete(thread->event);
  2666. return 0;
  2667. }
  2668. void md_wakeup_thread(mdk_thread_t *thread)
  2669. {
  2670. if (thread) {
  2671. dprintk("md: waking up MD thread %s.\n", thread->tsk->comm);
  2672. set_bit(THREAD_WAKEUP, &thread->flags);
  2673. wake_up(&thread->wqueue);
  2674. }
  2675. }
  2676. mdk_thread_t *md_register_thread(void (*run) (mddev_t *), mddev_t *mddev,
  2677. const char *name)
  2678. {
  2679. mdk_thread_t *thread;
  2680. int ret;
  2681. struct completion event;
  2682. thread = (mdk_thread_t *) kmalloc
  2683. (sizeof(mdk_thread_t), GFP_KERNEL);
  2684. if (!thread)
  2685. return NULL;
  2686. memset(thread, 0, sizeof(mdk_thread_t));
  2687. init_waitqueue_head(&thread->wqueue);
  2688. init_completion(&event);
  2689. thread->event = &event;
  2690. thread->run = run;
  2691. thread->mddev = mddev;
  2692. thread->name = name;
  2693. thread->timeout = MAX_SCHEDULE_TIMEOUT;
  2694. ret = kernel_thread(md_thread, thread, 0);
  2695. if (ret < 0) {
  2696. kfree(thread);
  2697. return NULL;
  2698. }
  2699. wait_for_completion(&event);
  2700. return thread;
  2701. }
  2702. void md_unregister_thread(mdk_thread_t *thread)
  2703. {
  2704. struct completion event;
  2705. init_completion(&event);
  2706. thread->event = &event;
  2707. /* As soon as ->run is set to NULL, the task could disappear,
  2708. * so we need to hold tasklist_lock until we have sent the signal
  2709. */
  2710. dprintk("interrupting MD-thread pid %d\n", thread->tsk->pid);
  2711. read_lock(&tasklist_lock);
  2712. thread->run = NULL;
  2713. send_sig(SIGKILL, thread->tsk, 1);
  2714. read_unlock(&tasklist_lock);
  2715. wait_for_completion(&event);
  2716. kfree(thread);
  2717. }
  2718. void md_error(mddev_t *mddev, mdk_rdev_t *rdev)
  2719. {
  2720. if (!mddev) {
  2721. MD_BUG();
  2722. return;
  2723. }
  2724. if (!rdev || rdev->faulty)
  2725. return;
  2726. /*
  2727. dprintk("md_error dev:%s, rdev:(%d:%d), (caller: %p,%p,%p,%p).\n",
  2728. mdname(mddev),
  2729. MAJOR(rdev->bdev->bd_dev), MINOR(rdev->bdev->bd_dev),
  2730. __builtin_return_address(0),__builtin_return_address(1),
  2731. __builtin_return_address(2),__builtin_return_address(3));
  2732. */
  2733. if (!mddev->pers->error_handler)
  2734. return;
  2735. mddev->pers->error_handler(mddev,rdev);
  2736. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  2737. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  2738. md_wakeup_thread(mddev->thread);
  2739. }
  2740. /* seq_file implementation /proc/mdstat */
  2741. static void status_unused(struct seq_file *seq)
  2742. {
  2743. int i = 0;
  2744. mdk_rdev_t *rdev;
  2745. struct list_head *tmp;
  2746. seq_printf(seq, "unused devices: ");
  2747. ITERATE_RDEV_PENDING(rdev,tmp) {
  2748. char b[BDEVNAME_SIZE];
  2749. i++;
  2750. seq_printf(seq, "%s ",
  2751. bdevname(rdev->bdev,b));
  2752. }
  2753. if (!i)
  2754. seq_printf(seq, "<none>");
  2755. seq_printf(seq, "\n");
  2756. }
  2757. static void status_resync(struct seq_file *seq, mddev_t * mddev)
  2758. {
  2759. unsigned long max_blocks, resync, res, dt, db, rt;
  2760. resync = (mddev->curr_resync - atomic_read(&mddev->recovery_active))/2;
  2761. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
  2762. max_blocks = mddev->resync_max_sectors >> 1;
  2763. else
  2764. max_blocks = mddev->size;
  2765. /*
  2766. * Should not happen.
  2767. */
  2768. if (!max_blocks) {
  2769. MD_BUG();
  2770. return;
  2771. }
  2772. res = (resync/1024)*1000/(max_blocks/1024 + 1);
  2773. {
  2774. int i, x = res/50, y = 20-x;
  2775. seq_printf(seq, "[");
  2776. for (i = 0; i < x; i++)
  2777. seq_printf(seq, "=");
  2778. seq_printf(seq, ">");
  2779. for (i = 0; i < y; i++)
  2780. seq_printf(seq, ".");
  2781. seq_printf(seq, "] ");
  2782. }
  2783. seq_printf(seq, " %s =%3lu.%lu%% (%lu/%lu)",
  2784. (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
  2785. "resync" : "recovery"),
  2786. res/10, res % 10, resync, max_blocks);
  2787. /*
  2788. * We do not want to overflow, so the order of operands and
  2789. * the * 100 / 100 trick are important. We do a +1 to be
  2790. * safe against division by zero. We only estimate anyway.
  2791. *
  2792. * dt: time from mark until now
  2793. * db: blocks written from mark until now
  2794. * rt: remaining time
  2795. */
  2796. dt = ((jiffies - mddev->resync_mark) / HZ);
  2797. if (!dt) dt++;
  2798. db = resync - (mddev->resync_mark_cnt/2);
  2799. rt = (dt * ((max_blocks-resync) / (db/100+1)))/100;
  2800. seq_printf(seq, " finish=%lu.%lumin", rt / 60, (rt % 60)/6);
  2801. seq_printf(seq, " speed=%ldK/sec", db/dt);
  2802. }
  2803. static void *md_seq_start(struct seq_file *seq, loff_t *pos)
  2804. {
  2805. struct list_head *tmp;
  2806. loff_t l = *pos;
  2807. mddev_t *mddev;
  2808. if (l >= 0x10000)
  2809. return NULL;
  2810. if (!l--)
  2811. /* header */
  2812. return (void*)1;
  2813. spin_lock(&all_mddevs_lock);
  2814. list_for_each(tmp,&all_mddevs)
  2815. if (!l--) {
  2816. mddev = list_entry(tmp, mddev_t, all_mddevs);
  2817. mddev_get(mddev);
  2818. spin_unlock(&all_mddevs_lock);
  2819. return mddev;
  2820. }
  2821. spin_unlock(&all_mddevs_lock);
  2822. if (!l--)
  2823. return (void*)2;/* tail */
  2824. return NULL;
  2825. }
  2826. static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
  2827. {
  2828. struct list_head *tmp;
  2829. mddev_t *next_mddev, *mddev = v;
  2830. ++*pos;
  2831. if (v == (void*)2)
  2832. return NULL;
  2833. spin_lock(&all_mddevs_lock);
  2834. if (v == (void*)1)
  2835. tmp = all_mddevs.next;
  2836. else
  2837. tmp = mddev->all_mddevs.next;
  2838. if (tmp != &all_mddevs)
  2839. next_mddev = mddev_get(list_entry(tmp,mddev_t,all_mddevs));
  2840. else {
  2841. next_mddev = (void*)2;
  2842. *pos = 0x10000;
  2843. }
  2844. spin_unlock(&all_mddevs_lock);
  2845. if (v != (void*)1)
  2846. mddev_put(mddev);
  2847. return next_mddev;
  2848. }
  2849. static void md_seq_stop(struct seq_file *seq, void *v)
  2850. {
  2851. mddev_t *mddev = v;
  2852. if (mddev && v != (void*)1 && v != (void*)2)
  2853. mddev_put(mddev);
  2854. }
  2855. static int md_seq_show(struct seq_file *seq, void *v)
  2856. {
  2857. mddev_t *mddev = v;
  2858. sector_t size;
  2859. struct list_head *tmp2;
  2860. mdk_rdev_t *rdev;
  2861. int i;
  2862. struct bitmap *bitmap;
  2863. if (v == (void*)1) {
  2864. seq_printf(seq, "Personalities : ");
  2865. spin_lock(&pers_lock);
  2866. for (i = 0; i < MAX_PERSONALITY; i++)
  2867. if (pers[i])
  2868. seq_printf(seq, "[%s] ", pers[i]->name);
  2869. spin_unlock(&pers_lock);
  2870. seq_printf(seq, "\n");
  2871. return 0;
  2872. }
  2873. if (v == (void*)2) {
  2874. status_unused(seq);
  2875. return 0;
  2876. }
  2877. if (mddev_lock(mddev)!=0)
  2878. return -EINTR;
  2879. if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
  2880. seq_printf(seq, "%s : %sactive", mdname(mddev),
  2881. mddev->pers ? "" : "in");
  2882. if (mddev->pers) {
  2883. if (mddev->ro)
  2884. seq_printf(seq, " (read-only)");
  2885. seq_printf(seq, " %s", mddev->pers->name);
  2886. }
  2887. size = 0;
  2888. ITERATE_RDEV(mddev,rdev,tmp2) {
  2889. char b[BDEVNAME_SIZE];
  2890. seq_printf(seq, " %s[%d]",
  2891. bdevname(rdev->bdev,b), rdev->desc_nr);
  2892. if (test_bit(WriteMostly, &rdev->flags))
  2893. seq_printf(seq, "(W)");
  2894. if (rdev->faulty) {
  2895. seq_printf(seq, "(F)");
  2896. continue;
  2897. }
  2898. size += rdev->size;
  2899. }
  2900. if (!list_empty(&mddev->disks)) {
  2901. if (mddev->pers)
  2902. seq_printf(seq, "\n %llu blocks",
  2903. (unsigned long long)mddev->array_size);
  2904. else
  2905. seq_printf(seq, "\n %llu blocks",
  2906. (unsigned long long)size);
  2907. }
  2908. if (mddev->pers) {
  2909. mddev->pers->status (seq, mddev);
  2910. seq_printf(seq, "\n ");
  2911. if (mddev->curr_resync > 2) {
  2912. status_resync (seq, mddev);
  2913. seq_printf(seq, "\n ");
  2914. } else if (mddev->curr_resync == 1 || mddev->curr_resync == 2)
  2915. seq_printf(seq, " resync=DELAYED\n ");
  2916. } else
  2917. seq_printf(seq, "\n ");
  2918. if ((bitmap = mddev->bitmap)) {
  2919. unsigned long chunk_kb;
  2920. unsigned long flags;
  2921. spin_lock_irqsave(&bitmap->lock, flags);
  2922. chunk_kb = bitmap->chunksize >> 10;
  2923. seq_printf(seq, "bitmap: %lu/%lu pages [%luKB], "
  2924. "%lu%s chunk",
  2925. bitmap->pages - bitmap->missing_pages,
  2926. bitmap->pages,
  2927. (bitmap->pages - bitmap->missing_pages)
  2928. << (PAGE_SHIFT - 10),
  2929. chunk_kb ? chunk_kb : bitmap->chunksize,
  2930. chunk_kb ? "KB" : "B");
  2931. if (bitmap->file) {
  2932. seq_printf(seq, ", file: ");
  2933. seq_path(seq, bitmap->file->f_vfsmnt,
  2934. bitmap->file->f_dentry," \t\n");
  2935. }
  2936. seq_printf(seq, "\n");
  2937. spin_unlock_irqrestore(&bitmap->lock, flags);
  2938. }
  2939. seq_printf(seq, "\n");
  2940. }
  2941. mddev_unlock(mddev);
  2942. return 0;
  2943. }
  2944. static struct seq_operations md_seq_ops = {
  2945. .start = md_seq_start,
  2946. .next = md_seq_next,
  2947. .stop = md_seq_stop,
  2948. .show = md_seq_show,
  2949. };
  2950. static int md_seq_open(struct inode *inode, struct file *file)
  2951. {
  2952. int error;
  2953. error = seq_open(file, &md_seq_ops);
  2954. return error;
  2955. }
  2956. static struct file_operations md_seq_fops = {
  2957. .open = md_seq_open,
  2958. .read = seq_read,
  2959. .llseek = seq_lseek,
  2960. .release = seq_release,
  2961. };
  2962. int register_md_personality(int pnum, mdk_personality_t *p)
  2963. {
  2964. if (pnum >= MAX_PERSONALITY) {
  2965. printk(KERN_ERR
  2966. "md: tried to install personality %s as nr %d, but max is %lu\n",
  2967. p->name, pnum, MAX_PERSONALITY-1);
  2968. return -EINVAL;
  2969. }
  2970. spin_lock(&pers_lock);
  2971. if (pers[pnum]) {
  2972. spin_unlock(&pers_lock);
  2973. return -EBUSY;
  2974. }
  2975. pers[pnum] = p;
  2976. printk(KERN_INFO "md: %s personality registered as nr %d\n", p->name, pnum);
  2977. spin_unlock(&pers_lock);
  2978. return 0;
  2979. }
  2980. int unregister_md_personality(int pnum)
  2981. {
  2982. if (pnum >= MAX_PERSONALITY)
  2983. return -EINVAL;
  2984. printk(KERN_INFO "md: %s personality unregistered\n", pers[pnum]->name);
  2985. spin_lock(&pers_lock);
  2986. pers[pnum] = NULL;
  2987. spin_unlock(&pers_lock);
  2988. return 0;
  2989. }
  2990. static int is_mddev_idle(mddev_t *mddev)
  2991. {
  2992. mdk_rdev_t * rdev;
  2993. struct list_head *tmp;
  2994. int idle;
  2995. unsigned long curr_events;
  2996. idle = 1;
  2997. ITERATE_RDEV(mddev,rdev,tmp) {
  2998. struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
  2999. curr_events = disk_stat_read(disk, read_sectors) +
  3000. disk_stat_read(disk, write_sectors) -
  3001. atomic_read(&disk->sync_io);
  3002. /* Allow some slack between valud of curr_events and last_events,
  3003. * as there are some uninteresting races.
  3004. * Note: the following is an unsigned comparison.
  3005. */
  3006. if ((curr_events - rdev->last_events + 32) > 64) {
  3007. rdev->last_events = curr_events;
  3008. idle = 0;
  3009. }
  3010. }
  3011. return idle;
  3012. }
  3013. void md_done_sync(mddev_t *mddev, int blocks, int ok)
  3014. {
  3015. /* another "blocks" (512byte) blocks have been synced */
  3016. atomic_sub(blocks, &mddev->recovery_active);
  3017. wake_up(&mddev->recovery_wait);
  3018. if (!ok) {
  3019. set_bit(MD_RECOVERY_ERR, &mddev->recovery);
  3020. md_wakeup_thread(mddev->thread);
  3021. // stop recovery, signal do_sync ....
  3022. }
  3023. }
  3024. /* md_write_start(mddev, bi)
  3025. * If we need to update some array metadata (e.g. 'active' flag
  3026. * in superblock) before writing, schedule a superblock update
  3027. * and wait for it to complete.
  3028. */
  3029. void md_write_start(mddev_t *mddev, struct bio *bi)
  3030. {
  3031. if (bio_data_dir(bi) != WRITE)
  3032. return;
  3033. atomic_inc(&mddev->writes_pending);
  3034. if (mddev->in_sync) {
  3035. spin_lock(&mddev->write_lock);
  3036. if (mddev->in_sync) {
  3037. mddev->in_sync = 0;
  3038. mddev->sb_dirty = 1;
  3039. md_wakeup_thread(mddev->thread);
  3040. }
  3041. spin_unlock(&mddev->write_lock);
  3042. }
  3043. wait_event(mddev->sb_wait, mddev->sb_dirty==0);
  3044. }
  3045. void md_write_end(mddev_t *mddev)
  3046. {
  3047. if (atomic_dec_and_test(&mddev->writes_pending)) {
  3048. if (mddev->safemode == 2)
  3049. md_wakeup_thread(mddev->thread);
  3050. else
  3051. mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
  3052. }
  3053. }
  3054. static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
  3055. #define SYNC_MARKS 10
  3056. #define SYNC_MARK_STEP (3*HZ)
  3057. static void md_do_sync(mddev_t *mddev)
  3058. {
  3059. mddev_t *mddev2;
  3060. unsigned int currspeed = 0,
  3061. window;
  3062. sector_t max_sectors,j, io_sectors;
  3063. unsigned long mark[SYNC_MARKS];
  3064. sector_t mark_cnt[SYNC_MARKS];
  3065. int last_mark,m;
  3066. struct list_head *tmp;
  3067. sector_t last_check;
  3068. int skipped = 0;
  3069. /* just incase thread restarts... */
  3070. if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
  3071. return;
  3072. /* we overload curr_resync somewhat here.
  3073. * 0 == not engaged in resync at all
  3074. * 2 == checking that there is no conflict with another sync
  3075. * 1 == like 2, but have yielded to allow conflicting resync to
  3076. * commense
  3077. * other == active in resync - this many blocks
  3078. *
  3079. * Before starting a resync we must have set curr_resync to
  3080. * 2, and then checked that every "conflicting" array has curr_resync
  3081. * less than ours. When we find one that is the same or higher
  3082. * we wait on resync_wait. To avoid deadlock, we reduce curr_resync
  3083. * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
  3084. * This will mean we have to start checking from the beginning again.
  3085. *
  3086. */
  3087. do {
  3088. mddev->curr_resync = 2;
  3089. try_again:
  3090. if (signal_pending(current)) {
  3091. flush_signals(current);
  3092. goto skip;
  3093. }
  3094. ITERATE_MDDEV(mddev2,tmp) {
  3095. if (mddev2 == mddev)
  3096. continue;
  3097. if (mddev2->curr_resync &&
  3098. match_mddev_units(mddev,mddev2)) {
  3099. DEFINE_WAIT(wq);
  3100. if (mddev < mddev2 && mddev->curr_resync == 2) {
  3101. /* arbitrarily yield */
  3102. mddev->curr_resync = 1;
  3103. wake_up(&resync_wait);
  3104. }
  3105. if (mddev > mddev2 && mddev->curr_resync == 1)
  3106. /* no need to wait here, we can wait the next
  3107. * time 'round when curr_resync == 2
  3108. */
  3109. continue;
  3110. prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE);
  3111. if (!signal_pending(current)
  3112. && mddev2->curr_resync >= mddev->curr_resync) {
  3113. printk(KERN_INFO "md: delaying resync of %s"
  3114. " until %s has finished resync (they"
  3115. " share one or more physical units)\n",
  3116. mdname(mddev), mdname(mddev2));
  3117. mddev_put(mddev2);
  3118. schedule();
  3119. finish_wait(&resync_wait, &wq);
  3120. goto try_again;
  3121. }
  3122. finish_wait(&resync_wait, &wq);
  3123. }
  3124. }
  3125. } while (mddev->curr_resync < 2);
  3126. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
  3127. /* resync follows the size requested by the personality,
  3128. * which defaults to physical size, but can be virtual size
  3129. */
  3130. max_sectors = mddev->resync_max_sectors;
  3131. else
  3132. /* recovery follows the physical size of devices */
  3133. max_sectors = mddev->size << 1;
  3134. printk(KERN_INFO "md: syncing RAID array %s\n", mdname(mddev));
  3135. printk(KERN_INFO "md: minimum _guaranteed_ reconstruction speed:"
  3136. " %d KB/sec/disc.\n", sysctl_speed_limit_min);
  3137. printk(KERN_INFO "md: using maximum available idle IO bandwith "
  3138. "(but not more than %d KB/sec) for reconstruction.\n",
  3139. sysctl_speed_limit_max);
  3140. is_mddev_idle(mddev); /* this also initializes IO event counters */
  3141. /* we don't use the checkpoint if there's a bitmap */
  3142. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && !mddev->bitmap)
  3143. j = mddev->recovery_cp;
  3144. else
  3145. j = 0;
  3146. io_sectors = 0;
  3147. for (m = 0; m < SYNC_MARKS; m++) {
  3148. mark[m] = jiffies;
  3149. mark_cnt[m] = io_sectors;
  3150. }
  3151. last_mark = 0;
  3152. mddev->resync_mark = mark[last_mark];
  3153. mddev->resync_mark_cnt = mark_cnt[last_mark];
  3154. /*
  3155. * Tune reconstruction:
  3156. */
  3157. window = 32*(PAGE_SIZE/512);
  3158. printk(KERN_INFO "md: using %dk window, over a total of %llu blocks.\n",
  3159. window/2,(unsigned long long) max_sectors/2);
  3160. atomic_set(&mddev->recovery_active, 0);
  3161. init_waitqueue_head(&mddev->recovery_wait);
  3162. last_check = 0;
  3163. if (j>2) {
  3164. printk(KERN_INFO
  3165. "md: resuming recovery of %s from checkpoint.\n",
  3166. mdname(mddev));
  3167. mddev->curr_resync = j;
  3168. }
  3169. while (j < max_sectors) {
  3170. sector_t sectors;
  3171. skipped = 0;
  3172. sectors = mddev->pers->sync_request(mddev, j, &skipped,
  3173. currspeed < sysctl_speed_limit_min);
  3174. if (sectors == 0) {
  3175. set_bit(MD_RECOVERY_ERR, &mddev->recovery);
  3176. goto out;
  3177. }
  3178. if (!skipped) { /* actual IO requested */
  3179. io_sectors += sectors;
  3180. atomic_add(sectors, &mddev->recovery_active);
  3181. }
  3182. j += sectors;
  3183. if (j>1) mddev->curr_resync = j;
  3184. if (last_check + window > io_sectors || j == max_sectors)
  3185. continue;
  3186. last_check = io_sectors;
  3187. if (test_bit(MD_RECOVERY_INTR, &mddev->recovery) ||
  3188. test_bit(MD_RECOVERY_ERR, &mddev->recovery))
  3189. break;
  3190. repeat:
  3191. if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
  3192. /* step marks */
  3193. int next = (last_mark+1) % SYNC_MARKS;
  3194. mddev->resync_mark = mark[next];
  3195. mddev->resync_mark_cnt = mark_cnt[next];
  3196. mark[next] = jiffies;
  3197. mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
  3198. last_mark = next;
  3199. }
  3200. if (signal_pending(current)) {
  3201. /*
  3202. * got a signal, exit.
  3203. */
  3204. printk(KERN_INFO
  3205. "md: md_do_sync() got signal ... exiting\n");
  3206. flush_signals(current);
  3207. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  3208. goto out;
  3209. }
  3210. /*
  3211. * this loop exits only if either when we are slower than
  3212. * the 'hard' speed limit, or the system was IO-idle for
  3213. * a jiffy.
  3214. * the system might be non-idle CPU-wise, but we only care
  3215. * about not overloading the IO subsystem. (things like an
  3216. * e2fsck being done on the RAID array should execute fast)
  3217. */
  3218. mddev->queue->unplug_fn(mddev->queue);
  3219. cond_resched();
  3220. currspeed = ((unsigned long)(io_sectors-mddev->resync_mark_cnt))/2
  3221. /((jiffies-mddev->resync_mark)/HZ +1) +1;
  3222. if (currspeed > sysctl_speed_limit_min) {
  3223. if ((currspeed > sysctl_speed_limit_max) ||
  3224. !is_mddev_idle(mddev)) {
  3225. msleep_interruptible(250);
  3226. goto repeat;
  3227. }
  3228. }
  3229. }
  3230. printk(KERN_INFO "md: %s: sync done.\n",mdname(mddev));
  3231. /*
  3232. * this also signals 'finished resyncing' to md_stop
  3233. */
  3234. out:
  3235. mddev->queue->unplug_fn(mddev->queue);
  3236. wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
  3237. /* tell personality that we are finished */
  3238. mddev->pers->sync_request(mddev, max_sectors, &skipped, 1);
  3239. if (!test_bit(MD_RECOVERY_ERR, &mddev->recovery) &&
  3240. mddev->curr_resync > 2 &&
  3241. mddev->curr_resync >= mddev->recovery_cp) {
  3242. if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
  3243. printk(KERN_INFO
  3244. "md: checkpointing recovery of %s.\n",
  3245. mdname(mddev));
  3246. mddev->recovery_cp = mddev->curr_resync;
  3247. } else
  3248. mddev->recovery_cp = MaxSector;
  3249. }
  3250. skip:
  3251. mddev->curr_resync = 0;
  3252. wake_up(&resync_wait);
  3253. set_bit(MD_RECOVERY_DONE, &mddev->recovery);
  3254. md_wakeup_thread(mddev->thread);
  3255. }
  3256. /*
  3257. * This routine is regularly called by all per-raid-array threads to
  3258. * deal with generic issues like resync and super-block update.
  3259. * Raid personalities that don't have a thread (linear/raid0) do not
  3260. * need this as they never do any recovery or update the superblock.
  3261. *
  3262. * It does not do any resync itself, but rather "forks" off other threads
  3263. * to do that as needed.
  3264. * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
  3265. * "->recovery" and create a thread at ->sync_thread.
  3266. * When the thread finishes it sets MD_RECOVERY_DONE (and might set MD_RECOVERY_ERR)
  3267. * and wakeups up this thread which will reap the thread and finish up.
  3268. * This thread also removes any faulty devices (with nr_pending == 0).
  3269. *
  3270. * The overall approach is:
  3271. * 1/ if the superblock needs updating, update it.
  3272. * 2/ If a recovery thread is running, don't do anything else.
  3273. * 3/ If recovery has finished, clean up, possibly marking spares active.
  3274. * 4/ If there are any faulty devices, remove them.
  3275. * 5/ If array is degraded, try to add spares devices
  3276. * 6/ If array has spares or is not in-sync, start a resync thread.
  3277. */
  3278. void md_check_recovery(mddev_t *mddev)
  3279. {
  3280. mdk_rdev_t *rdev;
  3281. struct list_head *rtmp;
  3282. if (mddev->bitmap)
  3283. bitmap_daemon_work(mddev->bitmap);
  3284. if (mddev->ro)
  3285. return;
  3286. if (signal_pending(current)) {
  3287. if (mddev->pers->sync_request) {
  3288. printk(KERN_INFO "md: %s in immediate safe mode\n",
  3289. mdname(mddev));
  3290. mddev->safemode = 2;
  3291. }
  3292. flush_signals(current);
  3293. }
  3294. if ( ! (
  3295. mddev->sb_dirty ||
  3296. test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
  3297. test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
  3298. (mddev->safemode == 1) ||
  3299. (mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
  3300. && !mddev->in_sync && mddev->recovery_cp == MaxSector)
  3301. ))
  3302. return;
  3303. if (mddev_trylock(mddev)==0) {
  3304. int spares =0;
  3305. spin_lock(&mddev->write_lock);
  3306. if (mddev->safemode && !atomic_read(&mddev->writes_pending) &&
  3307. !mddev->in_sync && mddev->recovery_cp == MaxSector) {
  3308. mddev->in_sync = 1;
  3309. mddev->sb_dirty = 1;
  3310. }
  3311. if (mddev->safemode == 1)
  3312. mddev->safemode = 0;
  3313. spin_unlock(&mddev->write_lock);
  3314. if (mddev->sb_dirty)
  3315. md_update_sb(mddev);
  3316. if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
  3317. !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
  3318. /* resync/recovery still happening */
  3319. clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  3320. goto unlock;
  3321. }
  3322. if (mddev->sync_thread) {
  3323. /* resync has finished, collect result */
  3324. md_unregister_thread(mddev->sync_thread);
  3325. mddev->sync_thread = NULL;
  3326. if (!test_bit(MD_RECOVERY_ERR, &mddev->recovery) &&
  3327. !test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
  3328. /* success...*/
  3329. /* activate any spares */
  3330. mddev->pers->spare_active(mddev);
  3331. }
  3332. md_update_sb(mddev);
  3333. /* if array is no-longer degraded, then any saved_raid_disk
  3334. * information must be scrapped
  3335. */
  3336. if (!mddev->degraded)
  3337. ITERATE_RDEV(mddev,rdev,rtmp)
  3338. rdev->saved_raid_disk = -1;
  3339. mddev->recovery = 0;
  3340. /* flag recovery needed just to double check */
  3341. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  3342. goto unlock;
  3343. }
  3344. if (mddev->recovery)
  3345. /* probably just the RECOVERY_NEEDED flag */
  3346. mddev->recovery = 0;
  3347. /* no recovery is running.
  3348. * remove any failed drives, then
  3349. * add spares if possible.
  3350. * Spare are also removed and re-added, to allow
  3351. * the personality to fail the re-add.
  3352. */
  3353. ITERATE_RDEV(mddev,rdev,rtmp)
  3354. if (rdev->raid_disk >= 0 &&
  3355. (rdev->faulty || ! rdev->in_sync) &&
  3356. atomic_read(&rdev->nr_pending)==0) {
  3357. if (mddev->pers->hot_remove_disk(mddev, rdev->raid_disk)==0)
  3358. rdev->raid_disk = -1;
  3359. }
  3360. if (mddev->degraded) {
  3361. ITERATE_RDEV(mddev,rdev,rtmp)
  3362. if (rdev->raid_disk < 0
  3363. && !rdev->faulty) {
  3364. if (mddev->pers->hot_add_disk(mddev,rdev))
  3365. spares++;
  3366. else
  3367. break;
  3368. }
  3369. }
  3370. if (!spares && (mddev->recovery_cp == MaxSector )) {
  3371. /* nothing we can do ... */
  3372. goto unlock;
  3373. }
  3374. if (mddev->pers->sync_request) {
  3375. set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
  3376. if (!spares)
  3377. set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
  3378. if (spares && mddev->bitmap && ! mddev->bitmap->file) {
  3379. /* We are adding a device or devices to an array
  3380. * which has the bitmap stored on all devices.
  3381. * So make sure all bitmap pages get written
  3382. */
  3383. bitmap_write_all(mddev->bitmap);
  3384. }
  3385. mddev->sync_thread = md_register_thread(md_do_sync,
  3386. mddev,
  3387. "%s_resync");
  3388. if (!mddev->sync_thread) {
  3389. printk(KERN_ERR "%s: could not start resync"
  3390. " thread...\n",
  3391. mdname(mddev));
  3392. /* leave the spares where they are, it shouldn't hurt */
  3393. mddev->recovery = 0;
  3394. } else {
  3395. md_wakeup_thread(mddev->sync_thread);
  3396. }
  3397. }
  3398. unlock:
  3399. mddev_unlock(mddev);
  3400. }
  3401. }
  3402. static int md_notify_reboot(struct notifier_block *this,
  3403. unsigned long code, void *x)
  3404. {
  3405. struct list_head *tmp;
  3406. mddev_t *mddev;
  3407. if ((code == SYS_DOWN) || (code == SYS_HALT) || (code == SYS_POWER_OFF)) {
  3408. printk(KERN_INFO "md: stopping all md devices.\n");
  3409. ITERATE_MDDEV(mddev,tmp)
  3410. if (mddev_trylock(mddev)==0)
  3411. do_md_stop (mddev, 1);
  3412. /*
  3413. * certain more exotic SCSI devices are known to be
  3414. * volatile wrt too early system reboots. While the
  3415. * right place to handle this issue is the given
  3416. * driver, we do want to have a safe RAID driver ...
  3417. */
  3418. mdelay(1000*1);
  3419. }
  3420. return NOTIFY_DONE;
  3421. }
  3422. static struct notifier_block md_notifier = {
  3423. .notifier_call = md_notify_reboot,
  3424. .next = NULL,
  3425. .priority = INT_MAX, /* before any real devices */
  3426. };
  3427. static void md_geninit(void)
  3428. {
  3429. struct proc_dir_entry *p;
  3430. dprintk("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
  3431. p = create_proc_entry("mdstat", S_IRUGO, NULL);
  3432. if (p)
  3433. p->proc_fops = &md_seq_fops;
  3434. }
  3435. static int __init md_init(void)
  3436. {
  3437. int minor;
  3438. printk(KERN_INFO "md: md driver %d.%d.%d MAX_MD_DEVS=%d,"
  3439. " MD_SB_DISKS=%d\n",
  3440. MD_MAJOR_VERSION, MD_MINOR_VERSION,
  3441. MD_PATCHLEVEL_VERSION, MAX_MD_DEVS, MD_SB_DISKS);
  3442. printk(KERN_INFO "md: bitmap version %d.%d\n", BITMAP_MAJOR,
  3443. BITMAP_MINOR);
  3444. if (register_blkdev(MAJOR_NR, "md"))
  3445. return -1;
  3446. if ((mdp_major=register_blkdev(0, "mdp"))<=0) {
  3447. unregister_blkdev(MAJOR_NR, "md");
  3448. return -1;
  3449. }
  3450. devfs_mk_dir("md");
  3451. blk_register_region(MKDEV(MAJOR_NR, 0), MAX_MD_DEVS, THIS_MODULE,
  3452. md_probe, NULL, NULL);
  3453. blk_register_region(MKDEV(mdp_major, 0), MAX_MD_DEVS<<MdpMinorShift, THIS_MODULE,
  3454. md_probe, NULL, NULL);
  3455. for (minor=0; minor < MAX_MD_DEVS; ++minor)
  3456. devfs_mk_bdev(MKDEV(MAJOR_NR, minor),
  3457. S_IFBLK|S_IRUSR|S_IWUSR,
  3458. "md/%d", minor);
  3459. for (minor=0; minor < MAX_MD_DEVS; ++minor)
  3460. devfs_mk_bdev(MKDEV(mdp_major, minor<<MdpMinorShift),
  3461. S_IFBLK|S_IRUSR|S_IWUSR,
  3462. "md/mdp%d", minor);
  3463. register_reboot_notifier(&md_notifier);
  3464. raid_table_header = register_sysctl_table(raid_root_table, 1);
  3465. md_geninit();
  3466. return (0);
  3467. }
  3468. #ifndef MODULE
  3469. /*
  3470. * Searches all registered partitions for autorun RAID arrays
  3471. * at boot time.
  3472. */
  3473. static dev_t detected_devices[128];
  3474. static int dev_cnt;
  3475. void md_autodetect_dev(dev_t dev)
  3476. {
  3477. if (dev_cnt >= 0 && dev_cnt < 127)
  3478. detected_devices[dev_cnt++] = dev;
  3479. }
  3480. static void autostart_arrays(int part)
  3481. {
  3482. mdk_rdev_t *rdev;
  3483. int i;
  3484. printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
  3485. for (i = 0; i < dev_cnt; i++) {
  3486. dev_t dev = detected_devices[i];
  3487. rdev = md_import_device(dev,0, 0);
  3488. if (IS_ERR(rdev))
  3489. continue;
  3490. if (rdev->faulty) {
  3491. MD_BUG();
  3492. continue;
  3493. }
  3494. list_add(&rdev->same_set, &pending_raid_disks);
  3495. }
  3496. dev_cnt = 0;
  3497. autorun_devices(part);
  3498. }
  3499. #endif
  3500. static __exit void md_exit(void)
  3501. {
  3502. mddev_t *mddev;
  3503. struct list_head *tmp;
  3504. int i;
  3505. blk_unregister_region(MKDEV(MAJOR_NR,0), MAX_MD_DEVS);
  3506. blk_unregister_region(MKDEV(mdp_major,0), MAX_MD_DEVS << MdpMinorShift);
  3507. for (i=0; i < MAX_MD_DEVS; i++)
  3508. devfs_remove("md/%d", i);
  3509. for (i=0; i < MAX_MD_DEVS; i++)
  3510. devfs_remove("md/d%d", i);
  3511. devfs_remove("md");
  3512. unregister_blkdev(MAJOR_NR,"md");
  3513. unregister_blkdev(mdp_major, "mdp");
  3514. unregister_reboot_notifier(&md_notifier);
  3515. unregister_sysctl_table(raid_table_header);
  3516. remove_proc_entry("mdstat", NULL);
  3517. ITERATE_MDDEV(mddev,tmp) {
  3518. struct gendisk *disk = mddev->gendisk;
  3519. if (!disk)
  3520. continue;
  3521. export_array(mddev);
  3522. del_gendisk(disk);
  3523. put_disk(disk);
  3524. mddev->gendisk = NULL;
  3525. mddev_put(mddev);
  3526. }
  3527. }
  3528. module_init(md_init)
  3529. module_exit(md_exit)
  3530. EXPORT_SYMBOL(register_md_personality);
  3531. EXPORT_SYMBOL(unregister_md_personality);
  3532. EXPORT_SYMBOL(md_error);
  3533. EXPORT_SYMBOL(md_done_sync);
  3534. EXPORT_SYMBOL(md_write_start);
  3535. EXPORT_SYMBOL(md_write_end);
  3536. EXPORT_SYMBOL(md_register_thread);
  3537. EXPORT_SYMBOL(md_unregister_thread);
  3538. EXPORT_SYMBOL(md_wakeup_thread);
  3539. EXPORT_SYMBOL(md_print_devices);
  3540. EXPORT_SYMBOL(md_check_recovery);
  3541. MODULE_LICENSE("GPL");
  3542. MODULE_ALIAS("md");
  3543. MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);