mmu.c 80 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * MMU support
  8. *
  9. * Copyright (C) 2006 Qumranet, Inc.
  10. *
  11. * Authors:
  12. * Yaniv Kamay <yaniv@qumranet.com>
  13. * Avi Kivity <avi@qumranet.com>
  14. *
  15. * This work is licensed under the terms of the GNU GPL, version 2. See
  16. * the COPYING file in the top-level directory.
  17. *
  18. */
  19. #include "mmu.h"
  20. #include "x86.h"
  21. #include "kvm_cache_regs.h"
  22. #include <linux/kvm_host.h>
  23. #include <linux/types.h>
  24. #include <linux/string.h>
  25. #include <linux/mm.h>
  26. #include <linux/highmem.h>
  27. #include <linux/module.h>
  28. #include <linux/swap.h>
  29. #include <linux/hugetlb.h>
  30. #include <linux/compiler.h>
  31. #include <linux/srcu.h>
  32. #include <linux/slab.h>
  33. #include <asm/page.h>
  34. #include <asm/cmpxchg.h>
  35. #include <asm/io.h>
  36. #include <asm/vmx.h>
  37. /*
  38. * When setting this variable to true it enables Two-Dimensional-Paging
  39. * where the hardware walks 2 page tables:
  40. * 1. the guest-virtual to guest-physical
  41. * 2. while doing 1. it walks guest-physical to host-physical
  42. * If the hardware supports that we don't need to do shadow paging.
  43. */
  44. bool tdp_enabled = false;
  45. #undef MMU_DEBUG
  46. #undef AUDIT
  47. #ifdef AUDIT
  48. static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg);
  49. #else
  50. static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg) {}
  51. #endif
  52. #ifdef MMU_DEBUG
  53. #define pgprintk(x...) do { if (dbg) printk(x); } while (0)
  54. #define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
  55. #else
  56. #define pgprintk(x...) do { } while (0)
  57. #define rmap_printk(x...) do { } while (0)
  58. #endif
  59. #if defined(MMU_DEBUG) || defined(AUDIT)
  60. static int dbg = 0;
  61. module_param(dbg, bool, 0644);
  62. #endif
  63. static int oos_shadow = 1;
  64. module_param(oos_shadow, bool, 0644);
  65. #ifndef MMU_DEBUG
  66. #define ASSERT(x) do { } while (0)
  67. #else
  68. #define ASSERT(x) \
  69. if (!(x)) { \
  70. printk(KERN_WARNING "assertion failed %s:%d: %s\n", \
  71. __FILE__, __LINE__, #x); \
  72. }
  73. #endif
  74. #define PT_FIRST_AVAIL_BITS_SHIFT 9
  75. #define PT64_SECOND_AVAIL_BITS_SHIFT 52
  76. #define VALID_PAGE(x) ((x) != INVALID_PAGE)
  77. #define PT64_LEVEL_BITS 9
  78. #define PT64_LEVEL_SHIFT(level) \
  79. (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
  80. #define PT64_LEVEL_MASK(level) \
  81. (((1ULL << PT64_LEVEL_BITS) - 1) << PT64_LEVEL_SHIFT(level))
  82. #define PT64_INDEX(address, level)\
  83. (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
  84. #define PT32_LEVEL_BITS 10
  85. #define PT32_LEVEL_SHIFT(level) \
  86. (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
  87. #define PT32_LEVEL_MASK(level) \
  88. (((1ULL << PT32_LEVEL_BITS) - 1) << PT32_LEVEL_SHIFT(level))
  89. #define PT32_LVL_OFFSET_MASK(level) \
  90. (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
  91. * PT32_LEVEL_BITS))) - 1))
  92. #define PT32_INDEX(address, level)\
  93. (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
  94. #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
  95. #define PT64_DIR_BASE_ADDR_MASK \
  96. (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
  97. #define PT64_LVL_ADDR_MASK(level) \
  98. (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
  99. * PT64_LEVEL_BITS))) - 1))
  100. #define PT64_LVL_OFFSET_MASK(level) \
  101. (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
  102. * PT64_LEVEL_BITS))) - 1))
  103. #define PT32_BASE_ADDR_MASK PAGE_MASK
  104. #define PT32_DIR_BASE_ADDR_MASK \
  105. (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
  106. #define PT32_LVL_ADDR_MASK(level) \
  107. (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
  108. * PT32_LEVEL_BITS))) - 1))
  109. #define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | PT_USER_MASK \
  110. | PT64_NX_MASK)
  111. #define RMAP_EXT 4
  112. #define ACC_EXEC_MASK 1
  113. #define ACC_WRITE_MASK PT_WRITABLE_MASK
  114. #define ACC_USER_MASK PT_USER_MASK
  115. #define ACC_ALL (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
  116. #include <trace/events/kvm.h>
  117. #define CREATE_TRACE_POINTS
  118. #include "mmutrace.h"
  119. #define SPTE_HOST_WRITEABLE (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
  120. #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
  121. struct kvm_rmap_desc {
  122. u64 *sptes[RMAP_EXT];
  123. struct kvm_rmap_desc *more;
  124. };
  125. struct kvm_shadow_walk_iterator {
  126. u64 addr;
  127. hpa_t shadow_addr;
  128. int level;
  129. u64 *sptep;
  130. unsigned index;
  131. };
  132. #define for_each_shadow_entry(_vcpu, _addr, _walker) \
  133. for (shadow_walk_init(&(_walker), _vcpu, _addr); \
  134. shadow_walk_okay(&(_walker)); \
  135. shadow_walk_next(&(_walker)))
  136. struct kvm_unsync_walk {
  137. int (*entry) (struct kvm_mmu_page *sp, struct kvm_unsync_walk *walk);
  138. };
  139. typedef int (*mmu_parent_walk_fn) (struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp);
  140. static struct kmem_cache *pte_chain_cache;
  141. static struct kmem_cache *rmap_desc_cache;
  142. static struct kmem_cache *mmu_page_header_cache;
  143. static u64 __read_mostly shadow_trap_nonpresent_pte;
  144. static u64 __read_mostly shadow_notrap_nonpresent_pte;
  145. static u64 __read_mostly shadow_base_present_pte;
  146. static u64 __read_mostly shadow_nx_mask;
  147. static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
  148. static u64 __read_mostly shadow_user_mask;
  149. static u64 __read_mostly shadow_accessed_mask;
  150. static u64 __read_mostly shadow_dirty_mask;
  151. static inline u64 rsvd_bits(int s, int e)
  152. {
  153. return ((1ULL << (e - s + 1)) - 1) << s;
  154. }
  155. void kvm_mmu_set_nonpresent_ptes(u64 trap_pte, u64 notrap_pte)
  156. {
  157. shadow_trap_nonpresent_pte = trap_pte;
  158. shadow_notrap_nonpresent_pte = notrap_pte;
  159. }
  160. EXPORT_SYMBOL_GPL(kvm_mmu_set_nonpresent_ptes);
  161. void kvm_mmu_set_base_ptes(u64 base_pte)
  162. {
  163. shadow_base_present_pte = base_pte;
  164. }
  165. EXPORT_SYMBOL_GPL(kvm_mmu_set_base_ptes);
  166. void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
  167. u64 dirty_mask, u64 nx_mask, u64 x_mask)
  168. {
  169. shadow_user_mask = user_mask;
  170. shadow_accessed_mask = accessed_mask;
  171. shadow_dirty_mask = dirty_mask;
  172. shadow_nx_mask = nx_mask;
  173. shadow_x_mask = x_mask;
  174. }
  175. EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
  176. static int is_write_protection(struct kvm_vcpu *vcpu)
  177. {
  178. return kvm_read_cr0_bits(vcpu, X86_CR0_WP);
  179. }
  180. static int is_cpuid_PSE36(void)
  181. {
  182. return 1;
  183. }
  184. static int is_nx(struct kvm_vcpu *vcpu)
  185. {
  186. return vcpu->arch.efer & EFER_NX;
  187. }
  188. static int is_shadow_present_pte(u64 pte)
  189. {
  190. return pte != shadow_trap_nonpresent_pte
  191. && pte != shadow_notrap_nonpresent_pte;
  192. }
  193. static int is_large_pte(u64 pte)
  194. {
  195. return pte & PT_PAGE_SIZE_MASK;
  196. }
  197. static int is_writable_pte(unsigned long pte)
  198. {
  199. return pte & PT_WRITABLE_MASK;
  200. }
  201. static int is_dirty_gpte(unsigned long pte)
  202. {
  203. return pte & PT_DIRTY_MASK;
  204. }
  205. static int is_rmap_spte(u64 pte)
  206. {
  207. return is_shadow_present_pte(pte);
  208. }
  209. static int is_last_spte(u64 pte, int level)
  210. {
  211. if (level == PT_PAGE_TABLE_LEVEL)
  212. return 1;
  213. if (is_large_pte(pte))
  214. return 1;
  215. return 0;
  216. }
  217. static pfn_t spte_to_pfn(u64 pte)
  218. {
  219. return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
  220. }
  221. static gfn_t pse36_gfn_delta(u32 gpte)
  222. {
  223. int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
  224. return (gpte & PT32_DIR_PSE36_MASK) << shift;
  225. }
  226. static void __set_spte(u64 *sptep, u64 spte)
  227. {
  228. #ifdef CONFIG_X86_64
  229. set_64bit((unsigned long *)sptep, spte);
  230. #else
  231. set_64bit((unsigned long long *)sptep, spte);
  232. #endif
  233. }
  234. static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
  235. struct kmem_cache *base_cache, int min)
  236. {
  237. void *obj;
  238. if (cache->nobjs >= min)
  239. return 0;
  240. while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
  241. obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
  242. if (!obj)
  243. return -ENOMEM;
  244. cache->objects[cache->nobjs++] = obj;
  245. }
  246. return 0;
  247. }
  248. static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
  249. {
  250. while (mc->nobjs)
  251. kfree(mc->objects[--mc->nobjs]);
  252. }
  253. static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
  254. int min)
  255. {
  256. struct page *page;
  257. if (cache->nobjs >= min)
  258. return 0;
  259. while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
  260. page = alloc_page(GFP_KERNEL);
  261. if (!page)
  262. return -ENOMEM;
  263. cache->objects[cache->nobjs++] = page_address(page);
  264. }
  265. return 0;
  266. }
  267. static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
  268. {
  269. while (mc->nobjs)
  270. free_page((unsigned long)mc->objects[--mc->nobjs]);
  271. }
  272. static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
  273. {
  274. int r;
  275. r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_chain_cache,
  276. pte_chain_cache, 4);
  277. if (r)
  278. goto out;
  279. r = mmu_topup_memory_cache(&vcpu->arch.mmu_rmap_desc_cache,
  280. rmap_desc_cache, 4);
  281. if (r)
  282. goto out;
  283. r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
  284. if (r)
  285. goto out;
  286. r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
  287. mmu_page_header_cache, 4);
  288. out:
  289. return r;
  290. }
  291. static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
  292. {
  293. mmu_free_memory_cache(&vcpu->arch.mmu_pte_chain_cache);
  294. mmu_free_memory_cache(&vcpu->arch.mmu_rmap_desc_cache);
  295. mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
  296. mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache);
  297. }
  298. static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc,
  299. size_t size)
  300. {
  301. void *p;
  302. BUG_ON(!mc->nobjs);
  303. p = mc->objects[--mc->nobjs];
  304. return p;
  305. }
  306. static struct kvm_pte_chain *mmu_alloc_pte_chain(struct kvm_vcpu *vcpu)
  307. {
  308. return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_chain_cache,
  309. sizeof(struct kvm_pte_chain));
  310. }
  311. static void mmu_free_pte_chain(struct kvm_pte_chain *pc)
  312. {
  313. kfree(pc);
  314. }
  315. static struct kvm_rmap_desc *mmu_alloc_rmap_desc(struct kvm_vcpu *vcpu)
  316. {
  317. return mmu_memory_cache_alloc(&vcpu->arch.mmu_rmap_desc_cache,
  318. sizeof(struct kvm_rmap_desc));
  319. }
  320. static void mmu_free_rmap_desc(struct kvm_rmap_desc *rd)
  321. {
  322. kfree(rd);
  323. }
  324. /*
  325. * Return the pointer to the largepage write count for a given
  326. * gfn, handling slots that are not large page aligned.
  327. */
  328. static int *slot_largepage_idx(gfn_t gfn,
  329. struct kvm_memory_slot *slot,
  330. int level)
  331. {
  332. unsigned long idx;
  333. idx = (gfn / KVM_PAGES_PER_HPAGE(level)) -
  334. (slot->base_gfn / KVM_PAGES_PER_HPAGE(level));
  335. return &slot->lpage_info[level - 2][idx].write_count;
  336. }
  337. static void account_shadowed(struct kvm *kvm, gfn_t gfn)
  338. {
  339. struct kvm_memory_slot *slot;
  340. int *write_count;
  341. int i;
  342. gfn = unalias_gfn(kvm, gfn);
  343. slot = gfn_to_memslot_unaliased(kvm, gfn);
  344. for (i = PT_DIRECTORY_LEVEL;
  345. i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
  346. write_count = slot_largepage_idx(gfn, slot, i);
  347. *write_count += 1;
  348. }
  349. }
  350. static void unaccount_shadowed(struct kvm *kvm, gfn_t gfn)
  351. {
  352. struct kvm_memory_slot *slot;
  353. int *write_count;
  354. int i;
  355. gfn = unalias_gfn(kvm, gfn);
  356. for (i = PT_DIRECTORY_LEVEL;
  357. i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
  358. slot = gfn_to_memslot_unaliased(kvm, gfn);
  359. write_count = slot_largepage_idx(gfn, slot, i);
  360. *write_count -= 1;
  361. WARN_ON(*write_count < 0);
  362. }
  363. }
  364. static int has_wrprotected_page(struct kvm *kvm,
  365. gfn_t gfn,
  366. int level)
  367. {
  368. struct kvm_memory_slot *slot;
  369. int *largepage_idx;
  370. gfn = unalias_gfn(kvm, gfn);
  371. slot = gfn_to_memslot_unaliased(kvm, gfn);
  372. if (slot) {
  373. largepage_idx = slot_largepage_idx(gfn, slot, level);
  374. return *largepage_idx;
  375. }
  376. return 1;
  377. }
  378. static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
  379. {
  380. unsigned long page_size;
  381. int i, ret = 0;
  382. page_size = kvm_host_page_size(kvm, gfn);
  383. for (i = PT_PAGE_TABLE_LEVEL;
  384. i < (PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES); ++i) {
  385. if (page_size >= KVM_HPAGE_SIZE(i))
  386. ret = i;
  387. else
  388. break;
  389. }
  390. return ret;
  391. }
  392. static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn)
  393. {
  394. struct kvm_memory_slot *slot;
  395. int host_level, level, max_level;
  396. slot = gfn_to_memslot(vcpu->kvm, large_gfn);
  397. if (slot && slot->dirty_bitmap)
  398. return PT_PAGE_TABLE_LEVEL;
  399. host_level = host_mapping_level(vcpu->kvm, large_gfn);
  400. if (host_level == PT_PAGE_TABLE_LEVEL)
  401. return host_level;
  402. max_level = kvm_x86_ops->get_lpage_level() < host_level ?
  403. kvm_x86_ops->get_lpage_level() : host_level;
  404. for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level)
  405. if (has_wrprotected_page(vcpu->kvm, large_gfn, level))
  406. break;
  407. return level - 1;
  408. }
  409. /*
  410. * Take gfn and return the reverse mapping to it.
  411. * Note: gfn must be unaliased before this function get called
  412. */
  413. static unsigned long *gfn_to_rmap(struct kvm *kvm, gfn_t gfn, int level)
  414. {
  415. struct kvm_memory_slot *slot;
  416. unsigned long idx;
  417. slot = gfn_to_memslot(kvm, gfn);
  418. if (likely(level == PT_PAGE_TABLE_LEVEL))
  419. return &slot->rmap[gfn - slot->base_gfn];
  420. idx = (gfn / KVM_PAGES_PER_HPAGE(level)) -
  421. (slot->base_gfn / KVM_PAGES_PER_HPAGE(level));
  422. return &slot->lpage_info[level - 2][idx].rmap_pde;
  423. }
  424. /*
  425. * Reverse mapping data structures:
  426. *
  427. * If rmapp bit zero is zero, then rmapp point to the shadw page table entry
  428. * that points to page_address(page).
  429. *
  430. * If rmapp bit zero is one, (then rmap & ~1) points to a struct kvm_rmap_desc
  431. * containing more mappings.
  432. *
  433. * Returns the number of rmap entries before the spte was added or zero if
  434. * the spte was not added.
  435. *
  436. */
  437. static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
  438. {
  439. struct kvm_mmu_page *sp;
  440. struct kvm_rmap_desc *desc;
  441. unsigned long *rmapp;
  442. int i, count = 0;
  443. if (!is_rmap_spte(*spte))
  444. return count;
  445. gfn = unalias_gfn(vcpu->kvm, gfn);
  446. sp = page_header(__pa(spte));
  447. sp->gfns[spte - sp->spt] = gfn;
  448. rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
  449. if (!*rmapp) {
  450. rmap_printk("rmap_add: %p %llx 0->1\n", spte, *spte);
  451. *rmapp = (unsigned long)spte;
  452. } else if (!(*rmapp & 1)) {
  453. rmap_printk("rmap_add: %p %llx 1->many\n", spte, *spte);
  454. desc = mmu_alloc_rmap_desc(vcpu);
  455. desc->sptes[0] = (u64 *)*rmapp;
  456. desc->sptes[1] = spte;
  457. *rmapp = (unsigned long)desc | 1;
  458. } else {
  459. rmap_printk("rmap_add: %p %llx many->many\n", spte, *spte);
  460. desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
  461. while (desc->sptes[RMAP_EXT-1] && desc->more) {
  462. desc = desc->more;
  463. count += RMAP_EXT;
  464. }
  465. if (desc->sptes[RMAP_EXT-1]) {
  466. desc->more = mmu_alloc_rmap_desc(vcpu);
  467. desc = desc->more;
  468. }
  469. for (i = 0; desc->sptes[i]; ++i)
  470. ;
  471. desc->sptes[i] = spte;
  472. }
  473. return count;
  474. }
  475. static void rmap_desc_remove_entry(unsigned long *rmapp,
  476. struct kvm_rmap_desc *desc,
  477. int i,
  478. struct kvm_rmap_desc *prev_desc)
  479. {
  480. int j;
  481. for (j = RMAP_EXT - 1; !desc->sptes[j] && j > i; --j)
  482. ;
  483. desc->sptes[i] = desc->sptes[j];
  484. desc->sptes[j] = NULL;
  485. if (j != 0)
  486. return;
  487. if (!prev_desc && !desc->more)
  488. *rmapp = (unsigned long)desc->sptes[0];
  489. else
  490. if (prev_desc)
  491. prev_desc->more = desc->more;
  492. else
  493. *rmapp = (unsigned long)desc->more | 1;
  494. mmu_free_rmap_desc(desc);
  495. }
  496. static void rmap_remove(struct kvm *kvm, u64 *spte)
  497. {
  498. struct kvm_rmap_desc *desc;
  499. struct kvm_rmap_desc *prev_desc;
  500. struct kvm_mmu_page *sp;
  501. pfn_t pfn;
  502. unsigned long *rmapp;
  503. int i;
  504. if (!is_rmap_spte(*spte))
  505. return;
  506. sp = page_header(__pa(spte));
  507. pfn = spte_to_pfn(*spte);
  508. if (*spte & shadow_accessed_mask)
  509. kvm_set_pfn_accessed(pfn);
  510. if (is_writable_pte(*spte))
  511. kvm_set_pfn_dirty(pfn);
  512. rmapp = gfn_to_rmap(kvm, sp->gfns[spte - sp->spt], sp->role.level);
  513. if (!*rmapp) {
  514. printk(KERN_ERR "rmap_remove: %p %llx 0->BUG\n", spte, *spte);
  515. BUG();
  516. } else if (!(*rmapp & 1)) {
  517. rmap_printk("rmap_remove: %p %llx 1->0\n", spte, *spte);
  518. if ((u64 *)*rmapp != spte) {
  519. printk(KERN_ERR "rmap_remove: %p %llx 1->BUG\n",
  520. spte, *spte);
  521. BUG();
  522. }
  523. *rmapp = 0;
  524. } else {
  525. rmap_printk("rmap_remove: %p %llx many->many\n", spte, *spte);
  526. desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
  527. prev_desc = NULL;
  528. while (desc) {
  529. for (i = 0; i < RMAP_EXT && desc->sptes[i]; ++i)
  530. if (desc->sptes[i] == spte) {
  531. rmap_desc_remove_entry(rmapp,
  532. desc, i,
  533. prev_desc);
  534. return;
  535. }
  536. prev_desc = desc;
  537. desc = desc->more;
  538. }
  539. pr_err("rmap_remove: %p %llx many->many\n", spte, *spte);
  540. BUG();
  541. }
  542. }
  543. static u64 *rmap_next(struct kvm *kvm, unsigned long *rmapp, u64 *spte)
  544. {
  545. struct kvm_rmap_desc *desc;
  546. struct kvm_rmap_desc *prev_desc;
  547. u64 *prev_spte;
  548. int i;
  549. if (!*rmapp)
  550. return NULL;
  551. else if (!(*rmapp & 1)) {
  552. if (!spte)
  553. return (u64 *)*rmapp;
  554. return NULL;
  555. }
  556. desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
  557. prev_desc = NULL;
  558. prev_spte = NULL;
  559. while (desc) {
  560. for (i = 0; i < RMAP_EXT && desc->sptes[i]; ++i) {
  561. if (prev_spte == spte)
  562. return desc->sptes[i];
  563. prev_spte = desc->sptes[i];
  564. }
  565. desc = desc->more;
  566. }
  567. return NULL;
  568. }
  569. static int rmap_write_protect(struct kvm *kvm, u64 gfn)
  570. {
  571. unsigned long *rmapp;
  572. u64 *spte;
  573. int i, write_protected = 0;
  574. gfn = unalias_gfn(kvm, gfn);
  575. rmapp = gfn_to_rmap(kvm, gfn, PT_PAGE_TABLE_LEVEL);
  576. spte = rmap_next(kvm, rmapp, NULL);
  577. while (spte) {
  578. BUG_ON(!spte);
  579. BUG_ON(!(*spte & PT_PRESENT_MASK));
  580. rmap_printk("rmap_write_protect: spte %p %llx\n", spte, *spte);
  581. if (is_writable_pte(*spte)) {
  582. __set_spte(spte, *spte & ~PT_WRITABLE_MASK);
  583. write_protected = 1;
  584. }
  585. spte = rmap_next(kvm, rmapp, spte);
  586. }
  587. if (write_protected) {
  588. pfn_t pfn;
  589. spte = rmap_next(kvm, rmapp, NULL);
  590. pfn = spte_to_pfn(*spte);
  591. kvm_set_pfn_dirty(pfn);
  592. }
  593. /* check for huge page mappings */
  594. for (i = PT_DIRECTORY_LEVEL;
  595. i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
  596. rmapp = gfn_to_rmap(kvm, gfn, i);
  597. spte = rmap_next(kvm, rmapp, NULL);
  598. while (spte) {
  599. BUG_ON(!spte);
  600. BUG_ON(!(*spte & PT_PRESENT_MASK));
  601. BUG_ON((*spte & (PT_PAGE_SIZE_MASK|PT_PRESENT_MASK)) != (PT_PAGE_SIZE_MASK|PT_PRESENT_MASK));
  602. pgprintk("rmap_write_protect(large): spte %p %llx %lld\n", spte, *spte, gfn);
  603. if (is_writable_pte(*spte)) {
  604. rmap_remove(kvm, spte);
  605. --kvm->stat.lpages;
  606. __set_spte(spte, shadow_trap_nonpresent_pte);
  607. spte = NULL;
  608. write_protected = 1;
  609. }
  610. spte = rmap_next(kvm, rmapp, spte);
  611. }
  612. }
  613. return write_protected;
  614. }
  615. static int kvm_unmap_rmapp(struct kvm *kvm, unsigned long *rmapp,
  616. unsigned long data)
  617. {
  618. u64 *spte;
  619. int need_tlb_flush = 0;
  620. while ((spte = rmap_next(kvm, rmapp, NULL))) {
  621. BUG_ON(!(*spte & PT_PRESENT_MASK));
  622. rmap_printk("kvm_rmap_unmap_hva: spte %p %llx\n", spte, *spte);
  623. rmap_remove(kvm, spte);
  624. __set_spte(spte, shadow_trap_nonpresent_pte);
  625. need_tlb_flush = 1;
  626. }
  627. return need_tlb_flush;
  628. }
  629. static int kvm_set_pte_rmapp(struct kvm *kvm, unsigned long *rmapp,
  630. unsigned long data)
  631. {
  632. int need_flush = 0;
  633. u64 *spte, new_spte;
  634. pte_t *ptep = (pte_t *)data;
  635. pfn_t new_pfn;
  636. WARN_ON(pte_huge(*ptep));
  637. new_pfn = pte_pfn(*ptep);
  638. spte = rmap_next(kvm, rmapp, NULL);
  639. while (spte) {
  640. BUG_ON(!is_shadow_present_pte(*spte));
  641. rmap_printk("kvm_set_pte_rmapp: spte %p %llx\n", spte, *spte);
  642. need_flush = 1;
  643. if (pte_write(*ptep)) {
  644. rmap_remove(kvm, spte);
  645. __set_spte(spte, shadow_trap_nonpresent_pte);
  646. spte = rmap_next(kvm, rmapp, NULL);
  647. } else {
  648. new_spte = *spte &~ (PT64_BASE_ADDR_MASK);
  649. new_spte |= (u64)new_pfn << PAGE_SHIFT;
  650. new_spte &= ~PT_WRITABLE_MASK;
  651. new_spte &= ~SPTE_HOST_WRITEABLE;
  652. if (is_writable_pte(*spte))
  653. kvm_set_pfn_dirty(spte_to_pfn(*spte));
  654. __set_spte(spte, new_spte);
  655. spte = rmap_next(kvm, rmapp, spte);
  656. }
  657. }
  658. if (need_flush)
  659. kvm_flush_remote_tlbs(kvm);
  660. return 0;
  661. }
  662. static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
  663. unsigned long data,
  664. int (*handler)(struct kvm *kvm, unsigned long *rmapp,
  665. unsigned long data))
  666. {
  667. int i, j;
  668. int ret;
  669. int retval = 0;
  670. struct kvm_memslots *slots;
  671. slots = rcu_dereference(kvm->memslots);
  672. for (i = 0; i < slots->nmemslots; i++) {
  673. struct kvm_memory_slot *memslot = &slots->memslots[i];
  674. unsigned long start = memslot->userspace_addr;
  675. unsigned long end;
  676. end = start + (memslot->npages << PAGE_SHIFT);
  677. if (hva >= start && hva < end) {
  678. gfn_t gfn_offset = (hva - start) >> PAGE_SHIFT;
  679. ret = handler(kvm, &memslot->rmap[gfn_offset], data);
  680. for (j = 0; j < KVM_NR_PAGE_SIZES - 1; ++j) {
  681. int idx = gfn_offset;
  682. idx /= KVM_PAGES_PER_HPAGE(PT_DIRECTORY_LEVEL + j);
  683. ret |= handler(kvm,
  684. &memslot->lpage_info[j][idx].rmap_pde,
  685. data);
  686. }
  687. trace_kvm_age_page(hva, memslot, ret);
  688. retval |= ret;
  689. }
  690. }
  691. return retval;
  692. }
  693. int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
  694. {
  695. return kvm_handle_hva(kvm, hva, 0, kvm_unmap_rmapp);
  696. }
  697. void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
  698. {
  699. kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
  700. }
  701. static int kvm_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
  702. unsigned long data)
  703. {
  704. u64 *spte;
  705. int young = 0;
  706. /*
  707. * Emulate the accessed bit for EPT, by checking if this page has
  708. * an EPT mapping, and clearing it if it does. On the next access,
  709. * a new EPT mapping will be established.
  710. * This has some overhead, but not as much as the cost of swapping
  711. * out actively used pages or breaking up actively used hugepages.
  712. */
  713. if (!shadow_accessed_mask)
  714. return kvm_unmap_rmapp(kvm, rmapp, data);
  715. spte = rmap_next(kvm, rmapp, NULL);
  716. while (spte) {
  717. int _young;
  718. u64 _spte = *spte;
  719. BUG_ON(!(_spte & PT_PRESENT_MASK));
  720. _young = _spte & PT_ACCESSED_MASK;
  721. if (_young) {
  722. young = 1;
  723. clear_bit(PT_ACCESSED_SHIFT, (unsigned long *)spte);
  724. }
  725. spte = rmap_next(kvm, rmapp, spte);
  726. }
  727. return young;
  728. }
  729. #define RMAP_RECYCLE_THRESHOLD 1000
  730. static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
  731. {
  732. unsigned long *rmapp;
  733. struct kvm_mmu_page *sp;
  734. sp = page_header(__pa(spte));
  735. gfn = unalias_gfn(vcpu->kvm, gfn);
  736. rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
  737. kvm_unmap_rmapp(vcpu->kvm, rmapp, 0);
  738. kvm_flush_remote_tlbs(vcpu->kvm);
  739. }
  740. int kvm_age_hva(struct kvm *kvm, unsigned long hva)
  741. {
  742. return kvm_handle_hva(kvm, hva, 0, kvm_age_rmapp);
  743. }
  744. #ifdef MMU_DEBUG
  745. static int is_empty_shadow_page(u64 *spt)
  746. {
  747. u64 *pos;
  748. u64 *end;
  749. for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
  750. if (is_shadow_present_pte(*pos)) {
  751. printk(KERN_ERR "%s: %p %llx\n", __func__,
  752. pos, *pos);
  753. return 0;
  754. }
  755. return 1;
  756. }
  757. #endif
  758. static void kvm_mmu_free_page(struct kvm *kvm, struct kvm_mmu_page *sp)
  759. {
  760. ASSERT(is_empty_shadow_page(sp->spt));
  761. list_del(&sp->link);
  762. __free_page(virt_to_page(sp->spt));
  763. __free_page(virt_to_page(sp->gfns));
  764. kfree(sp);
  765. ++kvm->arch.n_free_mmu_pages;
  766. }
  767. static unsigned kvm_page_table_hashfn(gfn_t gfn)
  768. {
  769. return gfn & ((1 << KVM_MMU_HASH_SHIFT) - 1);
  770. }
  771. static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
  772. u64 *parent_pte)
  773. {
  774. struct kvm_mmu_page *sp;
  775. sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache, sizeof *sp);
  776. sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache, PAGE_SIZE);
  777. sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache, PAGE_SIZE);
  778. set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
  779. list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
  780. INIT_LIST_HEAD(&sp->oos_link);
  781. bitmap_zero(sp->slot_bitmap, KVM_MEMORY_SLOTS + KVM_PRIVATE_MEM_SLOTS);
  782. sp->multimapped = 0;
  783. sp->parent_pte = parent_pte;
  784. --vcpu->kvm->arch.n_free_mmu_pages;
  785. return sp;
  786. }
  787. static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
  788. struct kvm_mmu_page *sp, u64 *parent_pte)
  789. {
  790. struct kvm_pte_chain *pte_chain;
  791. struct hlist_node *node;
  792. int i;
  793. if (!parent_pte)
  794. return;
  795. if (!sp->multimapped) {
  796. u64 *old = sp->parent_pte;
  797. if (!old) {
  798. sp->parent_pte = parent_pte;
  799. return;
  800. }
  801. sp->multimapped = 1;
  802. pte_chain = mmu_alloc_pte_chain(vcpu);
  803. INIT_HLIST_HEAD(&sp->parent_ptes);
  804. hlist_add_head(&pte_chain->link, &sp->parent_ptes);
  805. pte_chain->parent_ptes[0] = old;
  806. }
  807. hlist_for_each_entry(pte_chain, node, &sp->parent_ptes, link) {
  808. if (pte_chain->parent_ptes[NR_PTE_CHAIN_ENTRIES-1])
  809. continue;
  810. for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i)
  811. if (!pte_chain->parent_ptes[i]) {
  812. pte_chain->parent_ptes[i] = parent_pte;
  813. return;
  814. }
  815. }
  816. pte_chain = mmu_alloc_pte_chain(vcpu);
  817. BUG_ON(!pte_chain);
  818. hlist_add_head(&pte_chain->link, &sp->parent_ptes);
  819. pte_chain->parent_ptes[0] = parent_pte;
  820. }
  821. static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
  822. u64 *parent_pte)
  823. {
  824. struct kvm_pte_chain *pte_chain;
  825. struct hlist_node *node;
  826. int i;
  827. if (!sp->multimapped) {
  828. BUG_ON(sp->parent_pte != parent_pte);
  829. sp->parent_pte = NULL;
  830. return;
  831. }
  832. hlist_for_each_entry(pte_chain, node, &sp->parent_ptes, link)
  833. for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i) {
  834. if (!pte_chain->parent_ptes[i])
  835. break;
  836. if (pte_chain->parent_ptes[i] != parent_pte)
  837. continue;
  838. while (i + 1 < NR_PTE_CHAIN_ENTRIES
  839. && pte_chain->parent_ptes[i + 1]) {
  840. pte_chain->parent_ptes[i]
  841. = pte_chain->parent_ptes[i + 1];
  842. ++i;
  843. }
  844. pte_chain->parent_ptes[i] = NULL;
  845. if (i == 0) {
  846. hlist_del(&pte_chain->link);
  847. mmu_free_pte_chain(pte_chain);
  848. if (hlist_empty(&sp->parent_ptes)) {
  849. sp->multimapped = 0;
  850. sp->parent_pte = NULL;
  851. }
  852. }
  853. return;
  854. }
  855. BUG();
  856. }
  857. static void mmu_parent_walk(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
  858. mmu_parent_walk_fn fn)
  859. {
  860. struct kvm_pte_chain *pte_chain;
  861. struct hlist_node *node;
  862. struct kvm_mmu_page *parent_sp;
  863. int i;
  864. if (!sp->multimapped && sp->parent_pte) {
  865. parent_sp = page_header(__pa(sp->parent_pte));
  866. fn(vcpu, parent_sp);
  867. mmu_parent_walk(vcpu, parent_sp, fn);
  868. return;
  869. }
  870. hlist_for_each_entry(pte_chain, node, &sp->parent_ptes, link)
  871. for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i) {
  872. if (!pte_chain->parent_ptes[i])
  873. break;
  874. parent_sp = page_header(__pa(pte_chain->parent_ptes[i]));
  875. fn(vcpu, parent_sp);
  876. mmu_parent_walk(vcpu, parent_sp, fn);
  877. }
  878. }
  879. static void kvm_mmu_update_unsync_bitmap(u64 *spte)
  880. {
  881. unsigned int index;
  882. struct kvm_mmu_page *sp = page_header(__pa(spte));
  883. index = spte - sp->spt;
  884. if (!__test_and_set_bit(index, sp->unsync_child_bitmap))
  885. sp->unsync_children++;
  886. WARN_ON(!sp->unsync_children);
  887. }
  888. static void kvm_mmu_update_parents_unsync(struct kvm_mmu_page *sp)
  889. {
  890. struct kvm_pte_chain *pte_chain;
  891. struct hlist_node *node;
  892. int i;
  893. if (!sp->parent_pte)
  894. return;
  895. if (!sp->multimapped) {
  896. kvm_mmu_update_unsync_bitmap(sp->parent_pte);
  897. return;
  898. }
  899. hlist_for_each_entry(pte_chain, node, &sp->parent_ptes, link)
  900. for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i) {
  901. if (!pte_chain->parent_ptes[i])
  902. break;
  903. kvm_mmu_update_unsync_bitmap(pte_chain->parent_ptes[i]);
  904. }
  905. }
  906. static int unsync_walk_fn(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
  907. {
  908. kvm_mmu_update_parents_unsync(sp);
  909. return 1;
  910. }
  911. static void kvm_mmu_mark_parents_unsync(struct kvm_vcpu *vcpu,
  912. struct kvm_mmu_page *sp)
  913. {
  914. mmu_parent_walk(vcpu, sp, unsync_walk_fn);
  915. kvm_mmu_update_parents_unsync(sp);
  916. }
  917. static void nonpaging_prefetch_page(struct kvm_vcpu *vcpu,
  918. struct kvm_mmu_page *sp)
  919. {
  920. int i;
  921. for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
  922. sp->spt[i] = shadow_trap_nonpresent_pte;
  923. }
  924. static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
  925. struct kvm_mmu_page *sp)
  926. {
  927. return 1;
  928. }
  929. static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
  930. {
  931. }
  932. #define KVM_PAGE_ARRAY_NR 16
  933. struct kvm_mmu_pages {
  934. struct mmu_page_and_offset {
  935. struct kvm_mmu_page *sp;
  936. unsigned int idx;
  937. } page[KVM_PAGE_ARRAY_NR];
  938. unsigned int nr;
  939. };
  940. #define for_each_unsync_children(bitmap, idx) \
  941. for (idx = find_first_bit(bitmap, 512); \
  942. idx < 512; \
  943. idx = find_next_bit(bitmap, 512, idx+1))
  944. static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
  945. int idx)
  946. {
  947. int i;
  948. if (sp->unsync)
  949. for (i=0; i < pvec->nr; i++)
  950. if (pvec->page[i].sp == sp)
  951. return 0;
  952. pvec->page[pvec->nr].sp = sp;
  953. pvec->page[pvec->nr].idx = idx;
  954. pvec->nr++;
  955. return (pvec->nr == KVM_PAGE_ARRAY_NR);
  956. }
  957. static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
  958. struct kvm_mmu_pages *pvec)
  959. {
  960. int i, ret, nr_unsync_leaf = 0;
  961. for_each_unsync_children(sp->unsync_child_bitmap, i) {
  962. u64 ent = sp->spt[i];
  963. if (is_shadow_present_pte(ent) && !is_large_pte(ent)) {
  964. struct kvm_mmu_page *child;
  965. child = page_header(ent & PT64_BASE_ADDR_MASK);
  966. if (child->unsync_children) {
  967. if (mmu_pages_add(pvec, child, i))
  968. return -ENOSPC;
  969. ret = __mmu_unsync_walk(child, pvec);
  970. if (!ret)
  971. __clear_bit(i, sp->unsync_child_bitmap);
  972. else if (ret > 0)
  973. nr_unsync_leaf += ret;
  974. else
  975. return ret;
  976. }
  977. if (child->unsync) {
  978. nr_unsync_leaf++;
  979. if (mmu_pages_add(pvec, child, i))
  980. return -ENOSPC;
  981. }
  982. }
  983. }
  984. if (find_first_bit(sp->unsync_child_bitmap, 512) == 512)
  985. sp->unsync_children = 0;
  986. return nr_unsync_leaf;
  987. }
  988. static int mmu_unsync_walk(struct kvm_mmu_page *sp,
  989. struct kvm_mmu_pages *pvec)
  990. {
  991. if (!sp->unsync_children)
  992. return 0;
  993. mmu_pages_add(pvec, sp, 0);
  994. return __mmu_unsync_walk(sp, pvec);
  995. }
  996. static struct kvm_mmu_page *kvm_mmu_lookup_page(struct kvm *kvm, gfn_t gfn)
  997. {
  998. unsigned index;
  999. struct hlist_head *bucket;
  1000. struct kvm_mmu_page *sp;
  1001. struct hlist_node *node;
  1002. pgprintk("%s: looking for gfn %lx\n", __func__, gfn);
  1003. index = kvm_page_table_hashfn(gfn);
  1004. bucket = &kvm->arch.mmu_page_hash[index];
  1005. hlist_for_each_entry(sp, node, bucket, hash_link)
  1006. if (sp->gfn == gfn && !sp->role.direct
  1007. && !sp->role.invalid) {
  1008. pgprintk("%s: found role %x\n",
  1009. __func__, sp->role.word);
  1010. return sp;
  1011. }
  1012. return NULL;
  1013. }
  1014. static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
  1015. {
  1016. WARN_ON(!sp->unsync);
  1017. sp->unsync = 0;
  1018. --kvm->stat.mmu_unsync;
  1019. }
  1020. static int kvm_mmu_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp);
  1021. static int kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
  1022. {
  1023. if (sp->role.glevels != vcpu->arch.mmu.root_level) {
  1024. kvm_mmu_zap_page(vcpu->kvm, sp);
  1025. return 1;
  1026. }
  1027. trace_kvm_mmu_sync_page(sp);
  1028. if (rmap_write_protect(vcpu->kvm, sp->gfn))
  1029. kvm_flush_remote_tlbs(vcpu->kvm);
  1030. kvm_unlink_unsync_page(vcpu->kvm, sp);
  1031. if (vcpu->arch.mmu.sync_page(vcpu, sp)) {
  1032. kvm_mmu_zap_page(vcpu->kvm, sp);
  1033. return 1;
  1034. }
  1035. kvm_mmu_flush_tlb(vcpu);
  1036. return 0;
  1037. }
  1038. struct mmu_page_path {
  1039. struct kvm_mmu_page *parent[PT64_ROOT_LEVEL-1];
  1040. unsigned int idx[PT64_ROOT_LEVEL-1];
  1041. };
  1042. #define for_each_sp(pvec, sp, parents, i) \
  1043. for (i = mmu_pages_next(&pvec, &parents, -1), \
  1044. sp = pvec.page[i].sp; \
  1045. i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \
  1046. i = mmu_pages_next(&pvec, &parents, i))
  1047. static int mmu_pages_next(struct kvm_mmu_pages *pvec,
  1048. struct mmu_page_path *parents,
  1049. int i)
  1050. {
  1051. int n;
  1052. for (n = i+1; n < pvec->nr; n++) {
  1053. struct kvm_mmu_page *sp = pvec->page[n].sp;
  1054. if (sp->role.level == PT_PAGE_TABLE_LEVEL) {
  1055. parents->idx[0] = pvec->page[n].idx;
  1056. return n;
  1057. }
  1058. parents->parent[sp->role.level-2] = sp;
  1059. parents->idx[sp->role.level-1] = pvec->page[n].idx;
  1060. }
  1061. return n;
  1062. }
  1063. static void mmu_pages_clear_parents(struct mmu_page_path *parents)
  1064. {
  1065. struct kvm_mmu_page *sp;
  1066. unsigned int level = 0;
  1067. do {
  1068. unsigned int idx = parents->idx[level];
  1069. sp = parents->parent[level];
  1070. if (!sp)
  1071. return;
  1072. --sp->unsync_children;
  1073. WARN_ON((int)sp->unsync_children < 0);
  1074. __clear_bit(idx, sp->unsync_child_bitmap);
  1075. level++;
  1076. } while (level < PT64_ROOT_LEVEL-1 && !sp->unsync_children);
  1077. }
  1078. static void kvm_mmu_pages_init(struct kvm_mmu_page *parent,
  1079. struct mmu_page_path *parents,
  1080. struct kvm_mmu_pages *pvec)
  1081. {
  1082. parents->parent[parent->role.level-1] = NULL;
  1083. pvec->nr = 0;
  1084. }
  1085. static void mmu_sync_children(struct kvm_vcpu *vcpu,
  1086. struct kvm_mmu_page *parent)
  1087. {
  1088. int i;
  1089. struct kvm_mmu_page *sp;
  1090. struct mmu_page_path parents;
  1091. struct kvm_mmu_pages pages;
  1092. kvm_mmu_pages_init(parent, &parents, &pages);
  1093. while (mmu_unsync_walk(parent, &pages)) {
  1094. int protected = 0;
  1095. for_each_sp(pages, sp, parents, i)
  1096. protected |= rmap_write_protect(vcpu->kvm, sp->gfn);
  1097. if (protected)
  1098. kvm_flush_remote_tlbs(vcpu->kvm);
  1099. for_each_sp(pages, sp, parents, i) {
  1100. kvm_sync_page(vcpu, sp);
  1101. mmu_pages_clear_parents(&parents);
  1102. }
  1103. cond_resched_lock(&vcpu->kvm->mmu_lock);
  1104. kvm_mmu_pages_init(parent, &parents, &pages);
  1105. }
  1106. }
  1107. static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
  1108. gfn_t gfn,
  1109. gva_t gaddr,
  1110. unsigned level,
  1111. int direct,
  1112. unsigned access,
  1113. u64 *parent_pte)
  1114. {
  1115. union kvm_mmu_page_role role;
  1116. unsigned index;
  1117. unsigned quadrant;
  1118. struct hlist_head *bucket;
  1119. struct kvm_mmu_page *sp;
  1120. struct hlist_node *node, *tmp;
  1121. role = vcpu->arch.mmu.base_role;
  1122. role.level = level;
  1123. role.direct = direct;
  1124. role.access = access;
  1125. if (vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
  1126. quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
  1127. quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
  1128. role.quadrant = quadrant;
  1129. }
  1130. index = kvm_page_table_hashfn(gfn);
  1131. bucket = &vcpu->kvm->arch.mmu_page_hash[index];
  1132. hlist_for_each_entry_safe(sp, node, tmp, bucket, hash_link)
  1133. if (sp->gfn == gfn) {
  1134. if (sp->unsync)
  1135. if (kvm_sync_page(vcpu, sp))
  1136. continue;
  1137. if (sp->role.word != role.word)
  1138. continue;
  1139. mmu_page_add_parent_pte(vcpu, sp, parent_pte);
  1140. if (sp->unsync_children) {
  1141. set_bit(KVM_REQ_MMU_SYNC, &vcpu->requests);
  1142. kvm_mmu_mark_parents_unsync(vcpu, sp);
  1143. }
  1144. trace_kvm_mmu_get_page(sp, false);
  1145. return sp;
  1146. }
  1147. ++vcpu->kvm->stat.mmu_cache_miss;
  1148. sp = kvm_mmu_alloc_page(vcpu, parent_pte);
  1149. if (!sp)
  1150. return sp;
  1151. sp->gfn = gfn;
  1152. sp->role = role;
  1153. hlist_add_head(&sp->hash_link, bucket);
  1154. if (!direct) {
  1155. if (rmap_write_protect(vcpu->kvm, gfn))
  1156. kvm_flush_remote_tlbs(vcpu->kvm);
  1157. account_shadowed(vcpu->kvm, gfn);
  1158. }
  1159. if (shadow_trap_nonpresent_pte != shadow_notrap_nonpresent_pte)
  1160. vcpu->arch.mmu.prefetch_page(vcpu, sp);
  1161. else
  1162. nonpaging_prefetch_page(vcpu, sp);
  1163. trace_kvm_mmu_get_page(sp, true);
  1164. return sp;
  1165. }
  1166. static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
  1167. struct kvm_vcpu *vcpu, u64 addr)
  1168. {
  1169. iterator->addr = addr;
  1170. iterator->shadow_addr = vcpu->arch.mmu.root_hpa;
  1171. iterator->level = vcpu->arch.mmu.shadow_root_level;
  1172. if (iterator->level == PT32E_ROOT_LEVEL) {
  1173. iterator->shadow_addr
  1174. = vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
  1175. iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
  1176. --iterator->level;
  1177. if (!iterator->shadow_addr)
  1178. iterator->level = 0;
  1179. }
  1180. }
  1181. static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
  1182. {
  1183. if (iterator->level < PT_PAGE_TABLE_LEVEL)
  1184. return false;
  1185. if (iterator->level == PT_PAGE_TABLE_LEVEL)
  1186. if (is_large_pte(*iterator->sptep))
  1187. return false;
  1188. iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
  1189. iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
  1190. return true;
  1191. }
  1192. static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
  1193. {
  1194. iterator->shadow_addr = *iterator->sptep & PT64_BASE_ADDR_MASK;
  1195. --iterator->level;
  1196. }
  1197. static void kvm_mmu_page_unlink_children(struct kvm *kvm,
  1198. struct kvm_mmu_page *sp)
  1199. {
  1200. unsigned i;
  1201. u64 *pt;
  1202. u64 ent;
  1203. pt = sp->spt;
  1204. for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
  1205. ent = pt[i];
  1206. if (is_shadow_present_pte(ent)) {
  1207. if (!is_last_spte(ent, sp->role.level)) {
  1208. ent &= PT64_BASE_ADDR_MASK;
  1209. mmu_page_remove_parent_pte(page_header(ent),
  1210. &pt[i]);
  1211. } else {
  1212. if (is_large_pte(ent))
  1213. --kvm->stat.lpages;
  1214. rmap_remove(kvm, &pt[i]);
  1215. }
  1216. }
  1217. pt[i] = shadow_trap_nonpresent_pte;
  1218. }
  1219. }
  1220. static void kvm_mmu_put_page(struct kvm_mmu_page *sp, u64 *parent_pte)
  1221. {
  1222. mmu_page_remove_parent_pte(sp, parent_pte);
  1223. }
  1224. static void kvm_mmu_reset_last_pte_updated(struct kvm *kvm)
  1225. {
  1226. int i;
  1227. struct kvm_vcpu *vcpu;
  1228. kvm_for_each_vcpu(i, vcpu, kvm)
  1229. vcpu->arch.last_pte_updated = NULL;
  1230. }
  1231. static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
  1232. {
  1233. u64 *parent_pte;
  1234. while (sp->multimapped || sp->parent_pte) {
  1235. if (!sp->multimapped)
  1236. parent_pte = sp->parent_pte;
  1237. else {
  1238. struct kvm_pte_chain *chain;
  1239. chain = container_of(sp->parent_ptes.first,
  1240. struct kvm_pte_chain, link);
  1241. parent_pte = chain->parent_ptes[0];
  1242. }
  1243. BUG_ON(!parent_pte);
  1244. kvm_mmu_put_page(sp, parent_pte);
  1245. __set_spte(parent_pte, shadow_trap_nonpresent_pte);
  1246. }
  1247. }
  1248. static int mmu_zap_unsync_children(struct kvm *kvm,
  1249. struct kvm_mmu_page *parent)
  1250. {
  1251. int i, zapped = 0;
  1252. struct mmu_page_path parents;
  1253. struct kvm_mmu_pages pages;
  1254. if (parent->role.level == PT_PAGE_TABLE_LEVEL)
  1255. return 0;
  1256. kvm_mmu_pages_init(parent, &parents, &pages);
  1257. while (mmu_unsync_walk(parent, &pages)) {
  1258. struct kvm_mmu_page *sp;
  1259. for_each_sp(pages, sp, parents, i) {
  1260. kvm_mmu_zap_page(kvm, sp);
  1261. mmu_pages_clear_parents(&parents);
  1262. zapped++;
  1263. }
  1264. kvm_mmu_pages_init(parent, &parents, &pages);
  1265. }
  1266. return zapped;
  1267. }
  1268. static int kvm_mmu_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp)
  1269. {
  1270. int ret;
  1271. trace_kvm_mmu_zap_page(sp);
  1272. ++kvm->stat.mmu_shadow_zapped;
  1273. ret = mmu_zap_unsync_children(kvm, sp);
  1274. kvm_mmu_page_unlink_children(kvm, sp);
  1275. kvm_mmu_unlink_parents(kvm, sp);
  1276. kvm_flush_remote_tlbs(kvm);
  1277. if (!sp->role.invalid && !sp->role.direct)
  1278. unaccount_shadowed(kvm, sp->gfn);
  1279. if (sp->unsync)
  1280. kvm_unlink_unsync_page(kvm, sp);
  1281. if (!sp->root_count) {
  1282. hlist_del(&sp->hash_link);
  1283. kvm_mmu_free_page(kvm, sp);
  1284. } else {
  1285. sp->role.invalid = 1;
  1286. list_move(&sp->link, &kvm->arch.active_mmu_pages);
  1287. kvm_reload_remote_mmus(kvm);
  1288. }
  1289. kvm_mmu_reset_last_pte_updated(kvm);
  1290. return ret;
  1291. }
  1292. /*
  1293. * Changing the number of mmu pages allocated to the vm
  1294. * Note: if kvm_nr_mmu_pages is too small, you will get dead lock
  1295. */
  1296. void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int kvm_nr_mmu_pages)
  1297. {
  1298. int used_pages;
  1299. used_pages = kvm->arch.n_alloc_mmu_pages - kvm->arch.n_free_mmu_pages;
  1300. used_pages = max(0, used_pages);
  1301. /*
  1302. * If we set the number of mmu pages to be smaller be than the
  1303. * number of actived pages , we must to free some mmu pages before we
  1304. * change the value
  1305. */
  1306. if (used_pages > kvm_nr_mmu_pages) {
  1307. while (used_pages > kvm_nr_mmu_pages &&
  1308. !list_empty(&kvm->arch.active_mmu_pages)) {
  1309. struct kvm_mmu_page *page;
  1310. page = container_of(kvm->arch.active_mmu_pages.prev,
  1311. struct kvm_mmu_page, link);
  1312. used_pages -= kvm_mmu_zap_page(kvm, page);
  1313. used_pages--;
  1314. }
  1315. kvm_nr_mmu_pages = used_pages;
  1316. kvm->arch.n_free_mmu_pages = 0;
  1317. }
  1318. else
  1319. kvm->arch.n_free_mmu_pages += kvm_nr_mmu_pages
  1320. - kvm->arch.n_alloc_mmu_pages;
  1321. kvm->arch.n_alloc_mmu_pages = kvm_nr_mmu_pages;
  1322. }
  1323. static int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
  1324. {
  1325. unsigned index;
  1326. struct hlist_head *bucket;
  1327. struct kvm_mmu_page *sp;
  1328. struct hlist_node *node, *n;
  1329. int r;
  1330. pgprintk("%s: looking for gfn %lx\n", __func__, gfn);
  1331. r = 0;
  1332. index = kvm_page_table_hashfn(gfn);
  1333. bucket = &kvm->arch.mmu_page_hash[index];
  1334. hlist_for_each_entry_safe(sp, node, n, bucket, hash_link)
  1335. if (sp->gfn == gfn && !sp->role.direct) {
  1336. pgprintk("%s: gfn %lx role %x\n", __func__, gfn,
  1337. sp->role.word);
  1338. r = 1;
  1339. if (kvm_mmu_zap_page(kvm, sp))
  1340. n = bucket->first;
  1341. }
  1342. return r;
  1343. }
  1344. static void mmu_unshadow(struct kvm *kvm, gfn_t gfn)
  1345. {
  1346. unsigned index;
  1347. struct hlist_head *bucket;
  1348. struct kvm_mmu_page *sp;
  1349. struct hlist_node *node, *nn;
  1350. index = kvm_page_table_hashfn(gfn);
  1351. bucket = &kvm->arch.mmu_page_hash[index];
  1352. hlist_for_each_entry_safe(sp, node, nn, bucket, hash_link) {
  1353. if (sp->gfn == gfn && !sp->role.direct
  1354. && !sp->role.invalid) {
  1355. pgprintk("%s: zap %lx %x\n",
  1356. __func__, gfn, sp->role.word);
  1357. if (kvm_mmu_zap_page(kvm, sp))
  1358. nn = bucket->first;
  1359. }
  1360. }
  1361. }
  1362. static void page_header_update_slot(struct kvm *kvm, void *pte, gfn_t gfn)
  1363. {
  1364. int slot = memslot_id(kvm, gfn);
  1365. struct kvm_mmu_page *sp = page_header(__pa(pte));
  1366. __set_bit(slot, sp->slot_bitmap);
  1367. }
  1368. static void mmu_convert_notrap(struct kvm_mmu_page *sp)
  1369. {
  1370. int i;
  1371. u64 *pt = sp->spt;
  1372. if (shadow_trap_nonpresent_pte == shadow_notrap_nonpresent_pte)
  1373. return;
  1374. for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
  1375. if (pt[i] == shadow_notrap_nonpresent_pte)
  1376. __set_spte(&pt[i], shadow_trap_nonpresent_pte);
  1377. }
  1378. }
  1379. struct page *gva_to_page(struct kvm_vcpu *vcpu, gva_t gva)
  1380. {
  1381. struct page *page;
  1382. gpa_t gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
  1383. if (gpa == UNMAPPED_GVA)
  1384. return NULL;
  1385. page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
  1386. return page;
  1387. }
  1388. /*
  1389. * The function is based on mtrr_type_lookup() in
  1390. * arch/x86/kernel/cpu/mtrr/generic.c
  1391. */
  1392. static int get_mtrr_type(struct mtrr_state_type *mtrr_state,
  1393. u64 start, u64 end)
  1394. {
  1395. int i;
  1396. u64 base, mask;
  1397. u8 prev_match, curr_match;
  1398. int num_var_ranges = KVM_NR_VAR_MTRR;
  1399. if (!mtrr_state->enabled)
  1400. return 0xFF;
  1401. /* Make end inclusive end, instead of exclusive */
  1402. end--;
  1403. /* Look in fixed ranges. Just return the type as per start */
  1404. if (mtrr_state->have_fixed && (start < 0x100000)) {
  1405. int idx;
  1406. if (start < 0x80000) {
  1407. idx = 0;
  1408. idx += (start >> 16);
  1409. return mtrr_state->fixed_ranges[idx];
  1410. } else if (start < 0xC0000) {
  1411. idx = 1 * 8;
  1412. idx += ((start - 0x80000) >> 14);
  1413. return mtrr_state->fixed_ranges[idx];
  1414. } else if (start < 0x1000000) {
  1415. idx = 3 * 8;
  1416. idx += ((start - 0xC0000) >> 12);
  1417. return mtrr_state->fixed_ranges[idx];
  1418. }
  1419. }
  1420. /*
  1421. * Look in variable ranges
  1422. * Look of multiple ranges matching this address and pick type
  1423. * as per MTRR precedence
  1424. */
  1425. if (!(mtrr_state->enabled & 2))
  1426. return mtrr_state->def_type;
  1427. prev_match = 0xFF;
  1428. for (i = 0; i < num_var_ranges; ++i) {
  1429. unsigned short start_state, end_state;
  1430. if (!(mtrr_state->var_ranges[i].mask_lo & (1 << 11)))
  1431. continue;
  1432. base = (((u64)mtrr_state->var_ranges[i].base_hi) << 32) +
  1433. (mtrr_state->var_ranges[i].base_lo & PAGE_MASK);
  1434. mask = (((u64)mtrr_state->var_ranges[i].mask_hi) << 32) +
  1435. (mtrr_state->var_ranges[i].mask_lo & PAGE_MASK);
  1436. start_state = ((start & mask) == (base & mask));
  1437. end_state = ((end & mask) == (base & mask));
  1438. if (start_state != end_state)
  1439. return 0xFE;
  1440. if ((start & mask) != (base & mask))
  1441. continue;
  1442. curr_match = mtrr_state->var_ranges[i].base_lo & 0xff;
  1443. if (prev_match == 0xFF) {
  1444. prev_match = curr_match;
  1445. continue;
  1446. }
  1447. if (prev_match == MTRR_TYPE_UNCACHABLE ||
  1448. curr_match == MTRR_TYPE_UNCACHABLE)
  1449. return MTRR_TYPE_UNCACHABLE;
  1450. if ((prev_match == MTRR_TYPE_WRBACK &&
  1451. curr_match == MTRR_TYPE_WRTHROUGH) ||
  1452. (prev_match == MTRR_TYPE_WRTHROUGH &&
  1453. curr_match == MTRR_TYPE_WRBACK)) {
  1454. prev_match = MTRR_TYPE_WRTHROUGH;
  1455. curr_match = MTRR_TYPE_WRTHROUGH;
  1456. }
  1457. if (prev_match != curr_match)
  1458. return MTRR_TYPE_UNCACHABLE;
  1459. }
  1460. if (prev_match != 0xFF)
  1461. return prev_match;
  1462. return mtrr_state->def_type;
  1463. }
  1464. u8 kvm_get_guest_memory_type(struct kvm_vcpu *vcpu, gfn_t gfn)
  1465. {
  1466. u8 mtrr;
  1467. mtrr = get_mtrr_type(&vcpu->arch.mtrr_state, gfn << PAGE_SHIFT,
  1468. (gfn << PAGE_SHIFT) + PAGE_SIZE);
  1469. if (mtrr == 0xfe || mtrr == 0xff)
  1470. mtrr = MTRR_TYPE_WRBACK;
  1471. return mtrr;
  1472. }
  1473. EXPORT_SYMBOL_GPL(kvm_get_guest_memory_type);
  1474. static int kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
  1475. {
  1476. unsigned index;
  1477. struct hlist_head *bucket;
  1478. struct kvm_mmu_page *s;
  1479. struct hlist_node *node, *n;
  1480. trace_kvm_mmu_unsync_page(sp);
  1481. index = kvm_page_table_hashfn(sp->gfn);
  1482. bucket = &vcpu->kvm->arch.mmu_page_hash[index];
  1483. /* don't unsync if pagetable is shadowed with multiple roles */
  1484. hlist_for_each_entry_safe(s, node, n, bucket, hash_link) {
  1485. if (s->gfn != sp->gfn || s->role.direct)
  1486. continue;
  1487. if (s->role.word != sp->role.word)
  1488. return 1;
  1489. }
  1490. ++vcpu->kvm->stat.mmu_unsync;
  1491. sp->unsync = 1;
  1492. kvm_mmu_mark_parents_unsync(vcpu, sp);
  1493. mmu_convert_notrap(sp);
  1494. return 0;
  1495. }
  1496. static int mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
  1497. bool can_unsync)
  1498. {
  1499. struct kvm_mmu_page *shadow;
  1500. shadow = kvm_mmu_lookup_page(vcpu->kvm, gfn);
  1501. if (shadow) {
  1502. if (shadow->role.level != PT_PAGE_TABLE_LEVEL)
  1503. return 1;
  1504. if (shadow->unsync)
  1505. return 0;
  1506. if (can_unsync && oos_shadow)
  1507. return kvm_unsync_page(vcpu, shadow);
  1508. return 1;
  1509. }
  1510. return 0;
  1511. }
  1512. static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
  1513. unsigned pte_access, int user_fault,
  1514. int write_fault, int dirty, int level,
  1515. gfn_t gfn, pfn_t pfn, bool speculative,
  1516. bool can_unsync, bool reset_host_protection)
  1517. {
  1518. u64 spte;
  1519. int ret = 0;
  1520. /*
  1521. * We don't set the accessed bit, since we sometimes want to see
  1522. * whether the guest actually used the pte (in order to detect
  1523. * demand paging).
  1524. */
  1525. spte = shadow_base_present_pte | shadow_dirty_mask;
  1526. if (!speculative)
  1527. spte |= shadow_accessed_mask;
  1528. if (!dirty)
  1529. pte_access &= ~ACC_WRITE_MASK;
  1530. if (pte_access & ACC_EXEC_MASK)
  1531. spte |= shadow_x_mask;
  1532. else
  1533. spte |= shadow_nx_mask;
  1534. if (pte_access & ACC_USER_MASK)
  1535. spte |= shadow_user_mask;
  1536. if (level > PT_PAGE_TABLE_LEVEL)
  1537. spte |= PT_PAGE_SIZE_MASK;
  1538. if (tdp_enabled)
  1539. spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
  1540. kvm_is_mmio_pfn(pfn));
  1541. if (reset_host_protection)
  1542. spte |= SPTE_HOST_WRITEABLE;
  1543. spte |= (u64)pfn << PAGE_SHIFT;
  1544. if ((pte_access & ACC_WRITE_MASK)
  1545. || (write_fault && !is_write_protection(vcpu) && !user_fault)) {
  1546. if (level > PT_PAGE_TABLE_LEVEL &&
  1547. has_wrprotected_page(vcpu->kvm, gfn, level)) {
  1548. ret = 1;
  1549. spte = shadow_trap_nonpresent_pte;
  1550. goto set_pte;
  1551. }
  1552. spte |= PT_WRITABLE_MASK;
  1553. /*
  1554. * Optimization: for pte sync, if spte was writable the hash
  1555. * lookup is unnecessary (and expensive). Write protection
  1556. * is responsibility of mmu_get_page / kvm_sync_page.
  1557. * Same reasoning can be applied to dirty page accounting.
  1558. */
  1559. if (!can_unsync && is_writable_pte(*sptep))
  1560. goto set_pte;
  1561. if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
  1562. pgprintk("%s: found shadow page for %lx, marking ro\n",
  1563. __func__, gfn);
  1564. ret = 1;
  1565. pte_access &= ~ACC_WRITE_MASK;
  1566. if (is_writable_pte(spte))
  1567. spte &= ~PT_WRITABLE_MASK;
  1568. }
  1569. }
  1570. if (pte_access & ACC_WRITE_MASK)
  1571. mark_page_dirty(vcpu->kvm, gfn);
  1572. set_pte:
  1573. __set_spte(sptep, spte);
  1574. return ret;
  1575. }
  1576. static void mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
  1577. unsigned pt_access, unsigned pte_access,
  1578. int user_fault, int write_fault, int dirty,
  1579. int *ptwrite, int level, gfn_t gfn,
  1580. pfn_t pfn, bool speculative,
  1581. bool reset_host_protection)
  1582. {
  1583. int was_rmapped = 0;
  1584. int was_writable = is_writable_pte(*sptep);
  1585. int rmap_count;
  1586. pgprintk("%s: spte %llx access %x write_fault %d"
  1587. " user_fault %d gfn %lx\n",
  1588. __func__, *sptep, pt_access,
  1589. write_fault, user_fault, gfn);
  1590. if (is_rmap_spte(*sptep)) {
  1591. /*
  1592. * If we overwrite a PTE page pointer with a 2MB PMD, unlink
  1593. * the parent of the now unreachable PTE.
  1594. */
  1595. if (level > PT_PAGE_TABLE_LEVEL &&
  1596. !is_large_pte(*sptep)) {
  1597. struct kvm_mmu_page *child;
  1598. u64 pte = *sptep;
  1599. child = page_header(pte & PT64_BASE_ADDR_MASK);
  1600. mmu_page_remove_parent_pte(child, sptep);
  1601. } else if (pfn != spte_to_pfn(*sptep)) {
  1602. pgprintk("hfn old %lx new %lx\n",
  1603. spte_to_pfn(*sptep), pfn);
  1604. rmap_remove(vcpu->kvm, sptep);
  1605. } else
  1606. was_rmapped = 1;
  1607. }
  1608. if (set_spte(vcpu, sptep, pte_access, user_fault, write_fault,
  1609. dirty, level, gfn, pfn, speculative, true,
  1610. reset_host_protection)) {
  1611. if (write_fault)
  1612. *ptwrite = 1;
  1613. kvm_x86_ops->tlb_flush(vcpu);
  1614. }
  1615. pgprintk("%s: setting spte %llx\n", __func__, *sptep);
  1616. pgprintk("instantiating %s PTE (%s) at %ld (%llx) addr %p\n",
  1617. is_large_pte(*sptep)? "2MB" : "4kB",
  1618. *sptep & PT_PRESENT_MASK ?"RW":"R", gfn,
  1619. *sptep, sptep);
  1620. if (!was_rmapped && is_large_pte(*sptep))
  1621. ++vcpu->kvm->stat.lpages;
  1622. page_header_update_slot(vcpu->kvm, sptep, gfn);
  1623. if (!was_rmapped) {
  1624. rmap_count = rmap_add(vcpu, sptep, gfn);
  1625. kvm_release_pfn_clean(pfn);
  1626. if (rmap_count > RMAP_RECYCLE_THRESHOLD)
  1627. rmap_recycle(vcpu, sptep, gfn);
  1628. } else {
  1629. if (was_writable)
  1630. kvm_release_pfn_dirty(pfn);
  1631. else
  1632. kvm_release_pfn_clean(pfn);
  1633. }
  1634. if (speculative) {
  1635. vcpu->arch.last_pte_updated = sptep;
  1636. vcpu->arch.last_pte_gfn = gfn;
  1637. }
  1638. }
  1639. static void nonpaging_new_cr3(struct kvm_vcpu *vcpu)
  1640. {
  1641. }
  1642. static int __direct_map(struct kvm_vcpu *vcpu, gpa_t v, int write,
  1643. int level, gfn_t gfn, pfn_t pfn)
  1644. {
  1645. struct kvm_shadow_walk_iterator iterator;
  1646. struct kvm_mmu_page *sp;
  1647. int pt_write = 0;
  1648. gfn_t pseudo_gfn;
  1649. for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
  1650. if (iterator.level == level) {
  1651. mmu_set_spte(vcpu, iterator.sptep, ACC_ALL, ACC_ALL,
  1652. 0, write, 1, &pt_write,
  1653. level, gfn, pfn, false, true);
  1654. ++vcpu->stat.pf_fixed;
  1655. break;
  1656. }
  1657. if (*iterator.sptep == shadow_trap_nonpresent_pte) {
  1658. pseudo_gfn = (iterator.addr & PT64_DIR_BASE_ADDR_MASK) >> PAGE_SHIFT;
  1659. sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr,
  1660. iterator.level - 1,
  1661. 1, ACC_ALL, iterator.sptep);
  1662. if (!sp) {
  1663. pgprintk("nonpaging_map: ENOMEM\n");
  1664. kvm_release_pfn_clean(pfn);
  1665. return -ENOMEM;
  1666. }
  1667. __set_spte(iterator.sptep,
  1668. __pa(sp->spt)
  1669. | PT_PRESENT_MASK | PT_WRITABLE_MASK
  1670. | shadow_user_mask | shadow_x_mask);
  1671. }
  1672. }
  1673. return pt_write;
  1674. }
  1675. static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, int write, gfn_t gfn)
  1676. {
  1677. int r;
  1678. int level;
  1679. pfn_t pfn;
  1680. unsigned long mmu_seq;
  1681. level = mapping_level(vcpu, gfn);
  1682. /*
  1683. * This path builds a PAE pagetable - so we can map 2mb pages at
  1684. * maximum. Therefore check if the level is larger than that.
  1685. */
  1686. if (level > PT_DIRECTORY_LEVEL)
  1687. level = PT_DIRECTORY_LEVEL;
  1688. gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
  1689. mmu_seq = vcpu->kvm->mmu_notifier_seq;
  1690. smp_rmb();
  1691. pfn = gfn_to_pfn(vcpu->kvm, gfn);
  1692. /* mmio */
  1693. if (is_error_pfn(pfn)) {
  1694. kvm_release_pfn_clean(pfn);
  1695. return 1;
  1696. }
  1697. spin_lock(&vcpu->kvm->mmu_lock);
  1698. if (mmu_notifier_retry(vcpu, mmu_seq))
  1699. goto out_unlock;
  1700. kvm_mmu_free_some_pages(vcpu);
  1701. r = __direct_map(vcpu, v, write, level, gfn, pfn);
  1702. spin_unlock(&vcpu->kvm->mmu_lock);
  1703. return r;
  1704. out_unlock:
  1705. spin_unlock(&vcpu->kvm->mmu_lock);
  1706. kvm_release_pfn_clean(pfn);
  1707. return 0;
  1708. }
  1709. static void mmu_free_roots(struct kvm_vcpu *vcpu)
  1710. {
  1711. int i;
  1712. struct kvm_mmu_page *sp;
  1713. if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
  1714. return;
  1715. spin_lock(&vcpu->kvm->mmu_lock);
  1716. if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
  1717. hpa_t root = vcpu->arch.mmu.root_hpa;
  1718. sp = page_header(root);
  1719. --sp->root_count;
  1720. if (!sp->root_count && sp->role.invalid)
  1721. kvm_mmu_zap_page(vcpu->kvm, sp);
  1722. vcpu->arch.mmu.root_hpa = INVALID_PAGE;
  1723. spin_unlock(&vcpu->kvm->mmu_lock);
  1724. return;
  1725. }
  1726. for (i = 0; i < 4; ++i) {
  1727. hpa_t root = vcpu->arch.mmu.pae_root[i];
  1728. if (root) {
  1729. root &= PT64_BASE_ADDR_MASK;
  1730. sp = page_header(root);
  1731. --sp->root_count;
  1732. if (!sp->root_count && sp->role.invalid)
  1733. kvm_mmu_zap_page(vcpu->kvm, sp);
  1734. }
  1735. vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
  1736. }
  1737. spin_unlock(&vcpu->kvm->mmu_lock);
  1738. vcpu->arch.mmu.root_hpa = INVALID_PAGE;
  1739. }
  1740. static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
  1741. {
  1742. int ret = 0;
  1743. if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
  1744. set_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests);
  1745. ret = 1;
  1746. }
  1747. return ret;
  1748. }
  1749. static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
  1750. {
  1751. int i;
  1752. gfn_t root_gfn;
  1753. struct kvm_mmu_page *sp;
  1754. int direct = 0;
  1755. u64 pdptr;
  1756. root_gfn = vcpu->arch.cr3 >> PAGE_SHIFT;
  1757. if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
  1758. hpa_t root = vcpu->arch.mmu.root_hpa;
  1759. ASSERT(!VALID_PAGE(root));
  1760. if (tdp_enabled)
  1761. direct = 1;
  1762. if (mmu_check_root(vcpu, root_gfn))
  1763. return 1;
  1764. sp = kvm_mmu_get_page(vcpu, root_gfn, 0,
  1765. PT64_ROOT_LEVEL, direct,
  1766. ACC_ALL, NULL);
  1767. root = __pa(sp->spt);
  1768. ++sp->root_count;
  1769. vcpu->arch.mmu.root_hpa = root;
  1770. return 0;
  1771. }
  1772. direct = !is_paging(vcpu);
  1773. if (tdp_enabled)
  1774. direct = 1;
  1775. for (i = 0; i < 4; ++i) {
  1776. hpa_t root = vcpu->arch.mmu.pae_root[i];
  1777. ASSERT(!VALID_PAGE(root));
  1778. if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
  1779. pdptr = kvm_pdptr_read(vcpu, i);
  1780. if (!is_present_gpte(pdptr)) {
  1781. vcpu->arch.mmu.pae_root[i] = 0;
  1782. continue;
  1783. }
  1784. root_gfn = pdptr >> PAGE_SHIFT;
  1785. } else if (vcpu->arch.mmu.root_level == 0)
  1786. root_gfn = 0;
  1787. if (mmu_check_root(vcpu, root_gfn))
  1788. return 1;
  1789. sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
  1790. PT32_ROOT_LEVEL, direct,
  1791. ACC_ALL, NULL);
  1792. root = __pa(sp->spt);
  1793. ++sp->root_count;
  1794. vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
  1795. }
  1796. vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
  1797. return 0;
  1798. }
  1799. static void mmu_sync_roots(struct kvm_vcpu *vcpu)
  1800. {
  1801. int i;
  1802. struct kvm_mmu_page *sp;
  1803. if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
  1804. return;
  1805. if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
  1806. hpa_t root = vcpu->arch.mmu.root_hpa;
  1807. sp = page_header(root);
  1808. mmu_sync_children(vcpu, sp);
  1809. return;
  1810. }
  1811. for (i = 0; i < 4; ++i) {
  1812. hpa_t root = vcpu->arch.mmu.pae_root[i];
  1813. if (root && VALID_PAGE(root)) {
  1814. root &= PT64_BASE_ADDR_MASK;
  1815. sp = page_header(root);
  1816. mmu_sync_children(vcpu, sp);
  1817. }
  1818. }
  1819. }
  1820. void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
  1821. {
  1822. spin_lock(&vcpu->kvm->mmu_lock);
  1823. mmu_sync_roots(vcpu);
  1824. spin_unlock(&vcpu->kvm->mmu_lock);
  1825. }
  1826. static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr,
  1827. u32 access, u32 *error)
  1828. {
  1829. if (error)
  1830. *error = 0;
  1831. return vaddr;
  1832. }
  1833. static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
  1834. u32 error_code)
  1835. {
  1836. gfn_t gfn;
  1837. int r;
  1838. pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
  1839. r = mmu_topup_memory_caches(vcpu);
  1840. if (r)
  1841. return r;
  1842. ASSERT(vcpu);
  1843. ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
  1844. gfn = gva >> PAGE_SHIFT;
  1845. return nonpaging_map(vcpu, gva & PAGE_MASK,
  1846. error_code & PFERR_WRITE_MASK, gfn);
  1847. }
  1848. static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa,
  1849. u32 error_code)
  1850. {
  1851. pfn_t pfn;
  1852. int r;
  1853. int level;
  1854. gfn_t gfn = gpa >> PAGE_SHIFT;
  1855. unsigned long mmu_seq;
  1856. ASSERT(vcpu);
  1857. ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
  1858. r = mmu_topup_memory_caches(vcpu);
  1859. if (r)
  1860. return r;
  1861. level = mapping_level(vcpu, gfn);
  1862. gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
  1863. mmu_seq = vcpu->kvm->mmu_notifier_seq;
  1864. smp_rmb();
  1865. pfn = gfn_to_pfn(vcpu->kvm, gfn);
  1866. if (is_error_pfn(pfn)) {
  1867. kvm_release_pfn_clean(pfn);
  1868. return 1;
  1869. }
  1870. spin_lock(&vcpu->kvm->mmu_lock);
  1871. if (mmu_notifier_retry(vcpu, mmu_seq))
  1872. goto out_unlock;
  1873. kvm_mmu_free_some_pages(vcpu);
  1874. r = __direct_map(vcpu, gpa, error_code & PFERR_WRITE_MASK,
  1875. level, gfn, pfn);
  1876. spin_unlock(&vcpu->kvm->mmu_lock);
  1877. return r;
  1878. out_unlock:
  1879. spin_unlock(&vcpu->kvm->mmu_lock);
  1880. kvm_release_pfn_clean(pfn);
  1881. return 0;
  1882. }
  1883. static void nonpaging_free(struct kvm_vcpu *vcpu)
  1884. {
  1885. mmu_free_roots(vcpu);
  1886. }
  1887. static int nonpaging_init_context(struct kvm_vcpu *vcpu)
  1888. {
  1889. struct kvm_mmu *context = &vcpu->arch.mmu;
  1890. context->new_cr3 = nonpaging_new_cr3;
  1891. context->page_fault = nonpaging_page_fault;
  1892. context->gva_to_gpa = nonpaging_gva_to_gpa;
  1893. context->free = nonpaging_free;
  1894. context->prefetch_page = nonpaging_prefetch_page;
  1895. context->sync_page = nonpaging_sync_page;
  1896. context->invlpg = nonpaging_invlpg;
  1897. context->root_level = 0;
  1898. context->shadow_root_level = PT32E_ROOT_LEVEL;
  1899. context->root_hpa = INVALID_PAGE;
  1900. return 0;
  1901. }
  1902. void kvm_mmu_flush_tlb(struct kvm_vcpu *vcpu)
  1903. {
  1904. ++vcpu->stat.tlb_flush;
  1905. kvm_x86_ops->tlb_flush(vcpu);
  1906. }
  1907. static void paging_new_cr3(struct kvm_vcpu *vcpu)
  1908. {
  1909. pgprintk("%s: cr3 %lx\n", __func__, vcpu->arch.cr3);
  1910. mmu_free_roots(vcpu);
  1911. }
  1912. static void inject_page_fault(struct kvm_vcpu *vcpu,
  1913. u64 addr,
  1914. u32 err_code)
  1915. {
  1916. kvm_inject_page_fault(vcpu, addr, err_code);
  1917. }
  1918. static void paging_free(struct kvm_vcpu *vcpu)
  1919. {
  1920. nonpaging_free(vcpu);
  1921. }
  1922. static bool is_rsvd_bits_set(struct kvm_vcpu *vcpu, u64 gpte, int level)
  1923. {
  1924. int bit7;
  1925. bit7 = (gpte >> 7) & 1;
  1926. return (gpte & vcpu->arch.mmu.rsvd_bits_mask[bit7][level-1]) != 0;
  1927. }
  1928. #define PTTYPE 64
  1929. #include "paging_tmpl.h"
  1930. #undef PTTYPE
  1931. #define PTTYPE 32
  1932. #include "paging_tmpl.h"
  1933. #undef PTTYPE
  1934. static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu, int level)
  1935. {
  1936. struct kvm_mmu *context = &vcpu->arch.mmu;
  1937. int maxphyaddr = cpuid_maxphyaddr(vcpu);
  1938. u64 exb_bit_rsvd = 0;
  1939. if (!is_nx(vcpu))
  1940. exb_bit_rsvd = rsvd_bits(63, 63);
  1941. switch (level) {
  1942. case PT32_ROOT_LEVEL:
  1943. /* no rsvd bits for 2 level 4K page table entries */
  1944. context->rsvd_bits_mask[0][1] = 0;
  1945. context->rsvd_bits_mask[0][0] = 0;
  1946. if (is_cpuid_PSE36())
  1947. /* 36bits PSE 4MB page */
  1948. context->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
  1949. else
  1950. /* 32 bits PSE 4MB page */
  1951. context->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
  1952. context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[1][0];
  1953. break;
  1954. case PT32E_ROOT_LEVEL:
  1955. context->rsvd_bits_mask[0][2] =
  1956. rsvd_bits(maxphyaddr, 63) |
  1957. rsvd_bits(7, 8) | rsvd_bits(1, 2); /* PDPTE */
  1958. context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
  1959. rsvd_bits(maxphyaddr, 62); /* PDE */
  1960. context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
  1961. rsvd_bits(maxphyaddr, 62); /* PTE */
  1962. context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
  1963. rsvd_bits(maxphyaddr, 62) |
  1964. rsvd_bits(13, 20); /* large page */
  1965. context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[1][0];
  1966. break;
  1967. case PT64_ROOT_LEVEL:
  1968. context->rsvd_bits_mask[0][3] = exb_bit_rsvd |
  1969. rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
  1970. context->rsvd_bits_mask[0][2] = exb_bit_rsvd |
  1971. rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
  1972. context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
  1973. rsvd_bits(maxphyaddr, 51);
  1974. context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
  1975. rsvd_bits(maxphyaddr, 51);
  1976. context->rsvd_bits_mask[1][3] = context->rsvd_bits_mask[0][3];
  1977. context->rsvd_bits_mask[1][2] = exb_bit_rsvd |
  1978. rsvd_bits(maxphyaddr, 51) |
  1979. rsvd_bits(13, 29);
  1980. context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
  1981. rsvd_bits(maxphyaddr, 51) |
  1982. rsvd_bits(13, 20); /* large page */
  1983. context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[1][0];
  1984. break;
  1985. }
  1986. }
  1987. static int paging64_init_context_common(struct kvm_vcpu *vcpu, int level)
  1988. {
  1989. struct kvm_mmu *context = &vcpu->arch.mmu;
  1990. ASSERT(is_pae(vcpu));
  1991. context->new_cr3 = paging_new_cr3;
  1992. context->page_fault = paging64_page_fault;
  1993. context->gva_to_gpa = paging64_gva_to_gpa;
  1994. context->prefetch_page = paging64_prefetch_page;
  1995. context->sync_page = paging64_sync_page;
  1996. context->invlpg = paging64_invlpg;
  1997. context->free = paging_free;
  1998. context->root_level = level;
  1999. context->shadow_root_level = level;
  2000. context->root_hpa = INVALID_PAGE;
  2001. return 0;
  2002. }
  2003. static int paging64_init_context(struct kvm_vcpu *vcpu)
  2004. {
  2005. reset_rsvds_bits_mask(vcpu, PT64_ROOT_LEVEL);
  2006. return paging64_init_context_common(vcpu, PT64_ROOT_LEVEL);
  2007. }
  2008. static int paging32_init_context(struct kvm_vcpu *vcpu)
  2009. {
  2010. struct kvm_mmu *context = &vcpu->arch.mmu;
  2011. reset_rsvds_bits_mask(vcpu, PT32_ROOT_LEVEL);
  2012. context->new_cr3 = paging_new_cr3;
  2013. context->page_fault = paging32_page_fault;
  2014. context->gva_to_gpa = paging32_gva_to_gpa;
  2015. context->free = paging_free;
  2016. context->prefetch_page = paging32_prefetch_page;
  2017. context->sync_page = paging32_sync_page;
  2018. context->invlpg = paging32_invlpg;
  2019. context->root_level = PT32_ROOT_LEVEL;
  2020. context->shadow_root_level = PT32E_ROOT_LEVEL;
  2021. context->root_hpa = INVALID_PAGE;
  2022. return 0;
  2023. }
  2024. static int paging32E_init_context(struct kvm_vcpu *vcpu)
  2025. {
  2026. reset_rsvds_bits_mask(vcpu, PT32E_ROOT_LEVEL);
  2027. return paging64_init_context_common(vcpu, PT32E_ROOT_LEVEL);
  2028. }
  2029. static int init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
  2030. {
  2031. struct kvm_mmu *context = &vcpu->arch.mmu;
  2032. context->new_cr3 = nonpaging_new_cr3;
  2033. context->page_fault = tdp_page_fault;
  2034. context->free = nonpaging_free;
  2035. context->prefetch_page = nonpaging_prefetch_page;
  2036. context->sync_page = nonpaging_sync_page;
  2037. context->invlpg = nonpaging_invlpg;
  2038. context->shadow_root_level = kvm_x86_ops->get_tdp_level();
  2039. context->root_hpa = INVALID_PAGE;
  2040. if (!is_paging(vcpu)) {
  2041. context->gva_to_gpa = nonpaging_gva_to_gpa;
  2042. context->root_level = 0;
  2043. } else if (is_long_mode(vcpu)) {
  2044. reset_rsvds_bits_mask(vcpu, PT64_ROOT_LEVEL);
  2045. context->gva_to_gpa = paging64_gva_to_gpa;
  2046. context->root_level = PT64_ROOT_LEVEL;
  2047. } else if (is_pae(vcpu)) {
  2048. reset_rsvds_bits_mask(vcpu, PT32E_ROOT_LEVEL);
  2049. context->gva_to_gpa = paging64_gva_to_gpa;
  2050. context->root_level = PT32E_ROOT_LEVEL;
  2051. } else {
  2052. reset_rsvds_bits_mask(vcpu, PT32_ROOT_LEVEL);
  2053. context->gva_to_gpa = paging32_gva_to_gpa;
  2054. context->root_level = PT32_ROOT_LEVEL;
  2055. }
  2056. return 0;
  2057. }
  2058. static int init_kvm_softmmu(struct kvm_vcpu *vcpu)
  2059. {
  2060. int r;
  2061. ASSERT(vcpu);
  2062. ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
  2063. if (!is_paging(vcpu))
  2064. r = nonpaging_init_context(vcpu);
  2065. else if (is_long_mode(vcpu))
  2066. r = paging64_init_context(vcpu);
  2067. else if (is_pae(vcpu))
  2068. r = paging32E_init_context(vcpu);
  2069. else
  2070. r = paging32_init_context(vcpu);
  2071. vcpu->arch.mmu.base_role.glevels = vcpu->arch.mmu.root_level;
  2072. return r;
  2073. }
  2074. static int init_kvm_mmu(struct kvm_vcpu *vcpu)
  2075. {
  2076. vcpu->arch.update_pte.pfn = bad_pfn;
  2077. if (tdp_enabled)
  2078. return init_kvm_tdp_mmu(vcpu);
  2079. else
  2080. return init_kvm_softmmu(vcpu);
  2081. }
  2082. static void destroy_kvm_mmu(struct kvm_vcpu *vcpu)
  2083. {
  2084. ASSERT(vcpu);
  2085. if (VALID_PAGE(vcpu->arch.mmu.root_hpa)) {
  2086. vcpu->arch.mmu.free(vcpu);
  2087. vcpu->arch.mmu.root_hpa = INVALID_PAGE;
  2088. }
  2089. }
  2090. int kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
  2091. {
  2092. destroy_kvm_mmu(vcpu);
  2093. return init_kvm_mmu(vcpu);
  2094. }
  2095. EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
  2096. int kvm_mmu_load(struct kvm_vcpu *vcpu)
  2097. {
  2098. int r;
  2099. r = mmu_topup_memory_caches(vcpu);
  2100. if (r)
  2101. goto out;
  2102. spin_lock(&vcpu->kvm->mmu_lock);
  2103. kvm_mmu_free_some_pages(vcpu);
  2104. r = mmu_alloc_roots(vcpu);
  2105. mmu_sync_roots(vcpu);
  2106. spin_unlock(&vcpu->kvm->mmu_lock);
  2107. if (r)
  2108. goto out;
  2109. /* set_cr3() should ensure TLB has been flushed */
  2110. kvm_x86_ops->set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
  2111. out:
  2112. return r;
  2113. }
  2114. EXPORT_SYMBOL_GPL(kvm_mmu_load);
  2115. void kvm_mmu_unload(struct kvm_vcpu *vcpu)
  2116. {
  2117. mmu_free_roots(vcpu);
  2118. }
  2119. static void mmu_pte_write_zap_pte(struct kvm_vcpu *vcpu,
  2120. struct kvm_mmu_page *sp,
  2121. u64 *spte)
  2122. {
  2123. u64 pte;
  2124. struct kvm_mmu_page *child;
  2125. pte = *spte;
  2126. if (is_shadow_present_pte(pte)) {
  2127. if (is_last_spte(pte, sp->role.level))
  2128. rmap_remove(vcpu->kvm, spte);
  2129. else {
  2130. child = page_header(pte & PT64_BASE_ADDR_MASK);
  2131. mmu_page_remove_parent_pte(child, spte);
  2132. }
  2133. }
  2134. __set_spte(spte, shadow_trap_nonpresent_pte);
  2135. if (is_large_pte(pte))
  2136. --vcpu->kvm->stat.lpages;
  2137. }
  2138. static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
  2139. struct kvm_mmu_page *sp,
  2140. u64 *spte,
  2141. const void *new)
  2142. {
  2143. if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
  2144. ++vcpu->kvm->stat.mmu_pde_zapped;
  2145. return;
  2146. }
  2147. ++vcpu->kvm->stat.mmu_pte_updated;
  2148. if (sp->role.glevels == PT32_ROOT_LEVEL)
  2149. paging32_update_pte(vcpu, sp, spte, new);
  2150. else
  2151. paging64_update_pte(vcpu, sp, spte, new);
  2152. }
  2153. static bool need_remote_flush(u64 old, u64 new)
  2154. {
  2155. if (!is_shadow_present_pte(old))
  2156. return false;
  2157. if (!is_shadow_present_pte(new))
  2158. return true;
  2159. if ((old ^ new) & PT64_BASE_ADDR_MASK)
  2160. return true;
  2161. old ^= PT64_NX_MASK;
  2162. new ^= PT64_NX_MASK;
  2163. return (old & ~new & PT64_PERM_MASK) != 0;
  2164. }
  2165. static void mmu_pte_write_flush_tlb(struct kvm_vcpu *vcpu, u64 old, u64 new)
  2166. {
  2167. if (need_remote_flush(old, new))
  2168. kvm_flush_remote_tlbs(vcpu->kvm);
  2169. else
  2170. kvm_mmu_flush_tlb(vcpu);
  2171. }
  2172. static bool last_updated_pte_accessed(struct kvm_vcpu *vcpu)
  2173. {
  2174. u64 *spte = vcpu->arch.last_pte_updated;
  2175. return !!(spte && (*spte & shadow_accessed_mask));
  2176. }
  2177. static void mmu_guess_page_from_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
  2178. u64 gpte)
  2179. {
  2180. gfn_t gfn;
  2181. pfn_t pfn;
  2182. if (!is_present_gpte(gpte))
  2183. return;
  2184. gfn = (gpte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
  2185. vcpu->arch.update_pte.mmu_seq = vcpu->kvm->mmu_notifier_seq;
  2186. smp_rmb();
  2187. pfn = gfn_to_pfn(vcpu->kvm, gfn);
  2188. if (is_error_pfn(pfn)) {
  2189. kvm_release_pfn_clean(pfn);
  2190. return;
  2191. }
  2192. vcpu->arch.update_pte.gfn = gfn;
  2193. vcpu->arch.update_pte.pfn = pfn;
  2194. }
  2195. static void kvm_mmu_access_page(struct kvm_vcpu *vcpu, gfn_t gfn)
  2196. {
  2197. u64 *spte = vcpu->arch.last_pte_updated;
  2198. if (spte
  2199. && vcpu->arch.last_pte_gfn == gfn
  2200. && shadow_accessed_mask
  2201. && !(*spte & shadow_accessed_mask)
  2202. && is_shadow_present_pte(*spte))
  2203. set_bit(PT_ACCESSED_SHIFT, (unsigned long *)spte);
  2204. }
  2205. void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
  2206. const u8 *new, int bytes,
  2207. bool guest_initiated)
  2208. {
  2209. gfn_t gfn = gpa >> PAGE_SHIFT;
  2210. struct kvm_mmu_page *sp;
  2211. struct hlist_node *node, *n;
  2212. struct hlist_head *bucket;
  2213. unsigned index;
  2214. u64 entry, gentry;
  2215. u64 *spte;
  2216. unsigned offset = offset_in_page(gpa);
  2217. unsigned pte_size;
  2218. unsigned page_offset;
  2219. unsigned misaligned;
  2220. unsigned quadrant;
  2221. int level;
  2222. int flooded = 0;
  2223. int npte;
  2224. int r;
  2225. pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
  2226. switch (bytes) {
  2227. case 4:
  2228. gentry = *(const u32 *)new;
  2229. break;
  2230. case 8:
  2231. gentry = *(const u64 *)new;
  2232. break;
  2233. default:
  2234. gentry = 0;
  2235. break;
  2236. }
  2237. /*
  2238. * Assume that the pte write on a page table of the same type
  2239. * as the current vcpu paging mode. This is nearly always true
  2240. * (might be false while changing modes). Note it is verified later
  2241. * by update_pte().
  2242. */
  2243. if (is_pae(vcpu) && bytes == 4) {
  2244. /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
  2245. gpa &= ~(gpa_t)7;
  2246. r = kvm_read_guest(vcpu->kvm, gpa, &gentry, 8);
  2247. if (r)
  2248. gentry = 0;
  2249. }
  2250. mmu_guess_page_from_pte_write(vcpu, gpa, gentry);
  2251. spin_lock(&vcpu->kvm->mmu_lock);
  2252. kvm_mmu_access_page(vcpu, gfn);
  2253. kvm_mmu_free_some_pages(vcpu);
  2254. ++vcpu->kvm->stat.mmu_pte_write;
  2255. kvm_mmu_audit(vcpu, "pre pte write");
  2256. if (guest_initiated) {
  2257. if (gfn == vcpu->arch.last_pt_write_gfn
  2258. && !last_updated_pte_accessed(vcpu)) {
  2259. ++vcpu->arch.last_pt_write_count;
  2260. if (vcpu->arch.last_pt_write_count >= 3)
  2261. flooded = 1;
  2262. } else {
  2263. vcpu->arch.last_pt_write_gfn = gfn;
  2264. vcpu->arch.last_pt_write_count = 1;
  2265. vcpu->arch.last_pte_updated = NULL;
  2266. }
  2267. }
  2268. index = kvm_page_table_hashfn(gfn);
  2269. bucket = &vcpu->kvm->arch.mmu_page_hash[index];
  2270. hlist_for_each_entry_safe(sp, node, n, bucket, hash_link) {
  2271. if (sp->gfn != gfn || sp->role.direct || sp->role.invalid)
  2272. continue;
  2273. pte_size = sp->role.glevels == PT32_ROOT_LEVEL ? 4 : 8;
  2274. misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
  2275. misaligned |= bytes < 4;
  2276. if (misaligned || flooded) {
  2277. /*
  2278. * Misaligned accesses are too much trouble to fix
  2279. * up; also, they usually indicate a page is not used
  2280. * as a page table.
  2281. *
  2282. * If we're seeing too many writes to a page,
  2283. * it may no longer be a page table, or we may be
  2284. * forking, in which case it is better to unmap the
  2285. * page.
  2286. */
  2287. pgprintk("misaligned: gpa %llx bytes %d role %x\n",
  2288. gpa, bytes, sp->role.word);
  2289. if (kvm_mmu_zap_page(vcpu->kvm, sp))
  2290. n = bucket->first;
  2291. ++vcpu->kvm->stat.mmu_flooded;
  2292. continue;
  2293. }
  2294. page_offset = offset;
  2295. level = sp->role.level;
  2296. npte = 1;
  2297. if (sp->role.glevels == PT32_ROOT_LEVEL) {
  2298. page_offset <<= 1; /* 32->64 */
  2299. /*
  2300. * A 32-bit pde maps 4MB while the shadow pdes map
  2301. * only 2MB. So we need to double the offset again
  2302. * and zap two pdes instead of one.
  2303. */
  2304. if (level == PT32_ROOT_LEVEL) {
  2305. page_offset &= ~7; /* kill rounding error */
  2306. page_offset <<= 1;
  2307. npte = 2;
  2308. }
  2309. quadrant = page_offset >> PAGE_SHIFT;
  2310. page_offset &= ~PAGE_MASK;
  2311. if (quadrant != sp->role.quadrant)
  2312. continue;
  2313. }
  2314. spte = &sp->spt[page_offset / sizeof(*spte)];
  2315. while (npte--) {
  2316. entry = *spte;
  2317. mmu_pte_write_zap_pte(vcpu, sp, spte);
  2318. if (gentry)
  2319. mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
  2320. mmu_pte_write_flush_tlb(vcpu, entry, *spte);
  2321. ++spte;
  2322. }
  2323. }
  2324. kvm_mmu_audit(vcpu, "post pte write");
  2325. spin_unlock(&vcpu->kvm->mmu_lock);
  2326. if (!is_error_pfn(vcpu->arch.update_pte.pfn)) {
  2327. kvm_release_pfn_clean(vcpu->arch.update_pte.pfn);
  2328. vcpu->arch.update_pte.pfn = bad_pfn;
  2329. }
  2330. }
  2331. int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
  2332. {
  2333. gpa_t gpa;
  2334. int r;
  2335. if (tdp_enabled)
  2336. return 0;
  2337. gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
  2338. spin_lock(&vcpu->kvm->mmu_lock);
  2339. r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
  2340. spin_unlock(&vcpu->kvm->mmu_lock);
  2341. return r;
  2342. }
  2343. EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
  2344. void __kvm_mmu_free_some_pages(struct kvm_vcpu *vcpu)
  2345. {
  2346. while (vcpu->kvm->arch.n_free_mmu_pages < KVM_REFILL_PAGES &&
  2347. !list_empty(&vcpu->kvm->arch.active_mmu_pages)) {
  2348. struct kvm_mmu_page *sp;
  2349. sp = container_of(vcpu->kvm->arch.active_mmu_pages.prev,
  2350. struct kvm_mmu_page, link);
  2351. kvm_mmu_zap_page(vcpu->kvm, sp);
  2352. ++vcpu->kvm->stat.mmu_recycled;
  2353. }
  2354. }
  2355. int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code)
  2356. {
  2357. int r;
  2358. enum emulation_result er;
  2359. r = vcpu->arch.mmu.page_fault(vcpu, cr2, error_code);
  2360. if (r < 0)
  2361. goto out;
  2362. if (!r) {
  2363. r = 1;
  2364. goto out;
  2365. }
  2366. r = mmu_topup_memory_caches(vcpu);
  2367. if (r)
  2368. goto out;
  2369. er = emulate_instruction(vcpu, cr2, error_code, 0);
  2370. switch (er) {
  2371. case EMULATE_DONE:
  2372. return 1;
  2373. case EMULATE_DO_MMIO:
  2374. ++vcpu->stat.mmio_exits;
  2375. return 0;
  2376. case EMULATE_FAIL:
  2377. vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
  2378. vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
  2379. vcpu->run->internal.ndata = 0;
  2380. return 0;
  2381. default:
  2382. BUG();
  2383. }
  2384. out:
  2385. return r;
  2386. }
  2387. EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
  2388. void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
  2389. {
  2390. vcpu->arch.mmu.invlpg(vcpu, gva);
  2391. kvm_mmu_flush_tlb(vcpu);
  2392. ++vcpu->stat.invlpg;
  2393. }
  2394. EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
  2395. void kvm_enable_tdp(void)
  2396. {
  2397. tdp_enabled = true;
  2398. }
  2399. EXPORT_SYMBOL_GPL(kvm_enable_tdp);
  2400. void kvm_disable_tdp(void)
  2401. {
  2402. tdp_enabled = false;
  2403. }
  2404. EXPORT_SYMBOL_GPL(kvm_disable_tdp);
  2405. static void free_mmu_pages(struct kvm_vcpu *vcpu)
  2406. {
  2407. free_page((unsigned long)vcpu->arch.mmu.pae_root);
  2408. }
  2409. static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
  2410. {
  2411. struct page *page;
  2412. int i;
  2413. ASSERT(vcpu);
  2414. /*
  2415. * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
  2416. * Therefore we need to allocate shadow page tables in the first
  2417. * 4GB of memory, which happens to fit the DMA32 zone.
  2418. */
  2419. page = alloc_page(GFP_KERNEL | __GFP_DMA32);
  2420. if (!page)
  2421. return -ENOMEM;
  2422. vcpu->arch.mmu.pae_root = page_address(page);
  2423. for (i = 0; i < 4; ++i)
  2424. vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
  2425. return 0;
  2426. }
  2427. int kvm_mmu_create(struct kvm_vcpu *vcpu)
  2428. {
  2429. ASSERT(vcpu);
  2430. ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
  2431. return alloc_mmu_pages(vcpu);
  2432. }
  2433. int kvm_mmu_setup(struct kvm_vcpu *vcpu)
  2434. {
  2435. ASSERT(vcpu);
  2436. ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
  2437. return init_kvm_mmu(vcpu);
  2438. }
  2439. void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
  2440. {
  2441. ASSERT(vcpu);
  2442. destroy_kvm_mmu(vcpu);
  2443. free_mmu_pages(vcpu);
  2444. mmu_free_memory_caches(vcpu);
  2445. }
  2446. void kvm_mmu_slot_remove_write_access(struct kvm *kvm, int slot)
  2447. {
  2448. struct kvm_mmu_page *sp;
  2449. list_for_each_entry(sp, &kvm->arch.active_mmu_pages, link) {
  2450. int i;
  2451. u64 *pt;
  2452. if (!test_bit(slot, sp->slot_bitmap))
  2453. continue;
  2454. pt = sp->spt;
  2455. for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
  2456. /* avoid RMW */
  2457. if (pt[i] & PT_WRITABLE_MASK)
  2458. pt[i] &= ~PT_WRITABLE_MASK;
  2459. }
  2460. kvm_flush_remote_tlbs(kvm);
  2461. }
  2462. void kvm_mmu_zap_all(struct kvm *kvm)
  2463. {
  2464. struct kvm_mmu_page *sp, *node;
  2465. spin_lock(&kvm->mmu_lock);
  2466. list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link)
  2467. if (kvm_mmu_zap_page(kvm, sp))
  2468. node = container_of(kvm->arch.active_mmu_pages.next,
  2469. struct kvm_mmu_page, link);
  2470. spin_unlock(&kvm->mmu_lock);
  2471. kvm_flush_remote_tlbs(kvm);
  2472. }
  2473. static void kvm_mmu_remove_one_alloc_mmu_page(struct kvm *kvm)
  2474. {
  2475. struct kvm_mmu_page *page;
  2476. page = container_of(kvm->arch.active_mmu_pages.prev,
  2477. struct kvm_mmu_page, link);
  2478. kvm_mmu_zap_page(kvm, page);
  2479. }
  2480. static int mmu_shrink(int nr_to_scan, gfp_t gfp_mask)
  2481. {
  2482. struct kvm *kvm;
  2483. struct kvm *kvm_freed = NULL;
  2484. int cache_count = 0;
  2485. spin_lock(&kvm_lock);
  2486. list_for_each_entry(kvm, &vm_list, vm_list) {
  2487. int npages, idx;
  2488. idx = srcu_read_lock(&kvm->srcu);
  2489. spin_lock(&kvm->mmu_lock);
  2490. npages = kvm->arch.n_alloc_mmu_pages -
  2491. kvm->arch.n_free_mmu_pages;
  2492. cache_count += npages;
  2493. if (!kvm_freed && nr_to_scan > 0 && npages > 0) {
  2494. kvm_mmu_remove_one_alloc_mmu_page(kvm);
  2495. cache_count--;
  2496. kvm_freed = kvm;
  2497. }
  2498. nr_to_scan--;
  2499. spin_unlock(&kvm->mmu_lock);
  2500. srcu_read_unlock(&kvm->srcu, idx);
  2501. }
  2502. if (kvm_freed)
  2503. list_move_tail(&kvm_freed->vm_list, &vm_list);
  2504. spin_unlock(&kvm_lock);
  2505. return cache_count;
  2506. }
  2507. static struct shrinker mmu_shrinker = {
  2508. .shrink = mmu_shrink,
  2509. .seeks = DEFAULT_SEEKS * 10,
  2510. };
  2511. static void mmu_destroy_caches(void)
  2512. {
  2513. if (pte_chain_cache)
  2514. kmem_cache_destroy(pte_chain_cache);
  2515. if (rmap_desc_cache)
  2516. kmem_cache_destroy(rmap_desc_cache);
  2517. if (mmu_page_header_cache)
  2518. kmem_cache_destroy(mmu_page_header_cache);
  2519. }
  2520. void kvm_mmu_module_exit(void)
  2521. {
  2522. mmu_destroy_caches();
  2523. unregister_shrinker(&mmu_shrinker);
  2524. }
  2525. int kvm_mmu_module_init(void)
  2526. {
  2527. pte_chain_cache = kmem_cache_create("kvm_pte_chain",
  2528. sizeof(struct kvm_pte_chain),
  2529. 0, 0, NULL);
  2530. if (!pte_chain_cache)
  2531. goto nomem;
  2532. rmap_desc_cache = kmem_cache_create("kvm_rmap_desc",
  2533. sizeof(struct kvm_rmap_desc),
  2534. 0, 0, NULL);
  2535. if (!rmap_desc_cache)
  2536. goto nomem;
  2537. mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
  2538. sizeof(struct kvm_mmu_page),
  2539. 0, 0, NULL);
  2540. if (!mmu_page_header_cache)
  2541. goto nomem;
  2542. register_shrinker(&mmu_shrinker);
  2543. return 0;
  2544. nomem:
  2545. mmu_destroy_caches();
  2546. return -ENOMEM;
  2547. }
  2548. /*
  2549. * Caculate mmu pages needed for kvm.
  2550. */
  2551. unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
  2552. {
  2553. int i;
  2554. unsigned int nr_mmu_pages;
  2555. unsigned int nr_pages = 0;
  2556. struct kvm_memslots *slots;
  2557. slots = rcu_dereference(kvm->memslots);
  2558. for (i = 0; i < slots->nmemslots; i++)
  2559. nr_pages += slots->memslots[i].npages;
  2560. nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
  2561. nr_mmu_pages = max(nr_mmu_pages,
  2562. (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
  2563. return nr_mmu_pages;
  2564. }
  2565. static void *pv_mmu_peek_buffer(struct kvm_pv_mmu_op_buffer *buffer,
  2566. unsigned len)
  2567. {
  2568. if (len > buffer->len)
  2569. return NULL;
  2570. return buffer->ptr;
  2571. }
  2572. static void *pv_mmu_read_buffer(struct kvm_pv_mmu_op_buffer *buffer,
  2573. unsigned len)
  2574. {
  2575. void *ret;
  2576. ret = pv_mmu_peek_buffer(buffer, len);
  2577. if (!ret)
  2578. return ret;
  2579. buffer->ptr += len;
  2580. buffer->len -= len;
  2581. buffer->processed += len;
  2582. return ret;
  2583. }
  2584. static int kvm_pv_mmu_write(struct kvm_vcpu *vcpu,
  2585. gpa_t addr, gpa_t value)
  2586. {
  2587. int bytes = 8;
  2588. int r;
  2589. if (!is_long_mode(vcpu) && !is_pae(vcpu))
  2590. bytes = 4;
  2591. r = mmu_topup_memory_caches(vcpu);
  2592. if (r)
  2593. return r;
  2594. if (!emulator_write_phys(vcpu, addr, &value, bytes))
  2595. return -EFAULT;
  2596. return 1;
  2597. }
  2598. static int kvm_pv_mmu_flush_tlb(struct kvm_vcpu *vcpu)
  2599. {
  2600. kvm_set_cr3(vcpu, vcpu->arch.cr3);
  2601. return 1;
  2602. }
  2603. static int kvm_pv_mmu_release_pt(struct kvm_vcpu *vcpu, gpa_t addr)
  2604. {
  2605. spin_lock(&vcpu->kvm->mmu_lock);
  2606. mmu_unshadow(vcpu->kvm, addr >> PAGE_SHIFT);
  2607. spin_unlock(&vcpu->kvm->mmu_lock);
  2608. return 1;
  2609. }
  2610. static int kvm_pv_mmu_op_one(struct kvm_vcpu *vcpu,
  2611. struct kvm_pv_mmu_op_buffer *buffer)
  2612. {
  2613. struct kvm_mmu_op_header *header;
  2614. header = pv_mmu_peek_buffer(buffer, sizeof *header);
  2615. if (!header)
  2616. return 0;
  2617. switch (header->op) {
  2618. case KVM_MMU_OP_WRITE_PTE: {
  2619. struct kvm_mmu_op_write_pte *wpte;
  2620. wpte = pv_mmu_read_buffer(buffer, sizeof *wpte);
  2621. if (!wpte)
  2622. return 0;
  2623. return kvm_pv_mmu_write(vcpu, wpte->pte_phys,
  2624. wpte->pte_val);
  2625. }
  2626. case KVM_MMU_OP_FLUSH_TLB: {
  2627. struct kvm_mmu_op_flush_tlb *ftlb;
  2628. ftlb = pv_mmu_read_buffer(buffer, sizeof *ftlb);
  2629. if (!ftlb)
  2630. return 0;
  2631. return kvm_pv_mmu_flush_tlb(vcpu);
  2632. }
  2633. case KVM_MMU_OP_RELEASE_PT: {
  2634. struct kvm_mmu_op_release_pt *rpt;
  2635. rpt = pv_mmu_read_buffer(buffer, sizeof *rpt);
  2636. if (!rpt)
  2637. return 0;
  2638. return kvm_pv_mmu_release_pt(vcpu, rpt->pt_phys);
  2639. }
  2640. default: return 0;
  2641. }
  2642. }
  2643. int kvm_pv_mmu_op(struct kvm_vcpu *vcpu, unsigned long bytes,
  2644. gpa_t addr, unsigned long *ret)
  2645. {
  2646. int r;
  2647. struct kvm_pv_mmu_op_buffer *buffer = &vcpu->arch.mmu_op_buffer;
  2648. buffer->ptr = buffer->buf;
  2649. buffer->len = min_t(unsigned long, bytes, sizeof buffer->buf);
  2650. buffer->processed = 0;
  2651. r = kvm_read_guest(vcpu->kvm, addr, buffer->buf, buffer->len);
  2652. if (r)
  2653. goto out;
  2654. while (buffer->len) {
  2655. r = kvm_pv_mmu_op_one(vcpu, buffer);
  2656. if (r < 0)
  2657. goto out;
  2658. if (r == 0)
  2659. break;
  2660. }
  2661. r = 1;
  2662. out:
  2663. *ret = buffer->processed;
  2664. return r;
  2665. }
  2666. int kvm_mmu_get_spte_hierarchy(struct kvm_vcpu *vcpu, u64 addr, u64 sptes[4])
  2667. {
  2668. struct kvm_shadow_walk_iterator iterator;
  2669. int nr_sptes = 0;
  2670. spin_lock(&vcpu->kvm->mmu_lock);
  2671. for_each_shadow_entry(vcpu, addr, iterator) {
  2672. sptes[iterator.level-1] = *iterator.sptep;
  2673. nr_sptes++;
  2674. if (!is_shadow_present_pte(*iterator.sptep))
  2675. break;
  2676. }
  2677. spin_unlock(&vcpu->kvm->mmu_lock);
  2678. return nr_sptes;
  2679. }
  2680. EXPORT_SYMBOL_GPL(kvm_mmu_get_spte_hierarchy);
  2681. #ifdef AUDIT
  2682. static const char *audit_msg;
  2683. static gva_t canonicalize(gva_t gva)
  2684. {
  2685. #ifdef CONFIG_X86_64
  2686. gva = (long long)(gva << 16) >> 16;
  2687. #endif
  2688. return gva;
  2689. }
  2690. typedef void (*inspect_spte_fn) (struct kvm *kvm, struct kvm_mmu_page *sp,
  2691. u64 *sptep);
  2692. static void __mmu_spte_walk(struct kvm *kvm, struct kvm_mmu_page *sp,
  2693. inspect_spte_fn fn)
  2694. {
  2695. int i;
  2696. for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
  2697. u64 ent = sp->spt[i];
  2698. if (is_shadow_present_pte(ent)) {
  2699. if (!is_last_spte(ent, sp->role.level)) {
  2700. struct kvm_mmu_page *child;
  2701. child = page_header(ent & PT64_BASE_ADDR_MASK);
  2702. __mmu_spte_walk(kvm, child, fn);
  2703. } else
  2704. fn(kvm, sp, &sp->spt[i]);
  2705. }
  2706. }
  2707. }
  2708. static void mmu_spte_walk(struct kvm_vcpu *vcpu, inspect_spte_fn fn)
  2709. {
  2710. int i;
  2711. struct kvm_mmu_page *sp;
  2712. if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
  2713. return;
  2714. if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
  2715. hpa_t root = vcpu->arch.mmu.root_hpa;
  2716. sp = page_header(root);
  2717. __mmu_spte_walk(vcpu->kvm, sp, fn);
  2718. return;
  2719. }
  2720. for (i = 0; i < 4; ++i) {
  2721. hpa_t root = vcpu->arch.mmu.pae_root[i];
  2722. if (root && VALID_PAGE(root)) {
  2723. root &= PT64_BASE_ADDR_MASK;
  2724. sp = page_header(root);
  2725. __mmu_spte_walk(vcpu->kvm, sp, fn);
  2726. }
  2727. }
  2728. return;
  2729. }
  2730. static void audit_mappings_page(struct kvm_vcpu *vcpu, u64 page_pte,
  2731. gva_t va, int level)
  2732. {
  2733. u64 *pt = __va(page_pte & PT64_BASE_ADDR_MASK);
  2734. int i;
  2735. gva_t va_delta = 1ul << (PAGE_SHIFT + 9 * (level - 1));
  2736. for (i = 0; i < PT64_ENT_PER_PAGE; ++i, va += va_delta) {
  2737. u64 ent = pt[i];
  2738. if (ent == shadow_trap_nonpresent_pte)
  2739. continue;
  2740. va = canonicalize(va);
  2741. if (is_shadow_present_pte(ent) && !is_last_spte(ent, level))
  2742. audit_mappings_page(vcpu, ent, va, level - 1);
  2743. else {
  2744. gpa_t gpa = kvm_mmu_gva_to_gpa_read(vcpu, va, NULL);
  2745. gfn_t gfn = gpa >> PAGE_SHIFT;
  2746. pfn_t pfn = gfn_to_pfn(vcpu->kvm, gfn);
  2747. hpa_t hpa = (hpa_t)pfn << PAGE_SHIFT;
  2748. if (is_error_pfn(pfn)) {
  2749. kvm_release_pfn_clean(pfn);
  2750. continue;
  2751. }
  2752. if (is_shadow_present_pte(ent)
  2753. && (ent & PT64_BASE_ADDR_MASK) != hpa)
  2754. printk(KERN_ERR "xx audit error: (%s) levels %d"
  2755. " gva %lx gpa %llx hpa %llx ent %llx %d\n",
  2756. audit_msg, vcpu->arch.mmu.root_level,
  2757. va, gpa, hpa, ent,
  2758. is_shadow_present_pte(ent));
  2759. else if (ent == shadow_notrap_nonpresent_pte
  2760. && !is_error_hpa(hpa))
  2761. printk(KERN_ERR "audit: (%s) notrap shadow,"
  2762. " valid guest gva %lx\n", audit_msg, va);
  2763. kvm_release_pfn_clean(pfn);
  2764. }
  2765. }
  2766. }
  2767. static void audit_mappings(struct kvm_vcpu *vcpu)
  2768. {
  2769. unsigned i;
  2770. if (vcpu->arch.mmu.root_level == 4)
  2771. audit_mappings_page(vcpu, vcpu->arch.mmu.root_hpa, 0, 4);
  2772. else
  2773. for (i = 0; i < 4; ++i)
  2774. if (vcpu->arch.mmu.pae_root[i] & PT_PRESENT_MASK)
  2775. audit_mappings_page(vcpu,
  2776. vcpu->arch.mmu.pae_root[i],
  2777. i << 30,
  2778. 2);
  2779. }
  2780. static int count_rmaps(struct kvm_vcpu *vcpu)
  2781. {
  2782. int nmaps = 0;
  2783. int i, j, k, idx;
  2784. idx = srcu_read_lock(&kvm->srcu);
  2785. slots = rcu_dereference(kvm->memslots);
  2786. for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
  2787. struct kvm_memory_slot *m = &slots->memslots[i];
  2788. struct kvm_rmap_desc *d;
  2789. for (j = 0; j < m->npages; ++j) {
  2790. unsigned long *rmapp = &m->rmap[j];
  2791. if (!*rmapp)
  2792. continue;
  2793. if (!(*rmapp & 1)) {
  2794. ++nmaps;
  2795. continue;
  2796. }
  2797. d = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
  2798. while (d) {
  2799. for (k = 0; k < RMAP_EXT; ++k)
  2800. if (d->sptes[k])
  2801. ++nmaps;
  2802. else
  2803. break;
  2804. d = d->more;
  2805. }
  2806. }
  2807. }
  2808. srcu_read_unlock(&kvm->srcu, idx);
  2809. return nmaps;
  2810. }
  2811. void inspect_spte_has_rmap(struct kvm *kvm, struct kvm_mmu_page *sp, u64 *sptep)
  2812. {
  2813. unsigned long *rmapp;
  2814. struct kvm_mmu_page *rev_sp;
  2815. gfn_t gfn;
  2816. if (*sptep & PT_WRITABLE_MASK) {
  2817. rev_sp = page_header(__pa(sptep));
  2818. gfn = rev_sp->gfns[sptep - rev_sp->spt];
  2819. if (!gfn_to_memslot(kvm, gfn)) {
  2820. if (!printk_ratelimit())
  2821. return;
  2822. printk(KERN_ERR "%s: no memslot for gfn %ld\n",
  2823. audit_msg, gfn);
  2824. printk(KERN_ERR "%s: index %ld of sp (gfn=%lx)\n",
  2825. audit_msg, sptep - rev_sp->spt,
  2826. rev_sp->gfn);
  2827. dump_stack();
  2828. return;
  2829. }
  2830. rmapp = gfn_to_rmap(kvm, rev_sp->gfns[sptep - rev_sp->spt],
  2831. is_large_pte(*sptep));
  2832. if (!*rmapp) {
  2833. if (!printk_ratelimit())
  2834. return;
  2835. printk(KERN_ERR "%s: no rmap for writable spte %llx\n",
  2836. audit_msg, *sptep);
  2837. dump_stack();
  2838. }
  2839. }
  2840. }
  2841. void audit_writable_sptes_have_rmaps(struct kvm_vcpu *vcpu)
  2842. {
  2843. mmu_spte_walk(vcpu, inspect_spte_has_rmap);
  2844. }
  2845. static void check_writable_mappings_rmap(struct kvm_vcpu *vcpu)
  2846. {
  2847. struct kvm_mmu_page *sp;
  2848. int i;
  2849. list_for_each_entry(sp, &vcpu->kvm->arch.active_mmu_pages, link) {
  2850. u64 *pt = sp->spt;
  2851. if (sp->role.level != PT_PAGE_TABLE_LEVEL)
  2852. continue;
  2853. for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
  2854. u64 ent = pt[i];
  2855. if (!(ent & PT_PRESENT_MASK))
  2856. continue;
  2857. if (!(ent & PT_WRITABLE_MASK))
  2858. continue;
  2859. inspect_spte_has_rmap(vcpu->kvm, sp, &pt[i]);
  2860. }
  2861. }
  2862. return;
  2863. }
  2864. static void audit_rmap(struct kvm_vcpu *vcpu)
  2865. {
  2866. check_writable_mappings_rmap(vcpu);
  2867. count_rmaps(vcpu);
  2868. }
  2869. static void audit_write_protection(struct kvm_vcpu *vcpu)
  2870. {
  2871. struct kvm_mmu_page *sp;
  2872. struct kvm_memory_slot *slot;
  2873. unsigned long *rmapp;
  2874. u64 *spte;
  2875. gfn_t gfn;
  2876. list_for_each_entry(sp, &vcpu->kvm->arch.active_mmu_pages, link) {
  2877. if (sp->role.direct)
  2878. continue;
  2879. if (sp->unsync)
  2880. continue;
  2881. gfn = unalias_gfn(vcpu->kvm, sp->gfn);
  2882. slot = gfn_to_memslot_unaliased(vcpu->kvm, sp->gfn);
  2883. rmapp = &slot->rmap[gfn - slot->base_gfn];
  2884. spte = rmap_next(vcpu->kvm, rmapp, NULL);
  2885. while (spte) {
  2886. if (*spte & PT_WRITABLE_MASK)
  2887. printk(KERN_ERR "%s: (%s) shadow page has "
  2888. "writable mappings: gfn %lx role %x\n",
  2889. __func__, audit_msg, sp->gfn,
  2890. sp->role.word);
  2891. spte = rmap_next(vcpu->kvm, rmapp, spte);
  2892. }
  2893. }
  2894. }
  2895. static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg)
  2896. {
  2897. int olddbg = dbg;
  2898. dbg = 0;
  2899. audit_msg = msg;
  2900. audit_rmap(vcpu);
  2901. audit_write_protection(vcpu);
  2902. if (strcmp("pre pte write", audit_msg) != 0)
  2903. audit_mappings(vcpu);
  2904. audit_writable_sptes_have_rmaps(vcpu);
  2905. dbg = olddbg;
  2906. }
  2907. #endif