intelfbhw.c 44 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804
  1. /*
  2. * intelfb
  3. *
  4. * Linux framebuffer driver for Intel(R) 865G integrated graphics chips.
  5. *
  6. * Copyright © 2002, 2003 David Dawes <dawes@xfree86.org>
  7. * 2004 Sylvain Meyer
  8. *
  9. * This driver consists of two parts. The first part (intelfbdrv.c) provides
  10. * the basic fbdev interfaces, is derived in part from the radeonfb and
  11. * vesafb drivers, and is covered by the GPL. The second part (intelfbhw.c)
  12. * provides the code to program the hardware. Most of it is derived from
  13. * the i810/i830 XFree86 driver. The HW-specific code is covered here
  14. * under a dual license (GPL and MIT/XFree86 license).
  15. *
  16. * Author: David Dawes
  17. *
  18. */
  19. /* $DHD: intelfb/intelfbhw.c,v 1.9 2003/06/27 15:06:25 dawes Exp $ */
  20. #include <linux/config.h>
  21. #include <linux/module.h>
  22. #include <linux/kernel.h>
  23. #include <linux/errno.h>
  24. #include <linux/string.h>
  25. #include <linux/mm.h>
  26. #include <linux/tty.h>
  27. #include <linux/slab.h>
  28. #include <linux/delay.h>
  29. #include <linux/fb.h>
  30. #include <linux/ioport.h>
  31. #include <linux/init.h>
  32. #include <linux/pci.h>
  33. #include <linux/vmalloc.h>
  34. #include <linux/pagemap.h>
  35. #include <asm/io.h>
  36. #include "intelfb.h"
  37. #include "intelfbhw.h"
  38. struct pll_min_max {
  39. int min_m, max_m;
  40. int min_m1, max_m1;
  41. int min_m2, max_m2;
  42. int min_n, max_n;
  43. int min_p, max_p;
  44. int min_p1, max_p1;
  45. int min_vco_freq, max_vco_freq;
  46. int p_transition_clock;
  47. };
  48. #define PLLS_I8xx 0
  49. #define PLLS_I9xx 1
  50. #define PLLS_MAX 2
  51. struct pll_min_max plls[PLLS_MAX] = {
  52. { 108, 140, 18, 26, 6, 16, 3, 16, 4, 128, 0, 31, 930000, 1400000, 165000 }, //I8xx
  53. { 75, 120, 10, 20, 5, 9, 4, 7, 5, 80, 1, 8, 930000, 2800000, 200000 } //I9xx
  54. };
  55. int
  56. intelfbhw_get_chipset(struct pci_dev *pdev, const char **name, int *chipset,
  57. int *mobile)
  58. {
  59. u32 tmp;
  60. if (!pdev || !name || !chipset || !mobile)
  61. return 1;
  62. switch (pdev->device) {
  63. case PCI_DEVICE_ID_INTEL_830M:
  64. *name = "Intel(R) 830M";
  65. *chipset = INTEL_830M;
  66. *mobile = 1;
  67. return 0;
  68. case PCI_DEVICE_ID_INTEL_845G:
  69. *name = "Intel(R) 845G";
  70. *chipset = INTEL_845G;
  71. *mobile = 0;
  72. return 0;
  73. case PCI_DEVICE_ID_INTEL_85XGM:
  74. tmp = 0;
  75. *mobile = 1;
  76. pci_read_config_dword(pdev, INTEL_85X_CAPID, &tmp);
  77. switch ((tmp >> INTEL_85X_VARIANT_SHIFT) &
  78. INTEL_85X_VARIANT_MASK) {
  79. case INTEL_VAR_855GME:
  80. *name = "Intel(R) 855GME";
  81. *chipset = INTEL_855GME;
  82. return 0;
  83. case INTEL_VAR_855GM:
  84. *name = "Intel(R) 855GM";
  85. *chipset = INTEL_855GM;
  86. return 0;
  87. case INTEL_VAR_852GME:
  88. *name = "Intel(R) 852GME";
  89. *chipset = INTEL_852GME;
  90. return 0;
  91. case INTEL_VAR_852GM:
  92. *name = "Intel(R) 852GM";
  93. *chipset = INTEL_852GM;
  94. return 0;
  95. default:
  96. *name = "Intel(R) 852GM/855GM";
  97. *chipset = INTEL_85XGM;
  98. return 0;
  99. }
  100. break;
  101. case PCI_DEVICE_ID_INTEL_865G:
  102. *name = "Intel(R) 865G";
  103. *chipset = INTEL_865G;
  104. *mobile = 0;
  105. return 0;
  106. case PCI_DEVICE_ID_INTEL_915G:
  107. *name = "Intel(R) 915G";
  108. *chipset = INTEL_915G;
  109. *mobile = 0;
  110. return 0;
  111. case PCI_DEVICE_ID_INTEL_915GM:
  112. *name = "Intel(R) 915GM";
  113. *chipset = INTEL_915GM;
  114. *mobile = 1;
  115. return 0;
  116. default:
  117. return 1;
  118. }
  119. }
  120. int
  121. intelfbhw_get_memory(struct pci_dev *pdev, int *aperture_size,
  122. int *stolen_size)
  123. {
  124. struct pci_dev *bridge_dev;
  125. u16 tmp;
  126. if (!pdev || !aperture_size || !stolen_size)
  127. return 1;
  128. /* Find the bridge device. It is always 0:0.0 */
  129. if (!(bridge_dev = pci_find_slot(0, PCI_DEVFN(0, 0)))) {
  130. ERR_MSG("cannot find bridge device\n");
  131. return 1;
  132. }
  133. /* Get the fb aperture size and "stolen" memory amount. */
  134. tmp = 0;
  135. pci_read_config_word(bridge_dev, INTEL_GMCH_CTRL, &tmp);
  136. switch (pdev->device) {
  137. case PCI_DEVICE_ID_INTEL_830M:
  138. case PCI_DEVICE_ID_INTEL_845G:
  139. if ((tmp & INTEL_GMCH_MEM_MASK) == INTEL_GMCH_MEM_64M)
  140. *aperture_size = MB(64);
  141. else
  142. *aperture_size = MB(128);
  143. switch (tmp & INTEL_830_GMCH_GMS_MASK) {
  144. case INTEL_830_GMCH_GMS_STOLEN_512:
  145. *stolen_size = KB(512) - KB(132);
  146. return 0;
  147. case INTEL_830_GMCH_GMS_STOLEN_1024:
  148. *stolen_size = MB(1) - KB(132);
  149. return 0;
  150. case INTEL_830_GMCH_GMS_STOLEN_8192:
  151. *stolen_size = MB(8) - KB(132);
  152. return 0;
  153. case INTEL_830_GMCH_GMS_LOCAL:
  154. ERR_MSG("only local memory found\n");
  155. return 1;
  156. case INTEL_830_GMCH_GMS_DISABLED:
  157. ERR_MSG("video memory is disabled\n");
  158. return 1;
  159. default:
  160. ERR_MSG("unexpected GMCH_GMS value: 0x%02x\n",
  161. tmp & INTEL_830_GMCH_GMS_MASK);
  162. return 1;
  163. }
  164. break;
  165. default:
  166. *aperture_size = MB(128);
  167. switch (tmp & INTEL_855_GMCH_GMS_MASK) {
  168. case INTEL_855_GMCH_GMS_STOLEN_1M:
  169. *stolen_size = MB(1) - KB(132);
  170. return 0;
  171. case INTEL_855_GMCH_GMS_STOLEN_4M:
  172. *stolen_size = MB(4) - KB(132);
  173. return 0;
  174. case INTEL_855_GMCH_GMS_STOLEN_8M:
  175. *stolen_size = MB(8) - KB(132);
  176. return 0;
  177. case INTEL_855_GMCH_GMS_STOLEN_16M:
  178. *stolen_size = MB(16) - KB(132);
  179. return 0;
  180. case INTEL_855_GMCH_GMS_STOLEN_32M:
  181. *stolen_size = MB(32) - KB(132);
  182. return 0;
  183. case INTEL_915G_GMCH_GMS_STOLEN_48M:
  184. *stolen_size = MB(48) - KB(132);
  185. return 0;
  186. case INTEL_915G_GMCH_GMS_STOLEN_64M:
  187. *stolen_size = MB(64) - KB(132);
  188. return 0;
  189. case INTEL_855_GMCH_GMS_DISABLED:
  190. ERR_MSG("video memory is disabled\n");
  191. return 0;
  192. default:
  193. ERR_MSG("unexpected GMCH_GMS value: 0x%02x\n",
  194. tmp & INTEL_855_GMCH_GMS_MASK);
  195. return 1;
  196. }
  197. }
  198. }
  199. int
  200. intelfbhw_check_non_crt(struct intelfb_info *dinfo)
  201. {
  202. int dvo = 0;
  203. if (INREG(LVDS) & PORT_ENABLE)
  204. dvo |= LVDS_PORT;
  205. if (INREG(DVOA) & PORT_ENABLE)
  206. dvo |= DVOA_PORT;
  207. if (INREG(DVOB) & PORT_ENABLE)
  208. dvo |= DVOB_PORT;
  209. if (INREG(DVOC) & PORT_ENABLE)
  210. dvo |= DVOC_PORT;
  211. return dvo;
  212. }
  213. const char *
  214. intelfbhw_dvo_to_string(int dvo)
  215. {
  216. if (dvo & DVOA_PORT)
  217. return "DVO port A";
  218. else if (dvo & DVOB_PORT)
  219. return "DVO port B";
  220. else if (dvo & DVOC_PORT)
  221. return "DVO port C";
  222. else if (dvo & LVDS_PORT)
  223. return "LVDS port";
  224. else
  225. return NULL;
  226. }
  227. int
  228. intelfbhw_validate_mode(struct intelfb_info *dinfo,
  229. struct fb_var_screeninfo *var)
  230. {
  231. int bytes_per_pixel;
  232. int tmp;
  233. #if VERBOSE > 0
  234. DBG_MSG("intelfbhw_validate_mode\n");
  235. #endif
  236. bytes_per_pixel = var->bits_per_pixel / 8;
  237. if (bytes_per_pixel == 3)
  238. bytes_per_pixel = 4;
  239. /* Check if enough video memory. */
  240. tmp = var->yres_virtual * var->xres_virtual * bytes_per_pixel;
  241. if (tmp > dinfo->fb.size) {
  242. WRN_MSG("Not enough video ram for mode "
  243. "(%d KByte vs %d KByte).\n",
  244. BtoKB(tmp), BtoKB(dinfo->fb.size));
  245. return 1;
  246. }
  247. /* Check if x/y limits are OK. */
  248. if (var->xres - 1 > HACTIVE_MASK) {
  249. WRN_MSG("X resolution too large (%d vs %d).\n",
  250. var->xres, HACTIVE_MASK + 1);
  251. return 1;
  252. }
  253. if (var->yres - 1 > VACTIVE_MASK) {
  254. WRN_MSG("Y resolution too large (%d vs %d).\n",
  255. var->yres, VACTIVE_MASK + 1);
  256. return 1;
  257. }
  258. /* Check for interlaced/doublescan modes. */
  259. if (var->vmode & FB_VMODE_INTERLACED) {
  260. WRN_MSG("Mode is interlaced.\n");
  261. return 1;
  262. }
  263. if (var->vmode & FB_VMODE_DOUBLE) {
  264. WRN_MSG("Mode is double-scan.\n");
  265. return 1;
  266. }
  267. /* Check if clock is OK. */
  268. tmp = 1000000000 / var->pixclock;
  269. if (tmp < MIN_CLOCK) {
  270. WRN_MSG("Pixel clock is too low (%d MHz vs %d MHz).\n",
  271. (tmp + 500) / 1000, MIN_CLOCK / 1000);
  272. return 1;
  273. }
  274. if (tmp > MAX_CLOCK) {
  275. WRN_MSG("Pixel clock is too high (%d MHz vs %d MHz).\n",
  276. (tmp + 500) / 1000, MAX_CLOCK / 1000);
  277. return 1;
  278. }
  279. return 0;
  280. }
  281. int
  282. intelfbhw_pan_display(struct fb_var_screeninfo *var, struct fb_info *info)
  283. {
  284. struct intelfb_info *dinfo = GET_DINFO(info);
  285. u32 offset, xoffset, yoffset;
  286. #if VERBOSE > 0
  287. DBG_MSG("intelfbhw_pan_display\n");
  288. #endif
  289. xoffset = ROUND_DOWN_TO(var->xoffset, 8);
  290. yoffset = var->yoffset;
  291. if ((xoffset + var->xres > var->xres_virtual) ||
  292. (yoffset + var->yres > var->yres_virtual))
  293. return -EINVAL;
  294. offset = (yoffset * dinfo->pitch) +
  295. (xoffset * var->bits_per_pixel) / 8;
  296. offset += dinfo->fb.offset << 12;
  297. OUTREG(DSPABASE, offset);
  298. return 0;
  299. }
  300. /* Blank the screen. */
  301. void
  302. intelfbhw_do_blank(int blank, struct fb_info *info)
  303. {
  304. struct intelfb_info *dinfo = GET_DINFO(info);
  305. u32 tmp;
  306. #if VERBOSE > 0
  307. DBG_MSG("intelfbhw_do_blank: blank is %d\n", blank);
  308. #endif
  309. /* Turn plane A on or off */
  310. tmp = INREG(DSPACNTR);
  311. if (blank)
  312. tmp &= ~DISPPLANE_PLANE_ENABLE;
  313. else
  314. tmp |= DISPPLANE_PLANE_ENABLE;
  315. OUTREG(DSPACNTR, tmp);
  316. /* Flush */
  317. tmp = INREG(DSPABASE);
  318. OUTREG(DSPABASE, tmp);
  319. /* Turn off/on the HW cursor */
  320. #if VERBOSE > 0
  321. DBG_MSG("cursor_on is %d\n", dinfo->cursor_on);
  322. #endif
  323. if (dinfo->cursor_on) {
  324. if (blank) {
  325. intelfbhw_cursor_hide(dinfo);
  326. } else {
  327. intelfbhw_cursor_show(dinfo);
  328. }
  329. dinfo->cursor_on = 1;
  330. }
  331. dinfo->cursor_blanked = blank;
  332. /* Set DPMS level */
  333. tmp = INREG(ADPA) & ~ADPA_DPMS_CONTROL_MASK;
  334. switch (blank) {
  335. case FB_BLANK_UNBLANK:
  336. case FB_BLANK_NORMAL:
  337. tmp |= ADPA_DPMS_D0;
  338. break;
  339. case FB_BLANK_VSYNC_SUSPEND:
  340. tmp |= ADPA_DPMS_D1;
  341. break;
  342. case FB_BLANK_HSYNC_SUSPEND:
  343. tmp |= ADPA_DPMS_D2;
  344. break;
  345. case FB_BLANK_POWERDOWN:
  346. tmp |= ADPA_DPMS_D3;
  347. break;
  348. }
  349. OUTREG(ADPA, tmp);
  350. return;
  351. }
  352. void
  353. intelfbhw_setcolreg(struct intelfb_info *dinfo, unsigned regno,
  354. unsigned red, unsigned green, unsigned blue,
  355. unsigned transp)
  356. {
  357. #if VERBOSE > 0
  358. DBG_MSG("intelfbhw_setcolreg: %d: (%d, %d, %d)\n",
  359. regno, red, green, blue);
  360. #endif
  361. u32 palette_reg = (dinfo->pipe == PIPE_A) ?
  362. PALETTE_A : PALETTE_B;
  363. OUTREG(palette_reg + (regno << 2),
  364. (red << PALETTE_8_RED_SHIFT) |
  365. (green << PALETTE_8_GREEN_SHIFT) |
  366. (blue << PALETTE_8_BLUE_SHIFT));
  367. }
  368. int
  369. intelfbhw_read_hw_state(struct intelfb_info *dinfo, struct intelfb_hwstate *hw,
  370. int flag)
  371. {
  372. int i;
  373. #if VERBOSE > 0
  374. DBG_MSG("intelfbhw_read_hw_state\n");
  375. #endif
  376. if (!hw || !dinfo)
  377. return -1;
  378. /* Read in as much of the HW state as possible. */
  379. hw->vga0_divisor = INREG(VGA0_DIVISOR);
  380. hw->vga1_divisor = INREG(VGA1_DIVISOR);
  381. hw->vga_pd = INREG(VGAPD);
  382. hw->dpll_a = INREG(DPLL_A);
  383. hw->dpll_b = INREG(DPLL_B);
  384. hw->fpa0 = INREG(FPA0);
  385. hw->fpa1 = INREG(FPA1);
  386. hw->fpb0 = INREG(FPB0);
  387. hw->fpb1 = INREG(FPB1);
  388. if (flag == 1)
  389. return flag;
  390. #if 0
  391. /* This seems to be a problem with the 852GM/855GM */
  392. for (i = 0; i < PALETTE_8_ENTRIES; i++) {
  393. hw->palette_a[i] = INREG(PALETTE_A + (i << 2));
  394. hw->palette_b[i] = INREG(PALETTE_B + (i << 2));
  395. }
  396. #endif
  397. if (flag == 2)
  398. return flag;
  399. hw->htotal_a = INREG(HTOTAL_A);
  400. hw->hblank_a = INREG(HBLANK_A);
  401. hw->hsync_a = INREG(HSYNC_A);
  402. hw->vtotal_a = INREG(VTOTAL_A);
  403. hw->vblank_a = INREG(VBLANK_A);
  404. hw->vsync_a = INREG(VSYNC_A);
  405. hw->src_size_a = INREG(SRC_SIZE_A);
  406. hw->bclrpat_a = INREG(BCLRPAT_A);
  407. hw->htotal_b = INREG(HTOTAL_B);
  408. hw->hblank_b = INREG(HBLANK_B);
  409. hw->hsync_b = INREG(HSYNC_B);
  410. hw->vtotal_b = INREG(VTOTAL_B);
  411. hw->vblank_b = INREG(VBLANK_B);
  412. hw->vsync_b = INREG(VSYNC_B);
  413. hw->src_size_b = INREG(SRC_SIZE_B);
  414. hw->bclrpat_b = INREG(BCLRPAT_B);
  415. if (flag == 3)
  416. return flag;
  417. hw->adpa = INREG(ADPA);
  418. hw->dvoa = INREG(DVOA);
  419. hw->dvob = INREG(DVOB);
  420. hw->dvoc = INREG(DVOC);
  421. hw->dvoa_srcdim = INREG(DVOA_SRCDIM);
  422. hw->dvob_srcdim = INREG(DVOB_SRCDIM);
  423. hw->dvoc_srcdim = INREG(DVOC_SRCDIM);
  424. hw->lvds = INREG(LVDS);
  425. if (flag == 4)
  426. return flag;
  427. hw->pipe_a_conf = INREG(PIPEACONF);
  428. hw->pipe_b_conf = INREG(PIPEBCONF);
  429. hw->disp_arb = INREG(DISPARB);
  430. if (flag == 5)
  431. return flag;
  432. hw->cursor_a_control = INREG(CURSOR_A_CONTROL);
  433. hw->cursor_b_control = INREG(CURSOR_B_CONTROL);
  434. hw->cursor_a_base = INREG(CURSOR_A_BASEADDR);
  435. hw->cursor_b_base = INREG(CURSOR_B_BASEADDR);
  436. if (flag == 6)
  437. return flag;
  438. for (i = 0; i < 4; i++) {
  439. hw->cursor_a_palette[i] = INREG(CURSOR_A_PALETTE0 + (i << 2));
  440. hw->cursor_b_palette[i] = INREG(CURSOR_B_PALETTE0 + (i << 2));
  441. }
  442. if (flag == 7)
  443. return flag;
  444. hw->cursor_size = INREG(CURSOR_SIZE);
  445. if (flag == 8)
  446. return flag;
  447. hw->disp_a_ctrl = INREG(DSPACNTR);
  448. hw->disp_b_ctrl = INREG(DSPBCNTR);
  449. hw->disp_a_base = INREG(DSPABASE);
  450. hw->disp_b_base = INREG(DSPBBASE);
  451. hw->disp_a_stride = INREG(DSPASTRIDE);
  452. hw->disp_b_stride = INREG(DSPBSTRIDE);
  453. if (flag == 9)
  454. return flag;
  455. hw->vgacntrl = INREG(VGACNTRL);
  456. if (flag == 10)
  457. return flag;
  458. hw->add_id = INREG(ADD_ID);
  459. if (flag == 11)
  460. return flag;
  461. for (i = 0; i < 7; i++) {
  462. hw->swf0x[i] = INREG(SWF00 + (i << 2));
  463. hw->swf1x[i] = INREG(SWF10 + (i << 2));
  464. if (i < 3)
  465. hw->swf3x[i] = INREG(SWF30 + (i << 2));
  466. }
  467. for (i = 0; i < 8; i++)
  468. hw->fence[i] = INREG(FENCE + (i << 2));
  469. hw->instpm = INREG(INSTPM);
  470. hw->mem_mode = INREG(MEM_MODE);
  471. hw->fw_blc_0 = INREG(FW_BLC_0);
  472. hw->fw_blc_1 = INREG(FW_BLC_1);
  473. return 0;
  474. }
  475. void
  476. intelfbhw_print_hw_state(struct intelfb_info *dinfo, struct intelfb_hwstate *hw)
  477. {
  478. #if REGDUMP
  479. int i, m1, m2, n, p1, p2;
  480. DBG_MSG("intelfbhw_print_hw_state\n");
  481. if (!hw || !dinfo)
  482. return;
  483. /* Read in as much of the HW state as possible. */
  484. printk("hw state dump start\n");
  485. printk(" VGA0_DIVISOR: 0x%08x\n", hw->vga0_divisor);
  486. printk(" VGA1_DIVISOR: 0x%08x\n", hw->vga1_divisor);
  487. printk(" VGAPD: 0x%08x\n", hw->vga_pd);
  488. n = (hw->vga0_divisor >> FP_N_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
  489. m1 = (hw->vga0_divisor >> FP_M1_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
  490. m2 = (hw->vga0_divisor >> FP_M2_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
  491. if (hw->vga_pd & VGAPD_0_P1_FORCE_DIV2)
  492. p1 = 0;
  493. else
  494. p1 = (hw->vga_pd >> VGAPD_0_P1_SHIFT) & DPLL_P1_MASK;
  495. p2 = (hw->vga_pd >> VGAPD_0_P2_SHIFT) & DPLL_P2_MASK;
  496. printk(" VGA0: (m1, m2, n, p1, p2) = (%d, %d, %d, %d, %d)\n",
  497. m1, m2, n, p1, p2);
  498. printk(" VGA0: clock is %d\n", CALC_VCLOCK(m1, m2, n, p1, p2));
  499. n = (hw->vga1_divisor >> FP_N_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
  500. m1 = (hw->vga1_divisor >> FP_M1_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
  501. m2 = (hw->vga1_divisor >> FP_M2_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
  502. if (hw->vga_pd & VGAPD_1_P1_FORCE_DIV2)
  503. p1 = 0;
  504. else
  505. p1 = (hw->vga_pd >> VGAPD_1_P1_SHIFT) & DPLL_P1_MASK;
  506. p2 = (hw->vga_pd >> VGAPD_1_P2_SHIFT) & DPLL_P2_MASK;
  507. printk(" VGA1: (m1, m2, n, p1, p2) = (%d, %d, %d, %d, %d)\n",
  508. m1, m2, n, p1, p2);
  509. printk(" VGA1: clock is %d\n", CALC_VCLOCK(m1, m2, n, p1, p2));
  510. printk(" DPLL_A: 0x%08x\n", hw->dpll_a);
  511. printk(" DPLL_B: 0x%08x\n", hw->dpll_b);
  512. printk(" FPA0: 0x%08x\n", hw->fpa0);
  513. printk(" FPA1: 0x%08x\n", hw->fpa1);
  514. printk(" FPB0: 0x%08x\n", hw->fpb0);
  515. printk(" FPB1: 0x%08x\n", hw->fpb1);
  516. n = (hw->fpa0 >> FP_N_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
  517. m1 = (hw->fpa0 >> FP_M1_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
  518. m2 = (hw->fpa0 >> FP_M2_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
  519. if (hw->dpll_a & DPLL_P1_FORCE_DIV2)
  520. p1 = 0;
  521. else
  522. p1 = (hw->dpll_a >> DPLL_P1_SHIFT) & DPLL_P1_MASK;
  523. p2 = (hw->dpll_a >> DPLL_P2_SHIFT) & DPLL_P2_MASK;
  524. printk(" PLLA0: (m1, m2, n, p1, p2) = (%d, %d, %d, %d, %d)\n",
  525. m1, m2, n, p1, p2);
  526. printk(" PLLA0: clock is %d\n", CALC_VCLOCK(m1, m2, n, p1, p2));
  527. n = (hw->fpa1 >> FP_N_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
  528. m1 = (hw->fpa1 >> FP_M1_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
  529. m2 = (hw->fpa1 >> FP_M2_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
  530. if (hw->dpll_a & DPLL_P1_FORCE_DIV2)
  531. p1 = 0;
  532. else
  533. p1 = (hw->dpll_a >> DPLL_P1_SHIFT) & DPLL_P1_MASK;
  534. p2 = (hw->dpll_a >> DPLL_P2_SHIFT) & DPLL_P2_MASK;
  535. printk(" PLLA1: (m1, m2, n, p1, p2) = (%d, %d, %d, %d, %d)\n",
  536. m1, m2, n, p1, p2);
  537. printk(" PLLA1: clock is %d\n", CALC_VCLOCK(m1, m2, n, p1, p2));
  538. #if 0
  539. printk(" PALETTE_A:\n");
  540. for (i = 0; i < PALETTE_8_ENTRIES)
  541. printk(" %3d: 0x%08x\n", i, hw->palette_a[i];
  542. printk(" PALETTE_B:\n");
  543. for (i = 0; i < PALETTE_8_ENTRIES)
  544. printk(" %3d: 0x%08x\n", i, hw->palette_b[i];
  545. #endif
  546. printk(" HTOTAL_A: 0x%08x\n", hw->htotal_a);
  547. printk(" HBLANK_A: 0x%08x\n", hw->hblank_a);
  548. printk(" HSYNC_A: 0x%08x\n", hw->hsync_a);
  549. printk(" VTOTAL_A: 0x%08x\n", hw->vtotal_a);
  550. printk(" VBLANK_A: 0x%08x\n", hw->vblank_a);
  551. printk(" VSYNC_A: 0x%08x\n", hw->vsync_a);
  552. printk(" SRC_SIZE_A: 0x%08x\n", hw->src_size_a);
  553. printk(" BCLRPAT_A: 0x%08x\n", hw->bclrpat_a);
  554. printk(" HTOTAL_B: 0x%08x\n", hw->htotal_b);
  555. printk(" HBLANK_B: 0x%08x\n", hw->hblank_b);
  556. printk(" HSYNC_B: 0x%08x\n", hw->hsync_b);
  557. printk(" VTOTAL_B: 0x%08x\n", hw->vtotal_b);
  558. printk(" VBLANK_B: 0x%08x\n", hw->vblank_b);
  559. printk(" VSYNC_B: 0x%08x\n", hw->vsync_b);
  560. printk(" SRC_SIZE_B: 0x%08x\n", hw->src_size_b);
  561. printk(" BCLRPAT_B: 0x%08x\n", hw->bclrpat_b);
  562. printk(" ADPA: 0x%08x\n", hw->adpa);
  563. printk(" DVOA: 0x%08x\n", hw->dvoa);
  564. printk(" DVOB: 0x%08x\n", hw->dvob);
  565. printk(" DVOC: 0x%08x\n", hw->dvoc);
  566. printk(" DVOA_SRCDIM: 0x%08x\n", hw->dvoa_srcdim);
  567. printk(" DVOB_SRCDIM: 0x%08x\n", hw->dvob_srcdim);
  568. printk(" DVOC_SRCDIM: 0x%08x\n", hw->dvoc_srcdim);
  569. printk(" LVDS: 0x%08x\n", hw->lvds);
  570. printk(" PIPEACONF: 0x%08x\n", hw->pipe_a_conf);
  571. printk(" PIPEBCONF: 0x%08x\n", hw->pipe_b_conf);
  572. printk(" DISPARB: 0x%08x\n", hw->disp_arb);
  573. printk(" CURSOR_A_CONTROL: 0x%08x\n", hw->cursor_a_control);
  574. printk(" CURSOR_B_CONTROL: 0x%08x\n", hw->cursor_b_control);
  575. printk(" CURSOR_A_BASEADDR: 0x%08x\n", hw->cursor_a_base);
  576. printk(" CURSOR_B_BASEADDR: 0x%08x\n", hw->cursor_b_base);
  577. printk(" CURSOR_A_PALETTE: ");
  578. for (i = 0; i < 4; i++) {
  579. printk("0x%08x", hw->cursor_a_palette[i]);
  580. if (i < 3)
  581. printk(", ");
  582. }
  583. printk("\n");
  584. printk(" CURSOR_B_PALETTE: ");
  585. for (i = 0; i < 4; i++) {
  586. printk("0x%08x", hw->cursor_b_palette[i]);
  587. if (i < 3)
  588. printk(", ");
  589. }
  590. printk("\n");
  591. printk(" CURSOR_SIZE: 0x%08x\n", hw->cursor_size);
  592. printk(" DSPACNTR: 0x%08x\n", hw->disp_a_ctrl);
  593. printk(" DSPBCNTR: 0x%08x\n", hw->disp_b_ctrl);
  594. printk(" DSPABASE: 0x%08x\n", hw->disp_a_base);
  595. printk(" DSPBBASE: 0x%08x\n", hw->disp_b_base);
  596. printk(" DSPASTRIDE: 0x%08x\n", hw->disp_a_stride);
  597. printk(" DSPBSTRIDE: 0x%08x\n", hw->disp_b_stride);
  598. printk(" VGACNTRL: 0x%08x\n", hw->vgacntrl);
  599. printk(" ADD_ID: 0x%08x\n", hw->add_id);
  600. for (i = 0; i < 7; i++) {
  601. printk(" SWF0%d 0x%08x\n", i,
  602. hw->swf0x[i]);
  603. }
  604. for (i = 0; i < 7; i++) {
  605. printk(" SWF1%d 0x%08x\n", i,
  606. hw->swf1x[i]);
  607. }
  608. for (i = 0; i < 3; i++) {
  609. printk(" SWF3%d 0x%08x\n", i,
  610. hw->swf3x[i]);
  611. }
  612. for (i = 0; i < 8; i++)
  613. printk(" FENCE%d 0x%08x\n", i,
  614. hw->fence[i]);
  615. printk(" INSTPM 0x%08x\n", hw->instpm);
  616. printk(" MEM_MODE 0x%08x\n", hw->mem_mode);
  617. printk(" FW_BLC_0 0x%08x\n", hw->fw_blc_0);
  618. printk(" FW_BLC_1 0x%08x\n", hw->fw_blc_1);
  619. printk("hw state dump end\n");
  620. #endif
  621. }
  622. /* Split the M parameter into M1 and M2. */
  623. static int
  624. splitm(int index, unsigned int m, unsigned int *retm1, unsigned int *retm2)
  625. {
  626. int m1, m2;
  627. m1 = (m - 2 - (plls[index].min_m1 + plls[index].max_m2) / 2) / 5 - 2;
  628. if (m1 < plls[index].min_m1)
  629. m1 = plls[index].min_m1;
  630. if (m1 > plls[index].max_m1)
  631. m1 = plls[index].max_m1;
  632. m2 = m - 5 * (m1 + 2) - 2;
  633. if (m2 < plls[index].min_m2 || m2 > plls[index].max_m2 || m2 >= m1) {
  634. return 1;
  635. } else {
  636. *retm1 = (unsigned int)m1;
  637. *retm2 = (unsigned int)m2;
  638. return 0;
  639. }
  640. }
  641. /* Split the P parameter into P1 and P2. */
  642. static int
  643. splitp(int index, unsigned int p, unsigned int *retp1, unsigned int *retp2)
  644. {
  645. int p1, p2;
  646. if (index==PLLS_I8xx)
  647. {
  648. if (p % 4 == 0)
  649. p2 = 1;
  650. else
  651. p2 = 0;
  652. p1 = (p / (1 << (p2 + 1))) - 2;
  653. if (p % 4 == 0 && p1 < plls[index].min_p1) {
  654. p2 = 0;
  655. p1 = (p / (1 << (p2 + 1))) - 2;
  656. }
  657. if (p1 < plls[index].min_p1 || p1 > plls[index].max_p1 || (p1 + 2) * (1 << (p2 + 1)) != p) {
  658. return 1;
  659. } else {
  660. *retp1 = (unsigned int)p1;
  661. *retp2 = (unsigned int)p2;
  662. return 0;
  663. }
  664. }
  665. return 1;
  666. }
  667. static int
  668. calc_pll_params(int index, int clock, u32 *retm1, u32 *retm2, u32 *retn, u32 *retp1,
  669. u32 *retp2, u32 *retclock)
  670. {
  671. u32 m1, m2, n, p1, p2, n1;
  672. u32 f_vco, p, p_best = 0, m, f_out;
  673. u32 err_max, err_target, err_best = 10000000;
  674. u32 n_best = 0, m_best = 0, f_best, f_err;
  675. u32 p_min, p_max, p_inc, div_min, div_max;
  676. /* Accept 0.5% difference, but aim for 0.1% */
  677. err_max = 5 * clock / 1000;
  678. err_target = clock / 1000;
  679. DBG_MSG("Clock is %d\n", clock);
  680. div_max = plls[index].max_vco_freq / clock;
  681. div_min = ROUND_UP_TO(plls[index].min_vco_freq, clock) / clock;
  682. if (clock <= plls[index].p_transition_clock)
  683. p_inc = 4;
  684. else
  685. p_inc = 2;
  686. p_min = ROUND_UP_TO(div_min, p_inc);
  687. p_max = ROUND_DOWN_TO(div_max, p_inc);
  688. if (p_min < plls[index].min_p)
  689. p_min = 4;
  690. if (p_max > plls[index].max_p)
  691. p_max = 128;
  692. DBG_MSG("p range is %d-%d (%d)\n", p_min, p_max, p_inc);
  693. p = p_min;
  694. do {
  695. if (splitp(index, p, &p1, &p2)) {
  696. WRN_MSG("cannot split p = %d\n", p);
  697. p += p_inc;
  698. continue;
  699. }
  700. n = plls[index].min_n;
  701. f_vco = clock * p;
  702. do {
  703. m = ROUND_UP_TO(f_vco * n, PLL_REFCLK) / PLL_REFCLK;
  704. if (m < plls[index].min_m)
  705. m = plls[index].min_m;
  706. if (m > plls[index].max_m)
  707. m = plls[index].max_m;
  708. f_out = CALC_VCLOCK3(m, n, p);
  709. if (splitm(index, m, &m1, &m2)) {
  710. WRN_MSG("cannot split m = %d\n", m);
  711. n++;
  712. continue;
  713. }
  714. if (clock > f_out)
  715. f_err = clock - f_out;
  716. else
  717. f_err = f_out - clock;
  718. if (f_err < err_best) {
  719. m_best = m;
  720. n_best = n;
  721. p_best = p;
  722. f_best = f_out;
  723. err_best = f_err;
  724. }
  725. n++;
  726. } while ((n <= plls[index].max_n) && (f_out >= clock));
  727. p += p_inc;
  728. } while ((p <= p_max));
  729. if (!m_best) {
  730. WRN_MSG("cannot find parameters for clock %d\n", clock);
  731. return 1;
  732. }
  733. m = m_best;
  734. n = n_best;
  735. p = p_best;
  736. splitm(index, m, &m1, &m2);
  737. splitp(index, p, &p1, &p2);
  738. n1 = n - 2;
  739. DBG_MSG("m, n, p: %d (%d,%d), %d (%d), %d (%d,%d), "
  740. "f: %d (%d), VCO: %d\n",
  741. m, m1, m2, n, n1, p, p1, p2,
  742. CALC_VCLOCK3(m, n, p), CALC_VCLOCK(m1, m2, n1, p1, p2),
  743. CALC_VCLOCK3(m, n, p) * p);
  744. *retm1 = m1;
  745. *retm2 = m2;
  746. *retn = n1;
  747. *retp1 = p1;
  748. *retp2 = p2;
  749. *retclock = CALC_VCLOCK(m1, m2, n1, p1, p2);
  750. return 0;
  751. }
  752. static __inline__ int
  753. check_overflow(u32 value, u32 limit, const char *description)
  754. {
  755. if (value > limit) {
  756. WRN_MSG("%s value %d exceeds limit %d\n",
  757. description, value, limit);
  758. return 1;
  759. }
  760. return 0;
  761. }
  762. /* It is assumed that hw is filled in with the initial state information. */
  763. int
  764. intelfbhw_mode_to_hw(struct intelfb_info *dinfo, struct intelfb_hwstate *hw,
  765. struct fb_var_screeninfo *var)
  766. {
  767. int pipe = PIPE_A;
  768. u32 *dpll, *fp0, *fp1;
  769. u32 m1, m2, n, p1, p2, clock_target, clock;
  770. u32 hsync_start, hsync_end, hblank_start, hblank_end, htotal, hactive;
  771. u32 vsync_start, vsync_end, vblank_start, vblank_end, vtotal, vactive;
  772. u32 vsync_pol, hsync_pol;
  773. u32 *vs, *vb, *vt, *hs, *hb, *ht, *ss, *pipe_conf;
  774. DBG_MSG("intelfbhw_mode_to_hw\n");
  775. /* Disable VGA */
  776. hw->vgacntrl |= VGA_DISABLE;
  777. /* Check whether pipe A or pipe B is enabled. */
  778. if (hw->pipe_a_conf & PIPECONF_ENABLE)
  779. pipe = PIPE_A;
  780. else if (hw->pipe_b_conf & PIPECONF_ENABLE)
  781. pipe = PIPE_B;
  782. /* Set which pipe's registers will be set. */
  783. if (pipe == PIPE_B) {
  784. dpll = &hw->dpll_b;
  785. fp0 = &hw->fpb0;
  786. fp1 = &hw->fpb1;
  787. hs = &hw->hsync_b;
  788. hb = &hw->hblank_b;
  789. ht = &hw->htotal_b;
  790. vs = &hw->vsync_b;
  791. vb = &hw->vblank_b;
  792. vt = &hw->vtotal_b;
  793. ss = &hw->src_size_b;
  794. pipe_conf = &hw->pipe_b_conf;
  795. } else {
  796. dpll = &hw->dpll_a;
  797. fp0 = &hw->fpa0;
  798. fp1 = &hw->fpa1;
  799. hs = &hw->hsync_a;
  800. hb = &hw->hblank_a;
  801. ht = &hw->htotal_a;
  802. vs = &hw->vsync_a;
  803. vb = &hw->vblank_a;
  804. vt = &hw->vtotal_a;
  805. ss = &hw->src_size_a;
  806. pipe_conf = &hw->pipe_a_conf;
  807. }
  808. /* Use ADPA register for sync control. */
  809. hw->adpa &= ~ADPA_USE_VGA_HVPOLARITY;
  810. /* sync polarity */
  811. hsync_pol = (var->sync & FB_SYNC_HOR_HIGH_ACT) ?
  812. ADPA_SYNC_ACTIVE_HIGH : ADPA_SYNC_ACTIVE_LOW;
  813. vsync_pol = (var->sync & FB_SYNC_VERT_HIGH_ACT) ?
  814. ADPA_SYNC_ACTIVE_HIGH : ADPA_SYNC_ACTIVE_LOW;
  815. hw->adpa &= ~((ADPA_SYNC_ACTIVE_MASK << ADPA_VSYNC_ACTIVE_SHIFT) |
  816. (ADPA_SYNC_ACTIVE_MASK << ADPA_HSYNC_ACTIVE_SHIFT));
  817. hw->adpa |= (hsync_pol << ADPA_HSYNC_ACTIVE_SHIFT) |
  818. (vsync_pol << ADPA_VSYNC_ACTIVE_SHIFT);
  819. /* Connect correct pipe to the analog port DAC */
  820. hw->adpa &= ~(PIPE_MASK << ADPA_PIPE_SELECT_SHIFT);
  821. hw->adpa |= (pipe << ADPA_PIPE_SELECT_SHIFT);
  822. /* Set DPMS state to D0 (on) */
  823. hw->adpa &= ~ADPA_DPMS_CONTROL_MASK;
  824. hw->adpa |= ADPA_DPMS_D0;
  825. hw->adpa |= ADPA_DAC_ENABLE;
  826. *dpll |= (DPLL_VCO_ENABLE | DPLL_VGA_MODE_DISABLE);
  827. *dpll &= ~(DPLL_RATE_SELECT_MASK | DPLL_REFERENCE_SELECT_MASK);
  828. *dpll |= (DPLL_REFERENCE_DEFAULT | DPLL_RATE_SELECT_FP0);
  829. /* Desired clock in kHz */
  830. clock_target = 1000000000 / var->pixclock;
  831. if (calc_pll_params(PLLS_I8xx, clock_target, &m1, &m2, &n, &p1, &p2, &clock)) {
  832. WRN_MSG("calc_pll_params failed\n");
  833. return 1;
  834. }
  835. /* Check for overflow. */
  836. if (check_overflow(p1, DPLL_P1_MASK, "PLL P1 parameter"))
  837. return 1;
  838. if (check_overflow(p2, DPLL_P2_MASK, "PLL P2 parameter"))
  839. return 1;
  840. if (check_overflow(m1, FP_DIVISOR_MASK, "PLL M1 parameter"))
  841. return 1;
  842. if (check_overflow(m2, FP_DIVISOR_MASK, "PLL M2 parameter"))
  843. return 1;
  844. if (check_overflow(n, FP_DIVISOR_MASK, "PLL N parameter"))
  845. return 1;
  846. *dpll &= ~DPLL_P1_FORCE_DIV2;
  847. *dpll &= ~((DPLL_P2_MASK << DPLL_P2_SHIFT) |
  848. (DPLL_P1_MASK << DPLL_P1_SHIFT));
  849. *dpll |= (p2 << DPLL_P2_SHIFT) | (p1 << DPLL_P1_SHIFT);
  850. *fp0 = (n << FP_N_DIVISOR_SHIFT) |
  851. (m1 << FP_M1_DIVISOR_SHIFT) |
  852. (m2 << FP_M2_DIVISOR_SHIFT);
  853. *fp1 = *fp0;
  854. hw->dvob &= ~PORT_ENABLE;
  855. hw->dvoc &= ~PORT_ENABLE;
  856. /* Use display plane A. */
  857. hw->disp_a_ctrl |= DISPPLANE_PLANE_ENABLE;
  858. hw->disp_a_ctrl &= ~DISPPLANE_GAMMA_ENABLE;
  859. hw->disp_a_ctrl &= ~DISPPLANE_PIXFORMAT_MASK;
  860. switch (intelfb_var_to_depth(var)) {
  861. case 8:
  862. hw->disp_a_ctrl |= DISPPLANE_8BPP | DISPPLANE_GAMMA_ENABLE;
  863. break;
  864. case 15:
  865. hw->disp_a_ctrl |= DISPPLANE_15_16BPP;
  866. break;
  867. case 16:
  868. hw->disp_a_ctrl |= DISPPLANE_16BPP;
  869. break;
  870. case 24:
  871. hw->disp_a_ctrl |= DISPPLANE_32BPP_NO_ALPHA;
  872. break;
  873. }
  874. hw->disp_a_ctrl &= ~(PIPE_MASK << DISPPLANE_SEL_PIPE_SHIFT);
  875. hw->disp_a_ctrl |= (pipe << DISPPLANE_SEL_PIPE_SHIFT);
  876. /* Set CRTC registers. */
  877. hactive = var->xres;
  878. hsync_start = hactive + var->right_margin;
  879. hsync_end = hsync_start + var->hsync_len;
  880. htotal = hsync_end + var->left_margin;
  881. hblank_start = hactive;
  882. hblank_end = htotal;
  883. DBG_MSG("H: act %d, ss %d, se %d, tot %d bs %d, be %d\n",
  884. hactive, hsync_start, hsync_end, htotal, hblank_start,
  885. hblank_end);
  886. vactive = var->yres;
  887. vsync_start = vactive + var->lower_margin;
  888. vsync_end = vsync_start + var->vsync_len;
  889. vtotal = vsync_end + var->upper_margin;
  890. vblank_start = vactive;
  891. vblank_end = vtotal;
  892. vblank_end = vsync_end + 1;
  893. DBG_MSG("V: act %d, ss %d, se %d, tot %d bs %d, be %d\n",
  894. vactive, vsync_start, vsync_end, vtotal, vblank_start,
  895. vblank_end);
  896. /* Adjust for register values, and check for overflow. */
  897. hactive--;
  898. if (check_overflow(hactive, HACTIVE_MASK, "CRTC hactive"))
  899. return 1;
  900. hsync_start--;
  901. if (check_overflow(hsync_start, HSYNCSTART_MASK, "CRTC hsync_start"))
  902. return 1;
  903. hsync_end--;
  904. if (check_overflow(hsync_end, HSYNCEND_MASK, "CRTC hsync_end"))
  905. return 1;
  906. htotal--;
  907. if (check_overflow(htotal, HTOTAL_MASK, "CRTC htotal"))
  908. return 1;
  909. hblank_start--;
  910. if (check_overflow(hblank_start, HBLANKSTART_MASK, "CRTC hblank_start"))
  911. return 1;
  912. hblank_end--;
  913. if (check_overflow(hblank_end, HBLANKEND_MASK, "CRTC hblank_end"))
  914. return 1;
  915. vactive--;
  916. if (check_overflow(vactive, VACTIVE_MASK, "CRTC vactive"))
  917. return 1;
  918. vsync_start--;
  919. if (check_overflow(vsync_start, VSYNCSTART_MASK, "CRTC vsync_start"))
  920. return 1;
  921. vsync_end--;
  922. if (check_overflow(vsync_end, VSYNCEND_MASK, "CRTC vsync_end"))
  923. return 1;
  924. vtotal--;
  925. if (check_overflow(vtotal, VTOTAL_MASK, "CRTC vtotal"))
  926. return 1;
  927. vblank_start--;
  928. if (check_overflow(vblank_start, VBLANKSTART_MASK, "CRTC vblank_start"))
  929. return 1;
  930. vblank_end--;
  931. if (check_overflow(vblank_end, VBLANKEND_MASK, "CRTC vblank_end"))
  932. return 1;
  933. *ht = (htotal << HTOTAL_SHIFT) | (hactive << HACTIVE_SHIFT);
  934. *hb = (hblank_start << HBLANKSTART_SHIFT) |
  935. (hblank_end << HSYNCEND_SHIFT);
  936. *hs = (hsync_start << HSYNCSTART_SHIFT) | (hsync_end << HSYNCEND_SHIFT);
  937. *vt = (vtotal << VTOTAL_SHIFT) | (vactive << VACTIVE_SHIFT);
  938. *vb = (vblank_start << VBLANKSTART_SHIFT) |
  939. (vblank_end << VSYNCEND_SHIFT);
  940. *vs = (vsync_start << VSYNCSTART_SHIFT) | (vsync_end << VSYNCEND_SHIFT);
  941. *ss = (hactive << SRC_SIZE_HORIZ_SHIFT) |
  942. (vactive << SRC_SIZE_VERT_SHIFT);
  943. hw->disp_a_stride = var->xres_virtual * var->bits_per_pixel / 8;
  944. DBG_MSG("pitch is %d\n", hw->disp_a_stride);
  945. hw->disp_a_base = hw->disp_a_stride * var->yoffset +
  946. var->xoffset * var->bits_per_pixel / 8;
  947. hw->disp_a_base += dinfo->fb.offset << 12;
  948. /* Check stride alignment. */
  949. if (hw->disp_a_stride % STRIDE_ALIGNMENT != 0) {
  950. WRN_MSG("display stride %d has bad alignment %d\n",
  951. hw->disp_a_stride, STRIDE_ALIGNMENT);
  952. return 1;
  953. }
  954. /* Set the palette to 8-bit mode. */
  955. *pipe_conf &= ~PIPECONF_GAMMA;
  956. return 0;
  957. }
  958. /* Program a (non-VGA) video mode. */
  959. int
  960. intelfbhw_program_mode(struct intelfb_info *dinfo,
  961. const struct intelfb_hwstate *hw, int blank)
  962. {
  963. int pipe = PIPE_A;
  964. u32 tmp;
  965. const u32 *dpll, *fp0, *fp1, *pipe_conf;
  966. const u32 *hs, *ht, *hb, *vs, *vt, *vb, *ss;
  967. u32 dpll_reg, fp0_reg, fp1_reg, pipe_conf_reg;
  968. u32 hsync_reg, htotal_reg, hblank_reg;
  969. u32 vsync_reg, vtotal_reg, vblank_reg;
  970. u32 src_size_reg;
  971. /* Assume single pipe, display plane A, analog CRT. */
  972. #if VERBOSE > 0
  973. DBG_MSG("intelfbhw_program_mode\n");
  974. #endif
  975. /* Disable VGA */
  976. tmp = INREG(VGACNTRL);
  977. tmp |= VGA_DISABLE;
  978. OUTREG(VGACNTRL, tmp);
  979. /* Check whether pipe A or pipe B is enabled. */
  980. if (hw->pipe_a_conf & PIPECONF_ENABLE)
  981. pipe = PIPE_A;
  982. else if (hw->pipe_b_conf & PIPECONF_ENABLE)
  983. pipe = PIPE_B;
  984. dinfo->pipe = pipe;
  985. if (pipe == PIPE_B) {
  986. dpll = &hw->dpll_b;
  987. fp0 = &hw->fpb0;
  988. fp1 = &hw->fpb1;
  989. pipe_conf = &hw->pipe_b_conf;
  990. hs = &hw->hsync_b;
  991. hb = &hw->hblank_b;
  992. ht = &hw->htotal_b;
  993. vs = &hw->vsync_b;
  994. vb = &hw->vblank_b;
  995. vt = &hw->vtotal_b;
  996. ss = &hw->src_size_b;
  997. dpll_reg = DPLL_B;
  998. fp0_reg = FPB0;
  999. fp1_reg = FPB1;
  1000. pipe_conf_reg = PIPEBCONF;
  1001. hsync_reg = HSYNC_B;
  1002. htotal_reg = HTOTAL_B;
  1003. hblank_reg = HBLANK_B;
  1004. vsync_reg = VSYNC_B;
  1005. vtotal_reg = VTOTAL_B;
  1006. vblank_reg = VBLANK_B;
  1007. src_size_reg = SRC_SIZE_B;
  1008. } else {
  1009. dpll = &hw->dpll_a;
  1010. fp0 = &hw->fpa0;
  1011. fp1 = &hw->fpa1;
  1012. pipe_conf = &hw->pipe_a_conf;
  1013. hs = &hw->hsync_a;
  1014. hb = &hw->hblank_a;
  1015. ht = &hw->htotal_a;
  1016. vs = &hw->vsync_a;
  1017. vb = &hw->vblank_a;
  1018. vt = &hw->vtotal_a;
  1019. ss = &hw->src_size_a;
  1020. dpll_reg = DPLL_A;
  1021. fp0_reg = FPA0;
  1022. fp1_reg = FPA1;
  1023. pipe_conf_reg = PIPEACONF;
  1024. hsync_reg = HSYNC_A;
  1025. htotal_reg = HTOTAL_A;
  1026. hblank_reg = HBLANK_A;
  1027. vsync_reg = VSYNC_A;
  1028. vtotal_reg = VTOTAL_A;
  1029. vblank_reg = VBLANK_A;
  1030. src_size_reg = SRC_SIZE_A;
  1031. }
  1032. /* Disable planes A and B. */
  1033. tmp = INREG(DSPACNTR);
  1034. tmp &= ~DISPPLANE_PLANE_ENABLE;
  1035. OUTREG(DSPACNTR, tmp);
  1036. tmp = INREG(DSPBCNTR);
  1037. tmp &= ~DISPPLANE_PLANE_ENABLE;
  1038. OUTREG(DSPBCNTR, tmp);
  1039. /* Wait for vblank. For now, just wait for a 50Hz cycle (20ms)) */
  1040. mdelay(20);
  1041. /* Disable Sync */
  1042. tmp = INREG(ADPA);
  1043. tmp &= ~ADPA_DPMS_CONTROL_MASK;
  1044. tmp |= ADPA_DPMS_D3;
  1045. OUTREG(ADPA, tmp);
  1046. /* turn off pipe */
  1047. tmp = INREG(pipe_conf_reg);
  1048. tmp &= ~PIPECONF_ENABLE;
  1049. OUTREG(pipe_conf_reg, tmp);
  1050. /* turn off PLL */
  1051. tmp = INREG(dpll_reg);
  1052. dpll_reg &= ~DPLL_VCO_ENABLE;
  1053. OUTREG(dpll_reg, tmp);
  1054. /* Set PLL parameters */
  1055. OUTREG(dpll_reg, *dpll & ~DPLL_VCO_ENABLE);
  1056. OUTREG(fp0_reg, *fp0);
  1057. OUTREG(fp1_reg, *fp1);
  1058. /* Set pipe parameters */
  1059. OUTREG(hsync_reg, *hs);
  1060. OUTREG(hblank_reg, *hb);
  1061. OUTREG(htotal_reg, *ht);
  1062. OUTREG(vsync_reg, *vs);
  1063. OUTREG(vblank_reg, *vb);
  1064. OUTREG(vtotal_reg, *vt);
  1065. OUTREG(src_size_reg, *ss);
  1066. /* Set DVOs B/C */
  1067. OUTREG(DVOB, hw->dvob);
  1068. OUTREG(DVOC, hw->dvoc);
  1069. /* Set ADPA */
  1070. OUTREG(ADPA, (hw->adpa & ~(ADPA_DPMS_CONTROL_MASK)) | ADPA_DPMS_D3);
  1071. /* Enable PLL */
  1072. tmp = INREG(dpll_reg);
  1073. tmp |= DPLL_VCO_ENABLE;
  1074. OUTREG(dpll_reg, tmp);
  1075. /* Enable pipe */
  1076. OUTREG(pipe_conf_reg, *pipe_conf | PIPECONF_ENABLE);
  1077. /* Enable sync */
  1078. tmp = INREG(ADPA);
  1079. tmp &= ~ADPA_DPMS_CONTROL_MASK;
  1080. tmp |= ADPA_DPMS_D0;
  1081. OUTREG(ADPA, tmp);
  1082. /* setup display plane */
  1083. if (dinfo->pdev->device == PCI_DEVICE_ID_INTEL_830M) {
  1084. /*
  1085. * i830M errata: the display plane must be enabled
  1086. * to allow writes to the other bits in the plane
  1087. * control register.
  1088. */
  1089. tmp = INREG(DSPACNTR);
  1090. if ((tmp & DISPPLANE_PLANE_ENABLE) != DISPPLANE_PLANE_ENABLE) {
  1091. tmp |= DISPPLANE_PLANE_ENABLE;
  1092. OUTREG(DSPACNTR, tmp);
  1093. OUTREG(DSPACNTR,
  1094. hw->disp_a_ctrl|DISPPLANE_PLANE_ENABLE);
  1095. mdelay(1);
  1096. }
  1097. }
  1098. OUTREG(DSPACNTR, hw->disp_a_ctrl & ~DISPPLANE_PLANE_ENABLE);
  1099. OUTREG(DSPASTRIDE, hw->disp_a_stride);
  1100. OUTREG(DSPABASE, hw->disp_a_base);
  1101. /* Enable plane */
  1102. if (!blank) {
  1103. tmp = INREG(DSPACNTR);
  1104. tmp |= DISPPLANE_PLANE_ENABLE;
  1105. OUTREG(DSPACNTR, tmp);
  1106. OUTREG(DSPABASE, hw->disp_a_base);
  1107. }
  1108. return 0;
  1109. }
  1110. /* forward declarations */
  1111. static void refresh_ring(struct intelfb_info *dinfo);
  1112. static void reset_state(struct intelfb_info *dinfo);
  1113. static void do_flush(struct intelfb_info *dinfo);
  1114. static int
  1115. wait_ring(struct intelfb_info *dinfo, int n)
  1116. {
  1117. int i = 0;
  1118. unsigned long end;
  1119. u32 last_head = INREG(PRI_RING_HEAD) & RING_HEAD_MASK;
  1120. #if VERBOSE > 0
  1121. DBG_MSG("wait_ring: %d\n", n);
  1122. #endif
  1123. end = jiffies + (HZ * 3);
  1124. while (dinfo->ring_space < n) {
  1125. dinfo->ring_head = (u8 __iomem *)(INREG(PRI_RING_HEAD) &
  1126. RING_HEAD_MASK);
  1127. if (dinfo->ring_tail + RING_MIN_FREE <
  1128. (u32 __iomem) dinfo->ring_head)
  1129. dinfo->ring_space = (u32 __iomem) dinfo->ring_head
  1130. - (dinfo->ring_tail + RING_MIN_FREE);
  1131. else
  1132. dinfo->ring_space = (dinfo->ring.size +
  1133. (u32 __iomem) dinfo->ring_head)
  1134. - (dinfo->ring_tail + RING_MIN_FREE);
  1135. if ((u32 __iomem) dinfo->ring_head != last_head) {
  1136. end = jiffies + (HZ * 3);
  1137. last_head = (u32 __iomem) dinfo->ring_head;
  1138. }
  1139. i++;
  1140. if (time_before(end, jiffies)) {
  1141. if (!i) {
  1142. /* Try again */
  1143. reset_state(dinfo);
  1144. refresh_ring(dinfo);
  1145. do_flush(dinfo);
  1146. end = jiffies + (HZ * 3);
  1147. i = 1;
  1148. } else {
  1149. WRN_MSG("ring buffer : space: %d wanted %d\n",
  1150. dinfo->ring_space, n);
  1151. WRN_MSG("lockup - turning off hardware "
  1152. "acceleration\n");
  1153. dinfo->ring_lockup = 1;
  1154. break;
  1155. }
  1156. }
  1157. udelay(1);
  1158. }
  1159. return i;
  1160. }
  1161. static void
  1162. do_flush(struct intelfb_info *dinfo) {
  1163. START_RING(2);
  1164. OUT_RING(MI_FLUSH | MI_WRITE_DIRTY_STATE | MI_INVALIDATE_MAP_CACHE);
  1165. OUT_RING(MI_NOOP);
  1166. ADVANCE_RING();
  1167. }
  1168. void
  1169. intelfbhw_do_sync(struct intelfb_info *dinfo)
  1170. {
  1171. #if VERBOSE > 0
  1172. DBG_MSG("intelfbhw_do_sync\n");
  1173. #endif
  1174. if (!dinfo->accel)
  1175. return;
  1176. /*
  1177. * Send a flush, then wait until the ring is empty. This is what
  1178. * the XFree86 driver does, and actually it doesn't seem a lot worse
  1179. * than the recommended method (both have problems).
  1180. */
  1181. do_flush(dinfo);
  1182. wait_ring(dinfo, dinfo->ring.size - RING_MIN_FREE);
  1183. dinfo->ring_space = dinfo->ring.size - RING_MIN_FREE;
  1184. }
  1185. static void
  1186. refresh_ring(struct intelfb_info *dinfo)
  1187. {
  1188. #if VERBOSE > 0
  1189. DBG_MSG("refresh_ring\n");
  1190. #endif
  1191. dinfo->ring_head = (u8 __iomem *) (INREG(PRI_RING_HEAD) &
  1192. RING_HEAD_MASK);
  1193. dinfo->ring_tail = INREG(PRI_RING_TAIL) & RING_TAIL_MASK;
  1194. if (dinfo->ring_tail + RING_MIN_FREE < (u32 __iomem)dinfo->ring_head)
  1195. dinfo->ring_space = (u32 __iomem) dinfo->ring_head
  1196. - (dinfo->ring_tail + RING_MIN_FREE);
  1197. else
  1198. dinfo->ring_space = (dinfo->ring.size +
  1199. (u32 __iomem) dinfo->ring_head)
  1200. - (dinfo->ring_tail + RING_MIN_FREE);
  1201. }
  1202. static void
  1203. reset_state(struct intelfb_info *dinfo)
  1204. {
  1205. int i;
  1206. u32 tmp;
  1207. #if VERBOSE > 0
  1208. DBG_MSG("reset_state\n");
  1209. #endif
  1210. for (i = 0; i < FENCE_NUM; i++)
  1211. OUTREG(FENCE + (i << 2), 0);
  1212. /* Flush the ring buffer if it's enabled. */
  1213. tmp = INREG(PRI_RING_LENGTH);
  1214. if (tmp & RING_ENABLE) {
  1215. #if VERBOSE > 0
  1216. DBG_MSG("reset_state: ring was enabled\n");
  1217. #endif
  1218. refresh_ring(dinfo);
  1219. intelfbhw_do_sync(dinfo);
  1220. DO_RING_IDLE();
  1221. }
  1222. OUTREG(PRI_RING_LENGTH, 0);
  1223. OUTREG(PRI_RING_HEAD, 0);
  1224. OUTREG(PRI_RING_TAIL, 0);
  1225. OUTREG(PRI_RING_START, 0);
  1226. }
  1227. /* Stop the 2D engine, and turn off the ring buffer. */
  1228. void
  1229. intelfbhw_2d_stop(struct intelfb_info *dinfo)
  1230. {
  1231. #if VERBOSE > 0
  1232. DBG_MSG("intelfbhw_2d_stop: accel: %d, ring_active: %d\n", dinfo->accel,
  1233. dinfo->ring_active);
  1234. #endif
  1235. if (!dinfo->accel)
  1236. return;
  1237. dinfo->ring_active = 0;
  1238. reset_state(dinfo);
  1239. }
  1240. /*
  1241. * Enable the ring buffer, and initialise the 2D engine.
  1242. * It is assumed that the graphics engine has been stopped by previously
  1243. * calling intelfb_2d_stop().
  1244. */
  1245. void
  1246. intelfbhw_2d_start(struct intelfb_info *dinfo)
  1247. {
  1248. #if VERBOSE > 0
  1249. DBG_MSG("intelfbhw_2d_start: accel: %d, ring_active: %d\n",
  1250. dinfo->accel, dinfo->ring_active);
  1251. #endif
  1252. if (!dinfo->accel)
  1253. return;
  1254. /* Initialise the primary ring buffer. */
  1255. OUTREG(PRI_RING_LENGTH, 0);
  1256. OUTREG(PRI_RING_TAIL, 0);
  1257. OUTREG(PRI_RING_HEAD, 0);
  1258. OUTREG(PRI_RING_START, dinfo->ring.physical & RING_START_MASK);
  1259. OUTREG(PRI_RING_LENGTH,
  1260. ((dinfo->ring.size - GTT_PAGE_SIZE) & RING_LENGTH_MASK) |
  1261. RING_NO_REPORT | RING_ENABLE);
  1262. refresh_ring(dinfo);
  1263. dinfo->ring_active = 1;
  1264. }
  1265. /* 2D fillrect (solid fill or invert) */
  1266. void
  1267. intelfbhw_do_fillrect(struct intelfb_info *dinfo, u32 x, u32 y, u32 w, u32 h,
  1268. u32 color, u32 pitch, u32 bpp, u32 rop)
  1269. {
  1270. u32 br00, br09, br13, br14, br16;
  1271. #if VERBOSE > 0
  1272. DBG_MSG("intelfbhw_do_fillrect: (%d,%d) %dx%d, c 0x%06x, p %d bpp %d, "
  1273. "rop 0x%02x\n", x, y, w, h, color, pitch, bpp, rop);
  1274. #endif
  1275. br00 = COLOR_BLT_CMD;
  1276. br09 = dinfo->fb_start + (y * pitch + x * (bpp / 8));
  1277. br13 = (rop << ROP_SHIFT) | pitch;
  1278. br14 = (h << HEIGHT_SHIFT) | ((w * (bpp / 8)) << WIDTH_SHIFT);
  1279. br16 = color;
  1280. switch (bpp) {
  1281. case 8:
  1282. br13 |= COLOR_DEPTH_8;
  1283. break;
  1284. case 16:
  1285. br13 |= COLOR_DEPTH_16;
  1286. break;
  1287. case 32:
  1288. br13 |= COLOR_DEPTH_32;
  1289. br00 |= WRITE_ALPHA | WRITE_RGB;
  1290. break;
  1291. }
  1292. START_RING(6);
  1293. OUT_RING(br00);
  1294. OUT_RING(br13);
  1295. OUT_RING(br14);
  1296. OUT_RING(br09);
  1297. OUT_RING(br16);
  1298. OUT_RING(MI_NOOP);
  1299. ADVANCE_RING();
  1300. #if VERBOSE > 0
  1301. DBG_MSG("ring = 0x%08x, 0x%08x (%d)\n", dinfo->ring_head,
  1302. dinfo->ring_tail, dinfo->ring_space);
  1303. #endif
  1304. }
  1305. void
  1306. intelfbhw_do_bitblt(struct intelfb_info *dinfo, u32 curx, u32 cury,
  1307. u32 dstx, u32 dsty, u32 w, u32 h, u32 pitch, u32 bpp)
  1308. {
  1309. u32 br00, br09, br11, br12, br13, br22, br23, br26;
  1310. #if VERBOSE > 0
  1311. DBG_MSG("intelfbhw_do_bitblt: (%d,%d)->(%d,%d) %dx%d, p %d bpp %d\n",
  1312. curx, cury, dstx, dsty, w, h, pitch, bpp);
  1313. #endif
  1314. br00 = XY_SRC_COPY_BLT_CMD;
  1315. br09 = dinfo->fb_start;
  1316. br11 = (pitch << PITCH_SHIFT);
  1317. br12 = dinfo->fb_start;
  1318. br13 = (SRC_ROP_GXCOPY << ROP_SHIFT) | (pitch << PITCH_SHIFT);
  1319. br22 = (dstx << WIDTH_SHIFT) | (dsty << HEIGHT_SHIFT);
  1320. br23 = ((dstx + w) << WIDTH_SHIFT) |
  1321. ((dsty + h) << HEIGHT_SHIFT);
  1322. br26 = (curx << WIDTH_SHIFT) | (cury << HEIGHT_SHIFT);
  1323. switch (bpp) {
  1324. case 8:
  1325. br13 |= COLOR_DEPTH_8;
  1326. break;
  1327. case 16:
  1328. br13 |= COLOR_DEPTH_16;
  1329. break;
  1330. case 32:
  1331. br13 |= COLOR_DEPTH_32;
  1332. br00 |= WRITE_ALPHA | WRITE_RGB;
  1333. break;
  1334. }
  1335. START_RING(8);
  1336. OUT_RING(br00);
  1337. OUT_RING(br13);
  1338. OUT_RING(br22);
  1339. OUT_RING(br23);
  1340. OUT_RING(br09);
  1341. OUT_RING(br26);
  1342. OUT_RING(br11);
  1343. OUT_RING(br12);
  1344. ADVANCE_RING();
  1345. }
  1346. int
  1347. intelfbhw_do_drawglyph(struct intelfb_info *dinfo, u32 fg, u32 bg, u32 w,
  1348. u32 h, const u8* cdat, u32 x, u32 y, u32 pitch, u32 bpp)
  1349. {
  1350. int nbytes, ndwords, pad, tmp;
  1351. u32 br00, br09, br13, br18, br19, br22, br23;
  1352. int dat, ix, iy, iw;
  1353. int i, j;
  1354. #if VERBOSE > 0
  1355. DBG_MSG("intelfbhw_do_drawglyph: (%d,%d) %dx%d\n", x, y, w, h);
  1356. #endif
  1357. /* size in bytes of a padded scanline */
  1358. nbytes = ROUND_UP_TO(w, 16) / 8;
  1359. /* Total bytes of padded scanline data to write out. */
  1360. nbytes = nbytes * h;
  1361. /*
  1362. * Check if the glyph data exceeds the immediate mode limit.
  1363. * It would take a large font (1K pixels) to hit this limit.
  1364. */
  1365. if (nbytes > MAX_MONO_IMM_SIZE)
  1366. return 0;
  1367. /* Src data is packaged a dword (32-bit) at a time. */
  1368. ndwords = ROUND_UP_TO(nbytes, 4) / 4;
  1369. /*
  1370. * Ring has to be padded to a quad word. But because the command starts
  1371. with 7 bytes, pad only if there is an even number of ndwords
  1372. */
  1373. pad = !(ndwords % 2);
  1374. tmp = (XY_MONO_SRC_IMM_BLT_CMD & DW_LENGTH_MASK) + ndwords;
  1375. br00 = (XY_MONO_SRC_IMM_BLT_CMD & ~DW_LENGTH_MASK) | tmp;
  1376. br09 = dinfo->fb_start;
  1377. br13 = (SRC_ROP_GXCOPY << ROP_SHIFT) | (pitch << PITCH_SHIFT);
  1378. br18 = bg;
  1379. br19 = fg;
  1380. br22 = (x << WIDTH_SHIFT) | (y << HEIGHT_SHIFT);
  1381. br23 = ((x + w) << WIDTH_SHIFT) | ((y + h) << HEIGHT_SHIFT);
  1382. switch (bpp) {
  1383. case 8:
  1384. br13 |= COLOR_DEPTH_8;
  1385. break;
  1386. case 16:
  1387. br13 |= COLOR_DEPTH_16;
  1388. break;
  1389. case 32:
  1390. br13 |= COLOR_DEPTH_32;
  1391. br00 |= WRITE_ALPHA | WRITE_RGB;
  1392. break;
  1393. }
  1394. START_RING(8 + ndwords);
  1395. OUT_RING(br00);
  1396. OUT_RING(br13);
  1397. OUT_RING(br22);
  1398. OUT_RING(br23);
  1399. OUT_RING(br09);
  1400. OUT_RING(br18);
  1401. OUT_RING(br19);
  1402. ix = iy = 0;
  1403. iw = ROUND_UP_TO(w, 8) / 8;
  1404. while (ndwords--) {
  1405. dat = 0;
  1406. for (j = 0; j < 2; ++j) {
  1407. for (i = 0; i < 2; ++i) {
  1408. if (ix != iw || i == 0)
  1409. dat |= cdat[iy*iw + ix++] << (i+j*2)*8;
  1410. }
  1411. if (ix == iw && iy != (h-1)) {
  1412. ix = 0;
  1413. ++iy;
  1414. }
  1415. }
  1416. OUT_RING(dat);
  1417. }
  1418. if (pad)
  1419. OUT_RING(MI_NOOP);
  1420. ADVANCE_RING();
  1421. return 1;
  1422. }
  1423. /* HW cursor functions. */
  1424. void
  1425. intelfbhw_cursor_init(struct intelfb_info *dinfo)
  1426. {
  1427. u32 tmp;
  1428. #if VERBOSE > 0
  1429. DBG_MSG("intelfbhw_cursor_init\n");
  1430. #endif
  1431. if (dinfo->mobile) {
  1432. if (!dinfo->cursor.physical)
  1433. return;
  1434. tmp = INREG(CURSOR_A_CONTROL);
  1435. tmp &= ~(CURSOR_MODE_MASK | CURSOR_MOBILE_GAMMA_ENABLE |
  1436. CURSOR_MEM_TYPE_LOCAL |
  1437. (1 << CURSOR_PIPE_SELECT_SHIFT));
  1438. tmp |= CURSOR_MODE_DISABLE;
  1439. OUTREG(CURSOR_A_CONTROL, tmp);
  1440. OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.physical);
  1441. } else {
  1442. tmp = INREG(CURSOR_CONTROL);
  1443. tmp &= ~(CURSOR_FORMAT_MASK | CURSOR_GAMMA_ENABLE |
  1444. CURSOR_ENABLE | CURSOR_STRIDE_MASK);
  1445. tmp = CURSOR_FORMAT_3C;
  1446. OUTREG(CURSOR_CONTROL, tmp);
  1447. OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.offset << 12);
  1448. tmp = (64 << CURSOR_SIZE_H_SHIFT) |
  1449. (64 << CURSOR_SIZE_V_SHIFT);
  1450. OUTREG(CURSOR_SIZE, tmp);
  1451. }
  1452. }
  1453. void
  1454. intelfbhw_cursor_hide(struct intelfb_info *dinfo)
  1455. {
  1456. u32 tmp;
  1457. #if VERBOSE > 0
  1458. DBG_MSG("intelfbhw_cursor_hide\n");
  1459. #endif
  1460. dinfo->cursor_on = 0;
  1461. if (dinfo->mobile) {
  1462. if (!dinfo->cursor.physical)
  1463. return;
  1464. tmp = INREG(CURSOR_A_CONTROL);
  1465. tmp &= ~CURSOR_MODE_MASK;
  1466. tmp |= CURSOR_MODE_DISABLE;
  1467. OUTREG(CURSOR_A_CONTROL, tmp);
  1468. /* Flush changes */
  1469. OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.physical);
  1470. } else {
  1471. tmp = INREG(CURSOR_CONTROL);
  1472. tmp &= ~CURSOR_ENABLE;
  1473. OUTREG(CURSOR_CONTROL, tmp);
  1474. }
  1475. }
  1476. void
  1477. intelfbhw_cursor_show(struct intelfb_info *dinfo)
  1478. {
  1479. u32 tmp;
  1480. #if VERBOSE > 0
  1481. DBG_MSG("intelfbhw_cursor_show\n");
  1482. #endif
  1483. dinfo->cursor_on = 1;
  1484. if (dinfo->cursor_blanked)
  1485. return;
  1486. if (dinfo->mobile) {
  1487. if (!dinfo->cursor.physical)
  1488. return;
  1489. tmp = INREG(CURSOR_A_CONTROL);
  1490. tmp &= ~CURSOR_MODE_MASK;
  1491. tmp |= CURSOR_MODE_64_4C_AX;
  1492. OUTREG(CURSOR_A_CONTROL, tmp);
  1493. /* Flush changes */
  1494. OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.physical);
  1495. } else {
  1496. tmp = INREG(CURSOR_CONTROL);
  1497. tmp |= CURSOR_ENABLE;
  1498. OUTREG(CURSOR_CONTROL, tmp);
  1499. }
  1500. }
  1501. void
  1502. intelfbhw_cursor_setpos(struct intelfb_info *dinfo, int x, int y)
  1503. {
  1504. u32 tmp;
  1505. #if VERBOSE > 0
  1506. DBG_MSG("intelfbhw_cursor_setpos: (%d, %d)\n", x, y);
  1507. #endif
  1508. /*
  1509. * Sets the position. The coordinates are assumed to already
  1510. * have any offset adjusted. Assume that the cursor is never
  1511. * completely off-screen, and that x, y are always >= 0.
  1512. */
  1513. tmp = ((x & CURSOR_POS_MASK) << CURSOR_X_SHIFT) |
  1514. ((y & CURSOR_POS_MASK) << CURSOR_Y_SHIFT);
  1515. OUTREG(CURSOR_A_POSITION, tmp);
  1516. }
  1517. void
  1518. intelfbhw_cursor_setcolor(struct intelfb_info *dinfo, u32 bg, u32 fg)
  1519. {
  1520. #if VERBOSE > 0
  1521. DBG_MSG("intelfbhw_cursor_setcolor\n");
  1522. #endif
  1523. OUTREG(CURSOR_A_PALETTE0, bg & CURSOR_PALETTE_MASK);
  1524. OUTREG(CURSOR_A_PALETTE1, fg & CURSOR_PALETTE_MASK);
  1525. OUTREG(CURSOR_A_PALETTE2, fg & CURSOR_PALETTE_MASK);
  1526. OUTREG(CURSOR_A_PALETTE3, bg & CURSOR_PALETTE_MASK);
  1527. }
  1528. void
  1529. intelfbhw_cursor_load(struct intelfb_info *dinfo, int width, int height,
  1530. u8 *data)
  1531. {
  1532. u8 __iomem *addr = (u8 __iomem *)dinfo->cursor.virtual;
  1533. int i, j, w = width / 8;
  1534. int mod = width % 8, t_mask, d_mask;
  1535. #if VERBOSE > 0
  1536. DBG_MSG("intelfbhw_cursor_load\n");
  1537. #endif
  1538. if (!dinfo->cursor.virtual)
  1539. return;
  1540. t_mask = 0xff >> mod;
  1541. d_mask = ~(0xff >> mod);
  1542. for (i = height; i--; ) {
  1543. for (j = 0; j < w; j++) {
  1544. writeb(0x00, addr + j);
  1545. writeb(*(data++), addr + j+8);
  1546. }
  1547. if (mod) {
  1548. writeb(t_mask, addr + j);
  1549. writeb(*(data++) & d_mask, addr + j+8);
  1550. }
  1551. addr += 16;
  1552. }
  1553. }
  1554. void
  1555. intelfbhw_cursor_reset(struct intelfb_info *dinfo) {
  1556. u8 __iomem *addr = (u8 __iomem *)dinfo->cursor.virtual;
  1557. int i, j;
  1558. #if VERBOSE > 0
  1559. DBG_MSG("intelfbhw_cursor_reset\n");
  1560. #endif
  1561. if (!dinfo->cursor.virtual)
  1562. return;
  1563. for (i = 64; i--; ) {
  1564. for (j = 0; j < 8; j++) {
  1565. writeb(0xff, addr + j+0);
  1566. writeb(0x00, addr + j+8);
  1567. }
  1568. addr += 16;
  1569. }
  1570. }