slub_def.h 9.1 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318
  1. #ifndef _LINUX_SLUB_DEF_H
  2. #define _LINUX_SLUB_DEF_H
  3. /*
  4. * SLUB : A Slab allocator without object queues.
  5. *
  6. * (C) 2007 SGI, Christoph Lameter
  7. */
  8. #include <linux/types.h>
  9. #include <linux/gfp.h>
  10. #include <linux/bug.h>
  11. #include <linux/workqueue.h>
  12. #include <linux/kobject.h>
  13. #include <linux/kmemleak.h>
  14. enum stat_item {
  15. ALLOC_FASTPATH, /* Allocation from cpu slab */
  16. ALLOC_SLOWPATH, /* Allocation by getting a new cpu slab */
  17. FREE_FASTPATH, /* Free to cpu slub */
  18. FREE_SLOWPATH, /* Freeing not to cpu slab */
  19. FREE_FROZEN, /* Freeing to frozen slab */
  20. FREE_ADD_PARTIAL, /* Freeing moves slab to partial list */
  21. FREE_REMOVE_PARTIAL, /* Freeing removes last object */
  22. ALLOC_FROM_PARTIAL, /* Cpu slab acquired from node partial list */
  23. ALLOC_SLAB, /* Cpu slab acquired from page allocator */
  24. ALLOC_REFILL, /* Refill cpu slab from slab freelist */
  25. ALLOC_NODE_MISMATCH, /* Switching cpu slab */
  26. FREE_SLAB, /* Slab freed to the page allocator */
  27. CPUSLAB_FLUSH, /* Abandoning of the cpu slab */
  28. DEACTIVATE_FULL, /* Cpu slab was full when deactivated */
  29. DEACTIVATE_EMPTY, /* Cpu slab was empty when deactivated */
  30. DEACTIVATE_TO_HEAD, /* Cpu slab was moved to the head of partials */
  31. DEACTIVATE_TO_TAIL, /* Cpu slab was moved to the tail of partials */
  32. DEACTIVATE_REMOTE_FREES,/* Slab contained remotely freed objects */
  33. DEACTIVATE_BYPASS, /* Implicit deactivation */
  34. ORDER_FALLBACK, /* Number of times fallback was necessary */
  35. CMPXCHG_DOUBLE_CPU_FAIL,/* Failure of this_cpu_cmpxchg_double */
  36. CMPXCHG_DOUBLE_FAIL, /* Number of times that cmpxchg double did not match */
  37. CPU_PARTIAL_ALLOC, /* Used cpu partial on alloc */
  38. CPU_PARTIAL_FREE, /* Refill cpu partial on free */
  39. CPU_PARTIAL_NODE, /* Refill cpu partial from node partial */
  40. CPU_PARTIAL_DRAIN, /* Drain cpu partial to node partial */
  41. NR_SLUB_STAT_ITEMS };
  42. struct kmem_cache_cpu {
  43. void **freelist; /* Pointer to next available object */
  44. unsigned long tid; /* Globally unique transaction id */
  45. struct page *page; /* The slab from which we are allocating */
  46. struct page *partial; /* Partially allocated frozen slabs */
  47. #ifdef CONFIG_SLUB_STATS
  48. unsigned stat[NR_SLUB_STAT_ITEMS];
  49. #endif
  50. };
  51. struct kmem_cache_node {
  52. spinlock_t list_lock; /* Protect partial list and nr_partial */
  53. unsigned long nr_partial;
  54. struct list_head partial;
  55. #ifdef CONFIG_SLUB_DEBUG
  56. atomic_long_t nr_slabs;
  57. atomic_long_t total_objects;
  58. struct list_head full;
  59. #endif
  60. };
  61. /*
  62. * Word size structure that can be atomically updated or read and that
  63. * contains both the order and the number of objects that a slab of the
  64. * given order would contain.
  65. */
  66. struct kmem_cache_order_objects {
  67. unsigned long x;
  68. };
  69. /*
  70. * Slab cache management.
  71. */
  72. struct kmem_cache {
  73. struct kmem_cache_cpu __percpu *cpu_slab;
  74. /* Used for retriving partial slabs etc */
  75. unsigned long flags;
  76. unsigned long min_partial;
  77. int size; /* The size of an object including meta data */
  78. int object_size; /* The size of an object without meta data */
  79. int offset; /* Free pointer offset. */
  80. int cpu_partial; /* Number of per cpu partial objects to keep around */
  81. struct kmem_cache_order_objects oo;
  82. /* Allocation and freeing of slabs */
  83. struct kmem_cache_order_objects max;
  84. struct kmem_cache_order_objects min;
  85. gfp_t allocflags; /* gfp flags to use on each alloc */
  86. int refcount; /* Refcount for slab cache destroy */
  87. void (*ctor)(void *);
  88. int inuse; /* Offset to metadata */
  89. int align; /* Alignment */
  90. int reserved; /* Reserved bytes at the end of slabs */
  91. const char *name; /* Name (only for display!) */
  92. struct list_head list; /* List of slab caches */
  93. #ifdef CONFIG_SYSFS
  94. struct kobject kobj; /* For sysfs */
  95. #endif
  96. #ifdef CONFIG_NUMA
  97. /*
  98. * Defragmentation by allocating from a remote node.
  99. */
  100. int remote_node_defrag_ratio;
  101. #endif
  102. struct kmem_cache_node *node[MAX_NUMNODES];
  103. };
  104. /*
  105. * Kmalloc subsystem.
  106. */
  107. #if defined(ARCH_DMA_MINALIGN) && ARCH_DMA_MINALIGN > 8
  108. #define KMALLOC_MIN_SIZE ARCH_DMA_MINALIGN
  109. #else
  110. #define KMALLOC_MIN_SIZE 8
  111. #endif
  112. #define KMALLOC_SHIFT_LOW ilog2(KMALLOC_MIN_SIZE)
  113. /*
  114. * Maximum kmalloc object size handled by SLUB. Larger object allocations
  115. * are passed through to the page allocator. The page allocator "fastpath"
  116. * is relatively slow so we need this value sufficiently high so that
  117. * performance critical objects are allocated through the SLUB fastpath.
  118. *
  119. * This should be dropped to PAGE_SIZE / 2 once the page allocator
  120. * "fastpath" becomes competitive with the slab allocator fastpaths.
  121. */
  122. #define SLUB_MAX_SIZE (2 * PAGE_SIZE)
  123. #define SLUB_PAGE_SHIFT (PAGE_SHIFT + 2)
  124. #ifdef CONFIG_ZONE_DMA
  125. #define SLUB_DMA __GFP_DMA
  126. #else
  127. /* Disable DMA functionality */
  128. #define SLUB_DMA (__force gfp_t)0
  129. #endif
  130. /*
  131. * We keep the general caches in an array of slab caches that are used for
  132. * 2^x bytes of allocations.
  133. */
  134. extern struct kmem_cache *kmalloc_caches[SLUB_PAGE_SHIFT];
  135. /*
  136. * Sorry that the following has to be that ugly but some versions of GCC
  137. * have trouble with constant propagation and loops.
  138. */
  139. static __always_inline int kmalloc_index(size_t size)
  140. {
  141. if (!size)
  142. return 0;
  143. if (size <= KMALLOC_MIN_SIZE)
  144. return KMALLOC_SHIFT_LOW;
  145. if (KMALLOC_MIN_SIZE <= 32 && size > 64 && size <= 96)
  146. return 1;
  147. if (KMALLOC_MIN_SIZE <= 64 && size > 128 && size <= 192)
  148. return 2;
  149. if (size <= 8) return 3;
  150. if (size <= 16) return 4;
  151. if (size <= 32) return 5;
  152. if (size <= 64) return 6;
  153. if (size <= 128) return 7;
  154. if (size <= 256) return 8;
  155. if (size <= 512) return 9;
  156. if (size <= 1024) return 10;
  157. if (size <= 2 * 1024) return 11;
  158. if (size <= 4 * 1024) return 12;
  159. /*
  160. * The following is only needed to support architectures with a larger page
  161. * size than 4k. We need to support 2 * PAGE_SIZE here. So for a 64k page
  162. * size we would have to go up to 128k.
  163. */
  164. if (size <= 8 * 1024) return 13;
  165. if (size <= 16 * 1024) return 14;
  166. if (size <= 32 * 1024) return 15;
  167. if (size <= 64 * 1024) return 16;
  168. if (size <= 128 * 1024) return 17;
  169. if (size <= 256 * 1024) return 18;
  170. if (size <= 512 * 1024) return 19;
  171. if (size <= 1024 * 1024) return 20;
  172. if (size <= 2 * 1024 * 1024) return 21;
  173. BUG();
  174. return -1; /* Will never be reached */
  175. /*
  176. * What we really wanted to do and cannot do because of compiler issues is:
  177. * int i;
  178. * for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++)
  179. * if (size <= (1 << i))
  180. * return i;
  181. */
  182. }
  183. /*
  184. * Find the slab cache for a given combination of allocation flags and size.
  185. *
  186. * This ought to end up with a global pointer to the right cache
  187. * in kmalloc_caches.
  188. */
  189. static __always_inline struct kmem_cache *kmalloc_slab(size_t size)
  190. {
  191. int index = kmalloc_index(size);
  192. if (index == 0)
  193. return NULL;
  194. return kmalloc_caches[index];
  195. }
  196. void *kmem_cache_alloc(struct kmem_cache *, gfp_t);
  197. void *__kmalloc(size_t size, gfp_t flags);
  198. static __always_inline void *
  199. kmalloc_order(size_t size, gfp_t flags, unsigned int order)
  200. {
  201. void *ret = (void *) __get_free_pages(flags | __GFP_COMP, order);
  202. kmemleak_alloc(ret, size, 1, flags);
  203. return ret;
  204. }
  205. /**
  206. * Calling this on allocated memory will check that the memory
  207. * is expected to be in use, and print warnings if not.
  208. */
  209. #ifdef CONFIG_SLUB_DEBUG
  210. extern bool verify_mem_not_deleted(const void *x);
  211. #else
  212. static inline bool verify_mem_not_deleted(const void *x)
  213. {
  214. return true;
  215. }
  216. #endif
  217. #ifdef CONFIG_TRACING
  218. extern void *
  219. kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size);
  220. extern void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order);
  221. #else
  222. static __always_inline void *
  223. kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
  224. {
  225. return kmem_cache_alloc(s, gfpflags);
  226. }
  227. static __always_inline void *
  228. kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
  229. {
  230. return kmalloc_order(size, flags, order);
  231. }
  232. #endif
  233. static __always_inline void *kmalloc_large(size_t size, gfp_t flags)
  234. {
  235. unsigned int order = get_order(size);
  236. return kmalloc_order_trace(size, flags, order);
  237. }
  238. static __always_inline void *kmalloc(size_t size, gfp_t flags)
  239. {
  240. if (__builtin_constant_p(size)) {
  241. if (size > SLUB_MAX_SIZE)
  242. return kmalloc_large(size, flags);
  243. if (!(flags & SLUB_DMA)) {
  244. struct kmem_cache *s = kmalloc_slab(size);
  245. if (!s)
  246. return ZERO_SIZE_PTR;
  247. return kmem_cache_alloc_trace(s, flags, size);
  248. }
  249. }
  250. return __kmalloc(size, flags);
  251. }
  252. #ifdef CONFIG_NUMA
  253. void *__kmalloc_node(size_t size, gfp_t flags, int node);
  254. void *kmem_cache_alloc_node(struct kmem_cache *, gfp_t flags, int node);
  255. #ifdef CONFIG_TRACING
  256. extern void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
  257. gfp_t gfpflags,
  258. int node, size_t size);
  259. #else
  260. static __always_inline void *
  261. kmem_cache_alloc_node_trace(struct kmem_cache *s,
  262. gfp_t gfpflags,
  263. int node, size_t size)
  264. {
  265. return kmem_cache_alloc_node(s, gfpflags, node);
  266. }
  267. #endif
  268. static __always_inline void *kmalloc_node(size_t size, gfp_t flags, int node)
  269. {
  270. if (__builtin_constant_p(size) &&
  271. size <= SLUB_MAX_SIZE && !(flags & SLUB_DMA)) {
  272. struct kmem_cache *s = kmalloc_slab(size);
  273. if (!s)
  274. return ZERO_SIZE_PTR;
  275. return kmem_cache_alloc_node_trace(s, flags, node, size);
  276. }
  277. return __kmalloc_node(size, flags, node);
  278. }
  279. #endif
  280. #endif /* _LINUX_SLUB_DEF_H */