time.c 29 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130
  1. /*
  2. * Common time routines among all ppc machines.
  3. *
  4. * Written by Cort Dougan (cort@cs.nmt.edu) to merge
  5. * Paul Mackerras' version and mine for PReP and Pmac.
  6. * MPC8xx/MBX changes by Dan Malek (dmalek@jlc.net).
  7. * Converted for 64-bit by Mike Corrigan (mikejc@us.ibm.com)
  8. *
  9. * First round of bugfixes by Gabriel Paubert (paubert@iram.es)
  10. * to make clock more stable (2.4.0-test5). The only thing
  11. * that this code assumes is that the timebases have been synchronized
  12. * by firmware on SMP and are never stopped (never do sleep
  13. * on SMP then, nap and doze are OK).
  14. *
  15. * Speeded up do_gettimeofday by getting rid of references to
  16. * xtime (which required locks for consistency). (mikejc@us.ibm.com)
  17. *
  18. * TODO (not necessarily in this file):
  19. * - improve precision and reproducibility of timebase frequency
  20. * measurement at boot time. (for iSeries, we calibrate the timebase
  21. * against the Titan chip's clock.)
  22. * - for astronomical applications: add a new function to get
  23. * non ambiguous timestamps even around leap seconds. This needs
  24. * a new timestamp format and a good name.
  25. *
  26. * 1997-09-10 Updated NTP code according to technical memorandum Jan '96
  27. * "A Kernel Model for Precision Timekeeping" by Dave Mills
  28. *
  29. * This program is free software; you can redistribute it and/or
  30. * modify it under the terms of the GNU General Public License
  31. * as published by the Free Software Foundation; either version
  32. * 2 of the License, or (at your option) any later version.
  33. */
  34. #include <linux/errno.h>
  35. #include <linux/export.h>
  36. #include <linux/sched.h>
  37. #include <linux/kernel.h>
  38. #include <linux/param.h>
  39. #include <linux/string.h>
  40. #include <linux/mm.h>
  41. #include <linux/interrupt.h>
  42. #include <linux/timex.h>
  43. #include <linux/kernel_stat.h>
  44. #include <linux/time.h>
  45. #include <linux/init.h>
  46. #include <linux/profile.h>
  47. #include <linux/cpu.h>
  48. #include <linux/security.h>
  49. #include <linux/percpu.h>
  50. #include <linux/rtc.h>
  51. #include <linux/jiffies.h>
  52. #include <linux/posix-timers.h>
  53. #include <linux/irq.h>
  54. #include <linux/delay.h>
  55. #include <linux/irq_work.h>
  56. #include <asm/trace.h>
  57. #include <asm/io.h>
  58. #include <asm/processor.h>
  59. #include <asm/nvram.h>
  60. #include <asm/cache.h>
  61. #include <asm/machdep.h>
  62. #include <asm/uaccess.h>
  63. #include <asm/time.h>
  64. #include <asm/prom.h>
  65. #include <asm/irq.h>
  66. #include <asm/div64.h>
  67. #include <asm/smp.h>
  68. #include <asm/vdso_datapage.h>
  69. #include <asm/firmware.h>
  70. #include <asm/cputime.h>
  71. #ifdef CONFIG_PPC_ISERIES
  72. #include <asm/iseries/it_lp_queue.h>
  73. #include <asm/iseries/hv_call_xm.h>
  74. #endif
  75. /* powerpc clocksource/clockevent code */
  76. #include <linux/clockchips.h>
  77. #include <linux/clocksource.h>
  78. static cycle_t rtc_read(struct clocksource *);
  79. static struct clocksource clocksource_rtc = {
  80. .name = "rtc",
  81. .rating = 400,
  82. .flags = CLOCK_SOURCE_IS_CONTINUOUS,
  83. .mask = CLOCKSOURCE_MASK(64),
  84. .read = rtc_read,
  85. };
  86. static cycle_t timebase_read(struct clocksource *);
  87. static struct clocksource clocksource_timebase = {
  88. .name = "timebase",
  89. .rating = 400,
  90. .flags = CLOCK_SOURCE_IS_CONTINUOUS,
  91. .mask = CLOCKSOURCE_MASK(64),
  92. .read = timebase_read,
  93. };
  94. #define DECREMENTER_MAX 0x7fffffff
  95. static int decrementer_set_next_event(unsigned long evt,
  96. struct clock_event_device *dev);
  97. static void decrementer_set_mode(enum clock_event_mode mode,
  98. struct clock_event_device *dev);
  99. static struct clock_event_device decrementer_clockevent = {
  100. .name = "decrementer",
  101. .rating = 200,
  102. .irq = 0,
  103. .set_next_event = decrementer_set_next_event,
  104. .set_mode = decrementer_set_mode,
  105. .features = CLOCK_EVT_FEAT_ONESHOT,
  106. };
  107. DEFINE_PER_CPU(u64, decrementers_next_tb);
  108. static DEFINE_PER_CPU(struct clock_event_device, decrementers);
  109. #ifdef CONFIG_PPC_ISERIES
  110. static unsigned long __initdata iSeries_recal_titan;
  111. static signed long __initdata iSeries_recal_tb;
  112. /* Forward declaration is only needed for iSereis compiles */
  113. static void __init clocksource_init(void);
  114. #endif
  115. #define XSEC_PER_SEC (1024*1024)
  116. #ifdef CONFIG_PPC64
  117. #define SCALE_XSEC(xsec, max) (((xsec) * max) / XSEC_PER_SEC)
  118. #else
  119. /* compute ((xsec << 12) * max) >> 32 */
  120. #define SCALE_XSEC(xsec, max) mulhwu((xsec) << 12, max)
  121. #endif
  122. unsigned long tb_ticks_per_jiffy;
  123. unsigned long tb_ticks_per_usec = 100; /* sane default */
  124. EXPORT_SYMBOL(tb_ticks_per_usec);
  125. unsigned long tb_ticks_per_sec;
  126. EXPORT_SYMBOL(tb_ticks_per_sec); /* for cputime_t conversions */
  127. DEFINE_SPINLOCK(rtc_lock);
  128. EXPORT_SYMBOL_GPL(rtc_lock);
  129. static u64 tb_to_ns_scale __read_mostly;
  130. static unsigned tb_to_ns_shift __read_mostly;
  131. static u64 boot_tb __read_mostly;
  132. extern struct timezone sys_tz;
  133. static long timezone_offset;
  134. unsigned long ppc_proc_freq;
  135. EXPORT_SYMBOL_GPL(ppc_proc_freq);
  136. unsigned long ppc_tb_freq;
  137. EXPORT_SYMBOL_GPL(ppc_tb_freq);
  138. #ifdef CONFIG_VIRT_CPU_ACCOUNTING
  139. /*
  140. * Factors for converting from cputime_t (timebase ticks) to
  141. * jiffies, microseconds, seconds, and clock_t (1/USER_HZ seconds).
  142. * These are all stored as 0.64 fixed-point binary fractions.
  143. */
  144. u64 __cputime_jiffies_factor;
  145. EXPORT_SYMBOL(__cputime_jiffies_factor);
  146. u64 __cputime_usec_factor;
  147. EXPORT_SYMBOL(__cputime_usec_factor);
  148. u64 __cputime_sec_factor;
  149. EXPORT_SYMBOL(__cputime_sec_factor);
  150. u64 __cputime_clockt_factor;
  151. EXPORT_SYMBOL(__cputime_clockt_factor);
  152. DEFINE_PER_CPU(unsigned long, cputime_last_delta);
  153. DEFINE_PER_CPU(unsigned long, cputime_scaled_last_delta);
  154. cputime_t cputime_one_jiffy;
  155. void (*dtl_consumer)(struct dtl_entry *, u64);
  156. static void calc_cputime_factors(void)
  157. {
  158. struct div_result res;
  159. div128_by_32(HZ, 0, tb_ticks_per_sec, &res);
  160. __cputime_jiffies_factor = res.result_low;
  161. div128_by_32(1000000, 0, tb_ticks_per_sec, &res);
  162. __cputime_usec_factor = res.result_low;
  163. div128_by_32(1, 0, tb_ticks_per_sec, &res);
  164. __cputime_sec_factor = res.result_low;
  165. div128_by_32(USER_HZ, 0, tb_ticks_per_sec, &res);
  166. __cputime_clockt_factor = res.result_low;
  167. }
  168. /*
  169. * Read the SPURR on systems that have it, otherwise the PURR,
  170. * or if that doesn't exist return the timebase value passed in.
  171. */
  172. static u64 read_spurr(u64 tb)
  173. {
  174. if (cpu_has_feature(CPU_FTR_SPURR))
  175. return mfspr(SPRN_SPURR);
  176. if (cpu_has_feature(CPU_FTR_PURR))
  177. return mfspr(SPRN_PURR);
  178. return tb;
  179. }
  180. #ifdef CONFIG_PPC_SPLPAR
  181. /*
  182. * Scan the dispatch trace log and count up the stolen time.
  183. * Should be called with interrupts disabled.
  184. */
  185. static u64 scan_dispatch_log(u64 stop_tb)
  186. {
  187. u64 i = local_paca->dtl_ridx;
  188. struct dtl_entry *dtl = local_paca->dtl_curr;
  189. struct dtl_entry *dtl_end = local_paca->dispatch_log_end;
  190. struct lppaca *vpa = local_paca->lppaca_ptr;
  191. u64 tb_delta;
  192. u64 stolen = 0;
  193. u64 dtb;
  194. if (!dtl)
  195. return 0;
  196. if (i == vpa->dtl_idx)
  197. return 0;
  198. while (i < vpa->dtl_idx) {
  199. if (dtl_consumer)
  200. dtl_consumer(dtl, i);
  201. dtb = dtl->timebase;
  202. tb_delta = dtl->enqueue_to_dispatch_time +
  203. dtl->ready_to_enqueue_time;
  204. barrier();
  205. if (i + N_DISPATCH_LOG < vpa->dtl_idx) {
  206. /* buffer has overflowed */
  207. i = vpa->dtl_idx - N_DISPATCH_LOG;
  208. dtl = local_paca->dispatch_log + (i % N_DISPATCH_LOG);
  209. continue;
  210. }
  211. if (dtb > stop_tb)
  212. break;
  213. stolen += tb_delta;
  214. ++i;
  215. ++dtl;
  216. if (dtl == dtl_end)
  217. dtl = local_paca->dispatch_log;
  218. }
  219. local_paca->dtl_ridx = i;
  220. local_paca->dtl_curr = dtl;
  221. return stolen;
  222. }
  223. /*
  224. * Accumulate stolen time by scanning the dispatch trace log.
  225. * Called on entry from user mode.
  226. */
  227. void accumulate_stolen_time(void)
  228. {
  229. u64 sst, ust;
  230. u8 save_soft_enabled = local_paca->soft_enabled;
  231. /* We are called early in the exception entry, before
  232. * soft/hard_enabled are sync'ed to the expected state
  233. * for the exception. We are hard disabled but the PACA
  234. * needs to reflect that so various debug stuff doesn't
  235. * complain
  236. */
  237. local_paca->soft_enabled = 0;
  238. sst = scan_dispatch_log(local_paca->starttime_user);
  239. ust = scan_dispatch_log(local_paca->starttime);
  240. local_paca->system_time -= sst;
  241. local_paca->user_time -= ust;
  242. local_paca->stolen_time += ust + sst;
  243. local_paca->soft_enabled = save_soft_enabled;
  244. }
  245. static inline u64 calculate_stolen_time(u64 stop_tb)
  246. {
  247. u64 stolen = 0;
  248. if (get_paca()->dtl_ridx != get_paca()->lppaca_ptr->dtl_idx) {
  249. stolen = scan_dispatch_log(stop_tb);
  250. get_paca()->system_time -= stolen;
  251. }
  252. stolen += get_paca()->stolen_time;
  253. get_paca()->stolen_time = 0;
  254. return stolen;
  255. }
  256. #else /* CONFIG_PPC_SPLPAR */
  257. static inline u64 calculate_stolen_time(u64 stop_tb)
  258. {
  259. return 0;
  260. }
  261. #endif /* CONFIG_PPC_SPLPAR */
  262. /*
  263. * Account time for a transition between system, hard irq
  264. * or soft irq state.
  265. */
  266. void account_system_vtime(struct task_struct *tsk)
  267. {
  268. u64 now, nowscaled, delta, deltascaled;
  269. unsigned long flags;
  270. u64 stolen, udelta, sys_scaled, user_scaled;
  271. local_irq_save(flags);
  272. now = mftb();
  273. nowscaled = read_spurr(now);
  274. get_paca()->system_time += now - get_paca()->starttime;
  275. get_paca()->starttime = now;
  276. deltascaled = nowscaled - get_paca()->startspurr;
  277. get_paca()->startspurr = nowscaled;
  278. stolen = calculate_stolen_time(now);
  279. delta = get_paca()->system_time;
  280. get_paca()->system_time = 0;
  281. udelta = get_paca()->user_time - get_paca()->utime_sspurr;
  282. get_paca()->utime_sspurr = get_paca()->user_time;
  283. /*
  284. * Because we don't read the SPURR on every kernel entry/exit,
  285. * deltascaled includes both user and system SPURR ticks.
  286. * Apportion these ticks to system SPURR ticks and user
  287. * SPURR ticks in the same ratio as the system time (delta)
  288. * and user time (udelta) values obtained from the timebase
  289. * over the same interval. The system ticks get accounted here;
  290. * the user ticks get saved up in paca->user_time_scaled to be
  291. * used by account_process_tick.
  292. */
  293. sys_scaled = delta;
  294. user_scaled = udelta;
  295. if (deltascaled != delta + udelta) {
  296. if (udelta) {
  297. sys_scaled = deltascaled * delta / (delta + udelta);
  298. user_scaled = deltascaled - sys_scaled;
  299. } else {
  300. sys_scaled = deltascaled;
  301. }
  302. }
  303. get_paca()->user_time_scaled += user_scaled;
  304. if (in_interrupt() || idle_task(smp_processor_id()) != tsk) {
  305. account_system_time(tsk, 0, delta, sys_scaled);
  306. if (stolen)
  307. account_steal_time(stolen);
  308. } else {
  309. account_idle_time(delta + stolen);
  310. }
  311. local_irq_restore(flags);
  312. }
  313. EXPORT_SYMBOL_GPL(account_system_vtime);
  314. /*
  315. * Transfer the user and system times accumulated in the paca
  316. * by the exception entry and exit code to the generic process
  317. * user and system time records.
  318. * Must be called with interrupts disabled.
  319. * Assumes that account_system_vtime() has been called recently
  320. * (i.e. since the last entry from usermode) so that
  321. * get_paca()->user_time_scaled is up to date.
  322. */
  323. void account_process_tick(struct task_struct *tsk, int user_tick)
  324. {
  325. cputime_t utime, utimescaled;
  326. utime = get_paca()->user_time;
  327. utimescaled = get_paca()->user_time_scaled;
  328. get_paca()->user_time = 0;
  329. get_paca()->user_time_scaled = 0;
  330. get_paca()->utime_sspurr = 0;
  331. account_user_time(tsk, utime, utimescaled);
  332. }
  333. #else /* ! CONFIG_VIRT_CPU_ACCOUNTING */
  334. #define calc_cputime_factors()
  335. #endif
  336. void __delay(unsigned long loops)
  337. {
  338. unsigned long start;
  339. int diff;
  340. if (__USE_RTC()) {
  341. start = get_rtcl();
  342. do {
  343. /* the RTCL register wraps at 1000000000 */
  344. diff = get_rtcl() - start;
  345. if (diff < 0)
  346. diff += 1000000000;
  347. } while (diff < loops);
  348. } else {
  349. start = get_tbl();
  350. while (get_tbl() - start < loops)
  351. HMT_low();
  352. HMT_medium();
  353. }
  354. }
  355. EXPORT_SYMBOL(__delay);
  356. void udelay(unsigned long usecs)
  357. {
  358. __delay(tb_ticks_per_usec * usecs);
  359. }
  360. EXPORT_SYMBOL(udelay);
  361. #ifdef CONFIG_SMP
  362. unsigned long profile_pc(struct pt_regs *regs)
  363. {
  364. unsigned long pc = instruction_pointer(regs);
  365. if (in_lock_functions(pc))
  366. return regs->link;
  367. return pc;
  368. }
  369. EXPORT_SYMBOL(profile_pc);
  370. #endif
  371. #ifdef CONFIG_PPC_ISERIES
  372. /*
  373. * This function recalibrates the timebase based on the 49-bit time-of-day
  374. * value in the Titan chip. The Titan is much more accurate than the value
  375. * returned by the service processor for the timebase frequency.
  376. */
  377. static int __init iSeries_tb_recal(void)
  378. {
  379. unsigned long titan, tb;
  380. /* Make sure we only run on iSeries */
  381. if (!firmware_has_feature(FW_FEATURE_ISERIES))
  382. return -ENODEV;
  383. tb = get_tb();
  384. titan = HvCallXm_loadTod();
  385. if ( iSeries_recal_titan ) {
  386. unsigned long tb_ticks = tb - iSeries_recal_tb;
  387. unsigned long titan_usec = (titan - iSeries_recal_titan) >> 12;
  388. unsigned long new_tb_ticks_per_sec = (tb_ticks * USEC_PER_SEC)/titan_usec;
  389. unsigned long new_tb_ticks_per_jiffy =
  390. DIV_ROUND_CLOSEST(new_tb_ticks_per_sec, HZ);
  391. long tick_diff = new_tb_ticks_per_jiffy - tb_ticks_per_jiffy;
  392. char sign = '+';
  393. /* make sure tb_ticks_per_sec and tb_ticks_per_jiffy are consistent */
  394. new_tb_ticks_per_sec = new_tb_ticks_per_jiffy * HZ;
  395. if ( tick_diff < 0 ) {
  396. tick_diff = -tick_diff;
  397. sign = '-';
  398. }
  399. if ( tick_diff ) {
  400. if ( tick_diff < tb_ticks_per_jiffy/25 ) {
  401. printk( "Titan recalibrate: new tb_ticks_per_jiffy = %lu (%c%ld)\n",
  402. new_tb_ticks_per_jiffy, sign, tick_diff );
  403. tb_ticks_per_jiffy = new_tb_ticks_per_jiffy;
  404. tb_ticks_per_sec = new_tb_ticks_per_sec;
  405. calc_cputime_factors();
  406. vdso_data->tb_ticks_per_sec = tb_ticks_per_sec;
  407. setup_cputime_one_jiffy();
  408. }
  409. else {
  410. printk( "Titan recalibrate: FAILED (difference > 4 percent)\n"
  411. " new tb_ticks_per_jiffy = %lu\n"
  412. " old tb_ticks_per_jiffy = %lu\n",
  413. new_tb_ticks_per_jiffy, tb_ticks_per_jiffy );
  414. }
  415. }
  416. }
  417. iSeries_recal_titan = titan;
  418. iSeries_recal_tb = tb;
  419. /* Called here as now we know accurate values for the timebase */
  420. clocksource_init();
  421. return 0;
  422. }
  423. late_initcall(iSeries_tb_recal);
  424. /* Called from platform early init */
  425. void __init iSeries_time_init_early(void)
  426. {
  427. iSeries_recal_tb = get_tb();
  428. iSeries_recal_titan = HvCallXm_loadTod();
  429. }
  430. #endif /* CONFIG_PPC_ISERIES */
  431. #ifdef CONFIG_IRQ_WORK
  432. /*
  433. * 64-bit uses a byte in the PACA, 32-bit uses a per-cpu variable...
  434. */
  435. #ifdef CONFIG_PPC64
  436. static inline unsigned long test_irq_work_pending(void)
  437. {
  438. unsigned long x;
  439. asm volatile("lbz %0,%1(13)"
  440. : "=r" (x)
  441. : "i" (offsetof(struct paca_struct, irq_work_pending)));
  442. return x;
  443. }
  444. static inline void set_irq_work_pending_flag(void)
  445. {
  446. asm volatile("stb %0,%1(13)" : :
  447. "r" (1),
  448. "i" (offsetof(struct paca_struct, irq_work_pending)));
  449. }
  450. static inline void clear_irq_work_pending(void)
  451. {
  452. asm volatile("stb %0,%1(13)" : :
  453. "r" (0),
  454. "i" (offsetof(struct paca_struct, irq_work_pending)));
  455. }
  456. #else /* 32-bit */
  457. DEFINE_PER_CPU(u8, irq_work_pending);
  458. #define set_irq_work_pending_flag() __get_cpu_var(irq_work_pending) = 1
  459. #define test_irq_work_pending() __get_cpu_var(irq_work_pending)
  460. #define clear_irq_work_pending() __get_cpu_var(irq_work_pending) = 0
  461. #endif /* 32 vs 64 bit */
  462. void arch_irq_work_raise(void)
  463. {
  464. preempt_disable();
  465. set_irq_work_pending_flag();
  466. set_dec(1);
  467. preempt_enable();
  468. }
  469. #else /* CONFIG_IRQ_WORK */
  470. #define test_irq_work_pending() 0
  471. #define clear_irq_work_pending()
  472. #endif /* CONFIG_IRQ_WORK */
  473. /*
  474. * For iSeries shared processors, we have to let the hypervisor
  475. * set the hardware decrementer. We set a virtual decrementer
  476. * in the lppaca and call the hypervisor if the virtual
  477. * decrementer is less than the current value in the hardware
  478. * decrementer. (almost always the new decrementer value will
  479. * be greater than the current hardware decementer so the hypervisor
  480. * call will not be needed)
  481. */
  482. /*
  483. * timer_interrupt - gets called when the decrementer overflows,
  484. * with interrupts disabled.
  485. */
  486. void timer_interrupt(struct pt_regs * regs)
  487. {
  488. struct pt_regs *old_regs;
  489. u64 *next_tb = &__get_cpu_var(decrementers_next_tb);
  490. struct clock_event_device *evt = &__get_cpu_var(decrementers);
  491. /* Ensure a positive value is written to the decrementer, or else
  492. * some CPUs will continue to take decrementer exceptions.
  493. */
  494. set_dec(DECREMENTER_MAX);
  495. /* Some implementations of hotplug will get timer interrupts while
  496. * offline, just ignore these
  497. */
  498. if (!cpu_online(smp_processor_id()))
  499. return;
  500. /* Conditionally hard-enable interrupts now that the DEC has been
  501. * bumped to its maximum value
  502. */
  503. may_hard_irq_enable();
  504. trace_timer_interrupt_entry(regs);
  505. __get_cpu_var(irq_stat).timer_irqs++;
  506. #if defined(CONFIG_PPC32) && defined(CONFIG_PMAC)
  507. if (atomic_read(&ppc_n_lost_interrupts) != 0)
  508. do_IRQ(regs);
  509. #endif
  510. old_regs = set_irq_regs(regs);
  511. irq_enter();
  512. if (test_irq_work_pending()) {
  513. clear_irq_work_pending();
  514. irq_work_run();
  515. }
  516. #ifdef CONFIG_PPC_ISERIES
  517. if (firmware_has_feature(FW_FEATURE_ISERIES))
  518. get_lppaca()->int_dword.fields.decr_int = 0;
  519. #endif
  520. *next_tb = ~(u64)0;
  521. if (evt->event_handler)
  522. evt->event_handler(evt);
  523. #ifdef CONFIG_PPC_ISERIES
  524. if (firmware_has_feature(FW_FEATURE_ISERIES) && hvlpevent_is_pending())
  525. process_hvlpevents();
  526. #endif
  527. #ifdef CONFIG_PPC64
  528. /* collect purr register values often, for accurate calculations */
  529. if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
  530. struct cpu_usage *cu = &__get_cpu_var(cpu_usage_array);
  531. cu->current_tb = mfspr(SPRN_PURR);
  532. }
  533. #endif
  534. irq_exit();
  535. set_irq_regs(old_regs);
  536. trace_timer_interrupt_exit(regs);
  537. }
  538. #ifdef CONFIG_SUSPEND
  539. static void generic_suspend_disable_irqs(void)
  540. {
  541. /* Disable the decrementer, so that it doesn't interfere
  542. * with suspending.
  543. */
  544. set_dec(DECREMENTER_MAX);
  545. local_irq_disable();
  546. set_dec(DECREMENTER_MAX);
  547. }
  548. static void generic_suspend_enable_irqs(void)
  549. {
  550. local_irq_enable();
  551. }
  552. /* Overrides the weak version in kernel/power/main.c */
  553. void arch_suspend_disable_irqs(void)
  554. {
  555. if (ppc_md.suspend_disable_irqs)
  556. ppc_md.suspend_disable_irqs();
  557. generic_suspend_disable_irqs();
  558. }
  559. /* Overrides the weak version in kernel/power/main.c */
  560. void arch_suspend_enable_irqs(void)
  561. {
  562. generic_suspend_enable_irqs();
  563. if (ppc_md.suspend_enable_irqs)
  564. ppc_md.suspend_enable_irqs();
  565. }
  566. #endif
  567. /*
  568. * Scheduler clock - returns current time in nanosec units.
  569. *
  570. * Note: mulhdu(a, b) (multiply high double unsigned) returns
  571. * the high 64 bits of a * b, i.e. (a * b) >> 64, where a and b
  572. * are 64-bit unsigned numbers.
  573. */
  574. unsigned long long sched_clock(void)
  575. {
  576. if (__USE_RTC())
  577. return get_rtc();
  578. return mulhdu(get_tb() - boot_tb, tb_to_ns_scale) << tb_to_ns_shift;
  579. }
  580. static int __init get_freq(char *name, int cells, unsigned long *val)
  581. {
  582. struct device_node *cpu;
  583. const unsigned int *fp;
  584. int found = 0;
  585. /* The cpu node should have timebase and clock frequency properties */
  586. cpu = of_find_node_by_type(NULL, "cpu");
  587. if (cpu) {
  588. fp = of_get_property(cpu, name, NULL);
  589. if (fp) {
  590. found = 1;
  591. *val = of_read_ulong(fp, cells);
  592. }
  593. of_node_put(cpu);
  594. }
  595. return found;
  596. }
  597. /* should become __cpuinit when secondary_cpu_time_init also is */
  598. void start_cpu_decrementer(void)
  599. {
  600. #if defined(CONFIG_BOOKE) || defined(CONFIG_40x)
  601. /* Clear any pending timer interrupts */
  602. mtspr(SPRN_TSR, TSR_ENW | TSR_WIS | TSR_DIS | TSR_FIS);
  603. /* Enable decrementer interrupt */
  604. mtspr(SPRN_TCR, TCR_DIE);
  605. #endif /* defined(CONFIG_BOOKE) || defined(CONFIG_40x) */
  606. }
  607. void __init generic_calibrate_decr(void)
  608. {
  609. ppc_tb_freq = DEFAULT_TB_FREQ; /* hardcoded default */
  610. if (!get_freq("ibm,extended-timebase-frequency", 2, &ppc_tb_freq) &&
  611. !get_freq("timebase-frequency", 1, &ppc_tb_freq)) {
  612. printk(KERN_ERR "WARNING: Estimating decrementer frequency "
  613. "(not found)\n");
  614. }
  615. ppc_proc_freq = DEFAULT_PROC_FREQ; /* hardcoded default */
  616. if (!get_freq("ibm,extended-clock-frequency", 2, &ppc_proc_freq) &&
  617. !get_freq("clock-frequency", 1, &ppc_proc_freq)) {
  618. printk(KERN_ERR "WARNING: Estimating processor frequency "
  619. "(not found)\n");
  620. }
  621. }
  622. int update_persistent_clock(struct timespec now)
  623. {
  624. struct rtc_time tm;
  625. if (!ppc_md.set_rtc_time)
  626. return 0;
  627. to_tm(now.tv_sec + 1 + timezone_offset, &tm);
  628. tm.tm_year -= 1900;
  629. tm.tm_mon -= 1;
  630. return ppc_md.set_rtc_time(&tm);
  631. }
  632. static void __read_persistent_clock(struct timespec *ts)
  633. {
  634. struct rtc_time tm;
  635. static int first = 1;
  636. ts->tv_nsec = 0;
  637. /* XXX this is a litle fragile but will work okay in the short term */
  638. if (first) {
  639. first = 0;
  640. if (ppc_md.time_init)
  641. timezone_offset = ppc_md.time_init();
  642. /* get_boot_time() isn't guaranteed to be safe to call late */
  643. if (ppc_md.get_boot_time) {
  644. ts->tv_sec = ppc_md.get_boot_time() - timezone_offset;
  645. return;
  646. }
  647. }
  648. if (!ppc_md.get_rtc_time) {
  649. ts->tv_sec = 0;
  650. return;
  651. }
  652. ppc_md.get_rtc_time(&tm);
  653. ts->tv_sec = mktime(tm.tm_year+1900, tm.tm_mon+1, tm.tm_mday,
  654. tm.tm_hour, tm.tm_min, tm.tm_sec);
  655. }
  656. void read_persistent_clock(struct timespec *ts)
  657. {
  658. __read_persistent_clock(ts);
  659. /* Sanitize it in case real time clock is set below EPOCH */
  660. if (ts->tv_sec < 0) {
  661. ts->tv_sec = 0;
  662. ts->tv_nsec = 0;
  663. }
  664. }
  665. /* clocksource code */
  666. static cycle_t rtc_read(struct clocksource *cs)
  667. {
  668. return (cycle_t)get_rtc();
  669. }
  670. static cycle_t timebase_read(struct clocksource *cs)
  671. {
  672. return (cycle_t)get_tb();
  673. }
  674. void update_vsyscall(struct timespec *wall_time, struct timespec *wtm,
  675. struct clocksource *clock, u32 mult)
  676. {
  677. u64 new_tb_to_xs, new_stamp_xsec;
  678. u32 frac_sec;
  679. if (clock != &clocksource_timebase)
  680. return;
  681. /* Make userspace gettimeofday spin until we're done. */
  682. ++vdso_data->tb_update_count;
  683. smp_mb();
  684. /* 19342813113834067 ~= 2^(20+64) / 1e9 */
  685. new_tb_to_xs = (u64) mult * (19342813113834067ULL >> clock->shift);
  686. new_stamp_xsec = (u64) wall_time->tv_nsec * XSEC_PER_SEC;
  687. do_div(new_stamp_xsec, 1000000000);
  688. new_stamp_xsec += (u64) wall_time->tv_sec * XSEC_PER_SEC;
  689. BUG_ON(wall_time->tv_nsec >= NSEC_PER_SEC);
  690. /* this is tv_nsec / 1e9 as a 0.32 fraction */
  691. frac_sec = ((u64) wall_time->tv_nsec * 18446744073ULL) >> 32;
  692. /*
  693. * tb_update_count is used to allow the userspace gettimeofday code
  694. * to assure itself that it sees a consistent view of the tb_to_xs and
  695. * stamp_xsec variables. It reads the tb_update_count, then reads
  696. * tb_to_xs and stamp_xsec and then reads tb_update_count again. If
  697. * the two values of tb_update_count match and are even then the
  698. * tb_to_xs and stamp_xsec values are consistent. If not, then it
  699. * loops back and reads them again until this criteria is met.
  700. * We expect the caller to have done the first increment of
  701. * vdso_data->tb_update_count already.
  702. */
  703. vdso_data->tb_orig_stamp = clock->cycle_last;
  704. vdso_data->stamp_xsec = new_stamp_xsec;
  705. vdso_data->tb_to_xs = new_tb_to_xs;
  706. vdso_data->wtom_clock_sec = wtm->tv_sec;
  707. vdso_data->wtom_clock_nsec = wtm->tv_nsec;
  708. vdso_data->stamp_xtime = *wall_time;
  709. vdso_data->stamp_sec_fraction = frac_sec;
  710. smp_wmb();
  711. ++(vdso_data->tb_update_count);
  712. }
  713. void update_vsyscall_tz(void)
  714. {
  715. /* Make userspace gettimeofday spin until we're done. */
  716. ++vdso_data->tb_update_count;
  717. smp_mb();
  718. vdso_data->tz_minuteswest = sys_tz.tz_minuteswest;
  719. vdso_data->tz_dsttime = sys_tz.tz_dsttime;
  720. smp_mb();
  721. ++vdso_data->tb_update_count;
  722. }
  723. static void __init clocksource_init(void)
  724. {
  725. struct clocksource *clock;
  726. if (__USE_RTC())
  727. clock = &clocksource_rtc;
  728. else
  729. clock = &clocksource_timebase;
  730. if (clocksource_register_hz(clock, tb_ticks_per_sec)) {
  731. printk(KERN_ERR "clocksource: %s is already registered\n",
  732. clock->name);
  733. return;
  734. }
  735. printk(KERN_INFO "clocksource: %s mult[%x] shift[%d] registered\n",
  736. clock->name, clock->mult, clock->shift);
  737. }
  738. static int decrementer_set_next_event(unsigned long evt,
  739. struct clock_event_device *dev)
  740. {
  741. __get_cpu_var(decrementers_next_tb) = get_tb_or_rtc() + evt;
  742. set_dec(evt);
  743. return 0;
  744. }
  745. static void decrementer_set_mode(enum clock_event_mode mode,
  746. struct clock_event_device *dev)
  747. {
  748. if (mode != CLOCK_EVT_MODE_ONESHOT)
  749. decrementer_set_next_event(DECREMENTER_MAX, dev);
  750. }
  751. static void register_decrementer_clockevent(int cpu)
  752. {
  753. struct clock_event_device *dec = &per_cpu(decrementers, cpu);
  754. *dec = decrementer_clockevent;
  755. dec->cpumask = cpumask_of(cpu);
  756. printk_once(KERN_DEBUG "clockevent: %s mult[%x] shift[%d] cpu[%d]\n",
  757. dec->name, dec->mult, dec->shift, cpu);
  758. clockevents_register_device(dec);
  759. }
  760. static void __init init_decrementer_clockevent(void)
  761. {
  762. int cpu = smp_processor_id();
  763. clockevents_calc_mult_shift(&decrementer_clockevent, ppc_tb_freq, 4);
  764. decrementer_clockevent.max_delta_ns =
  765. clockevent_delta2ns(DECREMENTER_MAX, &decrementer_clockevent);
  766. decrementer_clockevent.min_delta_ns =
  767. clockevent_delta2ns(2, &decrementer_clockevent);
  768. register_decrementer_clockevent(cpu);
  769. }
  770. void secondary_cpu_time_init(void)
  771. {
  772. /* Start the decrementer on CPUs that have manual control
  773. * such as BookE
  774. */
  775. start_cpu_decrementer();
  776. /* FIME: Should make unrelatred change to move snapshot_timebase
  777. * call here ! */
  778. register_decrementer_clockevent(smp_processor_id());
  779. }
  780. /* This function is only called on the boot processor */
  781. void __init time_init(void)
  782. {
  783. struct div_result res;
  784. u64 scale;
  785. unsigned shift;
  786. if (__USE_RTC()) {
  787. /* 601 processor: dec counts down by 128 every 128ns */
  788. ppc_tb_freq = 1000000000;
  789. } else {
  790. /* Normal PowerPC with timebase register */
  791. ppc_md.calibrate_decr();
  792. printk(KERN_DEBUG "time_init: decrementer frequency = %lu.%.6lu MHz\n",
  793. ppc_tb_freq / 1000000, ppc_tb_freq % 1000000);
  794. printk(KERN_DEBUG "time_init: processor frequency = %lu.%.6lu MHz\n",
  795. ppc_proc_freq / 1000000, ppc_proc_freq % 1000000);
  796. }
  797. tb_ticks_per_jiffy = ppc_tb_freq / HZ;
  798. tb_ticks_per_sec = ppc_tb_freq;
  799. tb_ticks_per_usec = ppc_tb_freq / 1000000;
  800. calc_cputime_factors();
  801. setup_cputime_one_jiffy();
  802. /*
  803. * Compute scale factor for sched_clock.
  804. * The calibrate_decr() function has set tb_ticks_per_sec,
  805. * which is the timebase frequency.
  806. * We compute 1e9 * 2^64 / tb_ticks_per_sec and interpret
  807. * the 128-bit result as a 64.64 fixed-point number.
  808. * We then shift that number right until it is less than 1.0,
  809. * giving us the scale factor and shift count to use in
  810. * sched_clock().
  811. */
  812. div128_by_32(1000000000, 0, tb_ticks_per_sec, &res);
  813. scale = res.result_low;
  814. for (shift = 0; res.result_high != 0; ++shift) {
  815. scale = (scale >> 1) | (res.result_high << 63);
  816. res.result_high >>= 1;
  817. }
  818. tb_to_ns_scale = scale;
  819. tb_to_ns_shift = shift;
  820. /* Save the current timebase to pretty up CONFIG_PRINTK_TIME */
  821. boot_tb = get_tb_or_rtc();
  822. /* If platform provided a timezone (pmac), we correct the time */
  823. if (timezone_offset) {
  824. sys_tz.tz_minuteswest = -timezone_offset / 60;
  825. sys_tz.tz_dsttime = 0;
  826. }
  827. vdso_data->tb_update_count = 0;
  828. vdso_data->tb_ticks_per_sec = tb_ticks_per_sec;
  829. /* Start the decrementer on CPUs that have manual control
  830. * such as BookE
  831. */
  832. start_cpu_decrementer();
  833. /* Register the clocksource, if we're not running on iSeries */
  834. if (!firmware_has_feature(FW_FEATURE_ISERIES))
  835. clocksource_init();
  836. init_decrementer_clockevent();
  837. }
  838. #define FEBRUARY 2
  839. #define STARTOFTIME 1970
  840. #define SECDAY 86400L
  841. #define SECYR (SECDAY * 365)
  842. #define leapyear(year) ((year) % 4 == 0 && \
  843. ((year) % 100 != 0 || (year) % 400 == 0))
  844. #define days_in_year(a) (leapyear(a) ? 366 : 365)
  845. #define days_in_month(a) (month_days[(a) - 1])
  846. static int month_days[12] = {
  847. 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
  848. };
  849. /*
  850. * This only works for the Gregorian calendar - i.e. after 1752 (in the UK)
  851. */
  852. void GregorianDay(struct rtc_time * tm)
  853. {
  854. int leapsToDate;
  855. int lastYear;
  856. int day;
  857. int MonthOffset[] = { 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334 };
  858. lastYear = tm->tm_year - 1;
  859. /*
  860. * Number of leap corrections to apply up to end of last year
  861. */
  862. leapsToDate = lastYear / 4 - lastYear / 100 + lastYear / 400;
  863. /*
  864. * This year is a leap year if it is divisible by 4 except when it is
  865. * divisible by 100 unless it is divisible by 400
  866. *
  867. * e.g. 1904 was a leap year, 1900 was not, 1996 is, and 2000 was
  868. */
  869. day = tm->tm_mon > 2 && leapyear(tm->tm_year);
  870. day += lastYear*365 + leapsToDate + MonthOffset[tm->tm_mon-1] +
  871. tm->tm_mday;
  872. tm->tm_wday = day % 7;
  873. }
  874. void to_tm(int tim, struct rtc_time * tm)
  875. {
  876. register int i;
  877. register long hms, day;
  878. day = tim / SECDAY;
  879. hms = tim % SECDAY;
  880. /* Hours, minutes, seconds are easy */
  881. tm->tm_hour = hms / 3600;
  882. tm->tm_min = (hms % 3600) / 60;
  883. tm->tm_sec = (hms % 3600) % 60;
  884. /* Number of years in days */
  885. for (i = STARTOFTIME; day >= days_in_year(i); i++)
  886. day -= days_in_year(i);
  887. tm->tm_year = i;
  888. /* Number of months in days left */
  889. if (leapyear(tm->tm_year))
  890. days_in_month(FEBRUARY) = 29;
  891. for (i = 1; day >= days_in_month(i); i++)
  892. day -= days_in_month(i);
  893. days_in_month(FEBRUARY) = 28;
  894. tm->tm_mon = i;
  895. /* Days are what is left over (+1) from all that. */
  896. tm->tm_mday = day + 1;
  897. /*
  898. * Determine the day of week
  899. */
  900. GregorianDay(tm);
  901. }
  902. /*
  903. * Divide a 128-bit dividend by a 32-bit divisor, leaving a 128 bit
  904. * result.
  905. */
  906. void div128_by_32(u64 dividend_high, u64 dividend_low,
  907. unsigned divisor, struct div_result *dr)
  908. {
  909. unsigned long a, b, c, d;
  910. unsigned long w, x, y, z;
  911. u64 ra, rb, rc;
  912. a = dividend_high >> 32;
  913. b = dividend_high & 0xffffffff;
  914. c = dividend_low >> 32;
  915. d = dividend_low & 0xffffffff;
  916. w = a / divisor;
  917. ra = ((u64)(a - (w * divisor)) << 32) + b;
  918. rb = ((u64) do_div(ra, divisor) << 32) + c;
  919. x = ra;
  920. rc = ((u64) do_div(rb, divisor) << 32) + d;
  921. y = rb;
  922. do_div(rc, divisor);
  923. z = rc;
  924. dr->result_high = ((u64)w << 32) + x;
  925. dr->result_low = ((u64)y << 32) + z;
  926. }
  927. /* We don't need to calibrate delay, we use the CPU timebase for that */
  928. void calibrate_delay(void)
  929. {
  930. /* Some generic code (such as spinlock debug) use loops_per_jiffy
  931. * as the number of __delay(1) in a jiffy, so make it so
  932. */
  933. loops_per_jiffy = tb_ticks_per_jiffy;
  934. }
  935. static int __init rtc_init(void)
  936. {
  937. struct platform_device *pdev;
  938. if (!ppc_md.get_rtc_time)
  939. return -ENODEV;
  940. pdev = platform_device_register_simple("rtc-generic", -1, NULL, 0);
  941. if (IS_ERR(pdev))
  942. return PTR_ERR(pdev);
  943. return 0;
  944. }
  945. module_init(rtc_init);