sched.c 164 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601
  1. /*
  2. * kernel/sched.c
  3. *
  4. * Kernel scheduler and related syscalls
  5. *
  6. * Copyright (C) 1991-2002 Linus Torvalds
  7. *
  8. * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
  9. * make semaphores SMP safe
  10. * 1998-11-19 Implemented schedule_timeout() and related stuff
  11. * by Andrea Arcangeli
  12. * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
  13. * hybrid priority-list and round-robin design with
  14. * an array-switch method of distributing timeslices
  15. * and per-CPU runqueues. Cleanups and useful suggestions
  16. * by Davide Libenzi, preemptible kernel bits by Robert Love.
  17. * 2003-09-03 Interactivity tuning by Con Kolivas.
  18. * 2004-04-02 Scheduler domains code by Nick Piggin
  19. */
  20. #include <linux/mm.h>
  21. #include <linux/module.h>
  22. #include <linux/nmi.h>
  23. #include <linux/init.h>
  24. #include <asm/uaccess.h>
  25. #include <linux/highmem.h>
  26. #include <linux/smp_lock.h>
  27. #include <asm/mmu_context.h>
  28. #include <linux/interrupt.h>
  29. #include <linux/capability.h>
  30. #include <linux/completion.h>
  31. #include <linux/kernel_stat.h>
  32. #include <linux/debug_locks.h>
  33. #include <linux/security.h>
  34. #include <linux/notifier.h>
  35. #include <linux/profile.h>
  36. #include <linux/freezer.h>
  37. #include <linux/vmalloc.h>
  38. #include <linux/blkdev.h>
  39. #include <linux/delay.h>
  40. #include <linux/smp.h>
  41. #include <linux/threads.h>
  42. #include <linux/timer.h>
  43. #include <linux/rcupdate.h>
  44. #include <linux/cpu.h>
  45. #include <linux/cpuset.h>
  46. #include <linux/percpu.h>
  47. #include <linux/kthread.h>
  48. #include <linux/seq_file.h>
  49. #include <linux/syscalls.h>
  50. #include <linux/times.h>
  51. #include <linux/tsacct_kern.h>
  52. #include <linux/kprobes.h>
  53. #include <linux/delayacct.h>
  54. #include <linux/reciprocal_div.h>
  55. #include <asm/tlb.h>
  56. #include <asm/unistd.h>
  57. /*
  58. * Scheduler clock - returns current time in nanosec units.
  59. * This is default implementation.
  60. * Architectures and sub-architectures can override this.
  61. */
  62. unsigned long long __attribute__((weak)) sched_clock(void)
  63. {
  64. return (unsigned long long)jiffies * (1000000000 / HZ);
  65. }
  66. /*
  67. * Convert user-nice values [ -20 ... 0 ... 19 ]
  68. * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
  69. * and back.
  70. */
  71. #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
  72. #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
  73. #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
  74. /*
  75. * 'User priority' is the nice value converted to something we
  76. * can work with better when scaling various scheduler parameters,
  77. * it's a [ 0 ... 39 ] range.
  78. */
  79. #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
  80. #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
  81. #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
  82. /*
  83. * Some helpers for converting nanosecond timing to jiffy resolution
  84. */
  85. #define NS_TO_JIFFIES(TIME) ((TIME) / (1000000000 / HZ))
  86. #define JIFFIES_TO_NS(TIME) ((TIME) * (1000000000 / HZ))
  87. #define NICE_0_LOAD SCHED_LOAD_SCALE
  88. #define NICE_0_SHIFT SCHED_LOAD_SHIFT
  89. /*
  90. * These are the 'tuning knobs' of the scheduler:
  91. *
  92. * Minimum timeslice is 5 msecs (or 1 jiffy, whichever is larger),
  93. * default timeslice is 100 msecs, maximum timeslice is 800 msecs.
  94. * Timeslices get refilled after they expire.
  95. */
  96. #define MIN_TIMESLICE max(5 * HZ / 1000, 1)
  97. #define DEF_TIMESLICE (100 * HZ / 1000)
  98. #define ON_RUNQUEUE_WEIGHT 30
  99. #define CHILD_PENALTY 95
  100. #define PARENT_PENALTY 100
  101. #define EXIT_WEIGHT 3
  102. #define PRIO_BONUS_RATIO 25
  103. #define MAX_BONUS (MAX_USER_PRIO * PRIO_BONUS_RATIO / 100)
  104. #define INTERACTIVE_DELTA 2
  105. #define MAX_SLEEP_AVG (DEF_TIMESLICE * MAX_BONUS)
  106. #define STARVATION_LIMIT (MAX_SLEEP_AVG)
  107. #define NS_MAX_SLEEP_AVG (JIFFIES_TO_NS(MAX_SLEEP_AVG))
  108. /*
  109. * If a task is 'interactive' then we reinsert it in the active
  110. * array after it has expired its current timeslice. (it will not
  111. * continue to run immediately, it will still roundrobin with
  112. * other interactive tasks.)
  113. *
  114. * This part scales the interactivity limit depending on niceness.
  115. *
  116. * We scale it linearly, offset by the INTERACTIVE_DELTA delta.
  117. * Here are a few examples of different nice levels:
  118. *
  119. * TASK_INTERACTIVE(-20): [1,1,1,1,1,1,1,1,1,0,0]
  120. * TASK_INTERACTIVE(-10): [1,1,1,1,1,1,1,0,0,0,0]
  121. * TASK_INTERACTIVE( 0): [1,1,1,1,0,0,0,0,0,0,0]
  122. * TASK_INTERACTIVE( 10): [1,1,0,0,0,0,0,0,0,0,0]
  123. * TASK_INTERACTIVE( 19): [0,0,0,0,0,0,0,0,0,0,0]
  124. *
  125. * (the X axis represents the possible -5 ... 0 ... +5 dynamic
  126. * priority range a task can explore, a value of '1' means the
  127. * task is rated interactive.)
  128. *
  129. * Ie. nice +19 tasks can never get 'interactive' enough to be
  130. * reinserted into the active array. And only heavily CPU-hog nice -20
  131. * tasks will be expired. Default nice 0 tasks are somewhere between,
  132. * it takes some effort for them to get interactive, but it's not
  133. * too hard.
  134. */
  135. #define CURRENT_BONUS(p) \
  136. (NS_TO_JIFFIES((p)->sleep_avg) * MAX_BONUS / \
  137. MAX_SLEEP_AVG)
  138. #define GRANULARITY (10 * HZ / 1000 ? : 1)
  139. #ifdef CONFIG_SMP
  140. #define TIMESLICE_GRANULARITY(p) (GRANULARITY * \
  141. (1 << (((MAX_BONUS - CURRENT_BONUS(p)) ? : 1) - 1)) * \
  142. num_online_cpus())
  143. #else
  144. #define TIMESLICE_GRANULARITY(p) (GRANULARITY * \
  145. (1 << (((MAX_BONUS - CURRENT_BONUS(p)) ? : 1) - 1)))
  146. #endif
  147. #define SCALE(v1,v1_max,v2_max) \
  148. (v1) * (v2_max) / (v1_max)
  149. #define DELTA(p) \
  150. (SCALE(TASK_NICE(p) + 20, 40, MAX_BONUS) - 20 * MAX_BONUS / 40 + \
  151. INTERACTIVE_DELTA)
  152. #define TASK_INTERACTIVE(p) \
  153. ((p)->prio <= (p)->static_prio - DELTA(p))
  154. #define INTERACTIVE_SLEEP(p) \
  155. (JIFFIES_TO_NS(MAX_SLEEP_AVG * \
  156. (MAX_BONUS / 2 + DELTA((p)) + 1) / MAX_BONUS - 1))
  157. #define TASK_PREEMPTS_CURR(p, rq) \
  158. ((p)->prio < (rq)->curr->prio)
  159. #define SCALE_PRIO(x, prio) \
  160. max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO / 2), MIN_TIMESLICE)
  161. static unsigned int static_prio_timeslice(int static_prio)
  162. {
  163. if (static_prio < NICE_TO_PRIO(0))
  164. return SCALE_PRIO(DEF_TIMESLICE * 4, static_prio);
  165. else
  166. return SCALE_PRIO(DEF_TIMESLICE, static_prio);
  167. }
  168. #ifdef CONFIG_SMP
  169. /*
  170. * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
  171. * Since cpu_power is a 'constant', we can use a reciprocal divide.
  172. */
  173. static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
  174. {
  175. return reciprocal_divide(load, sg->reciprocal_cpu_power);
  176. }
  177. /*
  178. * Each time a sched group cpu_power is changed,
  179. * we must compute its reciprocal value
  180. */
  181. static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
  182. {
  183. sg->__cpu_power += val;
  184. sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
  185. }
  186. #endif
  187. /*
  188. * task_timeslice() scales user-nice values [ -20 ... 0 ... 19 ]
  189. * to time slice values: [800ms ... 100ms ... 5ms]
  190. *
  191. * The higher a thread's priority, the bigger timeslices
  192. * it gets during one round of execution. But even the lowest
  193. * priority thread gets MIN_TIMESLICE worth of execution time.
  194. */
  195. static inline unsigned int task_timeslice(struct task_struct *p)
  196. {
  197. return static_prio_timeslice(p->static_prio);
  198. }
  199. static inline int rt_policy(int policy)
  200. {
  201. if (unlikely(policy == SCHED_FIFO) || unlikely(policy == SCHED_RR))
  202. return 1;
  203. return 0;
  204. }
  205. static inline int task_has_rt_policy(struct task_struct *p)
  206. {
  207. return rt_policy(p->policy);
  208. }
  209. /*
  210. * This is the priority-queue data structure of the RT scheduling class:
  211. */
  212. struct rt_prio_array {
  213. DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
  214. struct list_head queue[MAX_RT_PRIO];
  215. };
  216. struct load_stat {
  217. struct load_weight load;
  218. u64 load_update_start, load_update_last;
  219. unsigned long delta_fair, delta_exec, delta_stat;
  220. };
  221. /* CFS-related fields in a runqueue */
  222. struct cfs_rq {
  223. struct load_weight load;
  224. unsigned long nr_running;
  225. s64 fair_clock;
  226. u64 exec_clock;
  227. s64 wait_runtime;
  228. u64 sleeper_bonus;
  229. unsigned long wait_runtime_overruns, wait_runtime_underruns;
  230. struct rb_root tasks_timeline;
  231. struct rb_node *rb_leftmost;
  232. struct rb_node *rb_load_balance_curr;
  233. #ifdef CONFIG_FAIR_GROUP_SCHED
  234. /* 'curr' points to currently running entity on this cfs_rq.
  235. * It is set to NULL otherwise (i.e when none are currently running).
  236. */
  237. struct sched_entity *curr;
  238. struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
  239. /* leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
  240. * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
  241. * (like users, containers etc.)
  242. *
  243. * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
  244. * list is used during load balance.
  245. */
  246. struct list_head leaf_cfs_rq_list; /* Better name : task_cfs_rq_list? */
  247. #endif
  248. };
  249. /* Real-Time classes' related field in a runqueue: */
  250. struct rt_rq {
  251. struct rt_prio_array active;
  252. int rt_load_balance_idx;
  253. struct list_head *rt_load_balance_head, *rt_load_balance_curr;
  254. };
  255. /*
  256. * The prio-array type of the old scheduler:
  257. */
  258. struct prio_array {
  259. unsigned int nr_active;
  260. DECLARE_BITMAP(bitmap, MAX_PRIO+1); /* include 1 bit for delimiter */
  261. struct list_head queue[MAX_PRIO];
  262. };
  263. /*
  264. * This is the main, per-CPU runqueue data structure.
  265. *
  266. * Locking rule: those places that want to lock multiple runqueues
  267. * (such as the load balancing or the thread migration code), lock
  268. * acquire operations must be ordered by ascending &runqueue.
  269. */
  270. struct rq {
  271. spinlock_t lock; /* runqueue lock */
  272. /*
  273. * nr_running and cpu_load should be in the same cacheline because
  274. * remote CPUs use both these fields when doing load calculation.
  275. */
  276. unsigned long nr_running;
  277. unsigned long raw_weighted_load;
  278. #define CPU_LOAD_IDX_MAX 5
  279. unsigned long cpu_load[CPU_LOAD_IDX_MAX];
  280. unsigned char idle_at_tick;
  281. #ifdef CONFIG_NO_HZ
  282. unsigned char in_nohz_recently;
  283. #endif
  284. struct load_stat ls; /* capture load from *all* tasks on this cpu */
  285. unsigned long nr_load_updates;
  286. u64 nr_switches;
  287. struct cfs_rq cfs;
  288. #ifdef CONFIG_FAIR_GROUP_SCHED
  289. struct list_head leaf_cfs_rq_list; /* list of leaf cfs_rq on this cpu */
  290. #endif
  291. struct rt_rq rt;
  292. /*
  293. * This is part of a global counter where only the total sum
  294. * over all CPUs matters. A task can increase this counter on
  295. * one CPU and if it got migrated afterwards it may decrease
  296. * it on another CPU. Always updated under the runqueue lock:
  297. */
  298. unsigned long nr_uninterruptible;
  299. unsigned long expired_timestamp;
  300. unsigned long long most_recent_timestamp;
  301. struct task_struct *curr, *idle;
  302. unsigned long next_balance;
  303. struct mm_struct *prev_mm;
  304. struct prio_array *active, *expired, arrays[2];
  305. int best_expired_prio;
  306. u64 clock, prev_clock_raw;
  307. s64 clock_max_delta;
  308. unsigned int clock_warps, clock_overflows;
  309. unsigned int clock_unstable_events;
  310. struct sched_class *load_balance_class;
  311. atomic_t nr_iowait;
  312. #ifdef CONFIG_SMP
  313. struct sched_domain *sd;
  314. /* For active balancing */
  315. int active_balance;
  316. int push_cpu;
  317. int cpu; /* cpu of this runqueue */
  318. struct task_struct *migration_thread;
  319. struct list_head migration_queue;
  320. #endif
  321. #ifdef CONFIG_SCHEDSTATS
  322. /* latency stats */
  323. struct sched_info rq_sched_info;
  324. /* sys_sched_yield() stats */
  325. unsigned long yld_exp_empty;
  326. unsigned long yld_act_empty;
  327. unsigned long yld_both_empty;
  328. unsigned long yld_cnt;
  329. /* schedule() stats */
  330. unsigned long sched_switch;
  331. unsigned long sched_cnt;
  332. unsigned long sched_goidle;
  333. /* try_to_wake_up() stats */
  334. unsigned long ttwu_cnt;
  335. unsigned long ttwu_local;
  336. #endif
  337. struct lock_class_key rq_lock_key;
  338. };
  339. static DEFINE_PER_CPU(struct rq, runqueues) ____cacheline_aligned_in_smp;
  340. static DEFINE_MUTEX(sched_hotcpu_mutex);
  341. static inline int cpu_of(struct rq *rq)
  342. {
  343. #ifdef CONFIG_SMP
  344. return rq->cpu;
  345. #else
  346. return 0;
  347. #endif
  348. }
  349. /*
  350. * Per-runqueue clock, as finegrained as the platform can give us:
  351. */
  352. static unsigned long long __rq_clock(struct rq *rq)
  353. {
  354. u64 prev_raw = rq->prev_clock_raw;
  355. u64 now = sched_clock();
  356. s64 delta = now - prev_raw;
  357. u64 clock = rq->clock;
  358. /*
  359. * Protect against sched_clock() occasionally going backwards:
  360. */
  361. if (unlikely(delta < 0)) {
  362. clock++;
  363. rq->clock_warps++;
  364. } else {
  365. /*
  366. * Catch too large forward jumps too:
  367. */
  368. if (unlikely(delta > 2*TICK_NSEC)) {
  369. clock++;
  370. rq->clock_overflows++;
  371. } else {
  372. if (unlikely(delta > rq->clock_max_delta))
  373. rq->clock_max_delta = delta;
  374. clock += delta;
  375. }
  376. }
  377. rq->prev_clock_raw = now;
  378. rq->clock = clock;
  379. return clock;
  380. }
  381. static inline unsigned long long rq_clock(struct rq *rq)
  382. {
  383. int this_cpu = smp_processor_id();
  384. if (this_cpu == cpu_of(rq))
  385. return __rq_clock(rq);
  386. return rq->clock;
  387. }
  388. /*
  389. * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
  390. * See detach_destroy_domains: synchronize_sched for details.
  391. *
  392. * The domain tree of any CPU may only be accessed from within
  393. * preempt-disabled sections.
  394. */
  395. #define for_each_domain(cpu, __sd) \
  396. for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
  397. #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
  398. #define this_rq() (&__get_cpu_var(runqueues))
  399. #define task_rq(p) cpu_rq(task_cpu(p))
  400. #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
  401. #ifdef CONFIG_FAIR_GROUP_SCHED
  402. /* Change a task's ->cfs_rq if it moves across CPUs */
  403. static inline void set_task_cfs_rq(struct task_struct *p)
  404. {
  405. p->se.cfs_rq = &task_rq(p)->cfs;
  406. }
  407. #else
  408. static inline void set_task_cfs_rq(struct task_struct *p)
  409. {
  410. }
  411. #endif
  412. #ifndef prepare_arch_switch
  413. # define prepare_arch_switch(next) do { } while (0)
  414. #endif
  415. #ifndef finish_arch_switch
  416. # define finish_arch_switch(prev) do { } while (0)
  417. #endif
  418. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  419. static inline int task_running(struct rq *rq, struct task_struct *p)
  420. {
  421. return rq->curr == p;
  422. }
  423. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  424. {
  425. }
  426. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  427. {
  428. #ifdef CONFIG_DEBUG_SPINLOCK
  429. /* this is a valid case when another task releases the spinlock */
  430. rq->lock.owner = current;
  431. #endif
  432. /*
  433. * If we are tracking spinlock dependencies then we have to
  434. * fix up the runqueue lock - which gets 'carried over' from
  435. * prev into current:
  436. */
  437. spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
  438. spin_unlock_irq(&rq->lock);
  439. }
  440. #else /* __ARCH_WANT_UNLOCKED_CTXSW */
  441. static inline int task_running(struct rq *rq, struct task_struct *p)
  442. {
  443. #ifdef CONFIG_SMP
  444. return p->oncpu;
  445. #else
  446. return rq->curr == p;
  447. #endif
  448. }
  449. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  450. {
  451. #ifdef CONFIG_SMP
  452. /*
  453. * We can optimise this out completely for !SMP, because the
  454. * SMP rebalancing from interrupt is the only thing that cares
  455. * here.
  456. */
  457. next->oncpu = 1;
  458. #endif
  459. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  460. spin_unlock_irq(&rq->lock);
  461. #else
  462. spin_unlock(&rq->lock);
  463. #endif
  464. }
  465. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  466. {
  467. #ifdef CONFIG_SMP
  468. /*
  469. * After ->oncpu is cleared, the task can be moved to a different CPU.
  470. * We must ensure this doesn't happen until the switch is completely
  471. * finished.
  472. */
  473. smp_wmb();
  474. prev->oncpu = 0;
  475. #endif
  476. #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  477. local_irq_enable();
  478. #endif
  479. }
  480. #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
  481. /*
  482. * __task_rq_lock - lock the runqueue a given task resides on.
  483. * Must be called interrupts disabled.
  484. */
  485. static inline struct rq *__task_rq_lock(struct task_struct *p)
  486. __acquires(rq->lock)
  487. {
  488. struct rq *rq;
  489. repeat_lock_task:
  490. rq = task_rq(p);
  491. spin_lock(&rq->lock);
  492. if (unlikely(rq != task_rq(p))) {
  493. spin_unlock(&rq->lock);
  494. goto repeat_lock_task;
  495. }
  496. return rq;
  497. }
  498. /*
  499. * task_rq_lock - lock the runqueue a given task resides on and disable
  500. * interrupts. Note the ordering: we can safely lookup the task_rq without
  501. * explicitly disabling preemption.
  502. */
  503. static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
  504. __acquires(rq->lock)
  505. {
  506. struct rq *rq;
  507. repeat_lock_task:
  508. local_irq_save(*flags);
  509. rq = task_rq(p);
  510. spin_lock(&rq->lock);
  511. if (unlikely(rq != task_rq(p))) {
  512. spin_unlock_irqrestore(&rq->lock, *flags);
  513. goto repeat_lock_task;
  514. }
  515. return rq;
  516. }
  517. static inline void __task_rq_unlock(struct rq *rq)
  518. __releases(rq->lock)
  519. {
  520. spin_unlock(&rq->lock);
  521. }
  522. static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
  523. __releases(rq->lock)
  524. {
  525. spin_unlock_irqrestore(&rq->lock, *flags);
  526. }
  527. /*
  528. * this_rq_lock - lock this runqueue and disable interrupts.
  529. */
  530. static inline struct rq *this_rq_lock(void)
  531. __acquires(rq->lock)
  532. {
  533. struct rq *rq;
  534. local_irq_disable();
  535. rq = this_rq();
  536. spin_lock(&rq->lock);
  537. return rq;
  538. }
  539. /*
  540. * resched_task - mark a task 'to be rescheduled now'.
  541. *
  542. * On UP this means the setting of the need_resched flag, on SMP it
  543. * might also involve a cross-CPU call to trigger the scheduler on
  544. * the target CPU.
  545. */
  546. #ifdef CONFIG_SMP
  547. #ifndef tsk_is_polling
  548. #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
  549. #endif
  550. static void resched_task(struct task_struct *p)
  551. {
  552. int cpu;
  553. assert_spin_locked(&task_rq(p)->lock);
  554. if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
  555. return;
  556. set_tsk_thread_flag(p, TIF_NEED_RESCHED);
  557. cpu = task_cpu(p);
  558. if (cpu == smp_processor_id())
  559. return;
  560. /* NEED_RESCHED must be visible before we test polling */
  561. smp_mb();
  562. if (!tsk_is_polling(p))
  563. smp_send_reschedule(cpu);
  564. }
  565. static void resched_cpu(int cpu)
  566. {
  567. struct rq *rq = cpu_rq(cpu);
  568. unsigned long flags;
  569. if (!spin_trylock_irqsave(&rq->lock, flags))
  570. return;
  571. resched_task(cpu_curr(cpu));
  572. spin_unlock_irqrestore(&rq->lock, flags);
  573. }
  574. #else
  575. static inline void resched_task(struct task_struct *p)
  576. {
  577. assert_spin_locked(&task_rq(p)->lock);
  578. set_tsk_need_resched(p);
  579. }
  580. #endif
  581. #include "sched_stats.h"
  582. /*
  583. * __normal_prio - return the priority that is based on the static
  584. * priority but is modified by bonuses/penalties.
  585. *
  586. * We scale the actual sleep average [0 .... MAX_SLEEP_AVG]
  587. * into the -5 ... 0 ... +5 bonus/penalty range.
  588. *
  589. * We use 25% of the full 0...39 priority range so that:
  590. *
  591. * 1) nice +19 interactive tasks do not preempt nice 0 CPU hogs.
  592. * 2) nice -20 CPU hogs do not get preempted by nice 0 tasks.
  593. *
  594. * Both properties are important to certain workloads.
  595. */
  596. static inline int __normal_prio(struct task_struct *p)
  597. {
  598. int bonus, prio;
  599. bonus = CURRENT_BONUS(p) - MAX_BONUS / 2;
  600. prio = p->static_prio - bonus;
  601. if (prio < MAX_RT_PRIO)
  602. prio = MAX_RT_PRIO;
  603. if (prio > MAX_PRIO-1)
  604. prio = MAX_PRIO-1;
  605. return prio;
  606. }
  607. /*
  608. * To aid in avoiding the subversion of "niceness" due to uneven distribution
  609. * of tasks with abnormal "nice" values across CPUs the contribution that
  610. * each task makes to its run queue's load is weighted according to its
  611. * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
  612. * scaled version of the new time slice allocation that they receive on time
  613. * slice expiry etc.
  614. */
  615. /*
  616. * Assume: static_prio_timeslice(NICE_TO_PRIO(0)) == DEF_TIMESLICE
  617. * If static_prio_timeslice() is ever changed to break this assumption then
  618. * this code will need modification
  619. */
  620. #define TIME_SLICE_NICE_ZERO DEF_TIMESLICE
  621. #define LOAD_WEIGHT(lp) \
  622. (((lp) * SCHED_LOAD_SCALE) / TIME_SLICE_NICE_ZERO)
  623. #define PRIO_TO_LOAD_WEIGHT(prio) \
  624. LOAD_WEIGHT(static_prio_timeslice(prio))
  625. #define RTPRIO_TO_LOAD_WEIGHT(rp) \
  626. (PRIO_TO_LOAD_WEIGHT(MAX_RT_PRIO) + LOAD_WEIGHT(rp))
  627. static void set_load_weight(struct task_struct *p)
  628. {
  629. if (task_has_rt_policy(p)) {
  630. #ifdef CONFIG_SMP
  631. if (p == task_rq(p)->migration_thread)
  632. /*
  633. * The migration thread does the actual balancing.
  634. * Giving its load any weight will skew balancing
  635. * adversely.
  636. */
  637. p->load_weight = 0;
  638. else
  639. #endif
  640. p->load_weight = RTPRIO_TO_LOAD_WEIGHT(p->rt_priority);
  641. } else
  642. p->load_weight = PRIO_TO_LOAD_WEIGHT(p->static_prio);
  643. }
  644. static inline void
  645. inc_raw_weighted_load(struct rq *rq, const struct task_struct *p)
  646. {
  647. rq->raw_weighted_load += p->load_weight;
  648. }
  649. static inline void
  650. dec_raw_weighted_load(struct rq *rq, const struct task_struct *p)
  651. {
  652. rq->raw_weighted_load -= p->load_weight;
  653. }
  654. static inline void inc_nr_running(struct task_struct *p, struct rq *rq)
  655. {
  656. rq->nr_running++;
  657. inc_raw_weighted_load(rq, p);
  658. }
  659. static inline void dec_nr_running(struct task_struct *p, struct rq *rq)
  660. {
  661. rq->nr_running--;
  662. dec_raw_weighted_load(rq, p);
  663. }
  664. /*
  665. * Adding/removing a task to/from a priority array:
  666. */
  667. static void dequeue_task(struct task_struct *p, struct prio_array *array)
  668. {
  669. array->nr_active--;
  670. list_del(&p->run_list);
  671. if (list_empty(array->queue + p->prio))
  672. __clear_bit(p->prio, array->bitmap);
  673. }
  674. static void enqueue_task(struct task_struct *p, struct prio_array *array)
  675. {
  676. sched_info_queued(p);
  677. list_add_tail(&p->run_list, array->queue + p->prio);
  678. __set_bit(p->prio, array->bitmap);
  679. array->nr_active++;
  680. p->array = array;
  681. }
  682. /*
  683. * Put task to the end of the run list without the overhead of dequeue
  684. * followed by enqueue.
  685. */
  686. static void requeue_task(struct task_struct *p, struct prio_array *array)
  687. {
  688. list_move_tail(&p->run_list, array->queue + p->prio);
  689. }
  690. static inline void
  691. enqueue_task_head(struct task_struct *p, struct prio_array *array)
  692. {
  693. list_add(&p->run_list, array->queue + p->prio);
  694. __set_bit(p->prio, array->bitmap);
  695. array->nr_active++;
  696. p->array = array;
  697. }
  698. /*
  699. * Calculate the expected normal priority: i.e. priority
  700. * without taking RT-inheritance into account. Might be
  701. * boosted by interactivity modifiers. Changes upon fork,
  702. * setprio syscalls, and whenever the interactivity
  703. * estimator recalculates.
  704. */
  705. static inline int normal_prio(struct task_struct *p)
  706. {
  707. int prio;
  708. if (task_has_rt_policy(p))
  709. prio = MAX_RT_PRIO-1 - p->rt_priority;
  710. else
  711. prio = __normal_prio(p);
  712. return prio;
  713. }
  714. /*
  715. * Calculate the current priority, i.e. the priority
  716. * taken into account by the scheduler. This value might
  717. * be boosted by RT tasks, or might be boosted by
  718. * interactivity modifiers. Will be RT if the task got
  719. * RT-boosted. If not then it returns p->normal_prio.
  720. */
  721. static int effective_prio(struct task_struct *p)
  722. {
  723. p->normal_prio = normal_prio(p);
  724. /*
  725. * If we are RT tasks or we were boosted to RT priority,
  726. * keep the priority unchanged. Otherwise, update priority
  727. * to the normal priority:
  728. */
  729. if (!rt_prio(p->prio))
  730. return p->normal_prio;
  731. return p->prio;
  732. }
  733. /*
  734. * __activate_task - move a task to the runqueue.
  735. */
  736. static void __activate_task(struct task_struct *p, struct rq *rq)
  737. {
  738. struct prio_array *target = rq->active;
  739. if (batch_task(p))
  740. target = rq->expired;
  741. enqueue_task(p, target);
  742. inc_nr_running(p, rq);
  743. }
  744. /*
  745. * __activate_idle_task - move idle task to the _front_ of runqueue.
  746. */
  747. static inline void __activate_idle_task(struct task_struct *p, struct rq *rq)
  748. {
  749. enqueue_task_head(p, rq->active);
  750. inc_nr_running(p, rq);
  751. }
  752. /*
  753. * Recalculate p->normal_prio and p->prio after having slept,
  754. * updating the sleep-average too:
  755. */
  756. static int recalc_task_prio(struct task_struct *p, unsigned long long now)
  757. {
  758. /* Caller must always ensure 'now >= p->timestamp' */
  759. unsigned long sleep_time = now - p->timestamp;
  760. if (batch_task(p))
  761. sleep_time = 0;
  762. if (likely(sleep_time > 0)) {
  763. /*
  764. * This ceiling is set to the lowest priority that would allow
  765. * a task to be reinserted into the active array on timeslice
  766. * completion.
  767. */
  768. unsigned long ceiling = INTERACTIVE_SLEEP(p);
  769. if (p->mm && sleep_time > ceiling && p->sleep_avg < ceiling) {
  770. /*
  771. * Prevents user tasks from achieving best priority
  772. * with one single large enough sleep.
  773. */
  774. p->sleep_avg = ceiling;
  775. /*
  776. * Using INTERACTIVE_SLEEP() as a ceiling places a
  777. * nice(0) task 1ms sleep away from promotion, and
  778. * gives it 700ms to round-robin with no chance of
  779. * being demoted. This is more than generous, so
  780. * mark this sleep as non-interactive to prevent the
  781. * on-runqueue bonus logic from intervening should
  782. * this task not receive cpu immediately.
  783. */
  784. p->sleep_type = SLEEP_NONINTERACTIVE;
  785. } else {
  786. /*
  787. * Tasks waking from uninterruptible sleep are
  788. * limited in their sleep_avg rise as they
  789. * are likely to be waiting on I/O
  790. */
  791. if (p->sleep_type == SLEEP_NONINTERACTIVE && p->mm) {
  792. if (p->sleep_avg >= ceiling)
  793. sleep_time = 0;
  794. else if (p->sleep_avg + sleep_time >=
  795. ceiling) {
  796. p->sleep_avg = ceiling;
  797. sleep_time = 0;
  798. }
  799. }
  800. /*
  801. * This code gives a bonus to interactive tasks.
  802. *
  803. * The boost works by updating the 'average sleep time'
  804. * value here, based on ->timestamp. The more time a
  805. * task spends sleeping, the higher the average gets -
  806. * and the higher the priority boost gets as well.
  807. */
  808. p->sleep_avg += sleep_time;
  809. }
  810. if (p->sleep_avg > NS_MAX_SLEEP_AVG)
  811. p->sleep_avg = NS_MAX_SLEEP_AVG;
  812. }
  813. return effective_prio(p);
  814. }
  815. /*
  816. * activate_task - move a task to the runqueue and do priority recalculation
  817. *
  818. * Update all the scheduling statistics stuff. (sleep average
  819. * calculation, priority modifiers, etc.)
  820. */
  821. static void activate_task(struct task_struct *p, struct rq *rq, int local)
  822. {
  823. unsigned long long now;
  824. if (rt_task(p))
  825. goto out;
  826. now = sched_clock();
  827. #ifdef CONFIG_SMP
  828. if (!local) {
  829. /* Compensate for drifting sched_clock */
  830. struct rq *this_rq = this_rq();
  831. now = (now - this_rq->most_recent_timestamp)
  832. + rq->most_recent_timestamp;
  833. }
  834. #endif
  835. /*
  836. * Sleep time is in units of nanosecs, so shift by 20 to get a
  837. * milliseconds-range estimation of the amount of time that the task
  838. * spent sleeping:
  839. */
  840. if (unlikely(prof_on == SLEEP_PROFILING)) {
  841. if (p->state == TASK_UNINTERRUPTIBLE)
  842. profile_hits(SLEEP_PROFILING, (void *)get_wchan(p),
  843. (now - p->timestamp) >> 20);
  844. }
  845. p->prio = recalc_task_prio(p, now);
  846. /*
  847. * This checks to make sure it's not an uninterruptible task
  848. * that is now waking up.
  849. */
  850. if (p->sleep_type == SLEEP_NORMAL) {
  851. /*
  852. * Tasks which were woken up by interrupts (ie. hw events)
  853. * are most likely of interactive nature. So we give them
  854. * the credit of extending their sleep time to the period
  855. * of time they spend on the runqueue, waiting for execution
  856. * on a CPU, first time around:
  857. */
  858. if (in_interrupt())
  859. p->sleep_type = SLEEP_INTERRUPTED;
  860. else {
  861. /*
  862. * Normal first-time wakeups get a credit too for
  863. * on-runqueue time, but it will be weighted down:
  864. */
  865. p->sleep_type = SLEEP_INTERACTIVE;
  866. }
  867. }
  868. p->timestamp = now;
  869. out:
  870. __activate_task(p, rq);
  871. }
  872. /*
  873. * deactivate_task - remove a task from the runqueue.
  874. */
  875. static void deactivate_task(struct task_struct *p, struct rq *rq)
  876. {
  877. dec_nr_running(p, rq);
  878. dequeue_task(p, p->array);
  879. p->array = NULL;
  880. }
  881. /**
  882. * task_curr - is this task currently executing on a CPU?
  883. * @p: the task in question.
  884. */
  885. inline int task_curr(const struct task_struct *p)
  886. {
  887. return cpu_curr(task_cpu(p)) == p;
  888. }
  889. /* Used instead of source_load when we know the type == 0 */
  890. unsigned long weighted_cpuload(const int cpu)
  891. {
  892. return cpu_rq(cpu)->raw_weighted_load;
  893. }
  894. #ifdef CONFIG_SMP
  895. void set_task_cpu(struct task_struct *p, unsigned int cpu)
  896. {
  897. task_thread_info(p)->cpu = cpu;
  898. }
  899. struct migration_req {
  900. struct list_head list;
  901. struct task_struct *task;
  902. int dest_cpu;
  903. struct completion done;
  904. };
  905. /*
  906. * The task's runqueue lock must be held.
  907. * Returns true if you have to wait for migration thread.
  908. */
  909. static int
  910. migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
  911. {
  912. struct rq *rq = task_rq(p);
  913. /*
  914. * If the task is not on a runqueue (and not running), then
  915. * it is sufficient to simply update the task's cpu field.
  916. */
  917. if (!p->array && !task_running(rq, p)) {
  918. set_task_cpu(p, dest_cpu);
  919. return 0;
  920. }
  921. init_completion(&req->done);
  922. req->task = p;
  923. req->dest_cpu = dest_cpu;
  924. list_add(&req->list, &rq->migration_queue);
  925. return 1;
  926. }
  927. /*
  928. * wait_task_inactive - wait for a thread to unschedule.
  929. *
  930. * The caller must ensure that the task *will* unschedule sometime soon,
  931. * else this function might spin for a *long* time. This function can't
  932. * be called with interrupts off, or it may introduce deadlock with
  933. * smp_call_function() if an IPI is sent by the same process we are
  934. * waiting to become inactive.
  935. */
  936. void wait_task_inactive(struct task_struct *p)
  937. {
  938. unsigned long flags;
  939. struct rq *rq;
  940. struct prio_array *array;
  941. int running;
  942. repeat:
  943. /*
  944. * We do the initial early heuristics without holding
  945. * any task-queue locks at all. We'll only try to get
  946. * the runqueue lock when things look like they will
  947. * work out!
  948. */
  949. rq = task_rq(p);
  950. /*
  951. * If the task is actively running on another CPU
  952. * still, just relax and busy-wait without holding
  953. * any locks.
  954. *
  955. * NOTE! Since we don't hold any locks, it's not
  956. * even sure that "rq" stays as the right runqueue!
  957. * But we don't care, since "task_running()" will
  958. * return false if the runqueue has changed and p
  959. * is actually now running somewhere else!
  960. */
  961. while (task_running(rq, p))
  962. cpu_relax();
  963. /*
  964. * Ok, time to look more closely! We need the rq
  965. * lock now, to be *sure*. If we're wrong, we'll
  966. * just go back and repeat.
  967. */
  968. rq = task_rq_lock(p, &flags);
  969. running = task_running(rq, p);
  970. array = p->array;
  971. task_rq_unlock(rq, &flags);
  972. /*
  973. * Was it really running after all now that we
  974. * checked with the proper locks actually held?
  975. *
  976. * Oops. Go back and try again..
  977. */
  978. if (unlikely(running)) {
  979. cpu_relax();
  980. goto repeat;
  981. }
  982. /*
  983. * It's not enough that it's not actively running,
  984. * it must be off the runqueue _entirely_, and not
  985. * preempted!
  986. *
  987. * So if it wa still runnable (but just not actively
  988. * running right now), it's preempted, and we should
  989. * yield - it could be a while.
  990. */
  991. if (unlikely(array)) {
  992. yield();
  993. goto repeat;
  994. }
  995. /*
  996. * Ahh, all good. It wasn't running, and it wasn't
  997. * runnable, which means that it will never become
  998. * running in the future either. We're all done!
  999. */
  1000. }
  1001. /***
  1002. * kick_process - kick a running thread to enter/exit the kernel
  1003. * @p: the to-be-kicked thread
  1004. *
  1005. * Cause a process which is running on another CPU to enter
  1006. * kernel-mode, without any delay. (to get signals handled.)
  1007. *
  1008. * NOTE: this function doesnt have to take the runqueue lock,
  1009. * because all it wants to ensure is that the remote task enters
  1010. * the kernel. If the IPI races and the task has been migrated
  1011. * to another CPU then no harm is done and the purpose has been
  1012. * achieved as well.
  1013. */
  1014. void kick_process(struct task_struct *p)
  1015. {
  1016. int cpu;
  1017. preempt_disable();
  1018. cpu = task_cpu(p);
  1019. if ((cpu != smp_processor_id()) && task_curr(p))
  1020. smp_send_reschedule(cpu);
  1021. preempt_enable();
  1022. }
  1023. /*
  1024. * Return a low guess at the load of a migration-source cpu weighted
  1025. * according to the scheduling class and "nice" value.
  1026. *
  1027. * We want to under-estimate the load of migration sources, to
  1028. * balance conservatively.
  1029. */
  1030. static inline unsigned long source_load(int cpu, int type)
  1031. {
  1032. struct rq *rq = cpu_rq(cpu);
  1033. if (type == 0)
  1034. return rq->raw_weighted_load;
  1035. return min(rq->cpu_load[type-1], rq->raw_weighted_load);
  1036. }
  1037. /*
  1038. * Return a high guess at the load of a migration-target cpu weighted
  1039. * according to the scheduling class and "nice" value.
  1040. */
  1041. static inline unsigned long target_load(int cpu, int type)
  1042. {
  1043. struct rq *rq = cpu_rq(cpu);
  1044. if (type == 0)
  1045. return rq->raw_weighted_load;
  1046. return max(rq->cpu_load[type-1], rq->raw_weighted_load);
  1047. }
  1048. /*
  1049. * Return the average load per task on the cpu's run queue
  1050. */
  1051. static inline unsigned long cpu_avg_load_per_task(int cpu)
  1052. {
  1053. struct rq *rq = cpu_rq(cpu);
  1054. unsigned long n = rq->nr_running;
  1055. return n ? rq->raw_weighted_load / n : SCHED_LOAD_SCALE;
  1056. }
  1057. /*
  1058. * find_idlest_group finds and returns the least busy CPU group within the
  1059. * domain.
  1060. */
  1061. static struct sched_group *
  1062. find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
  1063. {
  1064. struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
  1065. unsigned long min_load = ULONG_MAX, this_load = 0;
  1066. int load_idx = sd->forkexec_idx;
  1067. int imbalance = 100 + (sd->imbalance_pct-100)/2;
  1068. do {
  1069. unsigned long load, avg_load;
  1070. int local_group;
  1071. int i;
  1072. /* Skip over this group if it has no CPUs allowed */
  1073. if (!cpus_intersects(group->cpumask, p->cpus_allowed))
  1074. goto nextgroup;
  1075. local_group = cpu_isset(this_cpu, group->cpumask);
  1076. /* Tally up the load of all CPUs in the group */
  1077. avg_load = 0;
  1078. for_each_cpu_mask(i, group->cpumask) {
  1079. /* Bias balancing toward cpus of our domain */
  1080. if (local_group)
  1081. load = source_load(i, load_idx);
  1082. else
  1083. load = target_load(i, load_idx);
  1084. avg_load += load;
  1085. }
  1086. /* Adjust by relative CPU power of the group */
  1087. avg_load = sg_div_cpu_power(group,
  1088. avg_load * SCHED_LOAD_SCALE);
  1089. if (local_group) {
  1090. this_load = avg_load;
  1091. this = group;
  1092. } else if (avg_load < min_load) {
  1093. min_load = avg_load;
  1094. idlest = group;
  1095. }
  1096. nextgroup:
  1097. group = group->next;
  1098. } while (group != sd->groups);
  1099. if (!idlest || 100*this_load < imbalance*min_load)
  1100. return NULL;
  1101. return idlest;
  1102. }
  1103. /*
  1104. * find_idlest_cpu - find the idlest cpu among the cpus in group.
  1105. */
  1106. static int
  1107. find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
  1108. {
  1109. cpumask_t tmp;
  1110. unsigned long load, min_load = ULONG_MAX;
  1111. int idlest = -1;
  1112. int i;
  1113. /* Traverse only the allowed CPUs */
  1114. cpus_and(tmp, group->cpumask, p->cpus_allowed);
  1115. for_each_cpu_mask(i, tmp) {
  1116. load = weighted_cpuload(i);
  1117. if (load < min_load || (load == min_load && i == this_cpu)) {
  1118. min_load = load;
  1119. idlest = i;
  1120. }
  1121. }
  1122. return idlest;
  1123. }
  1124. /*
  1125. * sched_balance_self: balance the current task (running on cpu) in domains
  1126. * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
  1127. * SD_BALANCE_EXEC.
  1128. *
  1129. * Balance, ie. select the least loaded group.
  1130. *
  1131. * Returns the target CPU number, or the same CPU if no balancing is needed.
  1132. *
  1133. * preempt must be disabled.
  1134. */
  1135. static int sched_balance_self(int cpu, int flag)
  1136. {
  1137. struct task_struct *t = current;
  1138. struct sched_domain *tmp, *sd = NULL;
  1139. for_each_domain(cpu, tmp) {
  1140. /*
  1141. * If power savings logic is enabled for a domain, stop there.
  1142. */
  1143. if (tmp->flags & SD_POWERSAVINGS_BALANCE)
  1144. break;
  1145. if (tmp->flags & flag)
  1146. sd = tmp;
  1147. }
  1148. while (sd) {
  1149. cpumask_t span;
  1150. struct sched_group *group;
  1151. int new_cpu, weight;
  1152. if (!(sd->flags & flag)) {
  1153. sd = sd->child;
  1154. continue;
  1155. }
  1156. span = sd->span;
  1157. group = find_idlest_group(sd, t, cpu);
  1158. if (!group) {
  1159. sd = sd->child;
  1160. continue;
  1161. }
  1162. new_cpu = find_idlest_cpu(group, t, cpu);
  1163. if (new_cpu == -1 || new_cpu == cpu) {
  1164. /* Now try balancing at a lower domain level of cpu */
  1165. sd = sd->child;
  1166. continue;
  1167. }
  1168. /* Now try balancing at a lower domain level of new_cpu */
  1169. cpu = new_cpu;
  1170. sd = NULL;
  1171. weight = cpus_weight(span);
  1172. for_each_domain(cpu, tmp) {
  1173. if (weight <= cpus_weight(tmp->span))
  1174. break;
  1175. if (tmp->flags & flag)
  1176. sd = tmp;
  1177. }
  1178. /* while loop will break here if sd == NULL */
  1179. }
  1180. return cpu;
  1181. }
  1182. #endif /* CONFIG_SMP */
  1183. /*
  1184. * wake_idle() will wake a task on an idle cpu if task->cpu is
  1185. * not idle and an idle cpu is available. The span of cpus to
  1186. * search starts with cpus closest then further out as needed,
  1187. * so we always favor a closer, idle cpu.
  1188. *
  1189. * Returns the CPU we should wake onto.
  1190. */
  1191. #if defined(ARCH_HAS_SCHED_WAKE_IDLE)
  1192. static int wake_idle(int cpu, struct task_struct *p)
  1193. {
  1194. cpumask_t tmp;
  1195. struct sched_domain *sd;
  1196. int i;
  1197. /*
  1198. * If it is idle, then it is the best cpu to run this task.
  1199. *
  1200. * This cpu is also the best, if it has more than one task already.
  1201. * Siblings must be also busy(in most cases) as they didn't already
  1202. * pickup the extra load from this cpu and hence we need not check
  1203. * sibling runqueue info. This will avoid the checks and cache miss
  1204. * penalities associated with that.
  1205. */
  1206. if (idle_cpu(cpu) || cpu_rq(cpu)->nr_running > 1)
  1207. return cpu;
  1208. for_each_domain(cpu, sd) {
  1209. if (sd->flags & SD_WAKE_IDLE) {
  1210. cpus_and(tmp, sd->span, p->cpus_allowed);
  1211. for_each_cpu_mask(i, tmp) {
  1212. if (idle_cpu(i))
  1213. return i;
  1214. }
  1215. }
  1216. else
  1217. break;
  1218. }
  1219. return cpu;
  1220. }
  1221. #else
  1222. static inline int wake_idle(int cpu, struct task_struct *p)
  1223. {
  1224. return cpu;
  1225. }
  1226. #endif
  1227. /***
  1228. * try_to_wake_up - wake up a thread
  1229. * @p: the to-be-woken-up thread
  1230. * @state: the mask of task states that can be woken
  1231. * @sync: do a synchronous wakeup?
  1232. *
  1233. * Put it on the run-queue if it's not already there. The "current"
  1234. * thread is always on the run-queue (except when the actual
  1235. * re-schedule is in progress), and as such you're allowed to do
  1236. * the simpler "current->state = TASK_RUNNING" to mark yourself
  1237. * runnable without the overhead of this.
  1238. *
  1239. * returns failure only if the task is already active.
  1240. */
  1241. static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
  1242. {
  1243. int cpu, this_cpu, success = 0;
  1244. unsigned long flags;
  1245. long old_state;
  1246. struct rq *rq;
  1247. #ifdef CONFIG_SMP
  1248. struct sched_domain *sd, *this_sd = NULL;
  1249. unsigned long load, this_load;
  1250. int new_cpu;
  1251. #endif
  1252. rq = task_rq_lock(p, &flags);
  1253. old_state = p->state;
  1254. if (!(old_state & state))
  1255. goto out;
  1256. if (p->array)
  1257. goto out_running;
  1258. cpu = task_cpu(p);
  1259. this_cpu = smp_processor_id();
  1260. #ifdef CONFIG_SMP
  1261. if (unlikely(task_running(rq, p)))
  1262. goto out_activate;
  1263. new_cpu = cpu;
  1264. schedstat_inc(rq, ttwu_cnt);
  1265. if (cpu == this_cpu) {
  1266. schedstat_inc(rq, ttwu_local);
  1267. goto out_set_cpu;
  1268. }
  1269. for_each_domain(this_cpu, sd) {
  1270. if (cpu_isset(cpu, sd->span)) {
  1271. schedstat_inc(sd, ttwu_wake_remote);
  1272. this_sd = sd;
  1273. break;
  1274. }
  1275. }
  1276. if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
  1277. goto out_set_cpu;
  1278. /*
  1279. * Check for affine wakeup and passive balancing possibilities.
  1280. */
  1281. if (this_sd) {
  1282. int idx = this_sd->wake_idx;
  1283. unsigned int imbalance;
  1284. imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
  1285. load = source_load(cpu, idx);
  1286. this_load = target_load(this_cpu, idx);
  1287. new_cpu = this_cpu; /* Wake to this CPU if we can */
  1288. if (this_sd->flags & SD_WAKE_AFFINE) {
  1289. unsigned long tl = this_load;
  1290. unsigned long tl_per_task;
  1291. tl_per_task = cpu_avg_load_per_task(this_cpu);
  1292. /*
  1293. * If sync wakeup then subtract the (maximum possible)
  1294. * effect of the currently running task from the load
  1295. * of the current CPU:
  1296. */
  1297. if (sync)
  1298. tl -= current->load_weight;
  1299. if ((tl <= load &&
  1300. tl + target_load(cpu, idx) <= tl_per_task) ||
  1301. 100*(tl + p->load_weight) <= imbalance*load) {
  1302. /*
  1303. * This domain has SD_WAKE_AFFINE and
  1304. * p is cache cold in this domain, and
  1305. * there is no bad imbalance.
  1306. */
  1307. schedstat_inc(this_sd, ttwu_move_affine);
  1308. goto out_set_cpu;
  1309. }
  1310. }
  1311. /*
  1312. * Start passive balancing when half the imbalance_pct
  1313. * limit is reached.
  1314. */
  1315. if (this_sd->flags & SD_WAKE_BALANCE) {
  1316. if (imbalance*this_load <= 100*load) {
  1317. schedstat_inc(this_sd, ttwu_move_balance);
  1318. goto out_set_cpu;
  1319. }
  1320. }
  1321. }
  1322. new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
  1323. out_set_cpu:
  1324. new_cpu = wake_idle(new_cpu, p);
  1325. if (new_cpu != cpu) {
  1326. set_task_cpu(p, new_cpu);
  1327. task_rq_unlock(rq, &flags);
  1328. /* might preempt at this point */
  1329. rq = task_rq_lock(p, &flags);
  1330. old_state = p->state;
  1331. if (!(old_state & state))
  1332. goto out;
  1333. if (p->array)
  1334. goto out_running;
  1335. this_cpu = smp_processor_id();
  1336. cpu = task_cpu(p);
  1337. }
  1338. out_activate:
  1339. #endif /* CONFIG_SMP */
  1340. if (old_state == TASK_UNINTERRUPTIBLE) {
  1341. rq->nr_uninterruptible--;
  1342. /*
  1343. * Tasks on involuntary sleep don't earn
  1344. * sleep_avg beyond just interactive state.
  1345. */
  1346. p->sleep_type = SLEEP_NONINTERACTIVE;
  1347. } else
  1348. /*
  1349. * Tasks that have marked their sleep as noninteractive get
  1350. * woken up with their sleep average not weighted in an
  1351. * interactive way.
  1352. */
  1353. if (old_state & TASK_NONINTERACTIVE)
  1354. p->sleep_type = SLEEP_NONINTERACTIVE;
  1355. activate_task(p, rq, cpu == this_cpu);
  1356. /*
  1357. * Sync wakeups (i.e. those types of wakeups where the waker
  1358. * has indicated that it will leave the CPU in short order)
  1359. * don't trigger a preemption, if the woken up task will run on
  1360. * this cpu. (in this case the 'I will reschedule' promise of
  1361. * the waker guarantees that the freshly woken up task is going
  1362. * to be considered on this CPU.)
  1363. */
  1364. if (!sync || cpu != this_cpu) {
  1365. if (TASK_PREEMPTS_CURR(p, rq))
  1366. resched_task(rq->curr);
  1367. }
  1368. success = 1;
  1369. out_running:
  1370. p->state = TASK_RUNNING;
  1371. out:
  1372. task_rq_unlock(rq, &flags);
  1373. return success;
  1374. }
  1375. int fastcall wake_up_process(struct task_struct *p)
  1376. {
  1377. return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
  1378. TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
  1379. }
  1380. EXPORT_SYMBOL(wake_up_process);
  1381. int fastcall wake_up_state(struct task_struct *p, unsigned int state)
  1382. {
  1383. return try_to_wake_up(p, state, 0);
  1384. }
  1385. static void task_running_tick(struct rq *rq, struct task_struct *p);
  1386. /*
  1387. * Perform scheduler related setup for a newly forked process p.
  1388. * p is forked by current.
  1389. */
  1390. void fastcall sched_fork(struct task_struct *p, int clone_flags)
  1391. {
  1392. int cpu = get_cpu();
  1393. #ifdef CONFIG_SMP
  1394. cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
  1395. #endif
  1396. set_task_cpu(p, cpu);
  1397. /*
  1398. * We mark the process as running here, but have not actually
  1399. * inserted it onto the runqueue yet. This guarantees that
  1400. * nobody will actually run it, and a signal or other external
  1401. * event cannot wake it up and insert it on the runqueue either.
  1402. */
  1403. p->state = TASK_RUNNING;
  1404. /*
  1405. * Make sure we do not leak PI boosting priority to the child:
  1406. */
  1407. p->prio = current->normal_prio;
  1408. INIT_LIST_HEAD(&p->run_list);
  1409. p->array = NULL;
  1410. #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
  1411. if (unlikely(sched_info_on()))
  1412. memset(&p->sched_info, 0, sizeof(p->sched_info));
  1413. #endif
  1414. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  1415. p->oncpu = 0;
  1416. #endif
  1417. #ifdef CONFIG_PREEMPT
  1418. /* Want to start with kernel preemption disabled. */
  1419. task_thread_info(p)->preempt_count = 1;
  1420. #endif
  1421. /*
  1422. * Share the timeslice between parent and child, thus the
  1423. * total amount of pending timeslices in the system doesn't change,
  1424. * resulting in more scheduling fairness.
  1425. */
  1426. local_irq_disable();
  1427. p->time_slice = (current->time_slice + 1) >> 1;
  1428. /*
  1429. * The remainder of the first timeslice might be recovered by
  1430. * the parent if the child exits early enough.
  1431. */
  1432. p->first_time_slice = 1;
  1433. current->time_slice >>= 1;
  1434. p->timestamp = sched_clock();
  1435. if (unlikely(!current->time_slice)) {
  1436. /*
  1437. * This case is rare, it happens when the parent has only
  1438. * a single jiffy left from its timeslice. Taking the
  1439. * runqueue lock is not a problem.
  1440. */
  1441. current->time_slice = 1;
  1442. task_running_tick(cpu_rq(cpu), current);
  1443. }
  1444. local_irq_enable();
  1445. put_cpu();
  1446. }
  1447. /*
  1448. * wake_up_new_task - wake up a newly created task for the first time.
  1449. *
  1450. * This function will do some initial scheduler statistics housekeeping
  1451. * that must be done for every newly created context, then puts the task
  1452. * on the runqueue and wakes it.
  1453. */
  1454. void fastcall wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
  1455. {
  1456. struct rq *rq, *this_rq;
  1457. unsigned long flags;
  1458. int this_cpu, cpu;
  1459. rq = task_rq_lock(p, &flags);
  1460. BUG_ON(p->state != TASK_RUNNING);
  1461. this_cpu = smp_processor_id();
  1462. cpu = task_cpu(p);
  1463. /*
  1464. * We decrease the sleep average of forking parents
  1465. * and children as well, to keep max-interactive tasks
  1466. * from forking tasks that are max-interactive. The parent
  1467. * (current) is done further down, under its lock.
  1468. */
  1469. p->sleep_avg = JIFFIES_TO_NS(CURRENT_BONUS(p) *
  1470. CHILD_PENALTY / 100 * MAX_SLEEP_AVG / MAX_BONUS);
  1471. p->prio = effective_prio(p);
  1472. if (likely(cpu == this_cpu)) {
  1473. if (!(clone_flags & CLONE_VM)) {
  1474. /*
  1475. * The VM isn't cloned, so we're in a good position to
  1476. * do child-runs-first in anticipation of an exec. This
  1477. * usually avoids a lot of COW overhead.
  1478. */
  1479. if (unlikely(!current->array))
  1480. __activate_task(p, rq);
  1481. else {
  1482. p->prio = current->prio;
  1483. p->normal_prio = current->normal_prio;
  1484. list_add_tail(&p->run_list, &current->run_list);
  1485. p->array = current->array;
  1486. p->array->nr_active++;
  1487. inc_nr_running(p, rq);
  1488. }
  1489. set_need_resched();
  1490. } else
  1491. /* Run child last */
  1492. __activate_task(p, rq);
  1493. /*
  1494. * We skip the following code due to cpu == this_cpu
  1495. *
  1496. * task_rq_unlock(rq, &flags);
  1497. * this_rq = task_rq_lock(current, &flags);
  1498. */
  1499. this_rq = rq;
  1500. } else {
  1501. this_rq = cpu_rq(this_cpu);
  1502. /*
  1503. * Not the local CPU - must adjust timestamp. This should
  1504. * get optimised away in the !CONFIG_SMP case.
  1505. */
  1506. p->timestamp = (p->timestamp - this_rq->most_recent_timestamp)
  1507. + rq->most_recent_timestamp;
  1508. __activate_task(p, rq);
  1509. if (TASK_PREEMPTS_CURR(p, rq))
  1510. resched_task(rq->curr);
  1511. /*
  1512. * Parent and child are on different CPUs, now get the
  1513. * parent runqueue to update the parent's ->sleep_avg:
  1514. */
  1515. task_rq_unlock(rq, &flags);
  1516. this_rq = task_rq_lock(current, &flags);
  1517. }
  1518. current->sleep_avg = JIFFIES_TO_NS(CURRENT_BONUS(current) *
  1519. PARENT_PENALTY / 100 * MAX_SLEEP_AVG / MAX_BONUS);
  1520. task_rq_unlock(this_rq, &flags);
  1521. }
  1522. /**
  1523. * prepare_task_switch - prepare to switch tasks
  1524. * @rq: the runqueue preparing to switch
  1525. * @next: the task we are going to switch to.
  1526. *
  1527. * This is called with the rq lock held and interrupts off. It must
  1528. * be paired with a subsequent finish_task_switch after the context
  1529. * switch.
  1530. *
  1531. * prepare_task_switch sets up locking and calls architecture specific
  1532. * hooks.
  1533. */
  1534. static inline void prepare_task_switch(struct rq *rq, struct task_struct *next)
  1535. {
  1536. prepare_lock_switch(rq, next);
  1537. prepare_arch_switch(next);
  1538. }
  1539. /**
  1540. * finish_task_switch - clean up after a task-switch
  1541. * @rq: runqueue associated with task-switch
  1542. * @prev: the thread we just switched away from.
  1543. *
  1544. * finish_task_switch must be called after the context switch, paired
  1545. * with a prepare_task_switch call before the context switch.
  1546. * finish_task_switch will reconcile locking set up by prepare_task_switch,
  1547. * and do any other architecture-specific cleanup actions.
  1548. *
  1549. * Note that we may have delayed dropping an mm in context_switch(). If
  1550. * so, we finish that here outside of the runqueue lock. (Doing it
  1551. * with the lock held can cause deadlocks; see schedule() for
  1552. * details.)
  1553. */
  1554. static inline void finish_task_switch(struct rq *rq, struct task_struct *prev)
  1555. __releases(rq->lock)
  1556. {
  1557. struct mm_struct *mm = rq->prev_mm;
  1558. long prev_state;
  1559. rq->prev_mm = NULL;
  1560. /*
  1561. * A task struct has one reference for the use as "current".
  1562. * If a task dies, then it sets TASK_DEAD in tsk->state and calls
  1563. * schedule one last time. The schedule call will never return, and
  1564. * the scheduled task must drop that reference.
  1565. * The test for TASK_DEAD must occur while the runqueue locks are
  1566. * still held, otherwise prev could be scheduled on another cpu, die
  1567. * there before we look at prev->state, and then the reference would
  1568. * be dropped twice.
  1569. * Manfred Spraul <manfred@colorfullife.com>
  1570. */
  1571. prev_state = prev->state;
  1572. finish_arch_switch(prev);
  1573. finish_lock_switch(rq, prev);
  1574. if (mm)
  1575. mmdrop(mm);
  1576. if (unlikely(prev_state == TASK_DEAD)) {
  1577. /*
  1578. * Remove function-return probe instances associated with this
  1579. * task and put them back on the free list.
  1580. */
  1581. kprobe_flush_task(prev);
  1582. put_task_struct(prev);
  1583. }
  1584. }
  1585. /**
  1586. * schedule_tail - first thing a freshly forked thread must call.
  1587. * @prev: the thread we just switched away from.
  1588. */
  1589. asmlinkage void schedule_tail(struct task_struct *prev)
  1590. __releases(rq->lock)
  1591. {
  1592. struct rq *rq = this_rq();
  1593. finish_task_switch(rq, prev);
  1594. #ifdef __ARCH_WANT_UNLOCKED_CTXSW
  1595. /* In this case, finish_task_switch does not reenable preemption */
  1596. preempt_enable();
  1597. #endif
  1598. if (current->set_child_tid)
  1599. put_user(current->pid, current->set_child_tid);
  1600. }
  1601. /*
  1602. * context_switch - switch to the new MM and the new
  1603. * thread's register state.
  1604. */
  1605. static inline struct task_struct *
  1606. context_switch(struct rq *rq, struct task_struct *prev,
  1607. struct task_struct *next)
  1608. {
  1609. struct mm_struct *mm = next->mm;
  1610. struct mm_struct *oldmm = prev->active_mm;
  1611. /*
  1612. * For paravirt, this is coupled with an exit in switch_to to
  1613. * combine the page table reload and the switch backend into
  1614. * one hypercall.
  1615. */
  1616. arch_enter_lazy_cpu_mode();
  1617. if (!mm) {
  1618. next->active_mm = oldmm;
  1619. atomic_inc(&oldmm->mm_count);
  1620. enter_lazy_tlb(oldmm, next);
  1621. } else
  1622. switch_mm(oldmm, mm, next);
  1623. if (!prev->mm) {
  1624. prev->active_mm = NULL;
  1625. WARN_ON(rq->prev_mm);
  1626. rq->prev_mm = oldmm;
  1627. }
  1628. /*
  1629. * Since the runqueue lock will be released by the next
  1630. * task (which is an invalid locking op but in the case
  1631. * of the scheduler it's an obvious special-case), so we
  1632. * do an early lockdep release here:
  1633. */
  1634. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  1635. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  1636. #endif
  1637. /* Here we just switch the register state and the stack. */
  1638. switch_to(prev, next, prev);
  1639. return prev;
  1640. }
  1641. /*
  1642. * nr_running, nr_uninterruptible and nr_context_switches:
  1643. *
  1644. * externally visible scheduler statistics: current number of runnable
  1645. * threads, current number of uninterruptible-sleeping threads, total
  1646. * number of context switches performed since bootup.
  1647. */
  1648. unsigned long nr_running(void)
  1649. {
  1650. unsigned long i, sum = 0;
  1651. for_each_online_cpu(i)
  1652. sum += cpu_rq(i)->nr_running;
  1653. return sum;
  1654. }
  1655. unsigned long nr_uninterruptible(void)
  1656. {
  1657. unsigned long i, sum = 0;
  1658. for_each_possible_cpu(i)
  1659. sum += cpu_rq(i)->nr_uninterruptible;
  1660. /*
  1661. * Since we read the counters lockless, it might be slightly
  1662. * inaccurate. Do not allow it to go below zero though:
  1663. */
  1664. if (unlikely((long)sum < 0))
  1665. sum = 0;
  1666. return sum;
  1667. }
  1668. unsigned long long nr_context_switches(void)
  1669. {
  1670. int i;
  1671. unsigned long long sum = 0;
  1672. for_each_possible_cpu(i)
  1673. sum += cpu_rq(i)->nr_switches;
  1674. return sum;
  1675. }
  1676. unsigned long nr_iowait(void)
  1677. {
  1678. unsigned long i, sum = 0;
  1679. for_each_possible_cpu(i)
  1680. sum += atomic_read(&cpu_rq(i)->nr_iowait);
  1681. return sum;
  1682. }
  1683. unsigned long nr_active(void)
  1684. {
  1685. unsigned long i, running = 0, uninterruptible = 0;
  1686. for_each_online_cpu(i) {
  1687. running += cpu_rq(i)->nr_running;
  1688. uninterruptible += cpu_rq(i)->nr_uninterruptible;
  1689. }
  1690. if (unlikely((long)uninterruptible < 0))
  1691. uninterruptible = 0;
  1692. return running + uninterruptible;
  1693. }
  1694. #ifdef CONFIG_SMP
  1695. /*
  1696. * Is this task likely cache-hot:
  1697. */
  1698. static inline int
  1699. task_hot(struct task_struct *p, unsigned long long now, struct sched_domain *sd)
  1700. {
  1701. return (long long)(now - p->last_ran) < (long long)sd->cache_hot_time;
  1702. }
  1703. /*
  1704. * double_rq_lock - safely lock two runqueues
  1705. *
  1706. * Note this does not disable interrupts like task_rq_lock,
  1707. * you need to do so manually before calling.
  1708. */
  1709. static void double_rq_lock(struct rq *rq1, struct rq *rq2)
  1710. __acquires(rq1->lock)
  1711. __acquires(rq2->lock)
  1712. {
  1713. BUG_ON(!irqs_disabled());
  1714. if (rq1 == rq2) {
  1715. spin_lock(&rq1->lock);
  1716. __acquire(rq2->lock); /* Fake it out ;) */
  1717. } else {
  1718. if (rq1 < rq2) {
  1719. spin_lock(&rq1->lock);
  1720. spin_lock(&rq2->lock);
  1721. } else {
  1722. spin_lock(&rq2->lock);
  1723. spin_lock(&rq1->lock);
  1724. }
  1725. }
  1726. }
  1727. /*
  1728. * double_rq_unlock - safely unlock two runqueues
  1729. *
  1730. * Note this does not restore interrupts like task_rq_unlock,
  1731. * you need to do so manually after calling.
  1732. */
  1733. static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
  1734. __releases(rq1->lock)
  1735. __releases(rq2->lock)
  1736. {
  1737. spin_unlock(&rq1->lock);
  1738. if (rq1 != rq2)
  1739. spin_unlock(&rq2->lock);
  1740. else
  1741. __release(rq2->lock);
  1742. }
  1743. /*
  1744. * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
  1745. */
  1746. static void double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1747. __releases(this_rq->lock)
  1748. __acquires(busiest->lock)
  1749. __acquires(this_rq->lock)
  1750. {
  1751. if (unlikely(!irqs_disabled())) {
  1752. /* printk() doesn't work good under rq->lock */
  1753. spin_unlock(&this_rq->lock);
  1754. BUG_ON(1);
  1755. }
  1756. if (unlikely(!spin_trylock(&busiest->lock))) {
  1757. if (busiest < this_rq) {
  1758. spin_unlock(&this_rq->lock);
  1759. spin_lock(&busiest->lock);
  1760. spin_lock(&this_rq->lock);
  1761. } else
  1762. spin_lock(&busiest->lock);
  1763. }
  1764. }
  1765. /*
  1766. * If dest_cpu is allowed for this process, migrate the task to it.
  1767. * This is accomplished by forcing the cpu_allowed mask to only
  1768. * allow dest_cpu, which will force the cpu onto dest_cpu. Then
  1769. * the cpu_allowed mask is restored.
  1770. */
  1771. static void sched_migrate_task(struct task_struct *p, int dest_cpu)
  1772. {
  1773. struct migration_req req;
  1774. unsigned long flags;
  1775. struct rq *rq;
  1776. rq = task_rq_lock(p, &flags);
  1777. if (!cpu_isset(dest_cpu, p->cpus_allowed)
  1778. || unlikely(cpu_is_offline(dest_cpu)))
  1779. goto out;
  1780. /* force the process onto the specified CPU */
  1781. if (migrate_task(p, dest_cpu, &req)) {
  1782. /* Need to wait for migration thread (might exit: take ref). */
  1783. struct task_struct *mt = rq->migration_thread;
  1784. get_task_struct(mt);
  1785. task_rq_unlock(rq, &flags);
  1786. wake_up_process(mt);
  1787. put_task_struct(mt);
  1788. wait_for_completion(&req.done);
  1789. return;
  1790. }
  1791. out:
  1792. task_rq_unlock(rq, &flags);
  1793. }
  1794. /*
  1795. * sched_exec - execve() is a valuable balancing opportunity, because at
  1796. * this point the task has the smallest effective memory and cache footprint.
  1797. */
  1798. void sched_exec(void)
  1799. {
  1800. int new_cpu, this_cpu = get_cpu();
  1801. new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
  1802. put_cpu();
  1803. if (new_cpu != this_cpu)
  1804. sched_migrate_task(current, new_cpu);
  1805. }
  1806. /*
  1807. * pull_task - move a task from a remote runqueue to the local runqueue.
  1808. * Both runqueues must be locked.
  1809. */
  1810. static void pull_task(struct rq *src_rq, struct prio_array *src_array,
  1811. struct task_struct *p, struct rq *this_rq,
  1812. struct prio_array *this_array, int this_cpu)
  1813. {
  1814. dequeue_task(p, src_array);
  1815. dec_nr_running(p, src_rq);
  1816. set_task_cpu(p, this_cpu);
  1817. inc_nr_running(p, this_rq);
  1818. enqueue_task(p, this_array);
  1819. p->timestamp = (p->timestamp - src_rq->most_recent_timestamp)
  1820. + this_rq->most_recent_timestamp;
  1821. /*
  1822. * Note that idle threads have a prio of MAX_PRIO, for this test
  1823. * to be always true for them.
  1824. */
  1825. if (TASK_PREEMPTS_CURR(p, this_rq))
  1826. resched_task(this_rq->curr);
  1827. }
  1828. /*
  1829. * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
  1830. */
  1831. static
  1832. int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
  1833. struct sched_domain *sd, enum cpu_idle_type idle,
  1834. int *all_pinned)
  1835. {
  1836. /*
  1837. * We do not migrate tasks that are:
  1838. * 1) running (obviously), or
  1839. * 2) cannot be migrated to this CPU due to cpus_allowed, or
  1840. * 3) are cache-hot on their current CPU.
  1841. */
  1842. if (!cpu_isset(this_cpu, p->cpus_allowed))
  1843. return 0;
  1844. *all_pinned = 0;
  1845. if (task_running(rq, p))
  1846. return 0;
  1847. /*
  1848. * Aggressive migration if:
  1849. * 1) task is cache cold, or
  1850. * 2) too many balance attempts have failed.
  1851. */
  1852. if (sd->nr_balance_failed > sd->cache_nice_tries) {
  1853. #ifdef CONFIG_SCHEDSTATS
  1854. if (task_hot(p, rq->most_recent_timestamp, sd))
  1855. schedstat_inc(sd, lb_hot_gained[idle]);
  1856. #endif
  1857. return 1;
  1858. }
  1859. if (task_hot(p, rq->most_recent_timestamp, sd))
  1860. return 0;
  1861. return 1;
  1862. }
  1863. #define rq_best_prio(rq) min((rq)->curr->prio, (rq)->best_expired_prio)
  1864. /*
  1865. * move_tasks tries to move up to max_nr_move tasks and max_load_move weighted
  1866. * load from busiest to this_rq, as part of a balancing operation within
  1867. * "domain". Returns the number of tasks moved.
  1868. *
  1869. * Called with both runqueues locked.
  1870. */
  1871. static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1872. unsigned long max_nr_move, unsigned long max_load_move,
  1873. struct sched_domain *sd, enum cpu_idle_type idle,
  1874. int *all_pinned)
  1875. {
  1876. int idx, pulled = 0, pinned = 0, this_best_prio, best_prio,
  1877. best_prio_seen, skip_for_load;
  1878. struct prio_array *array, *dst_array;
  1879. struct list_head *head, *curr;
  1880. struct task_struct *tmp;
  1881. long rem_load_move;
  1882. if (max_nr_move == 0 || max_load_move == 0)
  1883. goto out;
  1884. rem_load_move = max_load_move;
  1885. pinned = 1;
  1886. this_best_prio = rq_best_prio(this_rq);
  1887. best_prio = rq_best_prio(busiest);
  1888. /*
  1889. * Enable handling of the case where there is more than one task
  1890. * with the best priority. If the current running task is one
  1891. * of those with prio==best_prio we know it won't be moved
  1892. * and therefore it's safe to override the skip (based on load) of
  1893. * any task we find with that prio.
  1894. */
  1895. best_prio_seen = best_prio == busiest->curr->prio;
  1896. /*
  1897. * We first consider expired tasks. Those will likely not be
  1898. * executed in the near future, and they are most likely to
  1899. * be cache-cold, thus switching CPUs has the least effect
  1900. * on them.
  1901. */
  1902. if (busiest->expired->nr_active) {
  1903. array = busiest->expired;
  1904. dst_array = this_rq->expired;
  1905. } else {
  1906. array = busiest->active;
  1907. dst_array = this_rq->active;
  1908. }
  1909. new_array:
  1910. /* Start searching at priority 0: */
  1911. idx = 0;
  1912. skip_bitmap:
  1913. if (!idx)
  1914. idx = sched_find_first_bit(array->bitmap);
  1915. else
  1916. idx = find_next_bit(array->bitmap, MAX_PRIO, idx);
  1917. if (idx >= MAX_PRIO) {
  1918. if (array == busiest->expired && busiest->active->nr_active) {
  1919. array = busiest->active;
  1920. dst_array = this_rq->active;
  1921. goto new_array;
  1922. }
  1923. goto out;
  1924. }
  1925. head = array->queue + idx;
  1926. curr = head->prev;
  1927. skip_queue:
  1928. tmp = list_entry(curr, struct task_struct, run_list);
  1929. curr = curr->prev;
  1930. /*
  1931. * To help distribute high priority tasks accross CPUs we don't
  1932. * skip a task if it will be the highest priority task (i.e. smallest
  1933. * prio value) on its new queue regardless of its load weight
  1934. */
  1935. skip_for_load = tmp->load_weight > rem_load_move;
  1936. if (skip_for_load && idx < this_best_prio)
  1937. skip_for_load = !best_prio_seen && idx == best_prio;
  1938. if (skip_for_load ||
  1939. !can_migrate_task(tmp, busiest, this_cpu, sd, idle, &pinned)) {
  1940. best_prio_seen |= idx == best_prio;
  1941. if (curr != head)
  1942. goto skip_queue;
  1943. idx++;
  1944. goto skip_bitmap;
  1945. }
  1946. pull_task(busiest, array, tmp, this_rq, dst_array, this_cpu);
  1947. pulled++;
  1948. rem_load_move -= tmp->load_weight;
  1949. /*
  1950. * We only want to steal up to the prescribed number of tasks
  1951. * and the prescribed amount of weighted load.
  1952. */
  1953. if (pulled < max_nr_move && rem_load_move > 0) {
  1954. if (idx < this_best_prio)
  1955. this_best_prio = idx;
  1956. if (curr != head)
  1957. goto skip_queue;
  1958. idx++;
  1959. goto skip_bitmap;
  1960. }
  1961. out:
  1962. /*
  1963. * Right now, this is the only place pull_task() is called,
  1964. * so we can safely collect pull_task() stats here rather than
  1965. * inside pull_task().
  1966. */
  1967. schedstat_add(sd, lb_gained[idle], pulled);
  1968. if (all_pinned)
  1969. *all_pinned = pinned;
  1970. return pulled;
  1971. }
  1972. /*
  1973. * find_busiest_group finds and returns the busiest CPU group within the
  1974. * domain. It calculates and returns the amount of weighted load which
  1975. * should be moved to restore balance via the imbalance parameter.
  1976. */
  1977. static struct sched_group *
  1978. find_busiest_group(struct sched_domain *sd, int this_cpu,
  1979. unsigned long *imbalance, enum cpu_idle_type idle, int *sd_idle,
  1980. cpumask_t *cpus, int *balance)
  1981. {
  1982. struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
  1983. unsigned long max_load, avg_load, total_load, this_load, total_pwr;
  1984. unsigned long max_pull;
  1985. unsigned long busiest_load_per_task, busiest_nr_running;
  1986. unsigned long this_load_per_task, this_nr_running;
  1987. int load_idx;
  1988. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  1989. int power_savings_balance = 1;
  1990. unsigned long leader_nr_running = 0, min_load_per_task = 0;
  1991. unsigned long min_nr_running = ULONG_MAX;
  1992. struct sched_group *group_min = NULL, *group_leader = NULL;
  1993. #endif
  1994. max_load = this_load = total_load = total_pwr = 0;
  1995. busiest_load_per_task = busiest_nr_running = 0;
  1996. this_load_per_task = this_nr_running = 0;
  1997. if (idle == CPU_NOT_IDLE)
  1998. load_idx = sd->busy_idx;
  1999. else if (idle == CPU_NEWLY_IDLE)
  2000. load_idx = sd->newidle_idx;
  2001. else
  2002. load_idx = sd->idle_idx;
  2003. do {
  2004. unsigned long load, group_capacity;
  2005. int local_group;
  2006. int i;
  2007. unsigned int balance_cpu = -1, first_idle_cpu = 0;
  2008. unsigned long sum_nr_running, sum_weighted_load;
  2009. local_group = cpu_isset(this_cpu, group->cpumask);
  2010. if (local_group)
  2011. balance_cpu = first_cpu(group->cpumask);
  2012. /* Tally up the load of all CPUs in the group */
  2013. sum_weighted_load = sum_nr_running = avg_load = 0;
  2014. for_each_cpu_mask(i, group->cpumask) {
  2015. struct rq *rq;
  2016. if (!cpu_isset(i, *cpus))
  2017. continue;
  2018. rq = cpu_rq(i);
  2019. if (*sd_idle && !idle_cpu(i))
  2020. *sd_idle = 0;
  2021. /* Bias balancing toward cpus of our domain */
  2022. if (local_group) {
  2023. if (idle_cpu(i) && !first_idle_cpu) {
  2024. first_idle_cpu = 1;
  2025. balance_cpu = i;
  2026. }
  2027. load = target_load(i, load_idx);
  2028. } else
  2029. load = source_load(i, load_idx);
  2030. avg_load += load;
  2031. sum_nr_running += rq->nr_running;
  2032. sum_weighted_load += rq->raw_weighted_load;
  2033. }
  2034. /*
  2035. * First idle cpu or the first cpu(busiest) in this sched group
  2036. * is eligible for doing load balancing at this and above
  2037. * domains.
  2038. */
  2039. if (local_group && balance_cpu != this_cpu && balance) {
  2040. *balance = 0;
  2041. goto ret;
  2042. }
  2043. total_load += avg_load;
  2044. total_pwr += group->__cpu_power;
  2045. /* Adjust by relative CPU power of the group */
  2046. avg_load = sg_div_cpu_power(group,
  2047. avg_load * SCHED_LOAD_SCALE);
  2048. group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
  2049. if (local_group) {
  2050. this_load = avg_load;
  2051. this = group;
  2052. this_nr_running = sum_nr_running;
  2053. this_load_per_task = sum_weighted_load;
  2054. } else if (avg_load > max_load &&
  2055. sum_nr_running > group_capacity) {
  2056. max_load = avg_load;
  2057. busiest = group;
  2058. busiest_nr_running = sum_nr_running;
  2059. busiest_load_per_task = sum_weighted_load;
  2060. }
  2061. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2062. /*
  2063. * Busy processors will not participate in power savings
  2064. * balance.
  2065. */
  2066. if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
  2067. goto group_next;
  2068. /*
  2069. * If the local group is idle or completely loaded
  2070. * no need to do power savings balance at this domain
  2071. */
  2072. if (local_group && (this_nr_running >= group_capacity ||
  2073. !this_nr_running))
  2074. power_savings_balance = 0;
  2075. /*
  2076. * If a group is already running at full capacity or idle,
  2077. * don't include that group in power savings calculations
  2078. */
  2079. if (!power_savings_balance || sum_nr_running >= group_capacity
  2080. || !sum_nr_running)
  2081. goto group_next;
  2082. /*
  2083. * Calculate the group which has the least non-idle load.
  2084. * This is the group from where we need to pick up the load
  2085. * for saving power
  2086. */
  2087. if ((sum_nr_running < min_nr_running) ||
  2088. (sum_nr_running == min_nr_running &&
  2089. first_cpu(group->cpumask) <
  2090. first_cpu(group_min->cpumask))) {
  2091. group_min = group;
  2092. min_nr_running = sum_nr_running;
  2093. min_load_per_task = sum_weighted_load /
  2094. sum_nr_running;
  2095. }
  2096. /*
  2097. * Calculate the group which is almost near its
  2098. * capacity but still has some space to pick up some load
  2099. * from other group and save more power
  2100. */
  2101. if (sum_nr_running <= group_capacity - 1) {
  2102. if (sum_nr_running > leader_nr_running ||
  2103. (sum_nr_running == leader_nr_running &&
  2104. first_cpu(group->cpumask) >
  2105. first_cpu(group_leader->cpumask))) {
  2106. group_leader = group;
  2107. leader_nr_running = sum_nr_running;
  2108. }
  2109. }
  2110. group_next:
  2111. #endif
  2112. group = group->next;
  2113. } while (group != sd->groups);
  2114. if (!busiest || this_load >= max_load || busiest_nr_running == 0)
  2115. goto out_balanced;
  2116. avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
  2117. if (this_load >= avg_load ||
  2118. 100*max_load <= sd->imbalance_pct*this_load)
  2119. goto out_balanced;
  2120. busiest_load_per_task /= busiest_nr_running;
  2121. /*
  2122. * We're trying to get all the cpus to the average_load, so we don't
  2123. * want to push ourselves above the average load, nor do we wish to
  2124. * reduce the max loaded cpu below the average load, as either of these
  2125. * actions would just result in more rebalancing later, and ping-pong
  2126. * tasks around. Thus we look for the minimum possible imbalance.
  2127. * Negative imbalances (*we* are more loaded than anyone else) will
  2128. * be counted as no imbalance for these purposes -- we can't fix that
  2129. * by pulling tasks to us. Be careful of negative numbers as they'll
  2130. * appear as very large values with unsigned longs.
  2131. */
  2132. if (max_load <= busiest_load_per_task)
  2133. goto out_balanced;
  2134. /*
  2135. * In the presence of smp nice balancing, certain scenarios can have
  2136. * max load less than avg load(as we skip the groups at or below
  2137. * its cpu_power, while calculating max_load..)
  2138. */
  2139. if (max_load < avg_load) {
  2140. *imbalance = 0;
  2141. goto small_imbalance;
  2142. }
  2143. /* Don't want to pull so many tasks that a group would go idle */
  2144. max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
  2145. /* How much load to actually move to equalise the imbalance */
  2146. *imbalance = min(max_pull * busiest->__cpu_power,
  2147. (avg_load - this_load) * this->__cpu_power)
  2148. / SCHED_LOAD_SCALE;
  2149. /*
  2150. * if *imbalance is less than the average load per runnable task
  2151. * there is no gaurantee that any tasks will be moved so we'll have
  2152. * a think about bumping its value to force at least one task to be
  2153. * moved
  2154. */
  2155. if (*imbalance < busiest_load_per_task) {
  2156. unsigned long tmp, pwr_now, pwr_move;
  2157. unsigned int imbn;
  2158. small_imbalance:
  2159. pwr_move = pwr_now = 0;
  2160. imbn = 2;
  2161. if (this_nr_running) {
  2162. this_load_per_task /= this_nr_running;
  2163. if (busiest_load_per_task > this_load_per_task)
  2164. imbn = 1;
  2165. } else
  2166. this_load_per_task = SCHED_LOAD_SCALE;
  2167. if (max_load - this_load >= busiest_load_per_task * imbn) {
  2168. *imbalance = busiest_load_per_task;
  2169. return busiest;
  2170. }
  2171. /*
  2172. * OK, we don't have enough imbalance to justify moving tasks,
  2173. * however we may be able to increase total CPU power used by
  2174. * moving them.
  2175. */
  2176. pwr_now += busiest->__cpu_power *
  2177. min(busiest_load_per_task, max_load);
  2178. pwr_now += this->__cpu_power *
  2179. min(this_load_per_task, this_load);
  2180. pwr_now /= SCHED_LOAD_SCALE;
  2181. /* Amount of load we'd subtract */
  2182. tmp = sg_div_cpu_power(busiest,
  2183. busiest_load_per_task * SCHED_LOAD_SCALE);
  2184. if (max_load > tmp)
  2185. pwr_move += busiest->__cpu_power *
  2186. min(busiest_load_per_task, max_load - tmp);
  2187. /* Amount of load we'd add */
  2188. if (max_load * busiest->__cpu_power <
  2189. busiest_load_per_task * SCHED_LOAD_SCALE)
  2190. tmp = sg_div_cpu_power(this,
  2191. max_load * busiest->__cpu_power);
  2192. else
  2193. tmp = sg_div_cpu_power(this,
  2194. busiest_load_per_task * SCHED_LOAD_SCALE);
  2195. pwr_move += this->__cpu_power *
  2196. min(this_load_per_task, this_load + tmp);
  2197. pwr_move /= SCHED_LOAD_SCALE;
  2198. /* Move if we gain throughput */
  2199. if (pwr_move <= pwr_now)
  2200. goto out_balanced;
  2201. *imbalance = busiest_load_per_task;
  2202. }
  2203. return busiest;
  2204. out_balanced:
  2205. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2206. if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
  2207. goto ret;
  2208. if (this == group_leader && group_leader != group_min) {
  2209. *imbalance = min_load_per_task;
  2210. return group_min;
  2211. }
  2212. #endif
  2213. ret:
  2214. *imbalance = 0;
  2215. return NULL;
  2216. }
  2217. /*
  2218. * find_busiest_queue - find the busiest runqueue among the cpus in group.
  2219. */
  2220. static struct rq *
  2221. find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
  2222. unsigned long imbalance, cpumask_t *cpus)
  2223. {
  2224. struct rq *busiest = NULL, *rq;
  2225. unsigned long max_load = 0;
  2226. int i;
  2227. for_each_cpu_mask(i, group->cpumask) {
  2228. if (!cpu_isset(i, *cpus))
  2229. continue;
  2230. rq = cpu_rq(i);
  2231. if (rq->nr_running == 1 && rq->raw_weighted_load > imbalance)
  2232. continue;
  2233. if (rq->raw_weighted_load > max_load) {
  2234. max_load = rq->raw_weighted_load;
  2235. busiest = rq;
  2236. }
  2237. }
  2238. return busiest;
  2239. }
  2240. /*
  2241. * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
  2242. * so long as it is large enough.
  2243. */
  2244. #define MAX_PINNED_INTERVAL 512
  2245. static inline unsigned long minus_1_or_zero(unsigned long n)
  2246. {
  2247. return n > 0 ? n - 1 : 0;
  2248. }
  2249. /*
  2250. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  2251. * tasks if there is an imbalance.
  2252. */
  2253. static int load_balance(int this_cpu, struct rq *this_rq,
  2254. struct sched_domain *sd, enum cpu_idle_type idle,
  2255. int *balance)
  2256. {
  2257. int nr_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
  2258. struct sched_group *group;
  2259. unsigned long imbalance;
  2260. struct rq *busiest;
  2261. cpumask_t cpus = CPU_MASK_ALL;
  2262. unsigned long flags;
  2263. /*
  2264. * When power savings policy is enabled for the parent domain, idle
  2265. * sibling can pick up load irrespective of busy siblings. In this case,
  2266. * let the state of idle sibling percolate up as IDLE, instead of
  2267. * portraying it as CPU_NOT_IDLE.
  2268. */
  2269. if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
  2270. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2271. sd_idle = 1;
  2272. schedstat_inc(sd, lb_cnt[idle]);
  2273. redo:
  2274. group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
  2275. &cpus, balance);
  2276. if (*balance == 0)
  2277. goto out_balanced;
  2278. if (!group) {
  2279. schedstat_inc(sd, lb_nobusyg[idle]);
  2280. goto out_balanced;
  2281. }
  2282. busiest = find_busiest_queue(group, idle, imbalance, &cpus);
  2283. if (!busiest) {
  2284. schedstat_inc(sd, lb_nobusyq[idle]);
  2285. goto out_balanced;
  2286. }
  2287. BUG_ON(busiest == this_rq);
  2288. schedstat_add(sd, lb_imbalance[idle], imbalance);
  2289. nr_moved = 0;
  2290. if (busiest->nr_running > 1) {
  2291. /*
  2292. * Attempt to move tasks. If find_busiest_group has found
  2293. * an imbalance but busiest->nr_running <= 1, the group is
  2294. * still unbalanced. nr_moved simply stays zero, so it is
  2295. * correctly treated as an imbalance.
  2296. */
  2297. local_irq_save(flags);
  2298. double_rq_lock(this_rq, busiest);
  2299. nr_moved = move_tasks(this_rq, this_cpu, busiest,
  2300. minus_1_or_zero(busiest->nr_running),
  2301. imbalance, sd, idle, &all_pinned);
  2302. double_rq_unlock(this_rq, busiest);
  2303. local_irq_restore(flags);
  2304. /*
  2305. * some other cpu did the load balance for us.
  2306. */
  2307. if (nr_moved && this_cpu != smp_processor_id())
  2308. resched_cpu(this_cpu);
  2309. /* All tasks on this runqueue were pinned by CPU affinity */
  2310. if (unlikely(all_pinned)) {
  2311. cpu_clear(cpu_of(busiest), cpus);
  2312. if (!cpus_empty(cpus))
  2313. goto redo;
  2314. goto out_balanced;
  2315. }
  2316. }
  2317. if (!nr_moved) {
  2318. schedstat_inc(sd, lb_failed[idle]);
  2319. sd->nr_balance_failed++;
  2320. if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
  2321. spin_lock_irqsave(&busiest->lock, flags);
  2322. /* don't kick the migration_thread, if the curr
  2323. * task on busiest cpu can't be moved to this_cpu
  2324. */
  2325. if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
  2326. spin_unlock_irqrestore(&busiest->lock, flags);
  2327. all_pinned = 1;
  2328. goto out_one_pinned;
  2329. }
  2330. if (!busiest->active_balance) {
  2331. busiest->active_balance = 1;
  2332. busiest->push_cpu = this_cpu;
  2333. active_balance = 1;
  2334. }
  2335. spin_unlock_irqrestore(&busiest->lock, flags);
  2336. if (active_balance)
  2337. wake_up_process(busiest->migration_thread);
  2338. /*
  2339. * We've kicked active balancing, reset the failure
  2340. * counter.
  2341. */
  2342. sd->nr_balance_failed = sd->cache_nice_tries+1;
  2343. }
  2344. } else
  2345. sd->nr_balance_failed = 0;
  2346. if (likely(!active_balance)) {
  2347. /* We were unbalanced, so reset the balancing interval */
  2348. sd->balance_interval = sd->min_interval;
  2349. } else {
  2350. /*
  2351. * If we've begun active balancing, start to back off. This
  2352. * case may not be covered by the all_pinned logic if there
  2353. * is only 1 task on the busy runqueue (because we don't call
  2354. * move_tasks).
  2355. */
  2356. if (sd->balance_interval < sd->max_interval)
  2357. sd->balance_interval *= 2;
  2358. }
  2359. if (!nr_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  2360. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2361. return -1;
  2362. return nr_moved;
  2363. out_balanced:
  2364. schedstat_inc(sd, lb_balanced[idle]);
  2365. sd->nr_balance_failed = 0;
  2366. out_one_pinned:
  2367. /* tune up the balancing interval */
  2368. if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
  2369. (sd->balance_interval < sd->max_interval))
  2370. sd->balance_interval *= 2;
  2371. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  2372. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2373. return -1;
  2374. return 0;
  2375. }
  2376. /*
  2377. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  2378. * tasks if there is an imbalance.
  2379. *
  2380. * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
  2381. * this_rq is locked.
  2382. */
  2383. static int
  2384. load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
  2385. {
  2386. struct sched_group *group;
  2387. struct rq *busiest = NULL;
  2388. unsigned long imbalance;
  2389. int nr_moved = 0;
  2390. int sd_idle = 0;
  2391. cpumask_t cpus = CPU_MASK_ALL;
  2392. /*
  2393. * When power savings policy is enabled for the parent domain, idle
  2394. * sibling can pick up load irrespective of busy siblings. In this case,
  2395. * let the state of idle sibling percolate up as IDLE, instead of
  2396. * portraying it as CPU_NOT_IDLE.
  2397. */
  2398. if (sd->flags & SD_SHARE_CPUPOWER &&
  2399. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2400. sd_idle = 1;
  2401. schedstat_inc(sd, lb_cnt[CPU_NEWLY_IDLE]);
  2402. redo:
  2403. group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
  2404. &sd_idle, &cpus, NULL);
  2405. if (!group) {
  2406. schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
  2407. goto out_balanced;
  2408. }
  2409. busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance,
  2410. &cpus);
  2411. if (!busiest) {
  2412. schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
  2413. goto out_balanced;
  2414. }
  2415. BUG_ON(busiest == this_rq);
  2416. schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
  2417. nr_moved = 0;
  2418. if (busiest->nr_running > 1) {
  2419. /* Attempt to move tasks */
  2420. double_lock_balance(this_rq, busiest);
  2421. nr_moved = move_tasks(this_rq, this_cpu, busiest,
  2422. minus_1_or_zero(busiest->nr_running),
  2423. imbalance, sd, CPU_NEWLY_IDLE, NULL);
  2424. spin_unlock(&busiest->lock);
  2425. if (!nr_moved) {
  2426. cpu_clear(cpu_of(busiest), cpus);
  2427. if (!cpus_empty(cpus))
  2428. goto redo;
  2429. }
  2430. }
  2431. if (!nr_moved) {
  2432. schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
  2433. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  2434. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2435. return -1;
  2436. } else
  2437. sd->nr_balance_failed = 0;
  2438. return nr_moved;
  2439. out_balanced:
  2440. schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
  2441. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  2442. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2443. return -1;
  2444. sd->nr_balance_failed = 0;
  2445. return 0;
  2446. }
  2447. /*
  2448. * idle_balance is called by schedule() if this_cpu is about to become
  2449. * idle. Attempts to pull tasks from other CPUs.
  2450. */
  2451. static void idle_balance(int this_cpu, struct rq *this_rq)
  2452. {
  2453. struct sched_domain *sd;
  2454. int pulled_task = 0;
  2455. unsigned long next_balance = jiffies + 60 * HZ;
  2456. for_each_domain(this_cpu, sd) {
  2457. unsigned long interval;
  2458. if (!(sd->flags & SD_LOAD_BALANCE))
  2459. continue;
  2460. if (sd->flags & SD_BALANCE_NEWIDLE)
  2461. /* If we've pulled tasks over stop searching: */
  2462. pulled_task = load_balance_newidle(this_cpu,
  2463. this_rq, sd);
  2464. interval = msecs_to_jiffies(sd->balance_interval);
  2465. if (time_after(next_balance, sd->last_balance + interval))
  2466. next_balance = sd->last_balance + interval;
  2467. if (pulled_task)
  2468. break;
  2469. }
  2470. if (!pulled_task)
  2471. /*
  2472. * We are going idle. next_balance may be set based on
  2473. * a busy processor. So reset next_balance.
  2474. */
  2475. this_rq->next_balance = next_balance;
  2476. }
  2477. /*
  2478. * active_load_balance is run by migration threads. It pushes running tasks
  2479. * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
  2480. * running on each physical CPU where possible, and avoids physical /
  2481. * logical imbalances.
  2482. *
  2483. * Called with busiest_rq locked.
  2484. */
  2485. static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
  2486. {
  2487. int target_cpu = busiest_rq->push_cpu;
  2488. struct sched_domain *sd;
  2489. struct rq *target_rq;
  2490. /* Is there any task to move? */
  2491. if (busiest_rq->nr_running <= 1)
  2492. return;
  2493. target_rq = cpu_rq(target_cpu);
  2494. /*
  2495. * This condition is "impossible", if it occurs
  2496. * we need to fix it. Originally reported by
  2497. * Bjorn Helgaas on a 128-cpu setup.
  2498. */
  2499. BUG_ON(busiest_rq == target_rq);
  2500. /* move a task from busiest_rq to target_rq */
  2501. double_lock_balance(busiest_rq, target_rq);
  2502. /* Search for an sd spanning us and the target CPU. */
  2503. for_each_domain(target_cpu, sd) {
  2504. if ((sd->flags & SD_LOAD_BALANCE) &&
  2505. cpu_isset(busiest_cpu, sd->span))
  2506. break;
  2507. }
  2508. if (likely(sd)) {
  2509. schedstat_inc(sd, alb_cnt);
  2510. if (move_tasks(target_rq, target_cpu, busiest_rq, 1,
  2511. RTPRIO_TO_LOAD_WEIGHT(100), sd, CPU_IDLE,
  2512. NULL))
  2513. schedstat_inc(sd, alb_pushed);
  2514. else
  2515. schedstat_inc(sd, alb_failed);
  2516. }
  2517. spin_unlock(&target_rq->lock);
  2518. }
  2519. static void update_load(struct rq *this_rq)
  2520. {
  2521. unsigned long this_load;
  2522. unsigned int i, scale;
  2523. this_load = this_rq->raw_weighted_load;
  2524. /* Update our load: */
  2525. for (i = 0, scale = 1; i < 3; i++, scale += scale) {
  2526. unsigned long old_load, new_load;
  2527. /* scale is effectively 1 << i now, and >> i divides by scale */
  2528. old_load = this_rq->cpu_load[i];
  2529. new_load = this_load;
  2530. /*
  2531. * Round up the averaging division if load is increasing. This
  2532. * prevents us from getting stuck on 9 if the load is 10, for
  2533. * example.
  2534. */
  2535. if (new_load > old_load)
  2536. new_load += scale-1;
  2537. this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
  2538. }
  2539. }
  2540. #ifdef CONFIG_NO_HZ
  2541. static struct {
  2542. atomic_t load_balancer;
  2543. cpumask_t cpu_mask;
  2544. } nohz ____cacheline_aligned = {
  2545. .load_balancer = ATOMIC_INIT(-1),
  2546. .cpu_mask = CPU_MASK_NONE,
  2547. };
  2548. /*
  2549. * This routine will try to nominate the ilb (idle load balancing)
  2550. * owner among the cpus whose ticks are stopped. ilb owner will do the idle
  2551. * load balancing on behalf of all those cpus. If all the cpus in the system
  2552. * go into this tickless mode, then there will be no ilb owner (as there is
  2553. * no need for one) and all the cpus will sleep till the next wakeup event
  2554. * arrives...
  2555. *
  2556. * For the ilb owner, tick is not stopped. And this tick will be used
  2557. * for idle load balancing. ilb owner will still be part of
  2558. * nohz.cpu_mask..
  2559. *
  2560. * While stopping the tick, this cpu will become the ilb owner if there
  2561. * is no other owner. And will be the owner till that cpu becomes busy
  2562. * or if all cpus in the system stop their ticks at which point
  2563. * there is no need for ilb owner.
  2564. *
  2565. * When the ilb owner becomes busy, it nominates another owner, during the
  2566. * next busy scheduler_tick()
  2567. */
  2568. int select_nohz_load_balancer(int stop_tick)
  2569. {
  2570. int cpu = smp_processor_id();
  2571. if (stop_tick) {
  2572. cpu_set(cpu, nohz.cpu_mask);
  2573. cpu_rq(cpu)->in_nohz_recently = 1;
  2574. /*
  2575. * If we are going offline and still the leader, give up!
  2576. */
  2577. if (cpu_is_offline(cpu) &&
  2578. atomic_read(&nohz.load_balancer) == cpu) {
  2579. if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
  2580. BUG();
  2581. return 0;
  2582. }
  2583. /* time for ilb owner also to sleep */
  2584. if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
  2585. if (atomic_read(&nohz.load_balancer) == cpu)
  2586. atomic_set(&nohz.load_balancer, -1);
  2587. return 0;
  2588. }
  2589. if (atomic_read(&nohz.load_balancer) == -1) {
  2590. /* make me the ilb owner */
  2591. if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
  2592. return 1;
  2593. } else if (atomic_read(&nohz.load_balancer) == cpu)
  2594. return 1;
  2595. } else {
  2596. if (!cpu_isset(cpu, nohz.cpu_mask))
  2597. return 0;
  2598. cpu_clear(cpu, nohz.cpu_mask);
  2599. if (atomic_read(&nohz.load_balancer) == cpu)
  2600. if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
  2601. BUG();
  2602. }
  2603. return 0;
  2604. }
  2605. #endif
  2606. static DEFINE_SPINLOCK(balancing);
  2607. /*
  2608. * It checks each scheduling domain to see if it is due to be balanced,
  2609. * and initiates a balancing operation if so.
  2610. *
  2611. * Balancing parameters are set up in arch_init_sched_domains.
  2612. */
  2613. static inline void rebalance_domains(int cpu, enum cpu_idle_type idle)
  2614. {
  2615. int balance = 1;
  2616. struct rq *rq = cpu_rq(cpu);
  2617. unsigned long interval;
  2618. struct sched_domain *sd;
  2619. /* Earliest time when we have to do rebalance again */
  2620. unsigned long next_balance = jiffies + 60*HZ;
  2621. for_each_domain(cpu, sd) {
  2622. if (!(sd->flags & SD_LOAD_BALANCE))
  2623. continue;
  2624. interval = sd->balance_interval;
  2625. if (idle != CPU_IDLE)
  2626. interval *= sd->busy_factor;
  2627. /* scale ms to jiffies */
  2628. interval = msecs_to_jiffies(interval);
  2629. if (unlikely(!interval))
  2630. interval = 1;
  2631. if (sd->flags & SD_SERIALIZE) {
  2632. if (!spin_trylock(&balancing))
  2633. goto out;
  2634. }
  2635. if (time_after_eq(jiffies, sd->last_balance + interval)) {
  2636. if (load_balance(cpu, rq, sd, idle, &balance)) {
  2637. /*
  2638. * We've pulled tasks over so either we're no
  2639. * longer idle, or one of our SMT siblings is
  2640. * not idle.
  2641. */
  2642. idle = CPU_NOT_IDLE;
  2643. }
  2644. sd->last_balance = jiffies;
  2645. }
  2646. if (sd->flags & SD_SERIALIZE)
  2647. spin_unlock(&balancing);
  2648. out:
  2649. if (time_after(next_balance, sd->last_balance + interval))
  2650. next_balance = sd->last_balance + interval;
  2651. /*
  2652. * Stop the load balance at this level. There is another
  2653. * CPU in our sched group which is doing load balancing more
  2654. * actively.
  2655. */
  2656. if (!balance)
  2657. break;
  2658. }
  2659. rq->next_balance = next_balance;
  2660. }
  2661. /*
  2662. * run_rebalance_domains is triggered when needed from the scheduler tick.
  2663. * In CONFIG_NO_HZ case, the idle load balance owner will do the
  2664. * rebalancing for all the cpus for whom scheduler ticks are stopped.
  2665. */
  2666. static void run_rebalance_domains(struct softirq_action *h)
  2667. {
  2668. int local_cpu = smp_processor_id();
  2669. struct rq *local_rq = cpu_rq(local_cpu);
  2670. enum cpu_idle_type idle = local_rq->idle_at_tick ? CPU_IDLE : CPU_NOT_IDLE;
  2671. rebalance_domains(local_cpu, idle);
  2672. #ifdef CONFIG_NO_HZ
  2673. /*
  2674. * If this cpu is the owner for idle load balancing, then do the
  2675. * balancing on behalf of the other idle cpus whose ticks are
  2676. * stopped.
  2677. */
  2678. if (local_rq->idle_at_tick &&
  2679. atomic_read(&nohz.load_balancer) == local_cpu) {
  2680. cpumask_t cpus = nohz.cpu_mask;
  2681. struct rq *rq;
  2682. int balance_cpu;
  2683. cpu_clear(local_cpu, cpus);
  2684. for_each_cpu_mask(balance_cpu, cpus) {
  2685. /*
  2686. * If this cpu gets work to do, stop the load balancing
  2687. * work being done for other cpus. Next load
  2688. * balancing owner will pick it up.
  2689. */
  2690. if (need_resched())
  2691. break;
  2692. rebalance_domains(balance_cpu, CPU_IDLE);
  2693. rq = cpu_rq(balance_cpu);
  2694. if (time_after(local_rq->next_balance, rq->next_balance))
  2695. local_rq->next_balance = rq->next_balance;
  2696. }
  2697. }
  2698. #endif
  2699. }
  2700. /*
  2701. * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
  2702. *
  2703. * In case of CONFIG_NO_HZ, this is the place where we nominate a new
  2704. * idle load balancing owner or decide to stop the periodic load balancing,
  2705. * if the whole system is idle.
  2706. */
  2707. static inline void trigger_load_balance(int cpu)
  2708. {
  2709. struct rq *rq = cpu_rq(cpu);
  2710. #ifdef CONFIG_NO_HZ
  2711. /*
  2712. * If we were in the nohz mode recently and busy at the current
  2713. * scheduler tick, then check if we need to nominate new idle
  2714. * load balancer.
  2715. */
  2716. if (rq->in_nohz_recently && !rq->idle_at_tick) {
  2717. rq->in_nohz_recently = 0;
  2718. if (atomic_read(&nohz.load_balancer) == cpu) {
  2719. cpu_clear(cpu, nohz.cpu_mask);
  2720. atomic_set(&nohz.load_balancer, -1);
  2721. }
  2722. if (atomic_read(&nohz.load_balancer) == -1) {
  2723. /*
  2724. * simple selection for now: Nominate the
  2725. * first cpu in the nohz list to be the next
  2726. * ilb owner.
  2727. *
  2728. * TBD: Traverse the sched domains and nominate
  2729. * the nearest cpu in the nohz.cpu_mask.
  2730. */
  2731. int ilb = first_cpu(nohz.cpu_mask);
  2732. if (ilb != NR_CPUS)
  2733. resched_cpu(ilb);
  2734. }
  2735. }
  2736. /*
  2737. * If this cpu is idle and doing idle load balancing for all the
  2738. * cpus with ticks stopped, is it time for that to stop?
  2739. */
  2740. if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
  2741. cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
  2742. resched_cpu(cpu);
  2743. return;
  2744. }
  2745. /*
  2746. * If this cpu is idle and the idle load balancing is done by
  2747. * someone else, then no need raise the SCHED_SOFTIRQ
  2748. */
  2749. if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
  2750. cpu_isset(cpu, nohz.cpu_mask))
  2751. return;
  2752. #endif
  2753. if (time_after_eq(jiffies, rq->next_balance))
  2754. raise_softirq(SCHED_SOFTIRQ);
  2755. }
  2756. #else
  2757. /*
  2758. * on UP we do not need to balance between CPUs:
  2759. */
  2760. static inline void idle_balance(int cpu, struct rq *rq)
  2761. {
  2762. }
  2763. #endif
  2764. DEFINE_PER_CPU(struct kernel_stat, kstat);
  2765. EXPORT_PER_CPU_SYMBOL(kstat);
  2766. /*
  2767. * Return p->sum_exec_runtime plus any more ns on the sched_clock
  2768. * that have not yet been banked in case the task is currently running.
  2769. */
  2770. unsigned long long task_sched_runtime(struct task_struct *p)
  2771. {
  2772. unsigned long flags;
  2773. u64 ns, delta_exec;
  2774. struct rq *rq;
  2775. rq = task_rq_lock(p, &flags);
  2776. ns = p->se.sum_exec_runtime;
  2777. if (rq->curr == p) {
  2778. delta_exec = rq_clock(rq) - p->se.exec_start;
  2779. if ((s64)delta_exec > 0)
  2780. ns += delta_exec;
  2781. }
  2782. task_rq_unlock(rq, &flags);
  2783. return ns;
  2784. }
  2785. /*
  2786. * We place interactive tasks back into the active array, if possible.
  2787. *
  2788. * To guarantee that this does not starve expired tasks we ignore the
  2789. * interactivity of a task if the first expired task had to wait more
  2790. * than a 'reasonable' amount of time. This deadline timeout is
  2791. * load-dependent, as the frequency of array switched decreases with
  2792. * increasing number of running tasks. We also ignore the interactivity
  2793. * if a better static_prio task has expired:
  2794. */
  2795. static inline int expired_starving(struct rq *rq)
  2796. {
  2797. if (rq->curr->static_prio > rq->best_expired_prio)
  2798. return 1;
  2799. if (!STARVATION_LIMIT || !rq->expired_timestamp)
  2800. return 0;
  2801. if (jiffies - rq->expired_timestamp > STARVATION_LIMIT * rq->nr_running)
  2802. return 1;
  2803. return 0;
  2804. }
  2805. /*
  2806. * Account user cpu time to a process.
  2807. * @p: the process that the cpu time gets accounted to
  2808. * @hardirq_offset: the offset to subtract from hardirq_count()
  2809. * @cputime: the cpu time spent in user space since the last update
  2810. */
  2811. void account_user_time(struct task_struct *p, cputime_t cputime)
  2812. {
  2813. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  2814. cputime64_t tmp;
  2815. p->utime = cputime_add(p->utime, cputime);
  2816. /* Add user time to cpustat. */
  2817. tmp = cputime_to_cputime64(cputime);
  2818. if (TASK_NICE(p) > 0)
  2819. cpustat->nice = cputime64_add(cpustat->nice, tmp);
  2820. else
  2821. cpustat->user = cputime64_add(cpustat->user, tmp);
  2822. }
  2823. /*
  2824. * Account system cpu time to a process.
  2825. * @p: the process that the cpu time gets accounted to
  2826. * @hardirq_offset: the offset to subtract from hardirq_count()
  2827. * @cputime: the cpu time spent in kernel space since the last update
  2828. */
  2829. void account_system_time(struct task_struct *p, int hardirq_offset,
  2830. cputime_t cputime)
  2831. {
  2832. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  2833. struct rq *rq = this_rq();
  2834. cputime64_t tmp;
  2835. p->stime = cputime_add(p->stime, cputime);
  2836. /* Add system time to cpustat. */
  2837. tmp = cputime_to_cputime64(cputime);
  2838. if (hardirq_count() - hardirq_offset)
  2839. cpustat->irq = cputime64_add(cpustat->irq, tmp);
  2840. else if (softirq_count())
  2841. cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
  2842. else if (p != rq->idle)
  2843. cpustat->system = cputime64_add(cpustat->system, tmp);
  2844. else if (atomic_read(&rq->nr_iowait) > 0)
  2845. cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
  2846. else
  2847. cpustat->idle = cputime64_add(cpustat->idle, tmp);
  2848. /* Account for system time used */
  2849. acct_update_integrals(p);
  2850. }
  2851. /*
  2852. * Account for involuntary wait time.
  2853. * @p: the process from which the cpu time has been stolen
  2854. * @steal: the cpu time spent in involuntary wait
  2855. */
  2856. void account_steal_time(struct task_struct *p, cputime_t steal)
  2857. {
  2858. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  2859. cputime64_t tmp = cputime_to_cputime64(steal);
  2860. struct rq *rq = this_rq();
  2861. if (p == rq->idle) {
  2862. p->stime = cputime_add(p->stime, steal);
  2863. if (atomic_read(&rq->nr_iowait) > 0)
  2864. cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
  2865. else
  2866. cpustat->idle = cputime64_add(cpustat->idle, tmp);
  2867. } else
  2868. cpustat->steal = cputime64_add(cpustat->steal, tmp);
  2869. }
  2870. static void task_running_tick(struct rq *rq, struct task_struct *p)
  2871. {
  2872. if (p->array != rq->active) {
  2873. /* Task has expired but was not scheduled yet */
  2874. set_tsk_need_resched(p);
  2875. return;
  2876. }
  2877. spin_lock(&rq->lock);
  2878. /*
  2879. * The task was running during this tick - update the
  2880. * time slice counter. Note: we do not update a thread's
  2881. * priority until it either goes to sleep or uses up its
  2882. * timeslice. This makes it possible for interactive tasks
  2883. * to use up their timeslices at their highest priority levels.
  2884. */
  2885. if (rt_task(p)) {
  2886. /*
  2887. * RR tasks need a special form of timeslice management.
  2888. * FIFO tasks have no timeslices.
  2889. */
  2890. if ((p->policy == SCHED_RR) && !--p->time_slice) {
  2891. p->time_slice = task_timeslice(p);
  2892. p->first_time_slice = 0;
  2893. set_tsk_need_resched(p);
  2894. /* put it at the end of the queue: */
  2895. requeue_task(p, rq->active);
  2896. }
  2897. goto out_unlock;
  2898. }
  2899. if (!--p->time_slice) {
  2900. dequeue_task(p, rq->active);
  2901. set_tsk_need_resched(p);
  2902. p->prio = effective_prio(p);
  2903. p->time_slice = task_timeslice(p);
  2904. p->first_time_slice = 0;
  2905. if (!rq->expired_timestamp)
  2906. rq->expired_timestamp = jiffies;
  2907. if (!TASK_INTERACTIVE(p) || expired_starving(rq)) {
  2908. enqueue_task(p, rq->expired);
  2909. if (p->static_prio < rq->best_expired_prio)
  2910. rq->best_expired_prio = p->static_prio;
  2911. } else
  2912. enqueue_task(p, rq->active);
  2913. } else {
  2914. /*
  2915. * Prevent a too long timeslice allowing a task to monopolize
  2916. * the CPU. We do this by splitting up the timeslice into
  2917. * smaller pieces.
  2918. *
  2919. * Note: this does not mean the task's timeslices expire or
  2920. * get lost in any way, they just might be preempted by
  2921. * another task of equal priority. (one with higher
  2922. * priority would have preempted this task already.) We
  2923. * requeue this task to the end of the list on this priority
  2924. * level, which is in essence a round-robin of tasks with
  2925. * equal priority.
  2926. *
  2927. * This only applies to tasks in the interactive
  2928. * delta range with at least TIMESLICE_GRANULARITY to requeue.
  2929. */
  2930. if (TASK_INTERACTIVE(p) && !((task_timeslice(p) -
  2931. p->time_slice) % TIMESLICE_GRANULARITY(p)) &&
  2932. (p->time_slice >= TIMESLICE_GRANULARITY(p)) &&
  2933. (p->array == rq->active)) {
  2934. requeue_task(p, rq->active);
  2935. set_tsk_need_resched(p);
  2936. }
  2937. }
  2938. out_unlock:
  2939. spin_unlock(&rq->lock);
  2940. }
  2941. /*
  2942. * This function gets called by the timer code, with HZ frequency.
  2943. * We call it with interrupts disabled.
  2944. *
  2945. * It also gets called by the fork code, when changing the parent's
  2946. * timeslices.
  2947. */
  2948. void scheduler_tick(void)
  2949. {
  2950. struct task_struct *p = current;
  2951. int cpu = smp_processor_id();
  2952. int idle_at_tick = idle_cpu(cpu);
  2953. struct rq *rq = cpu_rq(cpu);
  2954. if (!idle_at_tick)
  2955. task_running_tick(rq, p);
  2956. #ifdef CONFIG_SMP
  2957. update_load(rq);
  2958. rq->idle_at_tick = idle_at_tick;
  2959. trigger_load_balance(cpu);
  2960. #endif
  2961. }
  2962. #if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
  2963. void fastcall add_preempt_count(int val)
  2964. {
  2965. /*
  2966. * Underflow?
  2967. */
  2968. if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
  2969. return;
  2970. preempt_count() += val;
  2971. /*
  2972. * Spinlock count overflowing soon?
  2973. */
  2974. DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
  2975. PREEMPT_MASK - 10);
  2976. }
  2977. EXPORT_SYMBOL(add_preempt_count);
  2978. void fastcall sub_preempt_count(int val)
  2979. {
  2980. /*
  2981. * Underflow?
  2982. */
  2983. if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
  2984. return;
  2985. /*
  2986. * Is the spinlock portion underflowing?
  2987. */
  2988. if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
  2989. !(preempt_count() & PREEMPT_MASK)))
  2990. return;
  2991. preempt_count() -= val;
  2992. }
  2993. EXPORT_SYMBOL(sub_preempt_count);
  2994. #endif
  2995. static inline int interactive_sleep(enum sleep_type sleep_type)
  2996. {
  2997. return (sleep_type == SLEEP_INTERACTIVE ||
  2998. sleep_type == SLEEP_INTERRUPTED);
  2999. }
  3000. /*
  3001. * schedule() is the main scheduler function.
  3002. */
  3003. asmlinkage void __sched schedule(void)
  3004. {
  3005. struct task_struct *prev, *next;
  3006. struct prio_array *array;
  3007. struct list_head *queue;
  3008. unsigned long long now;
  3009. unsigned long run_time;
  3010. int cpu, idx, new_prio;
  3011. long *switch_count;
  3012. struct rq *rq;
  3013. /*
  3014. * Test if we are atomic. Since do_exit() needs to call into
  3015. * schedule() atomically, we ignore that path for now.
  3016. * Otherwise, whine if we are scheduling when we should not be.
  3017. */
  3018. if (unlikely(in_atomic() && !current->exit_state)) {
  3019. printk(KERN_ERR "BUG: scheduling while atomic: "
  3020. "%s/0x%08x/%d\n",
  3021. current->comm, preempt_count(), current->pid);
  3022. debug_show_held_locks(current);
  3023. if (irqs_disabled())
  3024. print_irqtrace_events(current);
  3025. dump_stack();
  3026. }
  3027. profile_hit(SCHED_PROFILING, __builtin_return_address(0));
  3028. need_resched:
  3029. preempt_disable();
  3030. prev = current;
  3031. release_kernel_lock(prev);
  3032. need_resched_nonpreemptible:
  3033. rq = this_rq();
  3034. /*
  3035. * The idle thread is not allowed to schedule!
  3036. * Remove this check after it has been exercised a bit.
  3037. */
  3038. if (unlikely(prev == rq->idle) && prev->state != TASK_RUNNING) {
  3039. printk(KERN_ERR "bad: scheduling from the idle thread!\n");
  3040. dump_stack();
  3041. }
  3042. schedstat_inc(rq, sched_cnt);
  3043. now = sched_clock();
  3044. if (likely((long long)(now - prev->timestamp) < NS_MAX_SLEEP_AVG)) {
  3045. run_time = now - prev->timestamp;
  3046. if (unlikely((long long)(now - prev->timestamp) < 0))
  3047. run_time = 0;
  3048. } else
  3049. run_time = NS_MAX_SLEEP_AVG;
  3050. /*
  3051. * Tasks charged proportionately less run_time at high sleep_avg to
  3052. * delay them losing their interactive status
  3053. */
  3054. run_time /= (CURRENT_BONUS(prev) ? : 1);
  3055. spin_lock_irq(&rq->lock);
  3056. switch_count = &prev->nivcsw;
  3057. if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
  3058. switch_count = &prev->nvcsw;
  3059. if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
  3060. unlikely(signal_pending(prev))))
  3061. prev->state = TASK_RUNNING;
  3062. else {
  3063. if (prev->state == TASK_UNINTERRUPTIBLE)
  3064. rq->nr_uninterruptible++;
  3065. deactivate_task(prev, rq);
  3066. }
  3067. }
  3068. cpu = smp_processor_id();
  3069. if (unlikely(!rq->nr_running)) {
  3070. idle_balance(cpu, rq);
  3071. if (!rq->nr_running) {
  3072. next = rq->idle;
  3073. rq->expired_timestamp = 0;
  3074. goto switch_tasks;
  3075. }
  3076. }
  3077. array = rq->active;
  3078. if (unlikely(!array->nr_active)) {
  3079. /*
  3080. * Switch the active and expired arrays.
  3081. */
  3082. schedstat_inc(rq, sched_switch);
  3083. rq->active = rq->expired;
  3084. rq->expired = array;
  3085. array = rq->active;
  3086. rq->expired_timestamp = 0;
  3087. rq->best_expired_prio = MAX_PRIO;
  3088. }
  3089. idx = sched_find_first_bit(array->bitmap);
  3090. queue = array->queue + idx;
  3091. next = list_entry(queue->next, struct task_struct, run_list);
  3092. if (!rt_task(next) && interactive_sleep(next->sleep_type)) {
  3093. unsigned long long delta = now - next->timestamp;
  3094. if (unlikely((long long)(now - next->timestamp) < 0))
  3095. delta = 0;
  3096. if (next->sleep_type == SLEEP_INTERACTIVE)
  3097. delta = delta * (ON_RUNQUEUE_WEIGHT * 128 / 100) / 128;
  3098. array = next->array;
  3099. new_prio = recalc_task_prio(next, next->timestamp + delta);
  3100. if (unlikely(next->prio != new_prio)) {
  3101. dequeue_task(next, array);
  3102. next->prio = new_prio;
  3103. enqueue_task(next, array);
  3104. }
  3105. }
  3106. next->sleep_type = SLEEP_NORMAL;
  3107. switch_tasks:
  3108. if (next == rq->idle)
  3109. schedstat_inc(rq, sched_goidle);
  3110. prefetch(next);
  3111. prefetch_stack(next);
  3112. clear_tsk_need_resched(prev);
  3113. rcu_qsctr_inc(task_cpu(prev));
  3114. prev->sleep_avg -= run_time;
  3115. if ((long)prev->sleep_avg <= 0)
  3116. prev->sleep_avg = 0;
  3117. prev->timestamp = prev->last_ran = now;
  3118. sched_info_switch(prev, next);
  3119. if (likely(prev != next)) {
  3120. next->timestamp = next->last_ran = now;
  3121. rq->nr_switches++;
  3122. rq->curr = next;
  3123. ++*switch_count;
  3124. prepare_task_switch(rq, next);
  3125. prev = context_switch(rq, prev, next);
  3126. barrier();
  3127. /*
  3128. * this_rq must be evaluated again because prev may have moved
  3129. * CPUs since it called schedule(), thus the 'rq' on its stack
  3130. * frame will be invalid.
  3131. */
  3132. finish_task_switch(this_rq(), prev);
  3133. } else
  3134. spin_unlock_irq(&rq->lock);
  3135. prev = current;
  3136. if (unlikely(reacquire_kernel_lock(prev) < 0))
  3137. goto need_resched_nonpreemptible;
  3138. preempt_enable_no_resched();
  3139. if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
  3140. goto need_resched;
  3141. }
  3142. EXPORT_SYMBOL(schedule);
  3143. #ifdef CONFIG_PREEMPT
  3144. /*
  3145. * this is the entry point to schedule() from in-kernel preemption
  3146. * off of preempt_enable. Kernel preemptions off return from interrupt
  3147. * occur there and call schedule directly.
  3148. */
  3149. asmlinkage void __sched preempt_schedule(void)
  3150. {
  3151. struct thread_info *ti = current_thread_info();
  3152. #ifdef CONFIG_PREEMPT_BKL
  3153. struct task_struct *task = current;
  3154. int saved_lock_depth;
  3155. #endif
  3156. /*
  3157. * If there is a non-zero preempt_count or interrupts are disabled,
  3158. * we do not want to preempt the current task. Just return..
  3159. */
  3160. if (likely(ti->preempt_count || irqs_disabled()))
  3161. return;
  3162. need_resched:
  3163. add_preempt_count(PREEMPT_ACTIVE);
  3164. /*
  3165. * We keep the big kernel semaphore locked, but we
  3166. * clear ->lock_depth so that schedule() doesnt
  3167. * auto-release the semaphore:
  3168. */
  3169. #ifdef CONFIG_PREEMPT_BKL
  3170. saved_lock_depth = task->lock_depth;
  3171. task->lock_depth = -1;
  3172. #endif
  3173. schedule();
  3174. #ifdef CONFIG_PREEMPT_BKL
  3175. task->lock_depth = saved_lock_depth;
  3176. #endif
  3177. sub_preempt_count(PREEMPT_ACTIVE);
  3178. /* we could miss a preemption opportunity between schedule and now */
  3179. barrier();
  3180. if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
  3181. goto need_resched;
  3182. }
  3183. EXPORT_SYMBOL(preempt_schedule);
  3184. /*
  3185. * this is the entry point to schedule() from kernel preemption
  3186. * off of irq context.
  3187. * Note, that this is called and return with irqs disabled. This will
  3188. * protect us against recursive calling from irq.
  3189. */
  3190. asmlinkage void __sched preempt_schedule_irq(void)
  3191. {
  3192. struct thread_info *ti = current_thread_info();
  3193. #ifdef CONFIG_PREEMPT_BKL
  3194. struct task_struct *task = current;
  3195. int saved_lock_depth;
  3196. #endif
  3197. /* Catch callers which need to be fixed */
  3198. BUG_ON(ti->preempt_count || !irqs_disabled());
  3199. need_resched:
  3200. add_preempt_count(PREEMPT_ACTIVE);
  3201. /*
  3202. * We keep the big kernel semaphore locked, but we
  3203. * clear ->lock_depth so that schedule() doesnt
  3204. * auto-release the semaphore:
  3205. */
  3206. #ifdef CONFIG_PREEMPT_BKL
  3207. saved_lock_depth = task->lock_depth;
  3208. task->lock_depth = -1;
  3209. #endif
  3210. local_irq_enable();
  3211. schedule();
  3212. local_irq_disable();
  3213. #ifdef CONFIG_PREEMPT_BKL
  3214. task->lock_depth = saved_lock_depth;
  3215. #endif
  3216. sub_preempt_count(PREEMPT_ACTIVE);
  3217. /* we could miss a preemption opportunity between schedule and now */
  3218. barrier();
  3219. if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
  3220. goto need_resched;
  3221. }
  3222. #endif /* CONFIG_PREEMPT */
  3223. int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
  3224. void *key)
  3225. {
  3226. return try_to_wake_up(curr->private, mode, sync);
  3227. }
  3228. EXPORT_SYMBOL(default_wake_function);
  3229. /*
  3230. * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
  3231. * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
  3232. * number) then we wake all the non-exclusive tasks and one exclusive task.
  3233. *
  3234. * There are circumstances in which we can try to wake a task which has already
  3235. * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
  3236. * zero in this (rare) case, and we handle it by continuing to scan the queue.
  3237. */
  3238. static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
  3239. int nr_exclusive, int sync, void *key)
  3240. {
  3241. struct list_head *tmp, *next;
  3242. list_for_each_safe(tmp, next, &q->task_list) {
  3243. wait_queue_t *curr = list_entry(tmp, wait_queue_t, task_list);
  3244. unsigned flags = curr->flags;
  3245. if (curr->func(curr, mode, sync, key) &&
  3246. (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
  3247. break;
  3248. }
  3249. }
  3250. /**
  3251. * __wake_up - wake up threads blocked on a waitqueue.
  3252. * @q: the waitqueue
  3253. * @mode: which threads
  3254. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  3255. * @key: is directly passed to the wakeup function
  3256. */
  3257. void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
  3258. int nr_exclusive, void *key)
  3259. {
  3260. unsigned long flags;
  3261. spin_lock_irqsave(&q->lock, flags);
  3262. __wake_up_common(q, mode, nr_exclusive, 0, key);
  3263. spin_unlock_irqrestore(&q->lock, flags);
  3264. }
  3265. EXPORT_SYMBOL(__wake_up);
  3266. /*
  3267. * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
  3268. */
  3269. void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
  3270. {
  3271. __wake_up_common(q, mode, 1, 0, NULL);
  3272. }
  3273. /**
  3274. * __wake_up_sync - wake up threads blocked on a waitqueue.
  3275. * @q: the waitqueue
  3276. * @mode: which threads
  3277. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  3278. *
  3279. * The sync wakeup differs that the waker knows that it will schedule
  3280. * away soon, so while the target thread will be woken up, it will not
  3281. * be migrated to another CPU - ie. the two threads are 'synchronized'
  3282. * with each other. This can prevent needless bouncing between CPUs.
  3283. *
  3284. * On UP it can prevent extra preemption.
  3285. */
  3286. void fastcall
  3287. __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
  3288. {
  3289. unsigned long flags;
  3290. int sync = 1;
  3291. if (unlikely(!q))
  3292. return;
  3293. if (unlikely(!nr_exclusive))
  3294. sync = 0;
  3295. spin_lock_irqsave(&q->lock, flags);
  3296. __wake_up_common(q, mode, nr_exclusive, sync, NULL);
  3297. spin_unlock_irqrestore(&q->lock, flags);
  3298. }
  3299. EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
  3300. void fastcall complete(struct completion *x)
  3301. {
  3302. unsigned long flags;
  3303. spin_lock_irqsave(&x->wait.lock, flags);
  3304. x->done++;
  3305. __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
  3306. 1, 0, NULL);
  3307. spin_unlock_irqrestore(&x->wait.lock, flags);
  3308. }
  3309. EXPORT_SYMBOL(complete);
  3310. void fastcall complete_all(struct completion *x)
  3311. {
  3312. unsigned long flags;
  3313. spin_lock_irqsave(&x->wait.lock, flags);
  3314. x->done += UINT_MAX/2;
  3315. __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
  3316. 0, 0, NULL);
  3317. spin_unlock_irqrestore(&x->wait.lock, flags);
  3318. }
  3319. EXPORT_SYMBOL(complete_all);
  3320. void fastcall __sched wait_for_completion(struct completion *x)
  3321. {
  3322. might_sleep();
  3323. spin_lock_irq(&x->wait.lock);
  3324. if (!x->done) {
  3325. DECLARE_WAITQUEUE(wait, current);
  3326. wait.flags |= WQ_FLAG_EXCLUSIVE;
  3327. __add_wait_queue_tail(&x->wait, &wait);
  3328. do {
  3329. __set_current_state(TASK_UNINTERRUPTIBLE);
  3330. spin_unlock_irq(&x->wait.lock);
  3331. schedule();
  3332. spin_lock_irq(&x->wait.lock);
  3333. } while (!x->done);
  3334. __remove_wait_queue(&x->wait, &wait);
  3335. }
  3336. x->done--;
  3337. spin_unlock_irq(&x->wait.lock);
  3338. }
  3339. EXPORT_SYMBOL(wait_for_completion);
  3340. unsigned long fastcall __sched
  3341. wait_for_completion_timeout(struct completion *x, unsigned long timeout)
  3342. {
  3343. might_sleep();
  3344. spin_lock_irq(&x->wait.lock);
  3345. if (!x->done) {
  3346. DECLARE_WAITQUEUE(wait, current);
  3347. wait.flags |= WQ_FLAG_EXCLUSIVE;
  3348. __add_wait_queue_tail(&x->wait, &wait);
  3349. do {
  3350. __set_current_state(TASK_UNINTERRUPTIBLE);
  3351. spin_unlock_irq(&x->wait.lock);
  3352. timeout = schedule_timeout(timeout);
  3353. spin_lock_irq(&x->wait.lock);
  3354. if (!timeout) {
  3355. __remove_wait_queue(&x->wait, &wait);
  3356. goto out;
  3357. }
  3358. } while (!x->done);
  3359. __remove_wait_queue(&x->wait, &wait);
  3360. }
  3361. x->done--;
  3362. out:
  3363. spin_unlock_irq(&x->wait.lock);
  3364. return timeout;
  3365. }
  3366. EXPORT_SYMBOL(wait_for_completion_timeout);
  3367. int fastcall __sched wait_for_completion_interruptible(struct completion *x)
  3368. {
  3369. int ret = 0;
  3370. might_sleep();
  3371. spin_lock_irq(&x->wait.lock);
  3372. if (!x->done) {
  3373. DECLARE_WAITQUEUE(wait, current);
  3374. wait.flags |= WQ_FLAG_EXCLUSIVE;
  3375. __add_wait_queue_tail(&x->wait, &wait);
  3376. do {
  3377. if (signal_pending(current)) {
  3378. ret = -ERESTARTSYS;
  3379. __remove_wait_queue(&x->wait, &wait);
  3380. goto out;
  3381. }
  3382. __set_current_state(TASK_INTERRUPTIBLE);
  3383. spin_unlock_irq(&x->wait.lock);
  3384. schedule();
  3385. spin_lock_irq(&x->wait.lock);
  3386. } while (!x->done);
  3387. __remove_wait_queue(&x->wait, &wait);
  3388. }
  3389. x->done--;
  3390. out:
  3391. spin_unlock_irq(&x->wait.lock);
  3392. return ret;
  3393. }
  3394. EXPORT_SYMBOL(wait_for_completion_interruptible);
  3395. unsigned long fastcall __sched
  3396. wait_for_completion_interruptible_timeout(struct completion *x,
  3397. unsigned long timeout)
  3398. {
  3399. might_sleep();
  3400. spin_lock_irq(&x->wait.lock);
  3401. if (!x->done) {
  3402. DECLARE_WAITQUEUE(wait, current);
  3403. wait.flags |= WQ_FLAG_EXCLUSIVE;
  3404. __add_wait_queue_tail(&x->wait, &wait);
  3405. do {
  3406. if (signal_pending(current)) {
  3407. timeout = -ERESTARTSYS;
  3408. __remove_wait_queue(&x->wait, &wait);
  3409. goto out;
  3410. }
  3411. __set_current_state(TASK_INTERRUPTIBLE);
  3412. spin_unlock_irq(&x->wait.lock);
  3413. timeout = schedule_timeout(timeout);
  3414. spin_lock_irq(&x->wait.lock);
  3415. if (!timeout) {
  3416. __remove_wait_queue(&x->wait, &wait);
  3417. goto out;
  3418. }
  3419. } while (!x->done);
  3420. __remove_wait_queue(&x->wait, &wait);
  3421. }
  3422. x->done--;
  3423. out:
  3424. spin_unlock_irq(&x->wait.lock);
  3425. return timeout;
  3426. }
  3427. EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
  3428. #define SLEEP_ON_VAR \
  3429. unsigned long flags; \
  3430. wait_queue_t wait; \
  3431. init_waitqueue_entry(&wait, current);
  3432. #define SLEEP_ON_HEAD \
  3433. spin_lock_irqsave(&q->lock,flags); \
  3434. __add_wait_queue(q, &wait); \
  3435. spin_unlock(&q->lock);
  3436. #define SLEEP_ON_TAIL \
  3437. spin_lock_irq(&q->lock); \
  3438. __remove_wait_queue(q, &wait); \
  3439. spin_unlock_irqrestore(&q->lock, flags);
  3440. void fastcall __sched interruptible_sleep_on(wait_queue_head_t *q)
  3441. {
  3442. SLEEP_ON_VAR
  3443. current->state = TASK_INTERRUPTIBLE;
  3444. SLEEP_ON_HEAD
  3445. schedule();
  3446. SLEEP_ON_TAIL
  3447. }
  3448. EXPORT_SYMBOL(interruptible_sleep_on);
  3449. long fastcall __sched
  3450. interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
  3451. {
  3452. SLEEP_ON_VAR
  3453. current->state = TASK_INTERRUPTIBLE;
  3454. SLEEP_ON_HEAD
  3455. timeout = schedule_timeout(timeout);
  3456. SLEEP_ON_TAIL
  3457. return timeout;
  3458. }
  3459. EXPORT_SYMBOL(interruptible_sleep_on_timeout);
  3460. void fastcall __sched sleep_on(wait_queue_head_t *q)
  3461. {
  3462. SLEEP_ON_VAR
  3463. current->state = TASK_UNINTERRUPTIBLE;
  3464. SLEEP_ON_HEAD
  3465. schedule();
  3466. SLEEP_ON_TAIL
  3467. }
  3468. EXPORT_SYMBOL(sleep_on);
  3469. long fastcall __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
  3470. {
  3471. SLEEP_ON_VAR
  3472. current->state = TASK_UNINTERRUPTIBLE;
  3473. SLEEP_ON_HEAD
  3474. timeout = schedule_timeout(timeout);
  3475. SLEEP_ON_TAIL
  3476. return timeout;
  3477. }
  3478. EXPORT_SYMBOL(sleep_on_timeout);
  3479. #ifdef CONFIG_RT_MUTEXES
  3480. /*
  3481. * rt_mutex_setprio - set the current priority of a task
  3482. * @p: task
  3483. * @prio: prio value (kernel-internal form)
  3484. *
  3485. * This function changes the 'effective' priority of a task. It does
  3486. * not touch ->normal_prio like __setscheduler().
  3487. *
  3488. * Used by the rt_mutex code to implement priority inheritance logic.
  3489. */
  3490. void rt_mutex_setprio(struct task_struct *p, int prio)
  3491. {
  3492. struct prio_array *array;
  3493. unsigned long flags;
  3494. struct rq *rq;
  3495. int oldprio;
  3496. BUG_ON(prio < 0 || prio > MAX_PRIO);
  3497. rq = task_rq_lock(p, &flags);
  3498. oldprio = p->prio;
  3499. array = p->array;
  3500. if (array)
  3501. dequeue_task(p, array);
  3502. p->prio = prio;
  3503. if (array) {
  3504. /*
  3505. * If changing to an RT priority then queue it
  3506. * in the active array!
  3507. */
  3508. if (rt_task(p))
  3509. array = rq->active;
  3510. enqueue_task(p, array);
  3511. /*
  3512. * Reschedule if we are currently running on this runqueue and
  3513. * our priority decreased, or if we are not currently running on
  3514. * this runqueue and our priority is higher than the current's
  3515. */
  3516. if (task_running(rq, p)) {
  3517. if (p->prio > oldprio)
  3518. resched_task(rq->curr);
  3519. } else if (TASK_PREEMPTS_CURR(p, rq))
  3520. resched_task(rq->curr);
  3521. }
  3522. task_rq_unlock(rq, &flags);
  3523. }
  3524. #endif
  3525. void set_user_nice(struct task_struct *p, long nice)
  3526. {
  3527. struct prio_array *array;
  3528. int old_prio, delta;
  3529. unsigned long flags;
  3530. struct rq *rq;
  3531. if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
  3532. return;
  3533. /*
  3534. * We have to be careful, if called from sys_setpriority(),
  3535. * the task might be in the middle of scheduling on another CPU.
  3536. */
  3537. rq = task_rq_lock(p, &flags);
  3538. /*
  3539. * The RT priorities are set via sched_setscheduler(), but we still
  3540. * allow the 'normal' nice value to be set - but as expected
  3541. * it wont have any effect on scheduling until the task is
  3542. * not SCHED_NORMAL/SCHED_BATCH:
  3543. */
  3544. if (task_has_rt_policy(p)) {
  3545. p->static_prio = NICE_TO_PRIO(nice);
  3546. goto out_unlock;
  3547. }
  3548. array = p->array;
  3549. if (array) {
  3550. dequeue_task(p, array);
  3551. dec_raw_weighted_load(rq, p);
  3552. }
  3553. p->static_prio = NICE_TO_PRIO(nice);
  3554. set_load_weight(p);
  3555. old_prio = p->prio;
  3556. p->prio = effective_prio(p);
  3557. delta = p->prio - old_prio;
  3558. if (array) {
  3559. enqueue_task(p, array);
  3560. inc_raw_weighted_load(rq, p);
  3561. /*
  3562. * If the task increased its priority or is running and
  3563. * lowered its priority, then reschedule its CPU:
  3564. */
  3565. if (delta < 0 || (delta > 0 && task_running(rq, p)))
  3566. resched_task(rq->curr);
  3567. }
  3568. out_unlock:
  3569. task_rq_unlock(rq, &flags);
  3570. }
  3571. EXPORT_SYMBOL(set_user_nice);
  3572. /*
  3573. * can_nice - check if a task can reduce its nice value
  3574. * @p: task
  3575. * @nice: nice value
  3576. */
  3577. int can_nice(const struct task_struct *p, const int nice)
  3578. {
  3579. /* convert nice value [19,-20] to rlimit style value [1,40] */
  3580. int nice_rlim = 20 - nice;
  3581. return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
  3582. capable(CAP_SYS_NICE));
  3583. }
  3584. #ifdef __ARCH_WANT_SYS_NICE
  3585. /*
  3586. * sys_nice - change the priority of the current process.
  3587. * @increment: priority increment
  3588. *
  3589. * sys_setpriority is a more generic, but much slower function that
  3590. * does similar things.
  3591. */
  3592. asmlinkage long sys_nice(int increment)
  3593. {
  3594. long nice, retval;
  3595. /*
  3596. * Setpriority might change our priority at the same moment.
  3597. * We don't have to worry. Conceptually one call occurs first
  3598. * and we have a single winner.
  3599. */
  3600. if (increment < -40)
  3601. increment = -40;
  3602. if (increment > 40)
  3603. increment = 40;
  3604. nice = PRIO_TO_NICE(current->static_prio) + increment;
  3605. if (nice < -20)
  3606. nice = -20;
  3607. if (nice > 19)
  3608. nice = 19;
  3609. if (increment < 0 && !can_nice(current, nice))
  3610. return -EPERM;
  3611. retval = security_task_setnice(current, nice);
  3612. if (retval)
  3613. return retval;
  3614. set_user_nice(current, nice);
  3615. return 0;
  3616. }
  3617. #endif
  3618. /**
  3619. * task_prio - return the priority value of a given task.
  3620. * @p: the task in question.
  3621. *
  3622. * This is the priority value as seen by users in /proc.
  3623. * RT tasks are offset by -200. Normal tasks are centered
  3624. * around 0, value goes from -16 to +15.
  3625. */
  3626. int task_prio(const struct task_struct *p)
  3627. {
  3628. return p->prio - MAX_RT_PRIO;
  3629. }
  3630. /**
  3631. * task_nice - return the nice value of a given task.
  3632. * @p: the task in question.
  3633. */
  3634. int task_nice(const struct task_struct *p)
  3635. {
  3636. return TASK_NICE(p);
  3637. }
  3638. EXPORT_SYMBOL_GPL(task_nice);
  3639. /**
  3640. * idle_cpu - is a given cpu idle currently?
  3641. * @cpu: the processor in question.
  3642. */
  3643. int idle_cpu(int cpu)
  3644. {
  3645. return cpu_curr(cpu) == cpu_rq(cpu)->idle;
  3646. }
  3647. /**
  3648. * idle_task - return the idle task for a given cpu.
  3649. * @cpu: the processor in question.
  3650. */
  3651. struct task_struct *idle_task(int cpu)
  3652. {
  3653. return cpu_rq(cpu)->idle;
  3654. }
  3655. /**
  3656. * find_process_by_pid - find a process with a matching PID value.
  3657. * @pid: the pid in question.
  3658. */
  3659. static inline struct task_struct *find_process_by_pid(pid_t pid)
  3660. {
  3661. return pid ? find_task_by_pid(pid) : current;
  3662. }
  3663. /* Actually do priority change: must hold rq lock. */
  3664. static void __setscheduler(struct task_struct *p, int policy, int prio)
  3665. {
  3666. BUG_ON(p->array);
  3667. p->policy = policy;
  3668. p->rt_priority = prio;
  3669. p->normal_prio = normal_prio(p);
  3670. /* we are holding p->pi_lock already */
  3671. p->prio = rt_mutex_getprio(p);
  3672. /*
  3673. * SCHED_BATCH tasks are treated as perpetual CPU hogs:
  3674. */
  3675. if (policy == SCHED_BATCH)
  3676. p->sleep_avg = 0;
  3677. set_load_weight(p);
  3678. }
  3679. /**
  3680. * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
  3681. * @p: the task in question.
  3682. * @policy: new policy.
  3683. * @param: structure containing the new RT priority.
  3684. *
  3685. * NOTE that the task may be already dead.
  3686. */
  3687. int sched_setscheduler(struct task_struct *p, int policy,
  3688. struct sched_param *param)
  3689. {
  3690. int retval, oldprio, oldpolicy = -1;
  3691. struct prio_array *array;
  3692. unsigned long flags;
  3693. struct rq *rq;
  3694. /* may grab non-irq protected spin_locks */
  3695. BUG_ON(in_interrupt());
  3696. recheck:
  3697. /* double check policy once rq lock held */
  3698. if (policy < 0)
  3699. policy = oldpolicy = p->policy;
  3700. else if (policy != SCHED_FIFO && policy != SCHED_RR &&
  3701. policy != SCHED_NORMAL && policy != SCHED_BATCH)
  3702. return -EINVAL;
  3703. /*
  3704. * Valid priorities for SCHED_FIFO and SCHED_RR are
  3705. * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL and
  3706. * SCHED_BATCH is 0.
  3707. */
  3708. if (param->sched_priority < 0 ||
  3709. (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
  3710. (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
  3711. return -EINVAL;
  3712. if (rt_policy(policy) != (param->sched_priority != 0))
  3713. return -EINVAL;
  3714. /*
  3715. * Allow unprivileged RT tasks to decrease priority:
  3716. */
  3717. if (!capable(CAP_SYS_NICE)) {
  3718. if (rt_policy(policy)) {
  3719. unsigned long rlim_rtprio;
  3720. unsigned long flags;
  3721. if (!lock_task_sighand(p, &flags))
  3722. return -ESRCH;
  3723. rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
  3724. unlock_task_sighand(p, &flags);
  3725. /* can't set/change the rt policy */
  3726. if (policy != p->policy && !rlim_rtprio)
  3727. return -EPERM;
  3728. /* can't increase priority */
  3729. if (param->sched_priority > p->rt_priority &&
  3730. param->sched_priority > rlim_rtprio)
  3731. return -EPERM;
  3732. }
  3733. /* can't change other user's priorities */
  3734. if ((current->euid != p->euid) &&
  3735. (current->euid != p->uid))
  3736. return -EPERM;
  3737. }
  3738. retval = security_task_setscheduler(p, policy, param);
  3739. if (retval)
  3740. return retval;
  3741. /*
  3742. * make sure no PI-waiters arrive (or leave) while we are
  3743. * changing the priority of the task:
  3744. */
  3745. spin_lock_irqsave(&p->pi_lock, flags);
  3746. /*
  3747. * To be able to change p->policy safely, the apropriate
  3748. * runqueue lock must be held.
  3749. */
  3750. rq = __task_rq_lock(p);
  3751. /* recheck policy now with rq lock held */
  3752. if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
  3753. policy = oldpolicy = -1;
  3754. __task_rq_unlock(rq);
  3755. spin_unlock_irqrestore(&p->pi_lock, flags);
  3756. goto recheck;
  3757. }
  3758. array = p->array;
  3759. if (array)
  3760. deactivate_task(p, rq);
  3761. oldprio = p->prio;
  3762. __setscheduler(p, policy, param->sched_priority);
  3763. if (array) {
  3764. __activate_task(p, rq);
  3765. /*
  3766. * Reschedule if we are currently running on this runqueue and
  3767. * our priority decreased, or if we are not currently running on
  3768. * this runqueue and our priority is higher than the current's
  3769. */
  3770. if (task_running(rq, p)) {
  3771. if (p->prio > oldprio)
  3772. resched_task(rq->curr);
  3773. } else if (TASK_PREEMPTS_CURR(p, rq))
  3774. resched_task(rq->curr);
  3775. }
  3776. __task_rq_unlock(rq);
  3777. spin_unlock_irqrestore(&p->pi_lock, flags);
  3778. rt_mutex_adjust_pi(p);
  3779. return 0;
  3780. }
  3781. EXPORT_SYMBOL_GPL(sched_setscheduler);
  3782. static int
  3783. do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
  3784. {
  3785. struct sched_param lparam;
  3786. struct task_struct *p;
  3787. int retval;
  3788. if (!param || pid < 0)
  3789. return -EINVAL;
  3790. if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
  3791. return -EFAULT;
  3792. rcu_read_lock();
  3793. retval = -ESRCH;
  3794. p = find_process_by_pid(pid);
  3795. if (p != NULL)
  3796. retval = sched_setscheduler(p, policy, &lparam);
  3797. rcu_read_unlock();
  3798. return retval;
  3799. }
  3800. /**
  3801. * sys_sched_setscheduler - set/change the scheduler policy and RT priority
  3802. * @pid: the pid in question.
  3803. * @policy: new policy.
  3804. * @param: structure containing the new RT priority.
  3805. */
  3806. asmlinkage long sys_sched_setscheduler(pid_t pid, int policy,
  3807. struct sched_param __user *param)
  3808. {
  3809. /* negative values for policy are not valid */
  3810. if (policy < 0)
  3811. return -EINVAL;
  3812. return do_sched_setscheduler(pid, policy, param);
  3813. }
  3814. /**
  3815. * sys_sched_setparam - set/change the RT priority of a thread
  3816. * @pid: the pid in question.
  3817. * @param: structure containing the new RT priority.
  3818. */
  3819. asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
  3820. {
  3821. return do_sched_setscheduler(pid, -1, param);
  3822. }
  3823. /**
  3824. * sys_sched_getscheduler - get the policy (scheduling class) of a thread
  3825. * @pid: the pid in question.
  3826. */
  3827. asmlinkage long sys_sched_getscheduler(pid_t pid)
  3828. {
  3829. struct task_struct *p;
  3830. int retval = -EINVAL;
  3831. if (pid < 0)
  3832. goto out_nounlock;
  3833. retval = -ESRCH;
  3834. read_lock(&tasklist_lock);
  3835. p = find_process_by_pid(pid);
  3836. if (p) {
  3837. retval = security_task_getscheduler(p);
  3838. if (!retval)
  3839. retval = p->policy;
  3840. }
  3841. read_unlock(&tasklist_lock);
  3842. out_nounlock:
  3843. return retval;
  3844. }
  3845. /**
  3846. * sys_sched_getscheduler - get the RT priority of a thread
  3847. * @pid: the pid in question.
  3848. * @param: structure containing the RT priority.
  3849. */
  3850. asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
  3851. {
  3852. struct sched_param lp;
  3853. struct task_struct *p;
  3854. int retval = -EINVAL;
  3855. if (!param || pid < 0)
  3856. goto out_nounlock;
  3857. read_lock(&tasklist_lock);
  3858. p = find_process_by_pid(pid);
  3859. retval = -ESRCH;
  3860. if (!p)
  3861. goto out_unlock;
  3862. retval = security_task_getscheduler(p);
  3863. if (retval)
  3864. goto out_unlock;
  3865. lp.sched_priority = p->rt_priority;
  3866. read_unlock(&tasklist_lock);
  3867. /*
  3868. * This one might sleep, we cannot do it with a spinlock held ...
  3869. */
  3870. retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
  3871. out_nounlock:
  3872. return retval;
  3873. out_unlock:
  3874. read_unlock(&tasklist_lock);
  3875. return retval;
  3876. }
  3877. long sched_setaffinity(pid_t pid, cpumask_t new_mask)
  3878. {
  3879. cpumask_t cpus_allowed;
  3880. struct task_struct *p;
  3881. int retval;
  3882. mutex_lock(&sched_hotcpu_mutex);
  3883. read_lock(&tasklist_lock);
  3884. p = find_process_by_pid(pid);
  3885. if (!p) {
  3886. read_unlock(&tasklist_lock);
  3887. mutex_unlock(&sched_hotcpu_mutex);
  3888. return -ESRCH;
  3889. }
  3890. /*
  3891. * It is not safe to call set_cpus_allowed with the
  3892. * tasklist_lock held. We will bump the task_struct's
  3893. * usage count and then drop tasklist_lock.
  3894. */
  3895. get_task_struct(p);
  3896. read_unlock(&tasklist_lock);
  3897. retval = -EPERM;
  3898. if ((current->euid != p->euid) && (current->euid != p->uid) &&
  3899. !capable(CAP_SYS_NICE))
  3900. goto out_unlock;
  3901. retval = security_task_setscheduler(p, 0, NULL);
  3902. if (retval)
  3903. goto out_unlock;
  3904. cpus_allowed = cpuset_cpus_allowed(p);
  3905. cpus_and(new_mask, new_mask, cpus_allowed);
  3906. retval = set_cpus_allowed(p, new_mask);
  3907. out_unlock:
  3908. put_task_struct(p);
  3909. mutex_unlock(&sched_hotcpu_mutex);
  3910. return retval;
  3911. }
  3912. static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
  3913. cpumask_t *new_mask)
  3914. {
  3915. if (len < sizeof(cpumask_t)) {
  3916. memset(new_mask, 0, sizeof(cpumask_t));
  3917. } else if (len > sizeof(cpumask_t)) {
  3918. len = sizeof(cpumask_t);
  3919. }
  3920. return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
  3921. }
  3922. /**
  3923. * sys_sched_setaffinity - set the cpu affinity of a process
  3924. * @pid: pid of the process
  3925. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  3926. * @user_mask_ptr: user-space pointer to the new cpu mask
  3927. */
  3928. asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
  3929. unsigned long __user *user_mask_ptr)
  3930. {
  3931. cpumask_t new_mask;
  3932. int retval;
  3933. retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
  3934. if (retval)
  3935. return retval;
  3936. return sched_setaffinity(pid, new_mask);
  3937. }
  3938. /*
  3939. * Represents all cpu's present in the system
  3940. * In systems capable of hotplug, this map could dynamically grow
  3941. * as new cpu's are detected in the system via any platform specific
  3942. * method, such as ACPI for e.g.
  3943. */
  3944. cpumask_t cpu_present_map __read_mostly;
  3945. EXPORT_SYMBOL(cpu_present_map);
  3946. #ifndef CONFIG_SMP
  3947. cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
  3948. EXPORT_SYMBOL(cpu_online_map);
  3949. cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
  3950. EXPORT_SYMBOL(cpu_possible_map);
  3951. #endif
  3952. long sched_getaffinity(pid_t pid, cpumask_t *mask)
  3953. {
  3954. struct task_struct *p;
  3955. int retval;
  3956. mutex_lock(&sched_hotcpu_mutex);
  3957. read_lock(&tasklist_lock);
  3958. retval = -ESRCH;
  3959. p = find_process_by_pid(pid);
  3960. if (!p)
  3961. goto out_unlock;
  3962. retval = security_task_getscheduler(p);
  3963. if (retval)
  3964. goto out_unlock;
  3965. cpus_and(*mask, p->cpus_allowed, cpu_online_map);
  3966. out_unlock:
  3967. read_unlock(&tasklist_lock);
  3968. mutex_unlock(&sched_hotcpu_mutex);
  3969. if (retval)
  3970. return retval;
  3971. return 0;
  3972. }
  3973. /**
  3974. * sys_sched_getaffinity - get the cpu affinity of a process
  3975. * @pid: pid of the process
  3976. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  3977. * @user_mask_ptr: user-space pointer to hold the current cpu mask
  3978. */
  3979. asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
  3980. unsigned long __user *user_mask_ptr)
  3981. {
  3982. int ret;
  3983. cpumask_t mask;
  3984. if (len < sizeof(cpumask_t))
  3985. return -EINVAL;
  3986. ret = sched_getaffinity(pid, &mask);
  3987. if (ret < 0)
  3988. return ret;
  3989. if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
  3990. return -EFAULT;
  3991. return sizeof(cpumask_t);
  3992. }
  3993. /**
  3994. * sys_sched_yield - yield the current processor to other threads.
  3995. *
  3996. * This function yields the current CPU by moving the calling thread
  3997. * to the expired array. If there are no other threads running on this
  3998. * CPU then this function will return.
  3999. */
  4000. asmlinkage long sys_sched_yield(void)
  4001. {
  4002. struct rq *rq = this_rq_lock();
  4003. struct prio_array *array = current->array, *target = rq->expired;
  4004. schedstat_inc(rq, yld_cnt);
  4005. /*
  4006. * We implement yielding by moving the task into the expired
  4007. * queue.
  4008. *
  4009. * (special rule: RT tasks will just roundrobin in the active
  4010. * array.)
  4011. */
  4012. if (rt_task(current))
  4013. target = rq->active;
  4014. if (array->nr_active == 1) {
  4015. schedstat_inc(rq, yld_act_empty);
  4016. if (!rq->expired->nr_active)
  4017. schedstat_inc(rq, yld_both_empty);
  4018. } else if (!rq->expired->nr_active)
  4019. schedstat_inc(rq, yld_exp_empty);
  4020. if (array != target) {
  4021. dequeue_task(current, array);
  4022. enqueue_task(current, target);
  4023. } else
  4024. /*
  4025. * requeue_task is cheaper so perform that if possible.
  4026. */
  4027. requeue_task(current, array);
  4028. /*
  4029. * Since we are going to call schedule() anyway, there's
  4030. * no need to preempt or enable interrupts:
  4031. */
  4032. __release(rq->lock);
  4033. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  4034. _raw_spin_unlock(&rq->lock);
  4035. preempt_enable_no_resched();
  4036. schedule();
  4037. return 0;
  4038. }
  4039. static void __cond_resched(void)
  4040. {
  4041. #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
  4042. __might_sleep(__FILE__, __LINE__);
  4043. #endif
  4044. /*
  4045. * The BKS might be reacquired before we have dropped
  4046. * PREEMPT_ACTIVE, which could trigger a second
  4047. * cond_resched() call.
  4048. */
  4049. do {
  4050. add_preempt_count(PREEMPT_ACTIVE);
  4051. schedule();
  4052. sub_preempt_count(PREEMPT_ACTIVE);
  4053. } while (need_resched());
  4054. }
  4055. int __sched cond_resched(void)
  4056. {
  4057. if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
  4058. system_state == SYSTEM_RUNNING) {
  4059. __cond_resched();
  4060. return 1;
  4061. }
  4062. return 0;
  4063. }
  4064. EXPORT_SYMBOL(cond_resched);
  4065. /*
  4066. * cond_resched_lock() - if a reschedule is pending, drop the given lock,
  4067. * call schedule, and on return reacquire the lock.
  4068. *
  4069. * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
  4070. * operations here to prevent schedule() from being called twice (once via
  4071. * spin_unlock(), once by hand).
  4072. */
  4073. int cond_resched_lock(spinlock_t *lock)
  4074. {
  4075. int ret = 0;
  4076. if (need_lockbreak(lock)) {
  4077. spin_unlock(lock);
  4078. cpu_relax();
  4079. ret = 1;
  4080. spin_lock(lock);
  4081. }
  4082. if (need_resched() && system_state == SYSTEM_RUNNING) {
  4083. spin_release(&lock->dep_map, 1, _THIS_IP_);
  4084. _raw_spin_unlock(lock);
  4085. preempt_enable_no_resched();
  4086. __cond_resched();
  4087. ret = 1;
  4088. spin_lock(lock);
  4089. }
  4090. return ret;
  4091. }
  4092. EXPORT_SYMBOL(cond_resched_lock);
  4093. int __sched cond_resched_softirq(void)
  4094. {
  4095. BUG_ON(!in_softirq());
  4096. if (need_resched() && system_state == SYSTEM_RUNNING) {
  4097. local_bh_enable();
  4098. __cond_resched();
  4099. local_bh_disable();
  4100. return 1;
  4101. }
  4102. return 0;
  4103. }
  4104. EXPORT_SYMBOL(cond_resched_softirq);
  4105. /**
  4106. * yield - yield the current processor to other threads.
  4107. *
  4108. * This is a shortcut for kernel-space yielding - it marks the
  4109. * thread runnable and calls sys_sched_yield().
  4110. */
  4111. void __sched yield(void)
  4112. {
  4113. set_current_state(TASK_RUNNING);
  4114. sys_sched_yield();
  4115. }
  4116. EXPORT_SYMBOL(yield);
  4117. /*
  4118. * This task is about to go to sleep on IO. Increment rq->nr_iowait so
  4119. * that process accounting knows that this is a task in IO wait state.
  4120. *
  4121. * But don't do that if it is a deliberate, throttling IO wait (this task
  4122. * has set its backing_dev_info: the queue against which it should throttle)
  4123. */
  4124. void __sched io_schedule(void)
  4125. {
  4126. struct rq *rq = &__raw_get_cpu_var(runqueues);
  4127. delayacct_blkio_start();
  4128. atomic_inc(&rq->nr_iowait);
  4129. schedule();
  4130. atomic_dec(&rq->nr_iowait);
  4131. delayacct_blkio_end();
  4132. }
  4133. EXPORT_SYMBOL(io_schedule);
  4134. long __sched io_schedule_timeout(long timeout)
  4135. {
  4136. struct rq *rq = &__raw_get_cpu_var(runqueues);
  4137. long ret;
  4138. delayacct_blkio_start();
  4139. atomic_inc(&rq->nr_iowait);
  4140. ret = schedule_timeout(timeout);
  4141. atomic_dec(&rq->nr_iowait);
  4142. delayacct_blkio_end();
  4143. return ret;
  4144. }
  4145. /**
  4146. * sys_sched_get_priority_max - return maximum RT priority.
  4147. * @policy: scheduling class.
  4148. *
  4149. * this syscall returns the maximum rt_priority that can be used
  4150. * by a given scheduling class.
  4151. */
  4152. asmlinkage long sys_sched_get_priority_max(int policy)
  4153. {
  4154. int ret = -EINVAL;
  4155. switch (policy) {
  4156. case SCHED_FIFO:
  4157. case SCHED_RR:
  4158. ret = MAX_USER_RT_PRIO-1;
  4159. break;
  4160. case SCHED_NORMAL:
  4161. case SCHED_BATCH:
  4162. ret = 0;
  4163. break;
  4164. }
  4165. return ret;
  4166. }
  4167. /**
  4168. * sys_sched_get_priority_min - return minimum RT priority.
  4169. * @policy: scheduling class.
  4170. *
  4171. * this syscall returns the minimum rt_priority that can be used
  4172. * by a given scheduling class.
  4173. */
  4174. asmlinkage long sys_sched_get_priority_min(int policy)
  4175. {
  4176. int ret = -EINVAL;
  4177. switch (policy) {
  4178. case SCHED_FIFO:
  4179. case SCHED_RR:
  4180. ret = 1;
  4181. break;
  4182. case SCHED_NORMAL:
  4183. case SCHED_BATCH:
  4184. ret = 0;
  4185. }
  4186. return ret;
  4187. }
  4188. /**
  4189. * sys_sched_rr_get_interval - return the default timeslice of a process.
  4190. * @pid: pid of the process.
  4191. * @interval: userspace pointer to the timeslice value.
  4192. *
  4193. * this syscall writes the default timeslice value of a given process
  4194. * into the user-space timespec buffer. A value of '0' means infinity.
  4195. */
  4196. asmlinkage
  4197. long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
  4198. {
  4199. struct task_struct *p;
  4200. int retval = -EINVAL;
  4201. struct timespec t;
  4202. if (pid < 0)
  4203. goto out_nounlock;
  4204. retval = -ESRCH;
  4205. read_lock(&tasklist_lock);
  4206. p = find_process_by_pid(pid);
  4207. if (!p)
  4208. goto out_unlock;
  4209. retval = security_task_getscheduler(p);
  4210. if (retval)
  4211. goto out_unlock;
  4212. jiffies_to_timespec(p->policy == SCHED_FIFO ?
  4213. 0 : task_timeslice(p), &t);
  4214. read_unlock(&tasklist_lock);
  4215. retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
  4216. out_nounlock:
  4217. return retval;
  4218. out_unlock:
  4219. read_unlock(&tasklist_lock);
  4220. return retval;
  4221. }
  4222. static const char stat_nam[] = "RSDTtZX";
  4223. static void show_task(struct task_struct *p)
  4224. {
  4225. unsigned long free = 0;
  4226. unsigned state;
  4227. state = p->state ? __ffs(p->state) + 1 : 0;
  4228. printk("%-13.13s %c", p->comm,
  4229. state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
  4230. #if (BITS_PER_LONG == 32)
  4231. if (state == TASK_RUNNING)
  4232. printk(" running ");
  4233. else
  4234. printk(" %08lX ", thread_saved_pc(p));
  4235. #else
  4236. if (state == TASK_RUNNING)
  4237. printk(" running task ");
  4238. else
  4239. printk(" %016lx ", thread_saved_pc(p));
  4240. #endif
  4241. #ifdef CONFIG_DEBUG_STACK_USAGE
  4242. {
  4243. unsigned long *n = end_of_stack(p);
  4244. while (!*n)
  4245. n++;
  4246. free = (unsigned long)n - (unsigned long)end_of_stack(p);
  4247. }
  4248. #endif
  4249. printk("%5lu %5d %6d", free, p->pid, p->parent->pid);
  4250. if (!p->mm)
  4251. printk(" (L-TLB)\n");
  4252. else
  4253. printk(" (NOTLB)\n");
  4254. if (state != TASK_RUNNING)
  4255. show_stack(p, NULL);
  4256. }
  4257. void show_state_filter(unsigned long state_filter)
  4258. {
  4259. struct task_struct *g, *p;
  4260. #if (BITS_PER_LONG == 32)
  4261. printk("\n"
  4262. " free sibling\n");
  4263. printk(" task PC stack pid father child younger older\n");
  4264. #else
  4265. printk("\n"
  4266. " free sibling\n");
  4267. printk(" task PC stack pid father child younger older\n");
  4268. #endif
  4269. read_lock(&tasklist_lock);
  4270. do_each_thread(g, p) {
  4271. /*
  4272. * reset the NMI-timeout, listing all files on a slow
  4273. * console might take alot of time:
  4274. */
  4275. touch_nmi_watchdog();
  4276. if (!state_filter || (p->state & state_filter))
  4277. show_task(p);
  4278. } while_each_thread(g, p);
  4279. touch_all_softlockup_watchdogs();
  4280. read_unlock(&tasklist_lock);
  4281. /*
  4282. * Only show locks if all tasks are dumped:
  4283. */
  4284. if (state_filter == -1)
  4285. debug_show_all_locks();
  4286. }
  4287. void __cpuinit init_idle_bootup_task(struct task_struct *idle)
  4288. {
  4289. /* nothing yet */
  4290. }
  4291. /**
  4292. * init_idle - set up an idle thread for a given CPU
  4293. * @idle: task in question
  4294. * @cpu: cpu the idle task belongs to
  4295. *
  4296. * NOTE: this function does not set the idle thread's NEED_RESCHED
  4297. * flag, to make booting more robust.
  4298. */
  4299. void __cpuinit init_idle(struct task_struct *idle, int cpu)
  4300. {
  4301. struct rq *rq = cpu_rq(cpu);
  4302. unsigned long flags;
  4303. idle->timestamp = sched_clock();
  4304. idle->sleep_avg = 0;
  4305. idle->array = NULL;
  4306. idle->prio = idle->normal_prio = MAX_PRIO;
  4307. idle->state = TASK_RUNNING;
  4308. idle->cpus_allowed = cpumask_of_cpu(cpu);
  4309. set_task_cpu(idle, cpu);
  4310. spin_lock_irqsave(&rq->lock, flags);
  4311. rq->curr = rq->idle = idle;
  4312. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  4313. idle->oncpu = 1;
  4314. #endif
  4315. spin_unlock_irqrestore(&rq->lock, flags);
  4316. /* Set the preempt count _outside_ the spinlocks! */
  4317. #if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
  4318. task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
  4319. #else
  4320. task_thread_info(idle)->preempt_count = 0;
  4321. #endif
  4322. }
  4323. /*
  4324. * In a system that switches off the HZ timer nohz_cpu_mask
  4325. * indicates which cpus entered this state. This is used
  4326. * in the rcu update to wait only for active cpus. For system
  4327. * which do not switch off the HZ timer nohz_cpu_mask should
  4328. * always be CPU_MASK_NONE.
  4329. */
  4330. cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
  4331. #ifdef CONFIG_SMP
  4332. /*
  4333. * This is how migration works:
  4334. *
  4335. * 1) we queue a struct migration_req structure in the source CPU's
  4336. * runqueue and wake up that CPU's migration thread.
  4337. * 2) we down() the locked semaphore => thread blocks.
  4338. * 3) migration thread wakes up (implicitly it forces the migrated
  4339. * thread off the CPU)
  4340. * 4) it gets the migration request and checks whether the migrated
  4341. * task is still in the wrong runqueue.
  4342. * 5) if it's in the wrong runqueue then the migration thread removes
  4343. * it and puts it into the right queue.
  4344. * 6) migration thread up()s the semaphore.
  4345. * 7) we wake up and the migration is done.
  4346. */
  4347. /*
  4348. * Change a given task's CPU affinity. Migrate the thread to a
  4349. * proper CPU and schedule it away if the CPU it's executing on
  4350. * is removed from the allowed bitmask.
  4351. *
  4352. * NOTE: the caller must have a valid reference to the task, the
  4353. * task must not exit() & deallocate itself prematurely. The
  4354. * call is not atomic; no spinlocks may be held.
  4355. */
  4356. int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
  4357. {
  4358. struct migration_req req;
  4359. unsigned long flags;
  4360. struct rq *rq;
  4361. int ret = 0;
  4362. rq = task_rq_lock(p, &flags);
  4363. if (!cpus_intersects(new_mask, cpu_online_map)) {
  4364. ret = -EINVAL;
  4365. goto out;
  4366. }
  4367. p->cpus_allowed = new_mask;
  4368. /* Can the task run on the task's current CPU? If so, we're done */
  4369. if (cpu_isset(task_cpu(p), new_mask))
  4370. goto out;
  4371. if (migrate_task(p, any_online_cpu(new_mask), &req)) {
  4372. /* Need help from migration thread: drop lock and wait. */
  4373. task_rq_unlock(rq, &flags);
  4374. wake_up_process(rq->migration_thread);
  4375. wait_for_completion(&req.done);
  4376. tlb_migrate_finish(p->mm);
  4377. return 0;
  4378. }
  4379. out:
  4380. task_rq_unlock(rq, &flags);
  4381. return ret;
  4382. }
  4383. EXPORT_SYMBOL_GPL(set_cpus_allowed);
  4384. /*
  4385. * Move (not current) task off this cpu, onto dest cpu. We're doing
  4386. * this because either it can't run here any more (set_cpus_allowed()
  4387. * away from this CPU, or CPU going down), or because we're
  4388. * attempting to rebalance this task on exec (sched_exec).
  4389. *
  4390. * So we race with normal scheduler movements, but that's OK, as long
  4391. * as the task is no longer on this CPU.
  4392. *
  4393. * Returns non-zero if task was successfully migrated.
  4394. */
  4395. static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
  4396. {
  4397. struct rq *rq_dest, *rq_src;
  4398. int ret = 0;
  4399. if (unlikely(cpu_is_offline(dest_cpu)))
  4400. return ret;
  4401. rq_src = cpu_rq(src_cpu);
  4402. rq_dest = cpu_rq(dest_cpu);
  4403. double_rq_lock(rq_src, rq_dest);
  4404. /* Already moved. */
  4405. if (task_cpu(p) != src_cpu)
  4406. goto out;
  4407. /* Affinity changed (again). */
  4408. if (!cpu_isset(dest_cpu, p->cpus_allowed))
  4409. goto out;
  4410. set_task_cpu(p, dest_cpu);
  4411. if (p->array) {
  4412. /*
  4413. * Sync timestamp with rq_dest's before activating.
  4414. * The same thing could be achieved by doing this step
  4415. * afterwards, and pretending it was a local activate.
  4416. * This way is cleaner and logically correct.
  4417. */
  4418. p->timestamp = p->timestamp - rq_src->most_recent_timestamp
  4419. + rq_dest->most_recent_timestamp;
  4420. deactivate_task(p, rq_src);
  4421. __activate_task(p, rq_dest);
  4422. if (TASK_PREEMPTS_CURR(p, rq_dest))
  4423. resched_task(rq_dest->curr);
  4424. }
  4425. ret = 1;
  4426. out:
  4427. double_rq_unlock(rq_src, rq_dest);
  4428. return ret;
  4429. }
  4430. /*
  4431. * migration_thread - this is a highprio system thread that performs
  4432. * thread migration by bumping thread off CPU then 'pushing' onto
  4433. * another runqueue.
  4434. */
  4435. static int migration_thread(void *data)
  4436. {
  4437. int cpu = (long)data;
  4438. struct rq *rq;
  4439. rq = cpu_rq(cpu);
  4440. BUG_ON(rq->migration_thread != current);
  4441. set_current_state(TASK_INTERRUPTIBLE);
  4442. while (!kthread_should_stop()) {
  4443. struct migration_req *req;
  4444. struct list_head *head;
  4445. try_to_freeze();
  4446. spin_lock_irq(&rq->lock);
  4447. if (cpu_is_offline(cpu)) {
  4448. spin_unlock_irq(&rq->lock);
  4449. goto wait_to_die;
  4450. }
  4451. if (rq->active_balance) {
  4452. active_load_balance(rq, cpu);
  4453. rq->active_balance = 0;
  4454. }
  4455. head = &rq->migration_queue;
  4456. if (list_empty(head)) {
  4457. spin_unlock_irq(&rq->lock);
  4458. schedule();
  4459. set_current_state(TASK_INTERRUPTIBLE);
  4460. continue;
  4461. }
  4462. req = list_entry(head->next, struct migration_req, list);
  4463. list_del_init(head->next);
  4464. spin_unlock(&rq->lock);
  4465. __migrate_task(req->task, cpu, req->dest_cpu);
  4466. local_irq_enable();
  4467. complete(&req->done);
  4468. }
  4469. __set_current_state(TASK_RUNNING);
  4470. return 0;
  4471. wait_to_die:
  4472. /* Wait for kthread_stop */
  4473. set_current_state(TASK_INTERRUPTIBLE);
  4474. while (!kthread_should_stop()) {
  4475. schedule();
  4476. set_current_state(TASK_INTERRUPTIBLE);
  4477. }
  4478. __set_current_state(TASK_RUNNING);
  4479. return 0;
  4480. }
  4481. #ifdef CONFIG_HOTPLUG_CPU
  4482. /*
  4483. * Figure out where task on dead CPU should go, use force if neccessary.
  4484. * NOTE: interrupts should be disabled by the caller
  4485. */
  4486. static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
  4487. {
  4488. unsigned long flags;
  4489. cpumask_t mask;
  4490. struct rq *rq;
  4491. int dest_cpu;
  4492. restart:
  4493. /* On same node? */
  4494. mask = node_to_cpumask(cpu_to_node(dead_cpu));
  4495. cpus_and(mask, mask, p->cpus_allowed);
  4496. dest_cpu = any_online_cpu(mask);
  4497. /* On any allowed CPU? */
  4498. if (dest_cpu == NR_CPUS)
  4499. dest_cpu = any_online_cpu(p->cpus_allowed);
  4500. /* No more Mr. Nice Guy. */
  4501. if (dest_cpu == NR_CPUS) {
  4502. rq = task_rq_lock(p, &flags);
  4503. cpus_setall(p->cpus_allowed);
  4504. dest_cpu = any_online_cpu(p->cpus_allowed);
  4505. task_rq_unlock(rq, &flags);
  4506. /*
  4507. * Don't tell them about moving exiting tasks or
  4508. * kernel threads (both mm NULL), since they never
  4509. * leave kernel.
  4510. */
  4511. if (p->mm && printk_ratelimit())
  4512. printk(KERN_INFO "process %d (%s) no "
  4513. "longer affine to cpu%d\n",
  4514. p->pid, p->comm, dead_cpu);
  4515. }
  4516. if (!__migrate_task(p, dead_cpu, dest_cpu))
  4517. goto restart;
  4518. }
  4519. /*
  4520. * While a dead CPU has no uninterruptible tasks queued at this point,
  4521. * it might still have a nonzero ->nr_uninterruptible counter, because
  4522. * for performance reasons the counter is not stricly tracking tasks to
  4523. * their home CPUs. So we just add the counter to another CPU's counter,
  4524. * to keep the global sum constant after CPU-down:
  4525. */
  4526. static void migrate_nr_uninterruptible(struct rq *rq_src)
  4527. {
  4528. struct rq *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
  4529. unsigned long flags;
  4530. local_irq_save(flags);
  4531. double_rq_lock(rq_src, rq_dest);
  4532. rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
  4533. rq_src->nr_uninterruptible = 0;
  4534. double_rq_unlock(rq_src, rq_dest);
  4535. local_irq_restore(flags);
  4536. }
  4537. /* Run through task list and migrate tasks from the dead cpu. */
  4538. static void migrate_live_tasks(int src_cpu)
  4539. {
  4540. struct task_struct *p, *t;
  4541. write_lock_irq(&tasklist_lock);
  4542. do_each_thread(t, p) {
  4543. if (p == current)
  4544. continue;
  4545. if (task_cpu(p) == src_cpu)
  4546. move_task_off_dead_cpu(src_cpu, p);
  4547. } while_each_thread(t, p);
  4548. write_unlock_irq(&tasklist_lock);
  4549. }
  4550. /* Schedules idle task to be the next runnable task on current CPU.
  4551. * It does so by boosting its priority to highest possible and adding it to
  4552. * the _front_ of the runqueue. Used by CPU offline code.
  4553. */
  4554. void sched_idle_next(void)
  4555. {
  4556. int this_cpu = smp_processor_id();
  4557. struct rq *rq = cpu_rq(this_cpu);
  4558. struct task_struct *p = rq->idle;
  4559. unsigned long flags;
  4560. /* cpu has to be offline */
  4561. BUG_ON(cpu_online(this_cpu));
  4562. /*
  4563. * Strictly not necessary since rest of the CPUs are stopped by now
  4564. * and interrupts disabled on the current cpu.
  4565. */
  4566. spin_lock_irqsave(&rq->lock, flags);
  4567. __setscheduler(p, SCHED_FIFO, MAX_RT_PRIO-1);
  4568. /* Add idle task to the _front_ of its priority queue: */
  4569. __activate_idle_task(p, rq);
  4570. spin_unlock_irqrestore(&rq->lock, flags);
  4571. }
  4572. /*
  4573. * Ensures that the idle task is using init_mm right before its cpu goes
  4574. * offline.
  4575. */
  4576. void idle_task_exit(void)
  4577. {
  4578. struct mm_struct *mm = current->active_mm;
  4579. BUG_ON(cpu_online(smp_processor_id()));
  4580. if (mm != &init_mm)
  4581. switch_mm(mm, &init_mm, current);
  4582. mmdrop(mm);
  4583. }
  4584. /* called under rq->lock with disabled interrupts */
  4585. static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
  4586. {
  4587. struct rq *rq = cpu_rq(dead_cpu);
  4588. /* Must be exiting, otherwise would be on tasklist. */
  4589. BUG_ON(p->exit_state != EXIT_ZOMBIE && p->exit_state != EXIT_DEAD);
  4590. /* Cannot have done final schedule yet: would have vanished. */
  4591. BUG_ON(p->state == TASK_DEAD);
  4592. get_task_struct(p);
  4593. /*
  4594. * Drop lock around migration; if someone else moves it,
  4595. * that's OK. No task can be added to this CPU, so iteration is
  4596. * fine.
  4597. * NOTE: interrupts should be left disabled --dev@
  4598. */
  4599. spin_unlock(&rq->lock);
  4600. move_task_off_dead_cpu(dead_cpu, p);
  4601. spin_lock(&rq->lock);
  4602. put_task_struct(p);
  4603. }
  4604. /* release_task() removes task from tasklist, so we won't find dead tasks. */
  4605. static void migrate_dead_tasks(unsigned int dead_cpu)
  4606. {
  4607. struct rq *rq = cpu_rq(dead_cpu);
  4608. unsigned int arr, i;
  4609. for (arr = 0; arr < 2; arr++) {
  4610. for (i = 0; i < MAX_PRIO; i++) {
  4611. struct list_head *list = &rq->arrays[arr].queue[i];
  4612. while (!list_empty(list))
  4613. migrate_dead(dead_cpu, list_entry(list->next,
  4614. struct task_struct, run_list));
  4615. }
  4616. }
  4617. }
  4618. #endif /* CONFIG_HOTPLUG_CPU */
  4619. /*
  4620. * migration_call - callback that gets triggered when a CPU is added.
  4621. * Here we can start up the necessary migration thread for the new CPU.
  4622. */
  4623. static int __cpuinit
  4624. migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
  4625. {
  4626. struct task_struct *p;
  4627. int cpu = (long)hcpu;
  4628. unsigned long flags;
  4629. struct rq *rq;
  4630. switch (action) {
  4631. case CPU_LOCK_ACQUIRE:
  4632. mutex_lock(&sched_hotcpu_mutex);
  4633. break;
  4634. case CPU_UP_PREPARE:
  4635. case CPU_UP_PREPARE_FROZEN:
  4636. p = kthread_create(migration_thread, hcpu, "migration/%d",cpu);
  4637. if (IS_ERR(p))
  4638. return NOTIFY_BAD;
  4639. p->flags |= PF_NOFREEZE;
  4640. kthread_bind(p, cpu);
  4641. /* Must be high prio: stop_machine expects to yield to it. */
  4642. rq = task_rq_lock(p, &flags);
  4643. __setscheduler(p, SCHED_FIFO, MAX_RT_PRIO-1);
  4644. task_rq_unlock(rq, &flags);
  4645. cpu_rq(cpu)->migration_thread = p;
  4646. break;
  4647. case CPU_ONLINE:
  4648. case CPU_ONLINE_FROZEN:
  4649. /* Strictly unneccessary, as first user will wake it. */
  4650. wake_up_process(cpu_rq(cpu)->migration_thread);
  4651. break;
  4652. #ifdef CONFIG_HOTPLUG_CPU
  4653. case CPU_UP_CANCELED:
  4654. case CPU_UP_CANCELED_FROZEN:
  4655. if (!cpu_rq(cpu)->migration_thread)
  4656. break;
  4657. /* Unbind it from offline cpu so it can run. Fall thru. */
  4658. kthread_bind(cpu_rq(cpu)->migration_thread,
  4659. any_online_cpu(cpu_online_map));
  4660. kthread_stop(cpu_rq(cpu)->migration_thread);
  4661. cpu_rq(cpu)->migration_thread = NULL;
  4662. break;
  4663. case CPU_DEAD:
  4664. case CPU_DEAD_FROZEN:
  4665. migrate_live_tasks(cpu);
  4666. rq = cpu_rq(cpu);
  4667. kthread_stop(rq->migration_thread);
  4668. rq->migration_thread = NULL;
  4669. /* Idle task back to normal (off runqueue, low prio) */
  4670. rq = task_rq_lock(rq->idle, &flags);
  4671. deactivate_task(rq->idle, rq);
  4672. rq->idle->static_prio = MAX_PRIO;
  4673. __setscheduler(rq->idle, SCHED_NORMAL, 0);
  4674. migrate_dead_tasks(cpu);
  4675. task_rq_unlock(rq, &flags);
  4676. migrate_nr_uninterruptible(rq);
  4677. BUG_ON(rq->nr_running != 0);
  4678. /* No need to migrate the tasks: it was best-effort if
  4679. * they didn't take sched_hotcpu_mutex. Just wake up
  4680. * the requestors. */
  4681. spin_lock_irq(&rq->lock);
  4682. while (!list_empty(&rq->migration_queue)) {
  4683. struct migration_req *req;
  4684. req = list_entry(rq->migration_queue.next,
  4685. struct migration_req, list);
  4686. list_del_init(&req->list);
  4687. complete(&req->done);
  4688. }
  4689. spin_unlock_irq(&rq->lock);
  4690. break;
  4691. #endif
  4692. case CPU_LOCK_RELEASE:
  4693. mutex_unlock(&sched_hotcpu_mutex);
  4694. break;
  4695. }
  4696. return NOTIFY_OK;
  4697. }
  4698. /* Register at highest priority so that task migration (migrate_all_tasks)
  4699. * happens before everything else.
  4700. */
  4701. static struct notifier_block __cpuinitdata migration_notifier = {
  4702. .notifier_call = migration_call,
  4703. .priority = 10
  4704. };
  4705. int __init migration_init(void)
  4706. {
  4707. void *cpu = (void *)(long)smp_processor_id();
  4708. int err;
  4709. /* Start one for the boot CPU: */
  4710. err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
  4711. BUG_ON(err == NOTIFY_BAD);
  4712. migration_call(&migration_notifier, CPU_ONLINE, cpu);
  4713. register_cpu_notifier(&migration_notifier);
  4714. return 0;
  4715. }
  4716. #endif
  4717. #ifdef CONFIG_SMP
  4718. /* Number of possible processor ids */
  4719. int nr_cpu_ids __read_mostly = NR_CPUS;
  4720. EXPORT_SYMBOL(nr_cpu_ids);
  4721. #undef SCHED_DOMAIN_DEBUG
  4722. #ifdef SCHED_DOMAIN_DEBUG
  4723. static void sched_domain_debug(struct sched_domain *sd, int cpu)
  4724. {
  4725. int level = 0;
  4726. if (!sd) {
  4727. printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
  4728. return;
  4729. }
  4730. printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
  4731. do {
  4732. int i;
  4733. char str[NR_CPUS];
  4734. struct sched_group *group = sd->groups;
  4735. cpumask_t groupmask;
  4736. cpumask_scnprintf(str, NR_CPUS, sd->span);
  4737. cpus_clear(groupmask);
  4738. printk(KERN_DEBUG);
  4739. for (i = 0; i < level + 1; i++)
  4740. printk(" ");
  4741. printk("domain %d: ", level);
  4742. if (!(sd->flags & SD_LOAD_BALANCE)) {
  4743. printk("does not load-balance\n");
  4744. if (sd->parent)
  4745. printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
  4746. " has parent");
  4747. break;
  4748. }
  4749. printk("span %s\n", str);
  4750. if (!cpu_isset(cpu, sd->span))
  4751. printk(KERN_ERR "ERROR: domain->span does not contain "
  4752. "CPU%d\n", cpu);
  4753. if (!cpu_isset(cpu, group->cpumask))
  4754. printk(KERN_ERR "ERROR: domain->groups does not contain"
  4755. " CPU%d\n", cpu);
  4756. printk(KERN_DEBUG);
  4757. for (i = 0; i < level + 2; i++)
  4758. printk(" ");
  4759. printk("groups:");
  4760. do {
  4761. if (!group) {
  4762. printk("\n");
  4763. printk(KERN_ERR "ERROR: group is NULL\n");
  4764. break;
  4765. }
  4766. if (!group->__cpu_power) {
  4767. printk("\n");
  4768. printk(KERN_ERR "ERROR: domain->cpu_power not "
  4769. "set\n");
  4770. }
  4771. if (!cpus_weight(group->cpumask)) {
  4772. printk("\n");
  4773. printk(KERN_ERR "ERROR: empty group\n");
  4774. }
  4775. if (cpus_intersects(groupmask, group->cpumask)) {
  4776. printk("\n");
  4777. printk(KERN_ERR "ERROR: repeated CPUs\n");
  4778. }
  4779. cpus_or(groupmask, groupmask, group->cpumask);
  4780. cpumask_scnprintf(str, NR_CPUS, group->cpumask);
  4781. printk(" %s", str);
  4782. group = group->next;
  4783. } while (group != sd->groups);
  4784. printk("\n");
  4785. if (!cpus_equal(sd->span, groupmask))
  4786. printk(KERN_ERR "ERROR: groups don't span "
  4787. "domain->span\n");
  4788. level++;
  4789. sd = sd->parent;
  4790. if (!sd)
  4791. continue;
  4792. if (!cpus_subset(groupmask, sd->span))
  4793. printk(KERN_ERR "ERROR: parent span is not a superset "
  4794. "of domain->span\n");
  4795. } while (sd);
  4796. }
  4797. #else
  4798. # define sched_domain_debug(sd, cpu) do { } while (0)
  4799. #endif
  4800. static int sd_degenerate(struct sched_domain *sd)
  4801. {
  4802. if (cpus_weight(sd->span) == 1)
  4803. return 1;
  4804. /* Following flags need at least 2 groups */
  4805. if (sd->flags & (SD_LOAD_BALANCE |
  4806. SD_BALANCE_NEWIDLE |
  4807. SD_BALANCE_FORK |
  4808. SD_BALANCE_EXEC |
  4809. SD_SHARE_CPUPOWER |
  4810. SD_SHARE_PKG_RESOURCES)) {
  4811. if (sd->groups != sd->groups->next)
  4812. return 0;
  4813. }
  4814. /* Following flags don't use groups */
  4815. if (sd->flags & (SD_WAKE_IDLE |
  4816. SD_WAKE_AFFINE |
  4817. SD_WAKE_BALANCE))
  4818. return 0;
  4819. return 1;
  4820. }
  4821. static int
  4822. sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
  4823. {
  4824. unsigned long cflags = sd->flags, pflags = parent->flags;
  4825. if (sd_degenerate(parent))
  4826. return 1;
  4827. if (!cpus_equal(sd->span, parent->span))
  4828. return 0;
  4829. /* Does parent contain flags not in child? */
  4830. /* WAKE_BALANCE is a subset of WAKE_AFFINE */
  4831. if (cflags & SD_WAKE_AFFINE)
  4832. pflags &= ~SD_WAKE_BALANCE;
  4833. /* Flags needing groups don't count if only 1 group in parent */
  4834. if (parent->groups == parent->groups->next) {
  4835. pflags &= ~(SD_LOAD_BALANCE |
  4836. SD_BALANCE_NEWIDLE |
  4837. SD_BALANCE_FORK |
  4838. SD_BALANCE_EXEC |
  4839. SD_SHARE_CPUPOWER |
  4840. SD_SHARE_PKG_RESOURCES);
  4841. }
  4842. if (~cflags & pflags)
  4843. return 0;
  4844. return 1;
  4845. }
  4846. /*
  4847. * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
  4848. * hold the hotplug lock.
  4849. */
  4850. static void cpu_attach_domain(struct sched_domain *sd, int cpu)
  4851. {
  4852. struct rq *rq = cpu_rq(cpu);
  4853. struct sched_domain *tmp;
  4854. /* Remove the sched domains which do not contribute to scheduling. */
  4855. for (tmp = sd; tmp; tmp = tmp->parent) {
  4856. struct sched_domain *parent = tmp->parent;
  4857. if (!parent)
  4858. break;
  4859. if (sd_parent_degenerate(tmp, parent)) {
  4860. tmp->parent = parent->parent;
  4861. if (parent->parent)
  4862. parent->parent->child = tmp;
  4863. }
  4864. }
  4865. if (sd && sd_degenerate(sd)) {
  4866. sd = sd->parent;
  4867. if (sd)
  4868. sd->child = NULL;
  4869. }
  4870. sched_domain_debug(sd, cpu);
  4871. rcu_assign_pointer(rq->sd, sd);
  4872. }
  4873. /* cpus with isolated domains */
  4874. static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
  4875. /* Setup the mask of cpus configured for isolated domains */
  4876. static int __init isolated_cpu_setup(char *str)
  4877. {
  4878. int ints[NR_CPUS], i;
  4879. str = get_options(str, ARRAY_SIZE(ints), ints);
  4880. cpus_clear(cpu_isolated_map);
  4881. for (i = 1; i <= ints[0]; i++)
  4882. if (ints[i] < NR_CPUS)
  4883. cpu_set(ints[i], cpu_isolated_map);
  4884. return 1;
  4885. }
  4886. __setup ("isolcpus=", isolated_cpu_setup);
  4887. /*
  4888. * init_sched_build_groups takes the cpumask we wish to span, and a pointer
  4889. * to a function which identifies what group(along with sched group) a CPU
  4890. * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
  4891. * (due to the fact that we keep track of groups covered with a cpumask_t).
  4892. *
  4893. * init_sched_build_groups will build a circular linked list of the groups
  4894. * covered by the given span, and will set each group's ->cpumask correctly,
  4895. * and ->cpu_power to 0.
  4896. */
  4897. static void
  4898. init_sched_build_groups(cpumask_t span, const cpumask_t *cpu_map,
  4899. int (*group_fn)(int cpu, const cpumask_t *cpu_map,
  4900. struct sched_group **sg))
  4901. {
  4902. struct sched_group *first = NULL, *last = NULL;
  4903. cpumask_t covered = CPU_MASK_NONE;
  4904. int i;
  4905. for_each_cpu_mask(i, span) {
  4906. struct sched_group *sg;
  4907. int group = group_fn(i, cpu_map, &sg);
  4908. int j;
  4909. if (cpu_isset(i, covered))
  4910. continue;
  4911. sg->cpumask = CPU_MASK_NONE;
  4912. sg->__cpu_power = 0;
  4913. for_each_cpu_mask(j, span) {
  4914. if (group_fn(j, cpu_map, NULL) != group)
  4915. continue;
  4916. cpu_set(j, covered);
  4917. cpu_set(j, sg->cpumask);
  4918. }
  4919. if (!first)
  4920. first = sg;
  4921. if (last)
  4922. last->next = sg;
  4923. last = sg;
  4924. }
  4925. last->next = first;
  4926. }
  4927. #define SD_NODES_PER_DOMAIN 16
  4928. #ifdef CONFIG_NUMA
  4929. /**
  4930. * find_next_best_node - find the next node to include in a sched_domain
  4931. * @node: node whose sched_domain we're building
  4932. * @used_nodes: nodes already in the sched_domain
  4933. *
  4934. * Find the next node to include in a given scheduling domain. Simply
  4935. * finds the closest node not already in the @used_nodes map.
  4936. *
  4937. * Should use nodemask_t.
  4938. */
  4939. static int find_next_best_node(int node, unsigned long *used_nodes)
  4940. {
  4941. int i, n, val, min_val, best_node = 0;
  4942. min_val = INT_MAX;
  4943. for (i = 0; i < MAX_NUMNODES; i++) {
  4944. /* Start at @node */
  4945. n = (node + i) % MAX_NUMNODES;
  4946. if (!nr_cpus_node(n))
  4947. continue;
  4948. /* Skip already used nodes */
  4949. if (test_bit(n, used_nodes))
  4950. continue;
  4951. /* Simple min distance search */
  4952. val = node_distance(node, n);
  4953. if (val < min_val) {
  4954. min_val = val;
  4955. best_node = n;
  4956. }
  4957. }
  4958. set_bit(best_node, used_nodes);
  4959. return best_node;
  4960. }
  4961. /**
  4962. * sched_domain_node_span - get a cpumask for a node's sched_domain
  4963. * @node: node whose cpumask we're constructing
  4964. * @size: number of nodes to include in this span
  4965. *
  4966. * Given a node, construct a good cpumask for its sched_domain to span. It
  4967. * should be one that prevents unnecessary balancing, but also spreads tasks
  4968. * out optimally.
  4969. */
  4970. static cpumask_t sched_domain_node_span(int node)
  4971. {
  4972. DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
  4973. cpumask_t span, nodemask;
  4974. int i;
  4975. cpus_clear(span);
  4976. bitmap_zero(used_nodes, MAX_NUMNODES);
  4977. nodemask = node_to_cpumask(node);
  4978. cpus_or(span, span, nodemask);
  4979. set_bit(node, used_nodes);
  4980. for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
  4981. int next_node = find_next_best_node(node, used_nodes);
  4982. nodemask = node_to_cpumask(next_node);
  4983. cpus_or(span, span, nodemask);
  4984. }
  4985. return span;
  4986. }
  4987. #endif
  4988. int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
  4989. /*
  4990. * SMT sched-domains:
  4991. */
  4992. #ifdef CONFIG_SCHED_SMT
  4993. static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
  4994. static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
  4995. static int cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map,
  4996. struct sched_group **sg)
  4997. {
  4998. if (sg)
  4999. *sg = &per_cpu(sched_group_cpus, cpu);
  5000. return cpu;
  5001. }
  5002. #endif
  5003. /*
  5004. * multi-core sched-domains:
  5005. */
  5006. #ifdef CONFIG_SCHED_MC
  5007. static DEFINE_PER_CPU(struct sched_domain, core_domains);
  5008. static DEFINE_PER_CPU(struct sched_group, sched_group_core);
  5009. #endif
  5010. #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
  5011. static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
  5012. struct sched_group **sg)
  5013. {
  5014. int group;
  5015. cpumask_t mask = cpu_sibling_map[cpu];
  5016. cpus_and(mask, mask, *cpu_map);
  5017. group = first_cpu(mask);
  5018. if (sg)
  5019. *sg = &per_cpu(sched_group_core, group);
  5020. return group;
  5021. }
  5022. #elif defined(CONFIG_SCHED_MC)
  5023. static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
  5024. struct sched_group **sg)
  5025. {
  5026. if (sg)
  5027. *sg = &per_cpu(sched_group_core, cpu);
  5028. return cpu;
  5029. }
  5030. #endif
  5031. static DEFINE_PER_CPU(struct sched_domain, phys_domains);
  5032. static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
  5033. static int cpu_to_phys_group(int cpu, const cpumask_t *cpu_map,
  5034. struct sched_group **sg)
  5035. {
  5036. int group;
  5037. #ifdef CONFIG_SCHED_MC
  5038. cpumask_t mask = cpu_coregroup_map(cpu);
  5039. cpus_and(mask, mask, *cpu_map);
  5040. group = first_cpu(mask);
  5041. #elif defined(CONFIG_SCHED_SMT)
  5042. cpumask_t mask = cpu_sibling_map[cpu];
  5043. cpus_and(mask, mask, *cpu_map);
  5044. group = first_cpu(mask);
  5045. #else
  5046. group = cpu;
  5047. #endif
  5048. if (sg)
  5049. *sg = &per_cpu(sched_group_phys, group);
  5050. return group;
  5051. }
  5052. #ifdef CONFIG_NUMA
  5053. /*
  5054. * The init_sched_build_groups can't handle what we want to do with node
  5055. * groups, so roll our own. Now each node has its own list of groups which
  5056. * gets dynamically allocated.
  5057. */
  5058. static DEFINE_PER_CPU(struct sched_domain, node_domains);
  5059. static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
  5060. static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
  5061. static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
  5062. static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
  5063. struct sched_group **sg)
  5064. {
  5065. cpumask_t nodemask = node_to_cpumask(cpu_to_node(cpu));
  5066. int group;
  5067. cpus_and(nodemask, nodemask, *cpu_map);
  5068. group = first_cpu(nodemask);
  5069. if (sg)
  5070. *sg = &per_cpu(sched_group_allnodes, group);
  5071. return group;
  5072. }
  5073. static void init_numa_sched_groups_power(struct sched_group *group_head)
  5074. {
  5075. struct sched_group *sg = group_head;
  5076. int j;
  5077. if (!sg)
  5078. return;
  5079. next_sg:
  5080. for_each_cpu_mask(j, sg->cpumask) {
  5081. struct sched_domain *sd;
  5082. sd = &per_cpu(phys_domains, j);
  5083. if (j != first_cpu(sd->groups->cpumask)) {
  5084. /*
  5085. * Only add "power" once for each
  5086. * physical package.
  5087. */
  5088. continue;
  5089. }
  5090. sg_inc_cpu_power(sg, sd->groups->__cpu_power);
  5091. }
  5092. sg = sg->next;
  5093. if (sg != group_head)
  5094. goto next_sg;
  5095. }
  5096. #endif
  5097. #ifdef CONFIG_NUMA
  5098. /* Free memory allocated for various sched_group structures */
  5099. static void free_sched_groups(const cpumask_t *cpu_map)
  5100. {
  5101. int cpu, i;
  5102. for_each_cpu_mask(cpu, *cpu_map) {
  5103. struct sched_group **sched_group_nodes
  5104. = sched_group_nodes_bycpu[cpu];
  5105. if (!sched_group_nodes)
  5106. continue;
  5107. for (i = 0; i < MAX_NUMNODES; i++) {
  5108. cpumask_t nodemask = node_to_cpumask(i);
  5109. struct sched_group *oldsg, *sg = sched_group_nodes[i];
  5110. cpus_and(nodemask, nodemask, *cpu_map);
  5111. if (cpus_empty(nodemask))
  5112. continue;
  5113. if (sg == NULL)
  5114. continue;
  5115. sg = sg->next;
  5116. next_sg:
  5117. oldsg = sg;
  5118. sg = sg->next;
  5119. kfree(oldsg);
  5120. if (oldsg != sched_group_nodes[i])
  5121. goto next_sg;
  5122. }
  5123. kfree(sched_group_nodes);
  5124. sched_group_nodes_bycpu[cpu] = NULL;
  5125. }
  5126. }
  5127. #else
  5128. static void free_sched_groups(const cpumask_t *cpu_map)
  5129. {
  5130. }
  5131. #endif
  5132. /*
  5133. * Initialize sched groups cpu_power.
  5134. *
  5135. * cpu_power indicates the capacity of sched group, which is used while
  5136. * distributing the load between different sched groups in a sched domain.
  5137. * Typically cpu_power for all the groups in a sched domain will be same unless
  5138. * there are asymmetries in the topology. If there are asymmetries, group
  5139. * having more cpu_power will pickup more load compared to the group having
  5140. * less cpu_power.
  5141. *
  5142. * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
  5143. * the maximum number of tasks a group can handle in the presence of other idle
  5144. * or lightly loaded groups in the same sched domain.
  5145. */
  5146. static void init_sched_groups_power(int cpu, struct sched_domain *sd)
  5147. {
  5148. struct sched_domain *child;
  5149. struct sched_group *group;
  5150. WARN_ON(!sd || !sd->groups);
  5151. if (cpu != first_cpu(sd->groups->cpumask))
  5152. return;
  5153. child = sd->child;
  5154. sd->groups->__cpu_power = 0;
  5155. /*
  5156. * For perf policy, if the groups in child domain share resources
  5157. * (for example cores sharing some portions of the cache hierarchy
  5158. * or SMT), then set this domain groups cpu_power such that each group
  5159. * can handle only one task, when there are other idle groups in the
  5160. * same sched domain.
  5161. */
  5162. if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
  5163. (child->flags &
  5164. (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
  5165. sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
  5166. return;
  5167. }
  5168. /*
  5169. * add cpu_power of each child group to this groups cpu_power
  5170. */
  5171. group = child->groups;
  5172. do {
  5173. sg_inc_cpu_power(sd->groups, group->__cpu_power);
  5174. group = group->next;
  5175. } while (group != child->groups);
  5176. }
  5177. /*
  5178. * Build sched domains for a given set of cpus and attach the sched domains
  5179. * to the individual cpus
  5180. */
  5181. static int build_sched_domains(const cpumask_t *cpu_map)
  5182. {
  5183. int i;
  5184. struct sched_domain *sd;
  5185. #ifdef CONFIG_NUMA
  5186. struct sched_group **sched_group_nodes = NULL;
  5187. int sd_allnodes = 0;
  5188. /*
  5189. * Allocate the per-node list of sched groups
  5190. */
  5191. sched_group_nodes = kzalloc(sizeof(struct sched_group*)*MAX_NUMNODES,
  5192. GFP_KERNEL);
  5193. if (!sched_group_nodes) {
  5194. printk(KERN_WARNING "Can not alloc sched group node list\n");
  5195. return -ENOMEM;
  5196. }
  5197. sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
  5198. #endif
  5199. /*
  5200. * Set up domains for cpus specified by the cpu_map.
  5201. */
  5202. for_each_cpu_mask(i, *cpu_map) {
  5203. struct sched_domain *sd = NULL, *p;
  5204. cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));
  5205. cpus_and(nodemask, nodemask, *cpu_map);
  5206. #ifdef CONFIG_NUMA
  5207. if (cpus_weight(*cpu_map)
  5208. > SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
  5209. sd = &per_cpu(allnodes_domains, i);
  5210. *sd = SD_ALLNODES_INIT;
  5211. sd->span = *cpu_map;
  5212. cpu_to_allnodes_group(i, cpu_map, &sd->groups);
  5213. p = sd;
  5214. sd_allnodes = 1;
  5215. } else
  5216. p = NULL;
  5217. sd = &per_cpu(node_domains, i);
  5218. *sd = SD_NODE_INIT;
  5219. sd->span = sched_domain_node_span(cpu_to_node(i));
  5220. sd->parent = p;
  5221. if (p)
  5222. p->child = sd;
  5223. cpus_and(sd->span, sd->span, *cpu_map);
  5224. #endif
  5225. p = sd;
  5226. sd = &per_cpu(phys_domains, i);
  5227. *sd = SD_CPU_INIT;
  5228. sd->span = nodemask;
  5229. sd->parent = p;
  5230. if (p)
  5231. p->child = sd;
  5232. cpu_to_phys_group(i, cpu_map, &sd->groups);
  5233. #ifdef CONFIG_SCHED_MC
  5234. p = sd;
  5235. sd = &per_cpu(core_domains, i);
  5236. *sd = SD_MC_INIT;
  5237. sd->span = cpu_coregroup_map(i);
  5238. cpus_and(sd->span, sd->span, *cpu_map);
  5239. sd->parent = p;
  5240. p->child = sd;
  5241. cpu_to_core_group(i, cpu_map, &sd->groups);
  5242. #endif
  5243. #ifdef CONFIG_SCHED_SMT
  5244. p = sd;
  5245. sd = &per_cpu(cpu_domains, i);
  5246. *sd = SD_SIBLING_INIT;
  5247. sd->span = cpu_sibling_map[i];
  5248. cpus_and(sd->span, sd->span, *cpu_map);
  5249. sd->parent = p;
  5250. p->child = sd;
  5251. cpu_to_cpu_group(i, cpu_map, &sd->groups);
  5252. #endif
  5253. }
  5254. #ifdef CONFIG_SCHED_SMT
  5255. /* Set up CPU (sibling) groups */
  5256. for_each_cpu_mask(i, *cpu_map) {
  5257. cpumask_t this_sibling_map = cpu_sibling_map[i];
  5258. cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
  5259. if (i != first_cpu(this_sibling_map))
  5260. continue;
  5261. init_sched_build_groups(this_sibling_map, cpu_map, &cpu_to_cpu_group);
  5262. }
  5263. #endif
  5264. #ifdef CONFIG_SCHED_MC
  5265. /* Set up multi-core groups */
  5266. for_each_cpu_mask(i, *cpu_map) {
  5267. cpumask_t this_core_map = cpu_coregroup_map(i);
  5268. cpus_and(this_core_map, this_core_map, *cpu_map);
  5269. if (i != first_cpu(this_core_map))
  5270. continue;
  5271. init_sched_build_groups(this_core_map, cpu_map, &cpu_to_core_group);
  5272. }
  5273. #endif
  5274. /* Set up physical groups */
  5275. for (i = 0; i < MAX_NUMNODES; i++) {
  5276. cpumask_t nodemask = node_to_cpumask(i);
  5277. cpus_and(nodemask, nodemask, *cpu_map);
  5278. if (cpus_empty(nodemask))
  5279. continue;
  5280. init_sched_build_groups(nodemask, cpu_map, &cpu_to_phys_group);
  5281. }
  5282. #ifdef CONFIG_NUMA
  5283. /* Set up node groups */
  5284. if (sd_allnodes)
  5285. init_sched_build_groups(*cpu_map, cpu_map, &cpu_to_allnodes_group);
  5286. for (i = 0; i < MAX_NUMNODES; i++) {
  5287. /* Set up node groups */
  5288. struct sched_group *sg, *prev;
  5289. cpumask_t nodemask = node_to_cpumask(i);
  5290. cpumask_t domainspan;
  5291. cpumask_t covered = CPU_MASK_NONE;
  5292. int j;
  5293. cpus_and(nodemask, nodemask, *cpu_map);
  5294. if (cpus_empty(nodemask)) {
  5295. sched_group_nodes[i] = NULL;
  5296. continue;
  5297. }
  5298. domainspan = sched_domain_node_span(i);
  5299. cpus_and(domainspan, domainspan, *cpu_map);
  5300. sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
  5301. if (!sg) {
  5302. printk(KERN_WARNING "Can not alloc domain group for "
  5303. "node %d\n", i);
  5304. goto error;
  5305. }
  5306. sched_group_nodes[i] = sg;
  5307. for_each_cpu_mask(j, nodemask) {
  5308. struct sched_domain *sd;
  5309. sd = &per_cpu(node_domains, j);
  5310. sd->groups = sg;
  5311. }
  5312. sg->__cpu_power = 0;
  5313. sg->cpumask = nodemask;
  5314. sg->next = sg;
  5315. cpus_or(covered, covered, nodemask);
  5316. prev = sg;
  5317. for (j = 0; j < MAX_NUMNODES; j++) {
  5318. cpumask_t tmp, notcovered;
  5319. int n = (i + j) % MAX_NUMNODES;
  5320. cpus_complement(notcovered, covered);
  5321. cpus_and(tmp, notcovered, *cpu_map);
  5322. cpus_and(tmp, tmp, domainspan);
  5323. if (cpus_empty(tmp))
  5324. break;
  5325. nodemask = node_to_cpumask(n);
  5326. cpus_and(tmp, tmp, nodemask);
  5327. if (cpus_empty(tmp))
  5328. continue;
  5329. sg = kmalloc_node(sizeof(struct sched_group),
  5330. GFP_KERNEL, i);
  5331. if (!sg) {
  5332. printk(KERN_WARNING
  5333. "Can not alloc domain group for node %d\n", j);
  5334. goto error;
  5335. }
  5336. sg->__cpu_power = 0;
  5337. sg->cpumask = tmp;
  5338. sg->next = prev->next;
  5339. cpus_or(covered, covered, tmp);
  5340. prev->next = sg;
  5341. prev = sg;
  5342. }
  5343. }
  5344. #endif
  5345. /* Calculate CPU power for physical packages and nodes */
  5346. #ifdef CONFIG_SCHED_SMT
  5347. for_each_cpu_mask(i, *cpu_map) {
  5348. sd = &per_cpu(cpu_domains, i);
  5349. init_sched_groups_power(i, sd);
  5350. }
  5351. #endif
  5352. #ifdef CONFIG_SCHED_MC
  5353. for_each_cpu_mask(i, *cpu_map) {
  5354. sd = &per_cpu(core_domains, i);
  5355. init_sched_groups_power(i, sd);
  5356. }
  5357. #endif
  5358. for_each_cpu_mask(i, *cpu_map) {
  5359. sd = &per_cpu(phys_domains, i);
  5360. init_sched_groups_power(i, sd);
  5361. }
  5362. #ifdef CONFIG_NUMA
  5363. for (i = 0; i < MAX_NUMNODES; i++)
  5364. init_numa_sched_groups_power(sched_group_nodes[i]);
  5365. if (sd_allnodes) {
  5366. struct sched_group *sg;
  5367. cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg);
  5368. init_numa_sched_groups_power(sg);
  5369. }
  5370. #endif
  5371. /* Attach the domains */
  5372. for_each_cpu_mask(i, *cpu_map) {
  5373. struct sched_domain *sd;
  5374. #ifdef CONFIG_SCHED_SMT
  5375. sd = &per_cpu(cpu_domains, i);
  5376. #elif defined(CONFIG_SCHED_MC)
  5377. sd = &per_cpu(core_domains, i);
  5378. #else
  5379. sd = &per_cpu(phys_domains, i);
  5380. #endif
  5381. cpu_attach_domain(sd, i);
  5382. }
  5383. return 0;
  5384. #ifdef CONFIG_NUMA
  5385. error:
  5386. free_sched_groups(cpu_map);
  5387. return -ENOMEM;
  5388. #endif
  5389. }
  5390. /*
  5391. * Set up scheduler domains and groups. Callers must hold the hotplug lock.
  5392. */
  5393. static int arch_init_sched_domains(const cpumask_t *cpu_map)
  5394. {
  5395. cpumask_t cpu_default_map;
  5396. int err;
  5397. /*
  5398. * Setup mask for cpus without special case scheduling requirements.
  5399. * For now this just excludes isolated cpus, but could be used to
  5400. * exclude other special cases in the future.
  5401. */
  5402. cpus_andnot(cpu_default_map, *cpu_map, cpu_isolated_map);
  5403. err = build_sched_domains(&cpu_default_map);
  5404. return err;
  5405. }
  5406. static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
  5407. {
  5408. free_sched_groups(cpu_map);
  5409. }
  5410. /*
  5411. * Detach sched domains from a group of cpus specified in cpu_map
  5412. * These cpus will now be attached to the NULL domain
  5413. */
  5414. static void detach_destroy_domains(const cpumask_t *cpu_map)
  5415. {
  5416. int i;
  5417. for_each_cpu_mask(i, *cpu_map)
  5418. cpu_attach_domain(NULL, i);
  5419. synchronize_sched();
  5420. arch_destroy_sched_domains(cpu_map);
  5421. }
  5422. /*
  5423. * Partition sched domains as specified by the cpumasks below.
  5424. * This attaches all cpus from the cpumasks to the NULL domain,
  5425. * waits for a RCU quiescent period, recalculates sched
  5426. * domain information and then attaches them back to the
  5427. * correct sched domains
  5428. * Call with hotplug lock held
  5429. */
  5430. int partition_sched_domains(cpumask_t *partition1, cpumask_t *partition2)
  5431. {
  5432. cpumask_t change_map;
  5433. int err = 0;
  5434. cpus_and(*partition1, *partition1, cpu_online_map);
  5435. cpus_and(*partition2, *partition2, cpu_online_map);
  5436. cpus_or(change_map, *partition1, *partition2);
  5437. /* Detach sched domains from all of the affected cpus */
  5438. detach_destroy_domains(&change_map);
  5439. if (!cpus_empty(*partition1))
  5440. err = build_sched_domains(partition1);
  5441. if (!err && !cpus_empty(*partition2))
  5442. err = build_sched_domains(partition2);
  5443. return err;
  5444. }
  5445. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  5446. int arch_reinit_sched_domains(void)
  5447. {
  5448. int err;
  5449. mutex_lock(&sched_hotcpu_mutex);
  5450. detach_destroy_domains(&cpu_online_map);
  5451. err = arch_init_sched_domains(&cpu_online_map);
  5452. mutex_unlock(&sched_hotcpu_mutex);
  5453. return err;
  5454. }
  5455. static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
  5456. {
  5457. int ret;
  5458. if (buf[0] != '0' && buf[0] != '1')
  5459. return -EINVAL;
  5460. if (smt)
  5461. sched_smt_power_savings = (buf[0] == '1');
  5462. else
  5463. sched_mc_power_savings = (buf[0] == '1');
  5464. ret = arch_reinit_sched_domains();
  5465. return ret ? ret : count;
  5466. }
  5467. int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
  5468. {
  5469. int err = 0;
  5470. #ifdef CONFIG_SCHED_SMT
  5471. if (smt_capable())
  5472. err = sysfs_create_file(&cls->kset.kobj,
  5473. &attr_sched_smt_power_savings.attr);
  5474. #endif
  5475. #ifdef CONFIG_SCHED_MC
  5476. if (!err && mc_capable())
  5477. err = sysfs_create_file(&cls->kset.kobj,
  5478. &attr_sched_mc_power_savings.attr);
  5479. #endif
  5480. return err;
  5481. }
  5482. #endif
  5483. #ifdef CONFIG_SCHED_MC
  5484. static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
  5485. {
  5486. return sprintf(page, "%u\n", sched_mc_power_savings);
  5487. }
  5488. static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
  5489. const char *buf, size_t count)
  5490. {
  5491. return sched_power_savings_store(buf, count, 0);
  5492. }
  5493. SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
  5494. sched_mc_power_savings_store);
  5495. #endif
  5496. #ifdef CONFIG_SCHED_SMT
  5497. static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
  5498. {
  5499. return sprintf(page, "%u\n", sched_smt_power_savings);
  5500. }
  5501. static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
  5502. const char *buf, size_t count)
  5503. {
  5504. return sched_power_savings_store(buf, count, 1);
  5505. }
  5506. SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
  5507. sched_smt_power_savings_store);
  5508. #endif
  5509. /*
  5510. * Force a reinitialization of the sched domains hierarchy. The domains
  5511. * and groups cannot be updated in place without racing with the balancing
  5512. * code, so we temporarily attach all running cpus to the NULL domain
  5513. * which will prevent rebalancing while the sched domains are recalculated.
  5514. */
  5515. static int update_sched_domains(struct notifier_block *nfb,
  5516. unsigned long action, void *hcpu)
  5517. {
  5518. switch (action) {
  5519. case CPU_UP_PREPARE:
  5520. case CPU_UP_PREPARE_FROZEN:
  5521. case CPU_DOWN_PREPARE:
  5522. case CPU_DOWN_PREPARE_FROZEN:
  5523. detach_destroy_domains(&cpu_online_map);
  5524. return NOTIFY_OK;
  5525. case CPU_UP_CANCELED:
  5526. case CPU_UP_CANCELED_FROZEN:
  5527. case CPU_DOWN_FAILED:
  5528. case CPU_DOWN_FAILED_FROZEN:
  5529. case CPU_ONLINE:
  5530. case CPU_ONLINE_FROZEN:
  5531. case CPU_DEAD:
  5532. case CPU_DEAD_FROZEN:
  5533. /*
  5534. * Fall through and re-initialise the domains.
  5535. */
  5536. break;
  5537. default:
  5538. return NOTIFY_DONE;
  5539. }
  5540. /* The hotplug lock is already held by cpu_up/cpu_down */
  5541. arch_init_sched_domains(&cpu_online_map);
  5542. return NOTIFY_OK;
  5543. }
  5544. void __init sched_init_smp(void)
  5545. {
  5546. cpumask_t non_isolated_cpus;
  5547. mutex_lock(&sched_hotcpu_mutex);
  5548. arch_init_sched_domains(&cpu_online_map);
  5549. cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
  5550. if (cpus_empty(non_isolated_cpus))
  5551. cpu_set(smp_processor_id(), non_isolated_cpus);
  5552. mutex_unlock(&sched_hotcpu_mutex);
  5553. /* XXX: Theoretical race here - CPU may be hotplugged now */
  5554. hotcpu_notifier(update_sched_domains, 0);
  5555. /* Move init over to a non-isolated CPU */
  5556. if (set_cpus_allowed(current, non_isolated_cpus) < 0)
  5557. BUG();
  5558. }
  5559. #else
  5560. void __init sched_init_smp(void)
  5561. {
  5562. }
  5563. #endif /* CONFIG_SMP */
  5564. int in_sched_functions(unsigned long addr)
  5565. {
  5566. /* Linker adds these: start and end of __sched functions */
  5567. extern char __sched_text_start[], __sched_text_end[];
  5568. return in_lock_functions(addr) ||
  5569. (addr >= (unsigned long)__sched_text_start
  5570. && addr < (unsigned long)__sched_text_end);
  5571. }
  5572. void __init sched_init(void)
  5573. {
  5574. int i, j, k;
  5575. int highest_cpu = 0;
  5576. for_each_possible_cpu(i) {
  5577. struct prio_array *array;
  5578. struct rq *rq;
  5579. rq = cpu_rq(i);
  5580. spin_lock_init(&rq->lock);
  5581. lockdep_set_class(&rq->lock, &rq->rq_lock_key);
  5582. rq->nr_running = 0;
  5583. rq->active = rq->arrays;
  5584. rq->expired = rq->arrays + 1;
  5585. rq->best_expired_prio = MAX_PRIO;
  5586. #ifdef CONFIG_SMP
  5587. rq->sd = NULL;
  5588. for (j = 1; j < 3; j++)
  5589. rq->cpu_load[j] = 0;
  5590. rq->active_balance = 0;
  5591. rq->push_cpu = 0;
  5592. rq->cpu = i;
  5593. rq->migration_thread = NULL;
  5594. INIT_LIST_HEAD(&rq->migration_queue);
  5595. #endif
  5596. atomic_set(&rq->nr_iowait, 0);
  5597. for (j = 0; j < 2; j++) {
  5598. array = rq->arrays + j;
  5599. for (k = 0; k < MAX_PRIO; k++) {
  5600. INIT_LIST_HEAD(array->queue + k);
  5601. __clear_bit(k, array->bitmap);
  5602. }
  5603. // delimiter for bitsearch
  5604. __set_bit(MAX_PRIO, array->bitmap);
  5605. }
  5606. highest_cpu = i;
  5607. }
  5608. set_load_weight(&init_task);
  5609. #ifdef CONFIG_SMP
  5610. nr_cpu_ids = highest_cpu + 1;
  5611. open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
  5612. #endif
  5613. #ifdef CONFIG_RT_MUTEXES
  5614. plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
  5615. #endif
  5616. /*
  5617. * The boot idle thread does lazy MMU switching as well:
  5618. */
  5619. atomic_inc(&init_mm.mm_count);
  5620. enter_lazy_tlb(&init_mm, current);
  5621. /*
  5622. * Make us the idle thread. Technically, schedule() should not be
  5623. * called from this thread, however somewhere below it might be,
  5624. * but because we are the idle thread, we just pick up running again
  5625. * when this runqueue becomes "idle".
  5626. */
  5627. init_idle(current, smp_processor_id());
  5628. }
  5629. #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
  5630. void __might_sleep(char *file, int line)
  5631. {
  5632. #ifdef in_atomic
  5633. static unsigned long prev_jiffy; /* ratelimiting */
  5634. if ((in_atomic() || irqs_disabled()) &&
  5635. system_state == SYSTEM_RUNNING && !oops_in_progress) {
  5636. if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
  5637. return;
  5638. prev_jiffy = jiffies;
  5639. printk(KERN_ERR "BUG: sleeping function called from invalid"
  5640. " context at %s:%d\n", file, line);
  5641. printk("in_atomic():%d, irqs_disabled():%d\n",
  5642. in_atomic(), irqs_disabled());
  5643. debug_show_held_locks(current);
  5644. if (irqs_disabled())
  5645. print_irqtrace_events(current);
  5646. dump_stack();
  5647. }
  5648. #endif
  5649. }
  5650. EXPORT_SYMBOL(__might_sleep);
  5651. #endif
  5652. #ifdef CONFIG_MAGIC_SYSRQ
  5653. void normalize_rt_tasks(void)
  5654. {
  5655. struct prio_array *array;
  5656. struct task_struct *g, *p;
  5657. unsigned long flags;
  5658. struct rq *rq;
  5659. read_lock_irq(&tasklist_lock);
  5660. do_each_thread(g, p) {
  5661. if (!rt_task(p))
  5662. continue;
  5663. spin_lock_irqsave(&p->pi_lock, flags);
  5664. rq = __task_rq_lock(p);
  5665. array = p->array;
  5666. if (array)
  5667. deactivate_task(p, task_rq(p));
  5668. __setscheduler(p, SCHED_NORMAL, 0);
  5669. if (array) {
  5670. __activate_task(p, task_rq(p));
  5671. resched_task(rq->curr);
  5672. }
  5673. __task_rq_unlock(rq);
  5674. spin_unlock_irqrestore(&p->pi_lock, flags);
  5675. } while_each_thread(g, p);
  5676. read_unlock_irq(&tasklist_lock);
  5677. }
  5678. #endif /* CONFIG_MAGIC_SYSRQ */
  5679. #ifdef CONFIG_IA64
  5680. /*
  5681. * These functions are only useful for the IA64 MCA handling.
  5682. *
  5683. * They can only be called when the whole system has been
  5684. * stopped - every CPU needs to be quiescent, and no scheduling
  5685. * activity can take place. Using them for anything else would
  5686. * be a serious bug, and as a result, they aren't even visible
  5687. * under any other configuration.
  5688. */
  5689. /**
  5690. * curr_task - return the current task for a given cpu.
  5691. * @cpu: the processor in question.
  5692. *
  5693. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  5694. */
  5695. struct task_struct *curr_task(int cpu)
  5696. {
  5697. return cpu_curr(cpu);
  5698. }
  5699. /**
  5700. * set_curr_task - set the current task for a given cpu.
  5701. * @cpu: the processor in question.
  5702. * @p: the task pointer to set.
  5703. *
  5704. * Description: This function must only be used when non-maskable interrupts
  5705. * are serviced on a separate stack. It allows the architecture to switch the
  5706. * notion of the current task on a cpu in a non-blocking manner. This function
  5707. * must be called with all CPU's synchronized, and interrupts disabled, the
  5708. * and caller must save the original value of the current task (see
  5709. * curr_task() above) and restore that value before reenabling interrupts and
  5710. * re-starting the system.
  5711. *
  5712. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  5713. */
  5714. void set_curr_task(int cpu, struct task_struct *p)
  5715. {
  5716. cpu_curr(cpu) = p;
  5717. }
  5718. #endif