numa_32.c 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437
  1. /*
  2. * Written by: Patricia Gaughen <gone@us.ibm.com>, IBM Corporation
  3. * August 2002: added remote node KVA remap - Martin J. Bligh
  4. *
  5. * Copyright (C) 2002, IBM Corp.
  6. *
  7. * All rights reserved.
  8. *
  9. * This program is free software; you can redistribute it and/or modify
  10. * it under the terms of the GNU General Public License as published by
  11. * the Free Software Foundation; either version 2 of the License, or
  12. * (at your option) any later version.
  13. *
  14. * This program is distributed in the hope that it will be useful, but
  15. * WITHOUT ANY WARRANTY; without even the implied warranty of
  16. * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
  17. * NON INFRINGEMENT. See the GNU General Public License for more
  18. * details.
  19. *
  20. * You should have received a copy of the GNU General Public License
  21. * along with this program; if not, write to the Free Software
  22. * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  23. */
  24. #include <linux/mm.h>
  25. #include <linux/bootmem.h>
  26. #include <linux/memblock.h>
  27. #include <linux/mmzone.h>
  28. #include <linux/highmem.h>
  29. #include <linux/initrd.h>
  30. #include <linux/nodemask.h>
  31. #include <linux/module.h>
  32. #include <linux/kexec.h>
  33. #include <linux/pfn.h>
  34. #include <linux/swap.h>
  35. #include <linux/acpi.h>
  36. #include <asm/e820.h>
  37. #include <asm/setup.h>
  38. #include <asm/mmzone.h>
  39. #include <asm/bios_ebda.h>
  40. #include <asm/proto.h>
  41. struct pglist_data *node_data[MAX_NUMNODES] __read_mostly;
  42. EXPORT_SYMBOL(node_data);
  43. /*
  44. * numa interface - we expect the numa architecture specific code to have
  45. * populated the following initialisation.
  46. *
  47. * 1) node_online_map - the map of all nodes configured (online) in the system
  48. * 2) node_start_pfn - the starting page frame number for a node
  49. * 3) node_end_pfn - the ending page fram number for a node
  50. */
  51. unsigned long node_start_pfn[MAX_NUMNODES] __read_mostly;
  52. unsigned long node_end_pfn[MAX_NUMNODES] __read_mostly;
  53. #ifdef CONFIG_DISCONTIGMEM
  54. /*
  55. * 4) physnode_map - the mapping between a pfn and owning node
  56. * physnode_map keeps track of the physical memory layout of a generic
  57. * numa node on a 64Mb break (each element of the array will
  58. * represent 64Mb of memory and will be marked by the node id. so,
  59. * if the first gig is on node 0, and the second gig is on node 1
  60. * physnode_map will contain:
  61. *
  62. * physnode_map[0-15] = 0;
  63. * physnode_map[16-31] = 1;
  64. * physnode_map[32- ] = -1;
  65. */
  66. s8 physnode_map[MAX_ELEMENTS] __read_mostly = { [0 ... (MAX_ELEMENTS - 1)] = -1};
  67. EXPORT_SYMBOL(physnode_map);
  68. void memory_present(int nid, unsigned long start, unsigned long end)
  69. {
  70. unsigned long pfn;
  71. printk(KERN_INFO "Node: %d, start_pfn: %lx, end_pfn: %lx\n",
  72. nid, start, end);
  73. printk(KERN_DEBUG " Setting physnode_map array to node %d for pfns:\n", nid);
  74. printk(KERN_DEBUG " ");
  75. for (pfn = start; pfn < end; pfn += PAGES_PER_ELEMENT) {
  76. physnode_map[pfn / PAGES_PER_ELEMENT] = nid;
  77. printk(KERN_CONT "%lx ", pfn);
  78. }
  79. printk(KERN_CONT "\n");
  80. }
  81. unsigned long node_memmap_size_bytes(int nid, unsigned long start_pfn,
  82. unsigned long end_pfn)
  83. {
  84. unsigned long nr_pages = end_pfn - start_pfn;
  85. if (!nr_pages)
  86. return 0;
  87. return (nr_pages + 1) * sizeof(struct page);
  88. }
  89. #endif
  90. extern unsigned long find_max_low_pfn(void);
  91. extern unsigned long highend_pfn, highstart_pfn;
  92. #define LARGE_PAGE_BYTES (PTRS_PER_PTE * PAGE_SIZE)
  93. static unsigned long node_remap_size[MAX_NUMNODES];
  94. static void *node_remap_start_vaddr[MAX_NUMNODES];
  95. void set_pmd_pfn(unsigned long vaddr, unsigned long pfn, pgprot_t flags);
  96. static unsigned long kva_start_pfn;
  97. static unsigned long kva_pages;
  98. int __cpuinit numa_cpu_node(int cpu)
  99. {
  100. return apic->x86_32_numa_cpu_node(cpu);
  101. }
  102. /*
  103. * FLAT - support for basic PC memory model with discontig enabled, essentially
  104. * a single node with all available processors in it with a flat
  105. * memory map.
  106. */
  107. int __init get_memcfg_numa_flat(void)
  108. {
  109. printk(KERN_DEBUG "NUMA - single node, flat memory mode\n");
  110. node_start_pfn[0] = 0;
  111. node_end_pfn[0] = max_pfn;
  112. memblock_x86_register_active_regions(0, 0, max_pfn);
  113. memory_present(0, 0, max_pfn);
  114. /* Indicate there is one node available. */
  115. nodes_clear(node_online_map);
  116. node_set_online(0);
  117. return 1;
  118. }
  119. /*
  120. * Find the highest page frame number we have available for the node
  121. */
  122. static void __init propagate_e820_map_node(int nid)
  123. {
  124. if (node_end_pfn[nid] > max_pfn)
  125. node_end_pfn[nid] = max_pfn;
  126. /*
  127. * if a user has given mem=XXXX, then we need to make sure
  128. * that the node _starts_ before that, too, not just ends
  129. */
  130. if (node_start_pfn[nid] > max_pfn)
  131. node_start_pfn[nid] = max_pfn;
  132. BUG_ON(node_start_pfn[nid] > node_end_pfn[nid]);
  133. }
  134. /*
  135. * Allocate memory for the pg_data_t for this node via a crude pre-bootmem
  136. * method. For node zero take this from the bottom of memory, for
  137. * subsequent nodes place them at node_remap_start_vaddr which contains
  138. * node local data in physically node local memory. See setup_memory()
  139. * for details.
  140. */
  141. static void __init allocate_pgdat(int nid)
  142. {
  143. char buf[16];
  144. if (node_has_online_mem(nid) && node_remap_start_vaddr[nid])
  145. NODE_DATA(nid) = (pg_data_t *)node_remap_start_vaddr[nid];
  146. else {
  147. unsigned long pgdat_phys;
  148. pgdat_phys = memblock_find_in_range(min_low_pfn<<PAGE_SHIFT,
  149. max_pfn_mapped<<PAGE_SHIFT,
  150. sizeof(pg_data_t),
  151. PAGE_SIZE);
  152. NODE_DATA(nid) = (pg_data_t *)(pfn_to_kaddr(pgdat_phys>>PAGE_SHIFT));
  153. memset(buf, 0, sizeof(buf));
  154. sprintf(buf, "NODE_DATA %d", nid);
  155. memblock_x86_reserve_range(pgdat_phys, pgdat_phys + sizeof(pg_data_t), buf);
  156. }
  157. printk(KERN_DEBUG "allocate_pgdat: node %d NODE_DATA %08lx\n",
  158. nid, (unsigned long)NODE_DATA(nid));
  159. }
  160. /*
  161. * In the DISCONTIGMEM and SPARSEMEM memory model, a portion of the kernel
  162. * virtual address space (KVA) is reserved and portions of nodes are mapped
  163. * using it. This is to allow node-local memory to be allocated for
  164. * structures that would normally require ZONE_NORMAL. The memory is
  165. * allocated with alloc_remap() and callers should be prepared to allocate
  166. * from the bootmem allocator instead.
  167. */
  168. static unsigned long node_remap_start_pfn[MAX_NUMNODES];
  169. static void *node_remap_end_vaddr[MAX_NUMNODES];
  170. static void *node_remap_alloc_vaddr[MAX_NUMNODES];
  171. static unsigned long node_remap_offset[MAX_NUMNODES];
  172. void *alloc_remap(int nid, unsigned long size)
  173. {
  174. void *allocation = node_remap_alloc_vaddr[nid];
  175. size = ALIGN(size, L1_CACHE_BYTES);
  176. if (!allocation || (allocation + size) > node_remap_end_vaddr[nid])
  177. return NULL;
  178. node_remap_alloc_vaddr[nid] += size;
  179. memset(allocation, 0, size);
  180. return allocation;
  181. }
  182. static void __init remap_numa_kva(void)
  183. {
  184. void *vaddr;
  185. unsigned long pfn;
  186. int node;
  187. for_each_online_node(node) {
  188. printk(KERN_DEBUG "remap_numa_kva: node %d\n", node);
  189. for (pfn=0; pfn < node_remap_size[node]; pfn += PTRS_PER_PTE) {
  190. vaddr = node_remap_start_vaddr[node]+(pfn<<PAGE_SHIFT);
  191. printk(KERN_DEBUG "remap_numa_kva: %08lx to pfn %08lx\n",
  192. (unsigned long)vaddr,
  193. node_remap_start_pfn[node] + pfn);
  194. set_pmd_pfn((ulong) vaddr,
  195. node_remap_start_pfn[node] + pfn,
  196. PAGE_KERNEL_LARGE);
  197. }
  198. }
  199. }
  200. #ifdef CONFIG_HIBERNATION
  201. /**
  202. * resume_map_numa_kva - add KVA mapping to the temporary page tables created
  203. * during resume from hibernation
  204. * @pgd_base - temporary resume page directory
  205. */
  206. void resume_map_numa_kva(pgd_t *pgd_base)
  207. {
  208. int node;
  209. for_each_online_node(node) {
  210. unsigned long start_va, start_pfn, size, pfn;
  211. start_va = (unsigned long)node_remap_start_vaddr[node];
  212. start_pfn = node_remap_start_pfn[node];
  213. size = node_remap_size[node];
  214. printk(KERN_DEBUG "%s: node %d\n", __func__, node);
  215. for (pfn = 0; pfn < size; pfn += PTRS_PER_PTE) {
  216. unsigned long vaddr = start_va + (pfn << PAGE_SHIFT);
  217. pgd_t *pgd = pgd_base + pgd_index(vaddr);
  218. pud_t *pud = pud_offset(pgd, vaddr);
  219. pmd_t *pmd = pmd_offset(pud, vaddr);
  220. set_pmd(pmd, pfn_pmd(start_pfn + pfn,
  221. PAGE_KERNEL_LARGE_EXEC));
  222. printk(KERN_DEBUG "%s: %08lx -> pfn %08lx\n",
  223. __func__, vaddr, start_pfn + pfn);
  224. }
  225. }
  226. }
  227. #endif
  228. static __init unsigned long init_alloc_remap(int nid, unsigned long offset)
  229. {
  230. unsigned long size;
  231. u64 node_pa;
  232. /*
  233. * The acpi/srat node info can show hot-add memroy zones where
  234. * memory could be added but not currently present.
  235. */
  236. printk(KERN_DEBUG "node %d pfn: [%lx - %lx]\n",
  237. nid, node_start_pfn[nid], node_end_pfn[nid]);
  238. if (node_start_pfn[nid] > max_pfn)
  239. return 0;
  240. if (!node_end_pfn[nid])
  241. return 0;
  242. if (node_end_pfn[nid] > max_pfn)
  243. node_end_pfn[nid] = max_pfn;
  244. /* calculate the necessary space aligned to large page size */
  245. size = node_memmap_size_bytes(nid, node_start_pfn[nid],
  246. min(node_end_pfn[nid], max_pfn));
  247. size += ALIGN(sizeof(pg_data_t), PAGE_SIZE);
  248. size = ALIGN(size, LARGE_PAGE_BYTES);
  249. node_pa = memblock_find_in_range(node_start_pfn[nid] << PAGE_SHIFT,
  250. (u64)node_end_pfn[nid] << PAGE_SHIFT,
  251. size, LARGE_PAGE_BYTES);
  252. if (node_pa == MEMBLOCK_ERROR)
  253. panic("Can not get kva ram\n");
  254. node_remap_size[nid] = size >> PAGE_SHIFT;
  255. node_remap_offset[nid] = offset;
  256. printk(KERN_DEBUG "Reserving %ld pages of KVA for lmem_map of node %d at %llx\n",
  257. size >> PAGE_SHIFT, nid, node_pa >> PAGE_SHIFT);
  258. /*
  259. * prevent kva address below max_low_pfn want it on system
  260. * with less memory later.
  261. * layout will be: KVA address , KVA RAM
  262. *
  263. * we are supposed to only record the one less then
  264. * max_low_pfn but we could have some hole in high memory,
  265. * and it will only check page_is_ram(pfn) &&
  266. * !page_is_reserved_early(pfn) to decide to use it as free.
  267. * So memblock_x86_reserve_range here, hope we don't run out
  268. * of that array
  269. */
  270. memblock_x86_reserve_range(node_pa, node_pa + size, "KVA RAM");
  271. node_remap_start_pfn[nid] = node_pa >> PAGE_SHIFT;
  272. return size >> PAGE_SHIFT;
  273. }
  274. static void init_remap_allocator(int nid)
  275. {
  276. node_remap_start_vaddr[nid] = pfn_to_kaddr(
  277. kva_start_pfn + node_remap_offset[nid]);
  278. node_remap_end_vaddr[nid] = node_remap_start_vaddr[nid] +
  279. (node_remap_size[nid] * PAGE_SIZE);
  280. node_remap_alloc_vaddr[nid] = node_remap_start_vaddr[nid] +
  281. ALIGN(sizeof(pg_data_t), PAGE_SIZE);
  282. printk(KERN_DEBUG "node %d will remap to vaddr %08lx - %08lx\n", nid,
  283. (ulong) node_remap_start_vaddr[nid],
  284. (ulong) node_remap_end_vaddr[nid]);
  285. }
  286. void __init initmem_init(void)
  287. {
  288. unsigned long reserve_pages = 0;
  289. int nid;
  290. /*
  291. * When mapping a NUMA machine we allocate the node_mem_map arrays
  292. * from node local memory. They are then mapped directly into KVA
  293. * between zone normal and vmalloc space. Calculate the size of
  294. * this space and use it to adjust the boundary between ZONE_NORMAL
  295. * and ZONE_HIGHMEM.
  296. */
  297. get_memcfg_numa();
  298. numa_init_array();
  299. for_each_online_node(nid)
  300. reserve_pages += init_alloc_remap(nid, reserve_pages);
  301. kva_pages = roundup(reserve_pages, PTRS_PER_PTE);
  302. printk(KERN_INFO "Reserving total of %lx pages for numa KVA remap\n",
  303. reserve_pages);
  304. kva_start_pfn = memblock_find_in_range(min_low_pfn << PAGE_SHIFT,
  305. max_low_pfn << PAGE_SHIFT,
  306. kva_pages << PAGE_SHIFT,
  307. PTRS_PER_PTE << PAGE_SHIFT) >> PAGE_SHIFT;
  308. if (kva_start_pfn == MEMBLOCK_ERROR)
  309. panic("Can not get kva space\n");
  310. printk(KERN_INFO "kva_start_pfn ~ %lx max_low_pfn ~ %lx\n",
  311. kva_start_pfn, max_low_pfn);
  312. printk(KERN_INFO "max_pfn = %lx\n", max_pfn);
  313. /* avoid clash with initrd */
  314. memblock_x86_reserve_range(kva_start_pfn<<PAGE_SHIFT,
  315. (kva_start_pfn + kva_pages)<<PAGE_SHIFT,
  316. "KVA PG");
  317. #ifdef CONFIG_HIGHMEM
  318. highstart_pfn = highend_pfn = max_pfn;
  319. if (max_pfn > max_low_pfn)
  320. highstart_pfn = max_low_pfn;
  321. printk(KERN_NOTICE "%ldMB HIGHMEM available.\n",
  322. pages_to_mb(highend_pfn - highstart_pfn));
  323. num_physpages = highend_pfn;
  324. high_memory = (void *) __va(highstart_pfn * PAGE_SIZE - 1) + 1;
  325. #else
  326. num_physpages = max_low_pfn;
  327. high_memory = (void *) __va(max_low_pfn * PAGE_SIZE - 1) + 1;
  328. #endif
  329. printk(KERN_NOTICE "%ldMB LOWMEM available.\n",
  330. pages_to_mb(max_low_pfn));
  331. printk(KERN_DEBUG "max_low_pfn = %lx, highstart_pfn = %lx\n",
  332. max_low_pfn, highstart_pfn);
  333. printk(KERN_DEBUG "Low memory ends at vaddr %08lx\n",
  334. (ulong) pfn_to_kaddr(max_low_pfn));
  335. for_each_online_node(nid) {
  336. init_remap_allocator(nid);
  337. allocate_pgdat(nid);
  338. }
  339. remap_numa_kva();
  340. printk(KERN_DEBUG "High memory starts at vaddr %08lx\n",
  341. (ulong) pfn_to_kaddr(highstart_pfn));
  342. for_each_online_node(nid)
  343. propagate_e820_map_node(nid);
  344. for_each_online_node(nid) {
  345. memset(NODE_DATA(nid), 0, sizeof(struct pglist_data));
  346. NODE_DATA(nid)->node_id = nid;
  347. }
  348. setup_bootmem_allocator();
  349. }
  350. #ifdef CONFIG_MEMORY_HOTPLUG
  351. static int paddr_to_nid(u64 addr)
  352. {
  353. int nid;
  354. unsigned long pfn = PFN_DOWN(addr);
  355. for_each_node(nid)
  356. if (node_start_pfn[nid] <= pfn &&
  357. pfn < node_end_pfn[nid])
  358. return nid;
  359. return -1;
  360. }
  361. /*
  362. * This function is used to ask node id BEFORE memmap and mem_section's
  363. * initialization (pfn_to_nid() can't be used yet).
  364. * If _PXM is not defined on ACPI's DSDT, node id must be found by this.
  365. */
  366. int memory_add_physaddr_to_nid(u64 addr)
  367. {
  368. int nid = paddr_to_nid(addr);
  369. return (nid >= 0) ? nid : 0;
  370. }
  371. EXPORT_SYMBOL_GPL(memory_add_physaddr_to_nid);
  372. #endif